SYNOPSYS

Coverity Wizard 2020.12 User Guide

Coverity Wizard is a component of Coverity Analysis
Copyright 2020 Synopsys, Inc. All rights reserved worldwide.

Table of Contents

1. Using Coverity Wizard to Get Started with Coverity ANalySisccooviiiiiiiiiiiiii e, 1
2. CoVerity WIZard OVEIVIEWiiiii ittt ettt et e e et e et et e et e e at e e et e eeanaaees 2
N I (= To [U1 =10 1= 01 T PP 2
2.2. About the Coverity Wizard tUtOralco.uiiiiii e 2
ARG T I AV o = 1o I PRSPPI 2
3. RUNNING COVENILY WIZAITc.uiiiiiiiii ettt ettt e e e eeen s 4
3.1. Configuring Coverity Wizard for Coverity ANAlYSISccouiiiiiiiiiiiiii e 4
3.2. Configuring Coverity Wizard for Test Advisor - Development Editionccococe. 14
4. Using the Test Advisor Policy Editor and DeDUQGQETooieuniiiiiiie e 27
4.1. Creating a new test POICY filecoouiiiiii e 27

4.2. USING the teXE EUITOT ...ttt e e e e 28

4.3. Using the test policy file OULINE e 28
4.4. Debugging your test POlICY file ... 30
4.5, Translation Unit Filter referenCeoooeiiiiiiii e 31
5. Using the Guided Test Advisor Policy Creation Wizardccooviiiiiiiiiiiiiiiic e 33
I I] (o [F Tt 1o] o IR PSPPSR 33
5.2. Code Age ThreSholdS ... 34
5.3, VIOIAtION CHILEIIA ..oevviiieiii ettt e 34
I |1 (=] £ T PSPPSRI 35
6. Troubleshooting CoVerity WIZArooouuiiiiiii e e 37
AL COVEILY GIOSSAIY ...ttt et et e e et e e e e e e e et e e ean e eanas 38
B. COVErtY Legal NOLICE ...ttt et ettt e et et et e e e e eanaees 50
= 30 I To = 1 o 1 o TSP UPT P 50

Chapter 1. Using Coverity Wizard to Get Started with Coverity
Analysis

You can get started with Coverity Analysis, for any Coverity supported language, by using Coverity
Wizard, a GUI-based application.

Scope
This guide covers tasks for setting up and running static quality, security, and test analyses in a
centralized (server-based) build system.

Audience
The audience for this guide is administrators (including build engineers and tools specialists) and
power users who set up and run the Coverity analyses in an integrated build environment. For

details, see Coverity Analysis Roles and Responsibilities B in the Coverity Analysis 2020.12 User
and Administrator Guide.

g Note
It is possible to run analyses from the command-line interface:

* To set up and run analyses from the command line, see Coverity Analysis 2020.12 User and
Administrator Guide &7 .

* To set up and run test analyses, see Test Advisor 2020.12 User and Administrator Guide Ef' .

« To set up and run Java dynamic analyses, see Dynamic Analysis 2020.12 Administration Tutorial

B

cov_analysis_administration_guide.pdf#roles_responsibilities
cov_analysis_administration_guide.pdf
cov_analysis_administration_guide.pdf
test_advisor_use_and_admin_guide.pdf
dynamic_analysis_administration_tutorial.pdf
dynamic_analysis_administration_tutorial.pdf

Chapter 2. Coverity Wizard Overview

Table of Contents

20 I = Lo 10 1T (=1 0=) PP 2
2.2. About the Coverity Wizard tULOFIalcoouiiiiiiii e e e e e e e e e eeen 2
b2 T - Y/ To = 1T o I 2

Coverity Wizard is a utility that allows you to complete the following Coverity Analysis tasks using an
intuitive graphical user interface:

« Configure Coverity tools to work with your compiler.

* Build your source code under Coverity build capture.

« Analyze your source code to find potential quality issues, security issues, and/or test issues.
» Monitor your testing process to ensure its adherence to pre-defined test policy specifications.

e Commit the analysis results to the Coverity Connect server which displays the issues and allows you to
manage the issues through a web-based interface.

2.1. Requirements

Coverity Wizard is installed as part of Coverity Analysis. Refer to the Coverity 2020.12 Installation and
Deployment Guide ¢ for a complete list of hardware and software required.

2.2. About the Coverity Wizard tutorial

The tutorial uses the default values for each screen, and a simple code example with some issues to
show you how to run an analysis on your own code. Each option in Coverity Wizard has a help button (@)
that you can click to get additional information on its functionality and configuration.

2.3. Navigation

Each screen of Coverity Wizard leads you through required configuration steps, providing both basic
and more advanced options. You can complete each section in order, or you can go back to a previous
screen to make changes at any stage of the workflow. The GUI interface has a left-hand navigation pane
that provides an indicator for the active screen. The lower right corner provides buttons that link back to
the previous screen, or forward to the next screen.

Indicators provide a visual context of your progress.

Table 2.1. Indicator Icons

Icon Description

Indicates a completed phase of the workflow.

cov_deploy_install_guide.pdf
cov_deploy_install_guide.pdf

Coverity Wizard Overview

Icon Description

| Indicates that there is an error, or that the step is incomplete.

Additionally, if you'd like to view Coverity Wizard's console commands and output, navigate to View —
Show Console at any time.

Chapter 3. Running Coverity Wizard

Table of Contents

3.1. Configuring Coverity Wizard for Coverity ANAIYSISoviiuiiiiii e e e e e e
3.2. Configuring Coverity Wizard for Test Advisor - Development Editioncccooviivivineinnnn. 14

These tutorials run through two examples using Coverity Wizard to set up configuration information.
» The first scenario uses Coverity Wizard to configure Coverity Analysis
» The second scenario illustrates a Test Advisor - Development Edition configuration.

The standard workflow for Coverity Wizard can be seen in Figure 3.1, “Standard workflow”. The red
sections denote steps specific to Test Advisor configuration.

Figure 3.1. Standard workflow

3.1. Configuring Coverity Wizard for Coverity Analysis

The following sections explain how to get started with Coverity Wizard and how to configure Coverity
Analysis projects.

3.1.1. Introduction screen

The Introduction screen is the first of six screens displayed by Coverity Wizard. To launch Coverity
Wizard do one of the following:

» On the Windows platform, a shortcut is placed on the desktop if you choose, or you can run the cov-
wi zar d command from the <i nst al | _di r >/ bi n directory, or have it in your PATH.

e On Linux run the cov-w zar d command from the <i nst al | _di r >/ bi n directory, or have it in your
PATH.

Running Coverity Wizard

Figure 3.2. Introduction screen

o0 e Coverity Wizard - *ide-plugins-vscode-codexm.cwz

wZintrediction Introduction
Capture
Analysis What is the name of your code base / project / product?
Commit Defects

Project name: | myprojec
View Results yerojec

(This is just a label, and used in certain auto-generated default names.)

What do you want to do?

Run Coverity Analysis: Find quality and security issues @

Show Instructions,

Next >

On the Introduction screen, you must choose which products you want to configure (Coverity Analysis,
Test Advisor - Development Edition) and select a project name. Click to select Quality and, optionally,
Security; these options indicate the types of analysis you want done. The tutorial project name is

nypr oj ect , however you can customize this name.

3.1.2. Capture

Coverity Wizard provides the ability to configure a command line build and/or buildless capture, and
Coverity Wizard will display the results. On Windows you can also have your Integrated Development
Environment (IDE) perform the build; see Section 3.1.2.2, “IDE shortcut build”.

Running Coverity Wizard

Figure 3.3. Capture build

o0 e Coverity Wizard - *ide-plugins-vscode-codexm.cwz

+ Introduction

Capture
+ Capture
Analysis Select what source code you want to capture:
Commit Defects p
View Results Compiled Cede @
Scripts or Interpreted Code @
General settings
Working directory: /Users/luisp/Documents/sample-code/4.8/Defector/Defector Browse. @
iate directory: | fi Y .8/Defector/D Browse. @
Advanced Capture Settings...
Build settings (Compiled code)
Clean: | make clean @
Build: | make| @
Compiler Configuration TestBulld | (2
Buildless capture settings (Scripts or Interpreted Code)
Edit Settings.. @
The build with Coverity capture enabled succeeded. Intermediate Directory Details.
You should check that the number of captured translation units is
approximately equal to the number of C, C++ and Java source
files (ignaring header files} compiled by your build. If it is not, -
then you prabably need to adjust your campiler cenfigurations. Capture Bulld | (3)
Otherwise, you are ready to move on to Analysis Configuration.
< Previous Next >

Configure the following fields, then click Capture Build:

Compiled Code

Select this check-box if your project contains any code that requires compilation. This will run a build
capture that will compile and emit relevant files for analysis.

Compiler configuration options are described in Figure 3.4, “Automatically configure compilers”.

Scripts or Interpreted Code

Select this check-box if your project contains any scripts or interpreted code. This will run buildless
capture, which will emit relevant files for analysis.

Working directory
For projects with compiled code, the Clean and Build commands will be run from this directory.

Advanced Capture Settings...
This button allows you to set additional cov- bui | d options, or configure other advanced settings
that relate to the build capture process. Use the help icon (@) associated with each option for details.

Intermediate directory

Specifies the directory where all Coverity build and buildless capture information will be stored. This
should be on fast local storage to ensure the analysis is as fast as possible.

Build settings (Compiled Code)

It is recommended that you select the Command line build option, and specify the Clean and Build
command for any compiled code in your project.

Running Coverity Wizard

You can also choose to have your IDE complete the build capture step. See Section 3.1.2.2, “IDE
shortcut build” for more information.

Compiler configuration
This button allows you to configure the compilers you would like to use.

Buildless capture settings (Scripts or Interpreted Code)
It is recommended that you select the Scripts or Interpreted Code option to enable the buildless
capture feature.

Edit Settings
This button allows you to specify files or directories you would like to include or exclude from the
buildless capture.

3.1.2.1. Compiler Configuration

Figure 3.4. Automatically configure compilers

v Introduction Capture
1 Capture
Analysis Select what source code you want to capture:
Commit Defects _
View Results V| Compiled Code @
- W e @
@
[]
The Coverity plugin will monitor builds performed with the compilers that are registered on this page. Please
ensure that all compilers that are used to build the code in your workspace are registered here.
Compiler configuration Browse... (2
C file: N i Browse... @ |srowse. @
Configured compilers:
Name Type Executable Template
gee-1 GNU C compiler gce v
java-1 Oracle Java compiler (ja... javac v
clangee-1 Clang compiler (C) clang v _
swift-1 Apple Swift Compiler (s... swiftc v @
vbe-1 Microsoft Visual Basic C... vbe v >
csc-1 Microsoft C# Compiler csc v @
TestBuild (2)
Add...
fcreen.
Cancel
SUS— ©)

Intermediate Directory Details...

Capture Build (2)

< Previous Next >

If your project uses any of the compilers listed below, you will only need to click the Yes button when
prompted to automatically configure the most common compilers.

* GNU C/C++ compiler (gcc)

e Sun/Oracle compiler (javac)

» Clang compiler (clangcc)

» Microsoft Visual C/C++ compiler (cl)

« Microsoft Visual C# Compiler (csc)

Running Coverity Wizard

» Microsoft Visual Basic Compiler (vbc)
Note

If your system uses .NET to compile Visual C# or Visual Basic, cov- conf i gur e correctly sets up
that environment.

