
Coverity 2020.12 Security Directive Reference
Reference for security directives used to customize Coverity Analysis behavior

Copyright 2020 Synopsys, Inc. All rights reserved worldwide.

Table of Contents
1. Security configuration file ... 1

1.1. Uses of directives ... 1
1.2. Supported languages .. 2
1.3. How to invoke a custom configuration .. 2

2. Configuration file syntax ... 4
2.1. Extensions to JSON supported by the configuration file .. 4
2.2. JSON Terminology .. 4
2.3. Schema .. 5

3. Configuration file usage ... 9
3.1. User directives .. 9
3.2. Other object types used by user directives ... 62

ii

Chapter 1. Security configuration file

Table of Contents
1.1. Uses of directives .. 1
1.2. Supported languages .. 2
1.3. How to invoke a custom configuration .. 2

A security configuration file either alters the default behavior of a checker that is provided with Coverity
Analysis, or it defines a new, custom checker.

Coverity Analysis provides a set of directives that allow you to define new checkers and to modify the
behavior of existing Web application and Android application security checkers; for example, to support
new frameworks and APIs or to suppress false positive defect reports.

To use this functionality, you must create a file in JSON syntax and pass it to either the --directive-
file option or, for the DC.CUSTOM checker, the --dc-config option of cov-analyze. See the section
“How to invoke a custom configuration”.

The following sections describe the syntax of these JSON files, including some extensions to standard
JSON that this format supports. The subsections of Section 2.3, “Schema” describe the individual
directives, along with objects that support their use.

1.1. Uses of directives

Each directive has a specific effect on the analysis. Here are some things you can accomplish with
directives:

• Create your own checker that reports a defect on XML files that match an XPath query or text files
that match a regular expression (see Section 3.2.20, “RegularExpression”). See the description of
TEXT.CUSTOM_CHECKER in the Checker Reference .

• Support Web frameworks that define new application entry points. See Section 3.1.29,
“simple_entry_point” and Section 3.1.3, “async_method”.

• Extend tainted dataflow checkers (such as SQLI and XSS) by identifying more sources of untrusted
data, for example, from your custom libraries or frameworks. See Section 3.1.31, “tainted_data”,
Section 3.1.21, “method_returns_tainted_data”, and Section 3.1.7, “data_has_tag”.

• Create your own tainted dataflow checker. See the description of DF.CUSTOM_CHECKER in the
Checker Reference .

• Extend existing tainted dataflow checkers (such as SQLI and XSS) by identifying more sinks,
which are functions or other program locations that are vulnerable to attack if unsanitized, user-
controlled (tainted) data flows into them. See Section 3.1.30, “sink_for_checker” and Section 3.1.7,
“data_has_tag”.

• Extend existing dataflow checkers (such as SQLI, XSS, and SENSITIVE_DATA_LEAK) by
adding dataflow pass-through rules for your custom libraries or frameworks. See Section 3.1.19,

1

Security configuration file

“method_returns_param”, Section 3.1.9, “dataflow_through_callsite”, Section 3.1.3, “async_method”,
Section Section 3.1.15, “local_callback”, Section 3.1.16, “map_read”, Section 3.1.17, “map_write”, and
Section 3.1.7, “data_has_tag”.

• Suppress false positive defect reports from certain checkers or groups of checkers. See
Section 3.1.26, “sanitizer_for_checker”, Section 3.1.2, “android_safe_categories”, Section 3.1.1,
“android_protected_intent_actions”, Section 3.1.12, “ignore_all_argument_dataflow_to_method”,
Section 3.1.13, “ignore_method_dataflow”, and Section 3.1.14, “ignore_method_output”.

• Perform advanced tuning on the XSS checker. Section 3.1.4,
“class_like_print_writer_for_servlet_output”, Section 3.1.11, “define_lookup_method_call_map”,
Section 3.1.20, “method_returns_servlet_output_stream”, Section 3.1.23,
“method_with_servlet_sinks_on_input”, Section 3.1.24, “method_with_servlet_sinks_on_output”,
Section 3.1.25, “move_xss_outside_method”, and Section 3.1.33, “xss_sanitizer_method”.

• Tune the WEAK_GUARD checker. See Section 3.1.28, “sensitive_operation”.