The Microsoft Visual C/C++ and Microsoft C# compilers are supported on Windows only. On
macQOS, Coverity supports only the Unity Roslyn compiler.

If you need to configure another compiler, say for example, the Wind River Diab compiler, follow these
steps:

1. Click the Add... button.

2. Choose Windriver Diab C Compiler (CIT) from the Compiler type dropdown menu.

3. Change the configuration name to diab-1. You can name it what you want to.

4. Enter the compiler's command line name. For the Wind River Diab C compiler, it is dcc.
@ Note

For a compiler like the Wind River Diab C compiler that has both C and C++ variants, just enter
the C compiler's name, and the C++ compiler will be configured automatically.

5. Click OK to add it to the list of configured compilers.

Figure 3.5. Add Compiler

v Introduction

Capture
1 Capture
Analysis Select what source code you want to capture:
Commit Defects _
View Results V! Compiled Code @
B v oo i e @)
@
The Coverity plugin will monitor builds performed with the compilers that are registered on this page. Please
ensure that all compilers that are used to build the code in your workspace are registered here.
Compill @ Add Compiler Browse... | (@
Configi Configuration name: diab-1 @ ® [Browse 0
Configi Combiler type: Windriver Diab C Compiler (CIT) @
Name ' compiler executable: | dec Browse.. (2
gee-1
java-1 » Advanced Options
clangel .
swift-1 @
Cancel
vbe-1 .
csc-1 @
TestBuild | ()
Add..
creen.
Cancel ok

®

Intermediate Directory Details...

Capture Build (%)

< Previous Next >

Running Coverity Wizard

3.1.2.2. IDE shortcut build

The IDE option allows you to specify a Windows shortcut to your Integrated Development
Environment (IDE) to perform the build.

To configure the build settings for use with the Coverity Wizard IDE feature, do the following:

1.

2.

Select the IDE shortcut button.
Set your working directory.
s Note
The working directory is where the build commands are run. For some IDEs, for example,

Visual Studio, it does not matter what directory you choose to run the IDE from. You can set the
working directory to c: \ .

. Use one of the options below to activate the IDE option:

 Enter the filename of the link (.Ink) to your IDE or executable (.exe) to your IDE
» Use the Browse button to find and choose it.

« Drag and drop the Windows shortcut from your desktop to the Coverity Wizard interface.

. Click the Test Build button. Your IDE will open if successful. Close the IDE.
. Click the Capture Build button.

. When your IDE opens, use it to perform a clean and a full build of your code. A pop-up window will

remain open reminding you to close the IDE after you perform the clean and full build.

. Close your IDE.

Running Coverity Wizard

3.1.3. Analysis Settings

Figure 3.6. Analysis Settings Details

00 Coverity Wizard - *ide-plugins-vscode-codexm.cwz

¥ Introduction
v Capture
1 Analysis Analysis options

Commit Defects

View Results Options. @

Analysis

Use worker processes (instead of the maximum allowed) @

Analysis results summary: Intermediate Directory Details. @

The analysis has not yet been run.

Run Analysis | (%)

< Previous Next >

Figure 3.6, “Analysis Settings Details” shows the analysis settings screen which lets you set various
analysis options prior to running the analysis.

To set the analysis do the following:
1. Click on the Run Analysis button.

The results are displayed in the Analysis results summary pane. The Analysis results summary pane
displays the date and the issues found.

Note
This will perform the analysis with the default analysis settings enabled. To create a custom
analysis, click on the Options button to access various analysis options prior to running the

analysis. Click on the help icons for information on each of the options.

2. Click the Intermediate Directory Details button. Expand the Analysis — Defect occurrences button
tree node to view defect counts broken down by checker.

10

Running Coverity Wizard

3.1.4. Commit Defects

Figure 3.7. Commit Settings Screen

Commit Defects

Coverity Connect settings

Coverity Connect URL: | http://localhost:8080 ‘:’)
©)]
Authentication Key File: Browse... ‘é}
1 No authentication key path entered. Please import or generate a new key. C'J
Test Connection ©)
Stream to commit to
Commit to stream: = ccasTest K New.. @

Note: Some pre-existing streams might not be shown. Why?

Snapshot description:

Advanced Commit Settings... (

®

Commit Defects @

< Previous Next >

After analyzing your code, you commit the analysis results to Coverity Connect. This tutorial assumes
that you have access to an installed and configured instance of Coverity Connect. You must also have
valid user credentials in the form of an authentication key file to connect to Coverity Connect, and the
user must have a role with appropriate permissions to commit and view the issues (such as the admin
role). If you do not have an authentication key file, you can generate one using your username and
password. For installation instructions, see the Coverity 2020.12 Installation and Deployment Guide. For
more information about user roles, see the Coverity Platform 2020.12 User and Administrator Guide..

To commit the analysis results, do the following:
1. Enter the following information in the Commit Defects panel:

» Coverity Connect URL: The fully qualified URL for your Coverity Connect server.
This should include protocol, host name, and port number; for example, htt ps: //
connect . synopsys. com 8080.

If you are connecting to a Coverity Connect server over SSL, using a certificate signed by a
recognized CA, the host name needs to match the name of the host on the certificate. This is not

necessary when you use an unsecured connection, or when you use a self-signed certificate from
Coverity Connect.

11

Running Coverity Wizard

Use extra CA certificates: You can also turn on the check box for Use extra CA certificates and
use the controls to point to a directory that contains additional CA certificates for communicating
with Coverity Connect. For additional details, see "Using SSL with Coverity Analysis" in the
Coverity Platform 2020.12 User and Administrator Guide.

For the Authentication Key File, click Browse to select an existing file.

If you do not have an authentication key file, click Generate a new key to create one. See
Generating a new Authentication Key File

* Click Test Connection.

The Streams to commit to panel allows you to either select an existing stream name from the drop
down menu or allows you to create a new stream name. If you choose New, then a new project and
stream will be automatically created with the same name in Coverity Connect.

@& Note

Coverity Wizard requires streams to have a language set to 'ANY", otherwise they will not
appear in the streams drop-down list.

For purposes of this tutorial, a new stream named nypr o0j ect xx- cpp is created, but you can use
any name.

Click on the New button and enter the name of your choice in the Name input field. By default, this

stream will be available for use with Coverity Desktop Analysis tools. To disable this, please deselect
the Enable Desktop Analysis checkbox.

Click OK to finish.

Click on the Commit Defects button to commit your code to the Coverity Connect.

Note

If your Coverity Analysis Trust Store B has been configured with your server's certificates, you can

commit using SSL. To do so, click on Advanced Commit Settings and add - - aut hent i cat e-
ssl to Additional arguments.

3.1.4.1. Generating a new Authentication Key File

Generate Authentication Key File 4]
An authentication key file contains your username and can be used in place of a password
when connecting to Coverity Connect. {Note that if you later change your Coverity
Connect password, you do not need to regenerate the authentication key file.)

Host name: |

Port: Jeoso I~ | Use 550
Username: ||

Domain (LDAP only): | C’)
Password: |

12

cov_analysis_administration_guide.pdf#sa_trust_store

Running Coverity Wizard

In the Generate Authentication Key File dialog, enter your Username and Password. If multiple LDAP

servers have been configured for the Coverity Connect server, or if the username exists in both LDAP
and Coverity Connect, specify the Domain.

3.1.5. View Results

Figure 3.8. Viewing Results Screen

o0 @ Coverity Wizard - *ide-plugins-vscode-codexm.cwz

Introduction
v Capture
+ Analysis
 Commit Defects)
s The source code and defects have been committed to Coverity® Connect. Browse to the
following URL to see them.

View Results

hitp://igor:1801/query/defects htm?stream ted-stream&outstanding=true

When you select the Commit Defects button the analysis results are sent to the Coverity Connect server.
A link, as shown in Figure 3.8, “Viewing Results Screen " takes you to the Coverity Connect application

where you can view, manage, and triage the defects. Refer to Coverity Platform 2020.12 User and
Administrator Guide for detailed information.

You can log into the Coverity Connect application using the same user name and password that you used
to commit the defects.

After you log in, you will see the Coverity Connect application as shown in Figure 3.9, “View Defects”

13

Running Coverity Wizard

Figure 3.9. View Defects

myproject -

Configuration ¥ ' Help ™ Admin User ¥ | Enter CID(s)

= Issues: By Snapshot | Unsaved view) &¥

(<) Type Impact | Status | Count | FirstDetected | Owner Classification | Severi Action
P " ty 10265 Wrong sizeof argument A
10267 Write to pointer after fre High New 1 01/01/14 Al The wrong sizeof value is used in an expression or as argument
10266 Uninitialized pointer wril High New 1 01/01/14 to a function. The result is an incorrect value that may cause

unexpected program behaviors
Wrong sizeof argument

Unassigned | Unclassified | Unspecified| Undecid

In size_check: The sizeof operator is invoked on the wrong

10264 Negative array index reiHigh New 1 01/01/14 argument (CWE-569)
10263 Dereference before null Medium New 1 01101114 v | < Trisge
< > c [Unclassiied V]
1 of 14 issues selected < |Page[lof1| »
Severity: [Unspecified v
= X m testc v Action: [Undecided v
void use after_free(void) A Ext. Reference: [Type attribute text
R —
2) char *p = malloc(4); Custom: [Type attribute text
el b Owner: [Unassigned
select issue| :
*po=ra’y

Enter comments (See the Triage History section below
for previous comments)

}

27 struct bigger_than_ptr { int a; int bj int c; int d; };

49void size_check(void)
E (

Apply + Next || Apply
{

=
struct bigger_than_ptr *p; B .
€ CID 10265 (#1 of 1): Wrong sizeof argument (SIZEOF_MISMATCH) Rt Ssieans
suspicious_sizeof: Passing argument 4U /* sizeof (struct bigger_than_ptr *) */ tofunction malloc and then casting the return » Detection History
value to struct bigger_than_ptr * is suspicious
» Triage History
© Did youlntend to use sizeof (struct bigger_than_ptr) instead of sizeof (struct bigger_than_ptr *)?
v O
suspicious_sizeof: Passing argument 4U /* sizeof (struct bigger_than_ptr *) */ tofunction malloc and then casting the return courences
value to struct bigger_than_ptr * is suspicious. 1: myproject v

O Did youintend to use sizeof (struct bigger_than_ptr) instead of sizeof (struct bigger_than_ptr *)?

Events contributing to issue:
p = malloc(sizeof(struct bigger than ptr *));

1 = : .
select issue suspicious_sizeof fost.c52

} v suspicious_sizeof testc:52

3.2. Configuring Coverity Wizard for Test Advisor - Development
Edition

The following sections provide you with the information necessary to configure Coverity Wizard for Test
Advisor - Development Edition projects.

@ Note
Test Advisor - Development Edition is not supported on Mac OS platforms.

3.2.1. Introduction screen

The Introduction screen is the first of six screens of Coverity Wizard. To launch Coverity Wizard do one of
the following:

» On the Windows platform, a shortcut is placed on the desktop if you choose, or you can run the cov-
wi zar d command from the <i nst al | _di r >/ bi n directory, or have it in your PATH.

e On Linux run the cov-w zar d command from the <i nst al | _di r >/ bi n directory, or have it in your
PATH.

14

Running Coverity Wizard

Figure 3.10. Introduction screen

@ Coverity Wizard - *ads-test.cwz - O X
File Edit View Run Help

¥ Introduction Introduction
Capture What s the name of your code base / project / product?
Analysis : :
Commit Defects Project name: | myTAproject
View Results (This is just label, and used in certain auto-generated default names.)
‘What de you want to do?
Run Coverity Analysis: Find quality and security issues @
[Z] Run Test Advisor: Report inadequate testing @

Show Instructions...

Next >

On this screen, you must choose which products you want to configure (Test Advisor - Development
Edition in this example) and select a project name. The tutorial project name is ny TApr oj ect , however
you can customize this name.

After you've selected which products you want to use, you can click the Show Instructions... button for a
brief description of the Coverity Wizard configuration process.

3.2.2. Capture
Coverity Wizard provides the ability to configure a command line build and/or buildless capture, and

Coverity Wizard will display the results. On Windows you can also have your Integrated Development
Environment (IDE) perform the build; see Section 3.2.2.2, “IDE shortcut build”.

15

Running Coverity Wizard

Figure 3.11. Capture build

@ Coverity Wizard - *ads-test.cwz - m] X
File Edit View Run Help

¥ Introduction Capture
1 Capture
Analysis Select what source code you want to capture:
Commit Defects [Compiled Code @
View Results [Scripts or Interpreted Code @
General settings
Working directory: | Ci\Users\luisp\Documentstsample-code\d.8\Defector\ Defector | | Browse..| @
Intermediate directory: | C:\Users\luisp\coverity-idirs\my TAproject | Browse..| @

Advanced Capture Settings...

Build settings (Compiled code)

(8 Command line build (recommended) @
Clean: | make clear| | @
Build: [make | @

() IDE build @

Browse...| D
Compiler Configuration Test Build| (D)

Buildless capture settings (Scripts or Interpreted Code)

Edit Settings... @

Test Adviser

(®) Run tests as part of the build command @

(O Run tests a5 a separate command @

Command: @
Test Advisor Settings... @

Intermediate Directory Details...

Capture Build and Tests | (2)

< Previous Next >

Configure the following fields, then click Capture Build and Tests:

Compiled Code
Select this check-box if your project contains any code that requires compilation. This will run a build
capture, which will compile and emit relevant files for analysis.

Scripts or Interpreted Code
Select this check-box if your project contains any scripts or interpreted code. This will run a buildless
capture, which will emit relevant files for analysis.

Working directory
For projects with compiled code, the Clean and Build commands will be run from this directory.

Advanced Capture Settings...
This button allows you to set additional cov- bui | d options, or configure other advanced settings

that relate to the build capture process. Use the help icon (@) associated with each option for details.

Intermediate directory
Specifies the directory where all Coverity build and buildless capture information will be stored. This

should be on fast local storage to ensure the analysis is as fast as possible.

16

Running Coverity Wizard

Build settings (Compiled Code)
It is recommended that you select the Command line build option, and specify the Clean and Build

command for any compiled code in your project.

You can also choose to have your IDE complete the build capture step. See Section 3.2.2.2, “IDE
shortcut build” for more information.

Compiler configuration
This button allows you to configure the compilers you would like to use.

Buildless capture settings (Scripts or Interpreted Code)
It is recommended that you select the Scripts or Interpreted Code option to enable the buildless

capture feature.

Edit Settings
This button allows you to specify files or directories you would like to include or exclude from the
buildless capture.

Test Advisor - Development Edition settings
Specify whether to run tests as a part of the build command (default), or to execute a separate

command to run the tests after the build.

If you choose to execute an additional command after the build, enter the command in the provided
text field.

Test Advisor Settings...
This button will open the Test Advisor - Development Edition settings dialog.

Figure 3.12. Test Advisor - Development Edition Settings

Test Advisor - Development Edition settings

C/C++ coverage instrumentation tool: [none] [configure

Custom test boundary properties files:

00080 g ©

- [Configure..] @
@

[] Disable hist

Complete the following steps to configure your Test Advisor options:

1. Choose your project's coverage instrumentation tool from the drop-down menus. This example
uses the Cobertura coverage tool for Java.

17

Running Coverity Wizard

2. If you're running Test Advisor on a Java or C# project, you can also select which test separation
configuration you want to use to detect your test boundaries — junit or junit4 for Java; MSTest,
NUnit, or XUnit for C#; or you can use a custom test boundary property file for either language.
For additional information on setting test boundaries for your Test Advisor projects, see the Test

Advisor 2020.12 User and Administrator Guide &.

3. If you would like to include revision histories in your Test Advisor build, choose your project's
SCM system from the drop-down menu. Including this information will allow you to create
test policy files that take code age and modification dates into account. Some SCMs require
additional configuration in the SCM Configure... menu.

& Note
TFS and ADS are only supported on Windows platforms.
3.2.2.1. Compiler Configuration

Figure 3.13. Automatically configure compilers

File Edit View Run Help
¥ Introduction Capture
Capture
Analysis Select what source code you want to capture:
Commit Defects Compiled Code ®
View Results Scripts of Interpreted Code ®@

General settings
L

(5] X J Browse.., @
[The Coverty lugin will monitor builds performed withthe compilerstha ae egistered on this page. lease.] [y gue. | (@)
lensure that all compilers that are used to build the code in your workspace are registered here. |

Compiler configuration

Configuration file: [C:\Program Files\Coverity\ Coverity Static Analysis\config\coverity_c{ | Browse.. | @

Configured compilers: &
Name Type Executable Template ~ e
swift-1 Apple Swift Compiler (.. swiftc v -
vbe-1 Microsoft Visual Basic .. vbe v @
msve-1 Microsoft Visual Studi... ! v @
csc-1 Microsoft C# Compiler csc v v —

— No
< N Browse... @
Autoconfigure Compilers Edit.. | Duplicate. Delete | | TestBuild| @

oK Cancel
easertmgs=: ®
Test Advisor
(@ Run tests as part of the build command @
(O Run tests as a separate command @
Command: @
Test Advisor Settings... @

Intermediate Directory Details...

Capture Build and Tests| (2)

< Previous Next >

If your project uses any of the compilers listed below, then you will only need to click the Yes button when
prompted to automatically configure the most common compilers.

* GNU C/C++ compiler (gcc)

e Sun/Oracle compiler (javac)

18

test_advisor_use_and_admin_guide.pdf#ta_test_boundaries
test_advisor_use_and_admin_guide.pdf#ta_test_boundaries

Running Coverity Wizard

e Clang compiler (clangcc)

e Microsoft Visual C/C++ compiler (cl)

» Microsoft C# Compiler (csc)

Note

The Microsoft Visual C/C++ and Microsoft C# compilers are supported on Windows only.

If you need to configure another compiler, say for example, the Wind River Diab compiler, then follow
these steps:

1.

2.

Click the Add... button.

Choose Windriver Diab C Compiler (CIT) from the Compiler type dropdown menu.
Change the configuration name to diab-1. You can name it what you want to.

Enter the compiler's command line name. For the Wind River Diab C compiler, itis dcc.
= Note

For a compiler like the Wind River Diab C compiler that has both C and C++ variants, just enter
the C compiler's name, and the C++ compiler will be configured automatically.

Click OK to add it to the list of configured compilers.

19

Running Coverity Wizard

Figure 3.14. Add Compiler

(s} d c O
File Edit Vie Run Help
¥ Introduction Capture
Capture
Analysis Select what source code you want to capture:
Commit Defects Compiled Code ®
View Results SenprSor [nierpreted Code ®

General settings

é] [Browse..| @
The Coverty lugin will monitor builds performed with the complers thatar registered on this page. Plesse.] [grose. | (2
EnSUEl @y Add Compiler X

Compl i

Config Configuration name: [diab-1 |® €]

Config Compiler type: Windriver Diab C Compiler (CIT) v @ ®
Narn| Compiler executable: | ded | [Browse..| @ |~] é)
swift| » Advanced Options
msv Cancel @
€sc- 3 v Bowee }@

<

Delete| | | TestBuild| @

Autoconfigure Compilers... | | Add...| |Edit.. Duplicate

| TEarSettngs... | @
Test Advisor

(@) Run tests as part of the build command @

(O Run tests as 2 separate command @

Command: @

Test Advisor Settings. @

Intermediate Directory Details...

Capture Build and Tests| (2)

< Previous Next >

3.2.2.2. IDE shortcut build

The IDE option allows you to specify a Windows shortcut to your Integrated Development
Environment (IDE) to perform the build.

To configure the build settings for use with the Coverity Wizard IDE feature, do the following:
1. Select the IDE shortcut button.
2. Set your working directory.

Note

The working directory is where the build commands are run. For some IDEs, for example,
Visual Studio, it does not matter what directory you choose to run the IDE from. You can set the
working directoryto c: \ .

3. Use one of the options below to activate the IDE option:
» Enter the filename of the link (.Ink) to your IDE or executable (.exe) to your IDE

» Use the Browse button to find and choose it.

20

Running Coverity Wizard

« Drag and drop the Windows shortcut from your desktop to the Coverity Wizard interface.
4. Click the Test Build button. Your IDE will open if successful. Close the IDE.

5. Under the Test Advisor - Development Edition settings pane, choose whether to run tests as a part of
the build command (default), or to execute a separate command to run the tests after the build.

If you choose to execute an additional command after the build, enter the command in the provided
text field.

6. Click the Test Advisor Settings... button to configure additional Test Advisor options:

a. Choose your project's coverage instrumentation tool from the drop-down menus. This example uses
the Cobertura coverage tool for Java.

b. If you're running Test Advisor on a Java or C# project, you can also select which test separation
configuration you want to use to detect your test boundaries — junit or junit4 for Java; MSTest,
NUnit, or XUnit for C#; or you can use a custom test boundary property file for either language. For
additional information on setting test boundaries for your Test Advisor projects, see the Test Advisor

2020.12 User and Administrator Guide Er'.

c. If you would like to include revision histories in your Test Advisor build, choose your project's SCM
system from the drop-down menu. Including this information will allow you to create test policy files
that take code age and modification dates into account. Some SCMs require additional configuration
in the SCM Configure... menu.

e Note
TFS and ADS are only supported on Windows platforms.
7. Click the Capture Build and Tests button.

8. When your IDE opens, use it to perform a clean and full build of your code, and run your tests. A pop-
up window will remain open reminding you to close the IDE after you perform the clean and full build.

9. Close your IDE.

21

test_advisor_use_and_admin_guide.pdf#ta_test_boundaries
test_advisor_use_and_admin_guide.pdf#ta_test_boundaries

Running Coverity Wizard

3.2.3. Analysis Settings

Figure 3.15. Analysis Settings: Test Advisor

@ Coverity Wizard - *ads-test.cwz - m] X
File Edit View Run Help
¥ Introduction Analysis
v Capture Analysis options
1 Analysis
Commit Defects S ®
View Results [JUse 1 % warker processes (instead of the maximum allowed) @
Test Advisor
Test policy file: | C\Users\luisp\Desktopita-policy json Browse... | Edit/Debug.. (2
Create New Policy Using Wizard... |+ (2)
Analysis results summary: Intermediate Directory Details... (2)

The analysis has not yet been run.

Run Analysis (2

< Previous Next >

To run an analysis on your test policies, complete the following steps:
1. Use the Browse... button to navigate to your test policy file.

@ Note

If you need to create a new test policy file, use the Create new policy... drop-down menu to
select how you would like to create the file; you can either use the Guided Test Policy Creation
Wizard, or start from one of several test policy templates. You can also debug and edit your
test policy file directly within Coverity Wizard by clicking the Edit/Debug button. This will open
the Test Advisor Policy Editor, which has several tools and views to help you create more

effective test policy files. See Chapter 4, Using the Test Advisor Policy Editor and Debugger for
additional details.

2. Click the Run Analysis button to complete your test analysis.

The results are displayed in the Analysis results summary pane. The Analysis results summary pane
displays the date and the issues found.

22

Running Coverity Wizard

Note

This will perform the analysis with the default analysis settings enabled. If you would like to
create a custom analysis, click on the Options button to access various analysis options prior
to running the analysis. Click on the help icons for information on each of the options.

3. Click the Intermediate Directory Detailsbutton. Expand the Analysis —» Defect occurrences button
tree node to view defect counts broken down by checker.

3.2.4. Commit Defects

Figure 3.16. Commit Defects: Test Advisor

© Coverity Wizard - "ads-test.cwz m] x
File Edit View Run Help
¥ Introduction Commit Defects
v Capture Coverity Connect settings
v Analysis
T Commit Defects Coverity Connect URL: | http://igor:1801 | @
View Results Use extra CA certificates Browse.. (D
Authentication Key File: | C:\Users\luisp\AppData\Roaming! Coverity\authkeys\ak-igor-1801 Browse.. (2
@ Key for usemame ‘admin®local' is available. Wrong user? Please import or generats a new key. @
Test Connection @
Stream to commit to
Commit to stream: | myTApreject ~ [©)]
Note: Some pre-existing streams might not be shown. Why?
Snapshot description: | @

Advanced Commit Settings...| (2

Commit Defects | ()

< Previous Next >

In this phase of the workflow, you commit the analysis results to Coverity Connect. This tutorial assumes
that you have access to an installed and configured instance of Coverity Connect. You must also have

a valid user credential in the form of an authentication key file to connect to Coverity Connect, and you
must have a role with appropriate permissions to commit and view the issues (such as the admin role).

If you do not have an authentication key file, you can generate one using your username and password.
For installation instructions, see the Coverity 2020.12 Installation and Deployment Guide. For more
information about user roles, see the Coverity Platform 2020.12 User and Administrator Guide..

To commit the analysis results, do the following:
1. Enter the following information in the Coverity Connect settings panel:

< Host Name of the machine where Coverity Connect is installed.

23

Running Coverity Wizard

« Select your connection type (Secured or Unsecured). A secured connection uses SSL to
communicate with the Coverity Connect server, while an unsecured connection uses no
encryption.

You can also select the Add CA certificates option to point to a certificate or certificate chain file
(. pem for communicating with Coverity Connect. See "Client-side SSL Certificate Management" in
the Coverity Platform 2020.12 User and Administrator Guide for additional details.

« Enter the port number for the web interface of Coverity Connect. This number is chosen when
Coverity Connect is installed. The default port number is 8080 for HTTP and 8443 for HTTPS
when using secured connection.

e Type admin in the Username field (or another username that is in Coverity Connect that has
privileges to commit snapshots).

« Enter the password for the entered user. (The password for the admin user is initially set when
Coverity Connect is installed.)

» Click on the Test Connection button.
The Streams to commit to panel allows you to either select an existing stream name from the drop
down menu or allows you to create a new stream name. If you choose New, then a new project and

stream will be automatically created with the same name in Coverity Connect.

For purposes of this tutorial, a new stream named nypr 0j ect xx- cpp is created, but you can use
any name.

Click on the New button and enter the name of your choice in the Name input field. By default, this
stream will be available for use with Coverity Desktop Analysis tools. To disable this, please deselect
the Enable Desktop Analysis checkbox.

Click OK to finish.

Click on the Commit Defects button to commit your code to the Coverity Connect.

Note

If your Coverity Analysis Trust Store B has been configured with your server's certificates, you can
commit using SSL. To do so, click on Advanced Commit Settings and add - - aut hent i cat e-
ssl to Additional arguments.

24

cov_analysis_administration_guide.pdf#sa_trust_store

Running Coverity Wizard

3.2.5. View Results

Figure 3.17. Test Advisor View Results Screen

© Coverity Wizard - *ads-test.cwz

- m} X
File Edit View Run Help
V Introduction View Results
 Capture

v Analysis
v Commit Defects
View Results

code and defects have been committed to Coverity® Connect. Browse to the

801/query/defects.htm?stream=myTAprojectBioutstanding=true

< Previous Exit

When you select the Commit Defects button the analysis results are sent to the Coverity Connect server.
A link, as shown in Figure 3.8, “Viewing Results Screen " takes you to the Coverity Connect applicaton

where you can view, manage, and triage the defects. Refer to Coverity Platform 2020.12 User and
Administrator Guide for detailed information.

You can log into the Coverity Connect application using the same user name and password that you used
to commit the defects.

After you log in, you will see the Coverity Connect application as shown in Figure 3.18, “View Defects”

25

Running Coverity Wizard

Figure 3.18. View Defects

myTAproject v

Issues: By Snapshot | Outstanding Test Rules Violations €)) £

Configuration ~

Help ™

Admin User | Enter CID(s)

10239 Insufficient function coverage

The function might not be sufficiently tested and might fail in
unexpected ways in a production environment

In com coverity samples defector LoopingAndConcurrency
infiniteLoop(): Function does not reach coverage threshold
required by the policy

) Type Impact | Status | First Detected | Owner Classification | Severity | Action | Component
10241 Insufficient function cov Low New 05/17/14 Other
10240 Insufficient function cov Low New 05/17/14 Other
10239 Insufficient function cov. Low. New 17/14 | Unassigned | Unclassified | Unspecified| Undecidec| Other
10238 Insufficient function cov Low New 05/17/14 Other
10237 Insufficient function cov Low New 05/17/14 Other

1 of 33 issues selected < |Page[1lof1| >

e= X m LoopingAndConcurrencyjava -

victimes;
print("victim: " + victim); o]

}

public void downTheOther() { // GUARDED_BY VIOLATION (need >= 76% guarded accesses to victim)

OLATION) [select issue

v Triage
Cl 'ﬁ
Severty
Action
Ext. Reference
-

Enter comments (See the Triage History section below

. Victin; for previous comments)
34 print("victim: " + victim);
o)
36
22 o o TA.FUNCTION_INSUFFICIE select issue o Apply + Next
@ CID 10239 (#1 of 1): Insufficient function coverage (TA.UNCALLED) | Projects & Streams
violation: Insufficient line coverage for function com. coverity. samples. defector. LoopingandConcurrency. infiniteLoop()void . 0 » Detection History
out of 3 (0%) lines that pass the rule filters are covered by tests. 1 more lines must be covered to reach the 1% coverage threshold for this
; » Triage History
function
violation: Insufficient line coverage for function com. coverity . samples. defector. LoopingAndconcurrency . infiniteLoop()void.0 = | ¥ Occurrences
Outof 3 (0%) lnes that pass the ru itrs are covered by tests. 1 morenes must be covered o reach the 1% coverage threshald fortis S - o
function.
public void infiniteloop() { Events contributing to issue:
D 10216 e loop (INFINITE_LOOP) [select issue 5
S| | Events describing this violation
uncovered: Uncovered lines contributing to violation. v
B 1 violation ingAndConcurrency javal
uncovered: Uncovered lines contributina to violation.
< > violation LoopingAndConcurrency java!

26

Chapter 4. Using the Test Advisor Policy Editor and
Debugger

Table of Contents

4.1. Creating a New test POLICY fil@iieniiii i e 27
A O £ [To T 1 1= 0 (= (A= [1o S 28
4.3. Using the test policy file QULIINEoiiiiii e e e e ra e ees 28
4.4. Debugging your test POICY fileociieiii i 30
4.5, Translation Unit Filter referEnCeoooooiiiiii e 31

This section provides an overview of the views and options in the Test Advisor policy editor, for use with
JSON test policy files. You can access the Policy Editor and Debugger from the Analysis Settings screen
in Coverity Wizard. This tool not only allows you to edit and debug your test policy files, but also test the
results of the file on your codebase. This will give you the ability to more rapidly update your test policy
files and test for your desired results.

You can either edit and debug an existing test policy file by browsing to its location and clicking the Edit/
Debug button, or create a new policy file by clicking the Create New Policy Using [Wizard|Template]
button.

This section assumes that you have a working knowledge of Coverity Test Advisor - Development Edition
and Test Advisor policy concepts. For more information on Test Advisor and policy files, see Test Advisor

2020.12 User and Administrator Guide &¢.

4.1. Creating a new test policy file

Select Create New Policy Using Template to create a new policy file. You will be shown a pop-up
window in order to select a template test policy file to start from.

Mew Test Adviser Policy File @
Select a template: @
example_1-function_100.json /i A simple policy that tests for 100% coverage of functions.
example_2-file_100.json /i Bvery function must have 100% of its lines covered.
example_3-filename_filter json A
example_4-ignore_annotations,json| // recent_date_cutoff and old_date_cutoff control how CIM displays lines.
example_5-modified_dates.json A
example_6_cover_all_returns.json // violation_name controls what name is assigned to defects.
example_7-impacted_dates.json
one-hundred,json 1
ta-policy-sample,json type: "Coverity test policy definition”,

format_version: 1,
recent_date_cutoff: "2012-01-01",
old_date_cutoff: "2011-01-01",

rules: [
{
violation_name: "FUNCTION_INSUFFICIENTLY_TESTED",
aggregation_granularity: "function”,
minimum_line_coverage_pct: 100
¥
1
¥

0K] I Cancel

27

test_advisor_use_and_admin_guide.pdf
test_advisor_use_and_admin_guide.pdf

Using the Test Advisor Policy Editor and Debugger

The left pane, titled Select a template, lists each of the available template files, while the right pane
displays a preview of the file with a short commented description of the test policy file at the top. Select
the one that works best for your project and click OK.

4.2. Using the text editor

Upon opening the editor, your test policy file is displayed in the main window. You can use this window
to examine your test policy file for errors, as well as make changes and save your updates directly within
Coverity Wizard. When editing the policy, press Ct r | - Space to see a list of context appropriate options
for quicker editing/formatting. This will auto-complete the line when only one option exists for what you
have already typed.

File Edit Wiew Help

o Retum to cov-wizard

rules: [

simple policy tha
Every function must

recent_date cutoff

type: "Coverity tes
format_wversion:

+= Format O3 Find/Replace...

ts for 1808% c

e 188% of its

and old_date_cutoff control how CIM

s what e iz assig t
what nam sssigned

1,

recent_date_cutoff: "2812-01-81",
old_date_cuteff: "2811-81-81",

policy definition”

violation_name: "FUNCTION_INSUFFICIENTLY TESTED",
aggregation_granularity: "function™,
minimum_line_coverage pct: 189

In addition to the full text of your policy file, the text editor features the tools listed in Table 4.1, “Test
Advisor Policy Editor tools” to help you create and navigate your test policy file.

Table 4.1. Test Advisor Policy Editor tools

Name Icon Description

Format 3= Format Reformats the test policy file into clean text-blocks based on bracketed
groups.

Find/Replace... | & Find/Replace.. | S€arch and replace tool for text occurrences in your test policy file.

Collapse Collapse a block of text to display only the top-level element. Click
again to expand the section.

Text error G Highlights a text error on a specific line. Hover over the icon for a short
description of the issue.

Warning - Highlights a potential text error on a specific line. Hover over the icon for

= a short description of the issue.

4.3. Using the test policy file outline

The outline view, in the upper-right pane of the editor, displays a basic outline of your test policy file. In
this view, you can explore existing sections in the file, and add new elements as needed.

28

Using the Test Advisor Policy Editor and Debugger

5F Outline & |18,
i= type : 'Coverity test policy definition”
i= format_version: 1'
i= recent_date_cutoff : '2012-01-01'
'= old_date_cutoff ; '2011-01-01"
4 U= Rules
4 = Rule FUNCTION_INSUFFICIENTL
= violation_name: 'FUNCTION,
gregation_granularity : 'fur
inimum_line_coverage_pct
4 U= File Filters
'= OrFileFilter
"= Function Filters

4.3.1. Navigating the test policy file outline

Upon opening the editor, the outline displays each of the top-level elements in the test policy file (t ype,
format _version, recent_date_cutoff, old_date cutoff, rules,anddefine_filters).
Any element that contains sub-sections can be expanded and collapsed by clicking its corresponding

node button (*).

The outline view also provides the tools in Table 4.2, “Test Advisor Policy Editor tools” to help you
navigate the file outline.

Table 4.2. Test Advisor Policy Editor tools

Name Icon |Description
Link with 7= |Links the outline to the file contents in the text editor view. When enabled,
Editor = |clicking on an element in the outline will display and highlight that element in the

text editor view. Conversely, the selected item in the outline will also be updated
as you click through the text editor.

Sort la Sorts all top-level elements alphabetically. All sub-elements are also sorted
Z |within their respective contexts.

4.3.2. Modifying the test policy file from the outline view

In addition to navigation, the outline view also helps you modify your test policy file. Right-click on any of
the elements to bring up a menu of options relative to the specific item.

57 Outline & 1%
= type: 'Coverity test policy definition’,
1= format_version : 'l

recent_date_cutoff : '2012-01-01"

old_date_cutoff : '2011-01-01"

Rules

Al
~ser/sre/"

as/src/”

Documentation for ‘Rules’
file_filters Add 4
function_filters Delete

il "= Function Filters
use_filters

The options available from this menu, depending on the type of element, are:

29

Using the Test Advisor Policy Editor and Debugger

Add
This option allows you to add a new filter under the rules section. This will open a sub-menu of filter
types to choose from. Click one of the choices to have it added to your policy file in the appropriate
location. You can then modify the inserted filter to meet your needs.

Delete
This option will delete the element and any child elements below it.

Documentation
This option will open the product documentation for the selected node in your web browser.

Evaluate
This option will evaluate the selected rule or named filter against your current project.

4.4. Debugging your test policy file

The Policy Debug view evaluates your entire test policy file against your current project, then displays
the results in the project's file tree. To run the evaluation, choose your project's language and click the
Evaluate Policy button.

TA Policy Debug

Limit policy te TU pattern: | Change TU filter... | | Evaluate Policy | | Console..| (2

Evaluation of policy completed

@ Al O Included) Excluded) With violation ©F 33 protected Accesssection() {
H EL

file name filter g n

Path # of Violations Policy Cover ~ > F“:i;;fs:;zgii:;;‘?(“””g refPattern) -
i (= dots = A A

AccessSection; — 39 =

Accountinfoja 9 f— 46 publ =

AccountinfoCa 5 == ﬁ =

AccountProject . Peu L

The file tree lists all of the files and directories in your project, and displays the number of violations and
policy coverage percentage in each. You can filter the displayed directories using the Included, Excluded,
or With violation radio buttons. Select an individual file to display the text in the view pane.

4.4.1. Translation Unit Filters

If your project has a large number of translation units (TUs), the analysis can take a long time to
complete. To compensate for this, you can apply a TU filter to limit the number of translation units being
analyzed by the process and reduce the time to start the debugger.

If your project contains over 100 translation units, you will be prompted to add a TU filter as soon as you
open the policy editor. Otherwise, to open the Filter Translation Units dialog, click on the Change TU
filter button. See Figure 4.1, “Filter Translation Units” for an example of this view.

30

Using the Test Advisor Policy Editor and Debugger

Figure 4.1. Filter Translation Units

Filter Translation Units ==
ATranslation Unit filter can reduce analysis time. This will limit Test Advisor violations to those found that match the filter.
Seme s will not be found with a filter specified.

) Filk g @
@ Filter Selected TUs @
4[] -
4[] main/java/com/google/gerit/common
[[] & audit
4 [[](= auth
[openid
[¥] B SigninRequired,java
[C] = changes
[& data
a [V] (= errors
ContactinformationStoreException.java
CorruptEntityException java
EmailException.jeva
InactiveAccountException,java
InvalidNameException java 5
O Filter TU Pattern @

You can use the file tree to select the TUs you would like to include in the analysis, or enter a Filter TU
Pattern, as defined in the Test Advisor 2020.12 User and Administrator Guide.

Note

Because the TU filter limits the amount of files that will be analyzed, some defects may not be
found. Therefore, expanding the set of included translation units will generally yield more accurate
results.

If you require a complete set of defects from your analysis, do not include a TU filter. This
will require more time to complete the analysis (perhaps overnight). Once completed, further
evaluations will complete much quicker as long as you don't exit from the editor/debugger.

For additional information on effectively implementing Translation Unit filters, see Section 4.5,
“Translation Unit Filter reference”.

4 5. Translation Unit Filter reference

When running an analysis with a Translation Unit Filter, Test Advisor results may be different than the
results of analysis without a Translation Unit Filter. Results of filters in the Test Advisor policy may differ
due to information which is omitted based on the specific Translation Unit Filter used. In particular, the
following filters are affected:

* Uncondi ti onal Term nat eCal | ASTNodeFi | t er

e | npact edDat eLi neFi | ter

+ AffectedDateLineFilter

For these filters, calls to functions defined in omitted Translation Units are ignored during analysis.

Because the results of the policy analysis may change when a Translation Unit Filter is used, a complete
run of analysis without a Translation Unit Filter is necessary to guarantee a correct set of defects from

31

Using the Test Advisor Policy Editor and Debugger

Test Advisor. However, simply expanding the set of included Translation Units may yield more accurate
results in certain cases when the above-mentioned filters are used.

32

Chapter 5. Using the Guided Test Advisor Policy Creation
Wizard

Table of Contents

L0 I [(o To [¥ Tox i o) IR PP 33
5.2. Code AgE THRIreShOIASuieiii e e e e e e e e e e eaas 34
R Y/ o] F= 11 o] I O 1] (=1 - PPN 34
L B 11 1= £SO PPUSPPR 35

This section illustrates the typical end-to-end workflow for creating a new Test Advisor Policy file using
the wizard. You can access the Policy Creation Wizard from the Analysis Settings screen, by selecting
Create New Policy Using Wizard from the drop-down menu.

The wizard consists of a single dialog, with collapsible sections for introductory information, code age
thresholds, violation criteria, and filters. Upon completing the configuration of all of the sections, click
Open Policy in Test Advisor Policy Editor. From there you can further edit your policy file, or click
Return to cov-wizard to use your policy file with Coverity Wizard for Test Advisor - Development Edition.

5.1. Introduction

Be sure to read and understand the information in this section before configuring the options in the
subsequent sections.

A Test Advisor policy file expresses the testing related rules you wish to enforce in your project. The
policy file defines the conditions under which violations will be reported for insufficient test coverage in
your code.

This wizard will guide you through the process of creating and customizing a policy file for a range of
standard scenarios. The policy file code will be automatically generated for you.

In the interest of simplicity, this wizard will limit you to creating one definition of a violation type (that is,
a single rule) per policy file. Test Advisor policy files can contain any number of rules, however, and you
can copy rules generated via this wizard into other policy files should you wish to do so.

33

Using the Guided Test Advisor Policy Creation Wizard

5.2. Code Age Thresholds

Figure 5.1. Configuring code age thresholds

+ Code Age

Code that has been modified more recently is less likely to have been extensively tested, and is thus more
likely in general to contain bugs.

In your policy file, you are required to specify threshold dates, which will be used to display code age
indicators in Coverity Connect, and in the Test Advisor policy editor/debugger,

Code modified before the Old Date Cutoff threshold will be marked with a single bar in the margin.

Code modified between the Old Date Cutoff and the Recent Date Cutoff threshold will be marked with
two bars.

» Code modified after the Recent Date Cutoff will be marked with three bars.

Typically, you will use the date of your most recent release as the Recent Date Cutoff, and the date of the
release previous to that as the Old Date Cutoff,

Code age indicator

Old date cutoff Recent data cutoff
1/ 172013 [~ 1/ 172004 [F~ @
Old code Medium-aged code New code

| | il

The Code Age Thresholds section helps you set cutoff dates to determine whether the code being
analyzed is "old," "medium-aged," or "new." This helps you identify which test violations are most
important, as newer code is more likely to contain bugs, and thus should not go untested.

Use the Old date cutoff and Recent date cutoff fields to specify the threshold dates you wish to use for

each. Typically, the date of your most recent release will serve as the Recent Date Cutoff, and the date of
the previous release will be the Old Date Cutoff.

5.3. Violation Criteria

Figure 5.2. Configuring violation criteria

~ Violation Criteria
A rule defines a type of testing violaticn that will be detected and reported. In this section, you will choose a
name for the type of viclation you wish to report, and specify the basic conditions under which the violation

will be generated. The conditions can be further refined by adding one or more filters.

Violation name:

Vielation name: FUNCTION_IMSUFFICIENTLY_TESTED @
This name will be shown as the checker name for all instances of this violation, so it should be

suitably descriptive to aid the developer in understanding the nature of the viclation. A name

such as FUNCTION_INSUFFICIENTLY_TESTED or FILE_INSUFFICIENTLY_TESTED is usually

sufficient, unless you have many rules, in which case the names should clearly distinguish

between the different types of viclations,
Viclation criteria:

Report this viclation for: @ Functions @

~) Files
Report this violation when the percentage of covered lines in a function is less than: 80 % @

34

Using the Guided Test Advisor Policy Creation Wizard

The Violation Criteria section helps you specify what type of testing violation will be captured by the Test
Advisor policy. Complete the following configuration steps:

1. Create a name for the violation in the Violation name field.

This name will be shown as the checker name for all instances of the violation. Be sure that
it is descriptive enough to aid users in understanding the nature of the violation (for example,
FUNCTI ON_| NSUFFI Cl ENTLY_TESTED).

2. Select if you want to see test violations on a per-function or per-file basis. If you select Functions, the
filter criteria in this rule will test each function to see if it violates the policy. When Files is selected, the
filter criteria will test each file to see if it violates the policy.

Any function of file that violates the rule will then result in a test violation.

3. Specify what percentage of lines must be covered under the rule. This percentage applies to the lines
of code that remain after any specified filters have been applied.

If test coverage is less than this percentage of any relevant file or function, a violation will be reported.

5.4. Filters

Figure 5.3. Configuring filters

~ Filters

You can choose to apply one of more of the following filters in order to cause the viclation to be reported
only under more specific circumstances. The following list contains the most commoenly used filters. For
more information on advanced filters that can be added by editing the policy file in the Test Advisor policy
editor/debugger, please refer to the documentation.

[[] Include/exclude files or subdirectories @

Regular expression of files or directories to include:

[sre

Sutils

Regular expression of files or directories to exclude:

Jsre/test

["] Report violations only for functions modified after the recent date cutoff

["] Report violations only for functions impacted after the recent date cutoff

Qe

[] Report violations only for functions executed by the test suite

The conditions of your violation criteria can be further refined by adding one or more filters. Several of the
most commonly used filters are configurable in the Filters section.

35

Using the Guided Test Advisor Policy Creation Wizard

You can include any of the listed filters by checking the box next to its name. Each filter has a help button
(®) which explains its impact.

36

Chapter 6. Troubleshooting Coverity Wizard

This section provides workarounds and procedures for solving common problems that might occur when
you run Coverity Wizard.

Using the Tab key on Mac OSX systems
On Windows and Linux systems, pressing the Tab key will allow you to cycle through all of the
controls on the page. However, in Mac OS X, the default operating system setting is to allow the
focus to only land on text fields and lists, bypassing buttons and other controls. To change this setting
to allow keyboard navigation and activation of buttons and combo boxes:

1. Open the Apple menu and go to System Preferences -> Keyboard
2. Go to the Keyboard Shortcuts tab.
3. Under Full Keyboard Access, change the setting from Text boxes and lists only to All controls.

Troubleshooting the Visual Studio IDE
If you are having trouble with the IDE shortcut feature using Visual Studio please refer to the
following:

1. If Visual Studio requires elevated permission (i.e. Run as Administrator is selected under Privilege
Level in the Compatibility tab of the Visual Studio shortcut properties window), then you must run
Coverity Wizard as Administrator level privileges.

2. Enabling Instrument mode in the Advanced tab is discouraged when using Visual Studio. When
trying Instrument mode, some path settings may be required, as described in the Coverity Desktop
2020.12 for Microsoft Visual Studio: User Guide.

37

Appendix A. Coverity Glossary

Table of Contents

GloSSary ...vvvveiiiieiiiie

Glossary

A

Abstract Syntax Tree (AST)

action

Acyclic Path Count

advanced triage

A tree-shaped data structure that represents the structure of concrete
input syntax (from source code).

In Coverity Connect, a customizable attribute used to triage a CID.
Default values are Undecided, Fix Required, Fix Submitted, Modeling
Required, and Ignore. Alternative custom values are possible.

The number of execution paths in a function, with loops counted one
time at most. The following assumptions are also made:

* conti nue breaks out of a loop.
« whil e and f or loops are executed exactly 0 or 1 time.
» do..whi | e loops are executed exactly once.

» got o statements which go to an earlier source location are treated as
an exit.

Acyclic (Statement-only) Path Count adds the following assumptions:
« Paths within expressions are not counted.

» Multiple case labels at the same statement are counted as a single
case.

In Coverity Connect, streams that are associated with the same always
share the same triage data and history. For example, if Stream A and
Stream B are associated with Triage Store 1, and both streams contain
CID 123, the streams will share the triage values (such as a shared
Bug classification or a Fix Required action) for that CID, regardless of
whether the streams belong to the same project.

Advanced triage allows you to select one or more triage stores to update
when triaging a CID in a Coverity Connect project. Triage store selection
is possible only if the following conditions are true:

38

Coverity Glossary

analysis annotation

annotation

C

call graph

category

checker

e Some streams in the project are associated with one triage store (for
example, TS1), and other streams in the project are associated with
another triage store (for example, TS2). In this case, some streams
that are associated with TS1 must contain the CID that you are
triaging, and some streams that are associated with TS2 must contain
that CID.

* You have permission to triage issues in more than one of these triage
stores.

In some cases, advanced triage can result in CIDs with issue attributes
that are in the Various state in Coverity Connect.

See also, triage.

A marker in the source code. An analysis annotation is not executable,
but modifies the behavior of Coverity Analysis in some way.

Analysis annotations can suppress false positives, indicate sensitive
data, and enhance function models.

Each language has its own analysis annotation syntax and set of
capabilities. These are not the same as the syntax or capabilities
available to the other languages that support annotations.

» For C/C++, an analysis annotation is a comment with special
formatting. See code-line annotation and function annotation.

» For C# and Visual Basic, an analysis annotation uses the native C#
attribute syntax.

« For Java, an analysis annotation uses the native Java annotation
syntax.

Other languages do not support annotations.

See analysis annotation.

A graph in which functions are nodes, and the edges are the calls
between the functions.

See issue category.

A program that traverses paths in your source code to find specific
issues in it. Examples of checkers include RACE_CONDITION,
RESOURCE_LEAK, and INFINITE_LOOP. For details about checkers,
see Coverity 2020.12 Checker Reference.

39

Coverity Glossary

checker category

churn

CID (Coverity identifier)

classification

code-line annotation

code base

code coverage

component

component map

control flow graph

Coverity identifier (CID)

See issue category.

A measure of change in defect reporting between two Coverity Analysis
releases that are separated by one minor release, for example, 6.5.0 and
6.6.0.

See Coverity identifier (CID).

A category that is assigned to a software issue in the database. Built-
in classification values are Unclassified, Pending, False Positive,
Intentional, and Bug. For Test Advisor issues, classifications include
Untested, No Test Needed, and Tested Elsewhere. Issues that are
classified as Unclassified, Pending, and Bug are regarded as software
issues for the purpose of defect density calculations.

For C/C++, an analysis annotation that applies to a particular line of
code. When it encounters a code-line annotation, the analysis engine
skips the defect report that the following line of code would otherwise
trigger.

By default, an ignored defect is classified as | nt ent i onal . See
"Models and Annotations in C/C++" in the Coverity Checker Reference.

See also function annotation.
A set of related source files.

The amount of code that is tested as a percentage of the total amount
of code. Code coverage is measured different ways: line coverage, path
coverage, statement coverage, decision coverage, condition coverage,
and others.

A named grouping of source code files. Components allow developers
to view only issues in the source files for which they are responsible,
for example. In Coverity Connect, these files are specified by a Posix
regular expression. See also, component map.

Describes how to map source code files, and the issues contained in the
source files, into components.

A graph in which blocks of code without any jumps or jump targets are
nodes, and the directed edges are the jumps in the control flow between
the blocks. The entry block is where control enters the graph, and the
exit block is where the control flow leaves.

An identification number assigned to a software issue. A snapshot
contains issue instances (or occurrences), which take place on a specific
code path in a specific version of a file. Issue instances, both within a
snapshot and across snapshots (even in different streams), are grouped
together according to similarity, with the intent that two issues are

40

Coverity Glossary

CWE (Common Weakness

Enumeration)

Coverity Connect

D

data directory

deadcode

defect

deterministic

dismissed issue

domain

dynamic analysis

dynamic analysis agent

dynamic analysis stream

event

"similar" if the same source code change would fix them both. These
groups of similar issues are given a numeric identifier, the CID. Coverity
Connect associates triage data, such as classification, action, and
severity, with the CID (rather than with an individual issue).

A community-developed list of software weaknesses, each of which is
assigned a number (for example, see CWE-476 at http://cwe.mitre.org/
data/definitions/476.html &). Coverity associates many categories of
defects (such as "Null pointer dereferences") with a CWE number.

A Web application that allows developers and managers to identify,
manage, and fix issues found by Coverity analysis and third-party tools.

The directory that contains the Coverity Connect database. After
analysis, the cov- comi t - def ect s command stores defects in this
directory. You can use Coverity Connect to view the defects in this
directory. See also intermediate directory.

Code that cannot possibly be executed regardless of what input values
are provided to the program.

See issue.

A characteristic of a function or algorithm that, when given the same
input, will always give the same output.

Issue marked by developers as Intentional or False Positive in the Triage
pane. When such issues are no longer present in the latest snapshot of
the code base, they are identified as absent dismissed.

A combination of the language that is being analyzed and the type of
analysis, either static or dynamic.

Analysis of software code by executing the compiled program. See also
static analysis.

A JVM agent for Dynamic Analysis that instruments your program to
gather runtime evidence of defects.

A sequential collection of snapshots, which each contain all of the issues
that Dynamic Analysis reports during a single invocation of the Dynamic
Analysis broker.

In Coverity Connect, a software issue is composed of one or more
events found by the analysis. Events are useful in illuminating the
context of the issue. See also issue.

41

http://cwe.mitre.org/data/definitions/476.html
http://cwe.mitre.org/data/definitions/476.html

Coverity Glossary

F

false negative

false path pruning (FPP)

false positive

fixed issue

fixpoint

flow-insensitive analysis

function annotation

function model

impact

inspected issue

intermediate directory

A defect in the source code that is not found by Coverity Analysis.

A technique to ensure that defects are only detected on feasible paths.

For example, if a particular path through a method ensures that a given
condition is known to be true, then the el se branch of ani f statement
which tests that condition cannot be reached on that path. Any defects

found in the el se branch would be impossible because they are “on a

false path”. Such defects are suppressed by a false path pruner.

A potential defect that is identified by Coverity Analysis, but that you
decide is not a defect. In Coverity Connect, you can dismiss such issues
as false positives. In C or C++ source, you might also use code-line
annotations to identify such issues as intentional during the source code
analysis phase, prior to sending analysis results to Coverity Connect.

Issue from the previous snapshot that is not in the latest snapshot.

The Extend SDK engine notices that the second and subsequent paths
through the loop are not significantly different from the first iteration, and
stops analyzing the loop. This condition is called a fixpoint of the loop.

A checker that is stateless. The abstract syntax trees are not visited in
any particular order.

For C/C++, an analysis annotation that applies to the definition of a
particular function. The annotation either suppresses or enhances the
effect of that function's model. See "Models and Annotations in C/C++"
in the Coverity Checker Reference.

See also code-line annotation.

A model of a function that is not in the code base that enhances the
intermediate representation of the code base that Coverity Analysis uses
to more accurately analyze defects.

Term that is intended to indicate the likely urgency of fixing the issue,
primarily considering its consequences for software quality and security,
but also taking into account the accuracy of the checker. Impact

is necessarily probabilistic and subjective, so one should not rely
exclusively on it for prioritization.

Issue that has been triaged or fixed by developers.

A directory that is specified with the - - di r option to many commands.
The main function of this directory is to write build and analysis results

42

Coverity Glossary

intermediate representation

interprocedural analysis

intraprocedural analysis

issue

issue category

before they are committed to the Coverity Connect database as a
snapshot. Other more specialized commands that support the - - di r
option also write data to or read data from this directory.

The intermediate representation of the build is stored in

<i nternedi ate_di rectory>/enit directory, while the analysis
results are stored in <i nt er medi at e_di rect or y>/ out put . This
directory can contain builds and analysis results for multiple languages.

See also data directory.

The output of the Coverity compiler, which Coverity Analysis uses to run
its analysis and check for defects. The intermediate representation of the
code is in the intermediate directory.

An analysis for defects based on the interaction between functions.
Coverity Analysis uses call graphs to perform this type of analysis. See
also intraprocedural analysis.

An analysis for defects within a single procedure or function, as opposed
to interprocedural analysis.

Coverity Connect displays three types of software issues: quality
defects, potential security vulnerabilities, and test policy violations. Some
checkers find both quality defects and potential security vulnerabilities,
while others focus primarily on one type of issue or another. The Quality,
Security, and Test Advisor dashboards in Coverity Connect provide high-
level metrics on each type of issue.

Note that this glossary includes additional entries for the various types of
issues, for example, an inspected issue, issue category, and so on.

A string used to describe the nature of a software issue; sometimes
called a "checker category” or simply a "category.” The issue pertains
to a subcategory of software issue that a checker can report within the
context of a given domain.

Examples:

e Menory - corruptions

e I ncorrect expression

e Integer overflow Insecure data handling

Impact tables in the Coverity 2020.12 Checker Reference list issues

found by checkers according to their category and other associated
checker properties.

43

Coverity Glossary

K

killpath

kind

L

latest state

local analysis

local effect

long description

For Coverity Analysis for C/C++, a path in a function that aborts program
execution. See <i nstall _dir_sa>/Ilibrary/generic/conmon/
ki I | pat h. c for the functions that are modeled in the system.

For Coverity Analysis for Java, and similarly for C# and Visual Basic,

a modeling primitive used to indicate that execution terminates at this
point, which prevents the analysis from continuing down this execution
path. It can be used to model a native method that kills the process, like
Syst em exi t, or to specifically identify an execution path as invalid.

A string that indicates whether software issues found by a given checker
pertain to SECURITY (for security issues), QUALITY (for quality issues),
TEST (for issues with developer tests, which are found by Test Advisor),
or QUALITY/SECURITY. Some checkers can report quality and security
issues. The Coverity Connect Ul can use this property to filter and
display CIDs.

A CID's state in the latest snapshot merged with its state from previous
snapshots starting with the snapshot in which its state was 'New'.

Interprocedural analysis on a subset of the code base with Coverity
Desktop plugins, in contrast to one with Coverity Analysis, which usually
takes place on a remote server.

A string serving as a generic event message that explains why the
checker reported a defect. The message is based on a subcategory of
software issues that the checker can detect. Such strings appear in the
Coverity Connect triage pane for a given CID.

Examples:
e May result in a security violation.

« There may be a null pointer exception, or else the
conparison against null is unnecessary.

A string that provides an extended description of a software issue
(compare with type). The long description appears in the Coverity
Connect triage pane for a given CID. In Coverity Connect, this
description is followed by a link to a corresponding CWE, if available.

Examples:

e The called function is unsafe for security rel ated
code.

44

Coverity Glossary

model

modeling primitive

N

native build

O

outstanding issue
outstanding defects count

outstanding non-security
defects count

outstanding security defects
count.

e« All paths that lead to this null pointer conparison
al ready dereference the pointer earlier (CWE-476).

In Coverity Analysis of the code for a compiled language—such as C,
C++, C#, Java, or Visual Basic—a model represents a function in the
application source. Models are used for interprocedural analysis.

Each model is created as each function is analyzed. The model is an
abstraction of the function’s behavior at execution time; for example,
a model can show which arguments the function dereferences, and
whether the function returns a null value.

It is possible to write custom models for a code base. Custom models
can help improve Coverity's ability to detect certain kinds of bugs.
Custom models can also help reduce the incidence of false positives.

A modeling primitive is used when writing custom models. Each
modeling primitive is a function stub: It does not specify any executable
code, but when it is used in a custom model it instructs Coverity Analysis
how to analyze (or refrain from analyzing) the function being modeled.

For example, the C/C++ checker CHECKED_RETURN is associated
with the modeling primitive _coverity_al ways check return_().
This primitive tells CHECKED_RETURN to verify that the function being
analyzed really does return a value.

Some modeling primitives are generic, but most are specific to a
particular checker or group of checkers. The set of available modeling
primitives varies from language to language.

The normal build process in a software development environment that
does not involve Coverity products.

Issues that are uninspected and unresolved.
The sum of security and non-security defects count.

The sum of non-security defects count.

The sum of security defects count.

45

Coverity Glossary

owner

P

postorder traversal

primitive

project

R

resolved issues

run

S

sanitize

severity

sink

User name of the user to whom an issue has been assigned in Coverity
Connect. Coverity Connect identifies the owner of issues not yet
assigned to a user as Unassigned.

The recursive visiting of children of a given node in order, and then the
visit to the node itself. Left sides of assignments are evaluated after
the assignment because the left side becomes the value of the entire
assignment expression.

In the Java language, elemental data types such as strings and integers
are known as primitive types. (In the C-language family, such types are
typically known as basic types).

For the function stubs that can be used when constructing custom
models, see modeling primitive.

In Coverity Connect, a specified set of related streams that provide a
comprehensive view of issues in a code base.

Issues that have been fixed or marked by developers as Intentional or
False Positive through the Coverity Connect Triage pane.

In Coverity releases 4.5.x or lower, a grouping of defects committed to
the Coverity Connect. Each time defects are inserted into the Coverity
Connect using the cov- commi t - def ect s command, a new run is
created, and the run ID is reported. See also snapshot

To clean or validate tainted data to ensure that the data is valid.
Sanitizing tainted data is an important aspect of secure coding practices
to eliminate system crashes, corruption, escalation of privileges, or
denial of service. See also tainted data.

In Coverity Connect, a customizable property that can be assigned
to CIDs. Default values are Unspecified, Major, Moderate, and Minor.
Severities are generally used to specify how critical a defect is.

Coverity Analysis for C/C++: Any operation or function that must
be protected from tainted data. Examples are array subscripting,
systenm(), mall oc().

Coverity Analysis for Java: Any operation or function that must be
protected from tainted data. Examples are array subscripting and the
JDBC API Connect i on. execut e.

46

Coverity Glossary

shapshot

shapshot scope

source

static analysis

status

store

stream

T

tainted data

translation unit

A copy of the state of a code base at a certain point during development.
Snapshots help to isolate defects that developers introduce during
development.

Snapshots contain the results of an analysis. A snapshot includes both
the issue information and the source code in which the issues were
found. Coverity Connect allows you to delete a snapshot in case you
committed faulty data, or if you committed data for testing purposes.

Determines the snapshots from which the CID are listed using the Show
and the optional Compared To fields. The show and compare scope is
only configurable in the Settings menu in Issues:By Snapshot views and
the snapshot information pane in the Snapshots view.

An entry point of untrusted data. Examples include environment
variables, command line arguments, incoming network data, and source
code.

Analysis of software code without executing the compiled program. See
also dynamic analysis.

Describes the state of an issue. Takes one of the following values: New,
Tri aged, Di sni ssed, Absent Di sni ssed, or Fi xed.

A map from abstract syntax trees to integer values and a sequence of
events. This map can be used to implement an abstract interpreter, used
in flow-sensitive analysis.

A sequential collection of snapshots. Streams can thereby provide
information about software issues over time and at a particular points in
development process.

Any data that comes to a program as input from a user. The program
does not have control over the values of the input, and so before using
this data, the program must sanitize the data to eliminate system
crashes, corruption, escalation of privileges, or denial of service. See
also sanitize.

A translation unit is the smallest unit of code that can be compiled
separately. What this unit is, depends primarily on the language: For
example, a Java translation unit is a single source file, while a C or C++
translation unit is a source file plus all the other files (such as headers)
that the source file includes.

When Coverity tools capture code to analyze, the resulting intermediate
directory contains a collection of translation units. This collection
includes source files along with other files and information that form the

47

Coverity Glossary

triage

triage store

type

U

unified issue

uninspected issues

context of the compilation. For example, in Java this context includes
bytecode files in the class path; in C or C++ this context includes both
preprocessor definitions and platform information about the compiler.

The process of setting the states of an issue in a particular stream, or of
issues that occur in multiple streams. These user-defined states reflect
items such as how severe the issue is, if it is an expected result (false
positive), the action that should be taken for the issue, to whom the issue
is assigned, and so forth. These details provide tracking information for
your product. Coverity Connect provides a mechanism for you to update
this information for individual and multiple issues that exist across one or
more streams.

See also advanced triage.

A repository for the current and historical triage values of CIDs. In
Coverity Connect, each stream must be associated with a single triage
store so that users can triage issues (instances of CIDs) found in the
streams. Advanced triage allows you to select one or more triage stores
to update when triaging a CID in a Coverity Connect project.

See also advanced triage.

A string that typically provides a short description of the root cause

or potential effect of a software issue. The description pertains to a
subcategory of software issues that the checker can find within the
scope of a given domain. Such strings appear at the top of the Coverity
Connect triage pane, next to the CID that is associated with the issue.
Compare with long description.

Examples:

The called function is unsafe for security rel ated code
Der ef erence before null check

Qut - of - bounds access

Eval uati on order violation

Impact tables in the Coverity 2020.12 Checker Reference list issues
found by checkers according to their type and other associated checker
properties.

An issue that is identical and present in multiple streams. Each instance
of an identical, unified issue shares the same CID.

Issues that are as yet unclassified in Coverity Connect because they
have not been triaged by developers.

48

Coverity Glossary

unresolved issues

Vv

various

view

Defects are marked by developers as Pending or Bug through the
Coverity Connect Triage pane. Coverity Connect sometimes refers to
these issues as Outstanding issues.

Coverity Connect uses the term Various in two cases:

When a checker is categorized as both a quality and a security
checker. For example, USE_AFTER_FREE and UNINIT are listed as
such in the Issue Kind column of the View pane. For details, see the
Coverity 2020.12 Checker Reference.

When different instances of the same CID are triaged differently.
Within the scope of a project, instances of a given CID that occur in
separate streams can have different values for a given triage attribute
if the streams are associated with different . For example, you might
use advanced triage to classify a CID as a Bug in one triage store but
retain the default Unclassified setting for the CID in another store. In
such a case, the View pane of Coverity Connect identifies the project-
wide classification of the CID as Various.

Note that if all streams share a single triage store, you will never
encounter a CID in this triage state.

Saved searches for Coverity Connect data in a given project. Typically,
these searches are filtered. Coverity Connect displays this output in
data tables (located in the Coverity Connect View pane). The columns in
these tables can include CIDs, files, snapshots, checker names, dates,
and many other types of data.

49

Appendix B. Coverity Legal Notice

Table of Contents
2 700 R Yo = L A1 = S 50

B.1. Legal Notice

The information contained in this document, and the Licensed Product provided by Synopsys, are the
proprietary and confidential information of Synopsys, Inc. and its affiliates and licensors, and are supplied
subject to, and may be used only by Synopsys customers in accordance with the terms and conditions

of a license agreement previously accepted by Synopsys and that customer. Synopsys' current standard
end user license terms and conditions are contained in the cov_EULMfiles located at <i nst al | _di r>/
doc/en/licenses/end_user _|icense.

Portions of the product described in this documentation use third-party material. Notices, terms and
conditions, and copyrights regarding third party material may be found in the <i nst al | _di r >/ doc/ en/
| i censes directory.

Customer acknowledges that the use of Synopsys Licensed Products may be enabled by authorization
keys supplied by Synopsys for a limited licensed period. At the end of this period, the authorization
key will expire. You agree not to take any action to work around or override these license restrictions
or use the Licensed Products beyond the licensed period. Any attempt to do so will be considered an
infringement of intellectual property rights that may be subject to legal action.

If Synopsys has authorized you, either in this documentation or pursuant to a separate mutually accepted
license agreement, to distribute Java source that contains Synopsys annotations, then your distribution
should include Synopsys' anal ysis_install _dir/library/annotations.jar toensure aclean
compilation. This annot at i ons. j ar file contains proprietary intellectual property owned by Synopsys.
Synopsys customers with a valid license to Synopsys' Licensed Products are permitted to distribute this
JAR file with source that has been analyzed by Synopsys' Licensed Products consistent with the terms of
such valid license issued by Synopsys. Any authorized distribution must include the following copyright
notice: Copyright © 2020 Synopsys, Inc. All rights reserved worldwide.

U.S. GOVERNMENT RESTRICTED RIGHTS: The Software and associated documentation are provided
with Restricted Rights. Use, duplication, or disclosure by the U.S. Government is subject to restrictions
set forth in subparagraph (c)(1) of The Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of Commercial Computer Software — Restricted
Rights at 48 CFR 52.227-19, as applicable.

The Manufacturer is: Synopsys, Inc. 690 E. Middlefield Road, Mountain View, California 94043.

The Licensed Product known as Coverity is protected by multiple patents and patents pending, including
U.S. Patent No. 7,340,726.

Trademark Statement
Coverity and the Coverity logo are trademarks or registered trademarks of Synopsys, Inc. in the
U.S. and other countries. Synopsys' trademarks may be used publicly only with permission from

50

Coverity Legal Notice

Synopsys. Fair use of Synopsys' trademarks in advertising and promotion of Synopsys' Licensed
Products requires proper acknowledgement.

Microsoft, Visual Studio, and Visual C# are trademarks or registered trademarks of Microsoft Corporation
in the United States and/or other countries.

Microsoft Research Detours Package, Version 3.0.
Copyright © Microsoft Corporation. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or affiliates. Other names may be trademarks of
their respective owners.

"MISRA", "MISRA C" and the MISRA triangle logo are registered trademarks of MISRA Ltd, held on
behalf of the MISRA Consortium. © MIRA Ltd, 1998 - 2013. All rights reserved. The name FindBugs and
the FindBugs logo are trademarked by The University of Maryland.

Other names and brands may be claimed as the property of others.

This Licensed Product contains open source or community source software ("Open Source Software")
provided under separate license terms (the "Open Source License Terms"), as described in the
applicable license agreement under which this Licensed Product is licensed ("Agreement”). The
applicable Open Source License Terms are identified in a directory named | i censes provided with the
delivery of this Licensed Product. For all Open Source Software subject to the terms of an LGPL license,
Customer may contact Synopsys at sof t war e-i ntegrity-support @ynopsys. comand Synopsys
will comply with the terms of the LGPL by delivering to Customer the applicable requested Open Source
Software package, and any modifications to such Open Source Software package, in source format,
under the applicable LGPL license. Any Open Source Software subject to the terms and conditions of the
GPLv3 license as its Open Source License Terms that is provided with this Licensed Product is provided
as a mere aggregation of GPL code with Synopsys' proprietary code, pursuant to Section 5 of GPLv3.
Such Open Source Software is a self-contained program separate and apart from the Synopsys code
that does not interact with the Synopsys proprietary code. Accordingly, the GPL code and the Synopsys
proprietary code that make up this Licensed Product co-exist on the same media, but do not operate
together. Customer may contact Synopsys at sof t war e-i nt egri ty- support @ynopsys. comand
Synopsys will comply with the terms of the GPL by delivering to Customer the applicable requested
Open Source Software package in source code format, in accordance with the terms and conditions of
the GPLv3 license. No Synopsys proprietary code that Synopsys chooses to provide to Customer will

be provided in source code form; it will be provided in executable form only. Any Customer changes

to the Licensed Product (including the Open Source Software) will void all Synopsys obligations under
the Agreement, including but not limited to warranty, maintenance services and infringement indemnity
obligations.

The Cobertura package, licensed under the GPLv2, has been modified as of release 7.0.3. The
package is a self-contained program, separate and apart from Synopsys code that does not interact
with the Synopsys proprietary code. The Cobertura package and the Synopsys proprietary code
co-exist on the same media, but do not operate together. Customer may contact Synopsys at
software-integrity-support @ynopsys. comand Synopsys will comply with the terms of the
GPL by delivering to Customer the applicable requested open source package in source format, under
the GPLV2 license. Any Synopsys proprietary code that Synopsys chooses to provide to Customer
upon its request will be provided in object form only. Any changes to the Licensed Product will void all

51

Coverity Legal Notice

Coverity obligations under the Agreement, including but not limited to warranty, maintenance services
and infringement indemnity obligations. If Customer does not have the modified Cobertura package,
Synopsys recommends to use the JaCoCo package instead.

For information about using JaCoCo, see the description for cov- bui I d - -] ava- cover age in the
Command Reference.

LLVM/Clang subproject
Copyright © All rights reserved. Developed by: LLVM Team, University of lllinois at Urbana-
Champaign (htt p: / /11 vm or g/). Permission is hereby granted, free of charge, to any person
obtaining a copy of LLVM/Clang and associated documentation files ("Clang"), to deal with Clang
without restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of Clang, and to permit persons to whom Clang is furnished
to do so, subject to the following conditions: Redistributions of source code must retain the above
copyright notice, this list of conditions and the following disclaimers. Redistributions in binary form
must reproduce the above copyright notice, this list of conditions and the following disclaimers in
the documentation and/or other materials provided with the distribution. Neither the name of the

University of Illinois at Urbana-Champaign, nor the names of its contributors may be used to endorse

or promote products derived from Clang without specific prior written permission.

CLANG IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR

OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING

FROM, OUT OF OR IN CONNECTION WITH CLANG OR THE USE OR OTHER DEALINGS WITH
CLANG.

Rackspace Threading Library (2.0)

Copyright © Rackspace, US Inc. All rights reserved. Licensed under the Apache License, Version 2.0
(the "License"); you may not use these files except in compliance with the License. You may obtain a

copy of the License at ht t p: / / ww. apache. org/ | i censes/ LI CENSE- 2. 0.

Unless required by applicable law or agreed to in writing, software distributed under the License is

distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either

express or implied. See the License for the specific language governing permissions and limitations
under the License.

SIL Open Font Library subproject
Copyright © 2020 Synopsys Inc. All rights reserved worldwide. (www. synopsys. conj, with
Reserved Font Name fa-gear, fa-info-circle, fa-question.

This Font Software is licensed under the SIL Open Font License, Version 1.1. This license is
available with a FAQ athtt p: // scri pts.sil.org/ OFL.

Apache Software License, Version 1.1
Copyright © 1999-2003 The Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

52

Coverity Legal Notice

1. Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the following
acknowlegement: "This product includes software developed by the Apache Software Foundation
(http://www.apache.org/)."

Alternately, this acknowlegement may appear in the software itself, if and wherever such third-
party acknowlegements normally appear.

4. The names "The Jakarta Project”, "Commons", and "Apache Software Foundation" must not be
used to endorse or promote products derived from this software without prior written permission.
For written permission, please contact apache@apache.org.

5. Products derived from this software may not be called "Apache" nor may "Apache" appear in their
names without prior written permission of the Apache Group.

THIS SOFTWARE IS PROVIDED TAS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL

THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED

AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Apache License Version 2.0, January 2004 ht t p: / / ww. apache. org/ | i censes/
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in
compliance with the License. You may obtain a copy of the License at: ht t p: / / ww. apache. or g/
i censes/ LI CENSE-2. 0

Unless required by applicable law or agreed to in writing, software distributed under the License is
distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations
under the License.

Results of analysis from Coverity and Test Advisor represent the results of analysis as of the date and
time that the analysis was conducted. The results represent an assessment of the errors, weaknesses
and vulnerabilities that can be detected by the analysis, and do not state or infer that no other errors,
weaknesses or vulnerabilities exist in the software analyzed. Synopsys does NOT guarantee that all
errors, weakness or vulnerabilities will be discovered or detected or that such errors, weaknesses or
vulnerabilities are are discoverable or detectable.

SYNOPSYS AND ITS SUPPLIERS DISCLAIM ALL WARRANTIES, CONDITIONS AND
REPRESENTATIONS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THOSE RELATED

53

Coverity Legal Notice

TO MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, SATISFACTORY QUALITY,
ACCURACY OR COMPLETENESS OF RESULTS, CONFORMANCE WITH DESCRIPTION, AND
NON-INFRINGEMENT. SYNOPSYS AND ITS SUPPLIERS SPECIFICALLY DISCLAIM ALL IMPLIED

WARRANTIES, CONDITIONS AND REPRESENTATIONS ARISING OUT OF COURSE OF DEALING,
USAGE OR TRADE.

54

	Coverity Wizard 2020.12 User Guide
	Table of Contents
	Chapter 1. Using Coverity Wizard to Get Started with Coverity Analysis
	Chapter 2. Coverity Wizard Overview
	2.1. Requirements
	2.2. About the Coverity Wizard tutorial
	2.3. Navigation

	Chapter 3. Running Coverity Wizard
	3.1. Configuring Coverity Wizard for Coverity Analysis
	3.1.1. Introduction screen
	3.1.2. Capture
	3.1.2.1. Compiler Configuration
	3.1.2.2. IDE shortcut build

	3.1.3. Analysis Settings
	3.1.4. Commit Defects
	3.1.4.1. Generating a new Authentication Key File

	3.1.5. View Results

	3.2. Configuring Coverity Wizard for Test Advisor - Development Edition
	3.2.1. Introduction screen
	3.2.2. Capture
	3.2.2.1. Compiler Configuration
	3.2.2.2. IDE shortcut build

	3.2.3. Analysis Settings
	3.2.4. Commit Defects
	3.2.5. View Results

	Chapter 4. Using the Test Advisor Policy Editor and Debugger
	4.1. Creating a new test policy file
	4.2. Using the text editor
	4.3. Using the test policy file outline
	4.3.1. Navigating the test policy file outline
	4.3.2. Modifying the test policy file from the outline view

	4.4. Debugging your test policy file
	4.4.1. Translation Unit Filters

	4.5. Translation Unit Filter reference

	Chapter 5. Using the Guided Test Advisor Policy Creation Wizard
	5.1. Introduction
	5.2. Code Age Thresholds
	5.3. Violation Criteria
	5.4. Filters

	Chapter 6. Troubleshooting Coverity Wizard
	Appendix A. Coverity Glossary
	Glossary

	Appendix B. Coverity Legal Notice
	B.1. Legal Notice