1.2. Supported languages

Each configuration file applies to a single language category. An analysis can employ more than one
configuration file.

The following languages are supported by the configuration file:

C, C++, Objective-C, Objective-C++, C#, Java, JavaScript, .NET, and Visual Basic.

The configuration file’s language field specifies the language category that this configuration file
supports. See Section 2.3.1, “Top-level value”.

1.3. How to invoke a custom configuration

When you have created a custom configuration file, you can use it in analysis by passing it to the cov-
analyze command.

The --directive-file option can specify a configuration file that uses any directives other than
dc_checker_name and method_set_for_dc_checker. For examples of what these other kinds of
directives can do, see “Uses of directives”.

For example, here is a configuration to define a dataflow checker that identifies and warns about an API
to which user-controllable data should not be passed:

{
 sink_for_checker : "DF.DANGEROUS_ROBOT",
 sink : {
 to_callsite : {
 callsite_with_static_target : {
 "named" : "battle.robot.api.RobotService.run(java.lang.String, int)void"
 },
 },
 input : "arg1"

2

Security configuration file

 }
}

To use DF.DANGEROUS_ROBOT in an analysis, you might save this configuration as
dangerous_robot.json and then use a command line such as the following:

cov-analyze --dir localTempDir --directive-file dangerous_robot.json

(For more information about this sample checker, see the description of DF.CUSTOM_CHECKER in the
Checker Reference.)

Note

To specify the configuration file for a DC.CUSTOM_CHECKER, whose use is now discouraged,
required a different cov-analyze option, --dc-config.

When you invoke cov-analyze, you can specify more than one configuration file, in order to use more
than one configuration in your analysis. For example, you might want to test both C++ and Java source in
a single scan.

3

Chapter 2. Configuration file syntax

Table of Contents
2.1. Extensions to JSON supported by the configuration file ... 4
2.2. JSON Terminology .. 4
2.3. Schema .. 5

A security directives configuration file uses a variant of the JSON format. Overall, the file consists of two
parts:

1. Three initial fields. These identify the file as a security directives file, specify the directives format
version it uses, and then the language to which the directives apply.

2. A directives object. The directives contains the directive sub-objects that specify what this
configuration file accomplishes. It can also contain sub-objects whose specifications support the
behavior of the directives themselves.

2.1. Extensions to JSON supported by the configuration file

Though the directive language is based on JSON, it also supports the following extensions, all of which
retain the property that the file format is a subset of JavaScript. If you intend to use more standard JSON-
processing tools, you might want to avoid using these extensions.

• Comments are allowed, both single-line comments that start with // and extend to the end of the line,
and multiline comments that start with /* and end with */.

• In standard JSON, field names must appear within double quotes. In an analysis configuration file, you
may omit the quotes if the name conforms to the customary rules for identifiers: that is, if the name
matches the following regular expression (regex):

^[a-zA-Z_][a-zA-Z0-9_]*$

All field names in this file format conform to that regex, so none of them requires quotes in the
configuration file. However, quoting them is permissible, and conforms to standard JSON.

• String literals can be extended across multiple lines (without introducing newlines into the string
contents) by joining quoted string literal fragments with the + token, optionally surrounded by white
space (including newlines). A string value can be composed of any number of concatenated fragments.
This syntax follows that of JavaScript string concatenation.

• Objects and arrays can have a final, optional comma (,).

2.2. JSON Terminology

JSON value
A JSON value can be one of the following:

• A literal string, in double quotes (").

4

Configuration file syntax

• A literal numeric value

• A Boolean value: true or false

• A JSON array

• A JSON object

• null

JSON object
A paired name (a string) and value, enclosed in braces ({ }) and separated by a colon (:).

These name+value pairs are also known as fields.

JSON array
An ordered collection of JSON values, which can include JSON objects or nested arrays. The array is
enclosed in square brackets ([]), and its values are separated by commas (,).

2.3. Schema

This section describes the schema of the Security Configuration file, starting with the top-level JSON
value.

2.3.1. Top-level value

The top-level value is a JSON object with the following fields:

• type: Must be the string "Coverity analysis configuration".

• format_version: A number indicating the version of the directives format for this file. Different
versions support different directives for different languages. The type and format_version fields
ensure that the provided file is compatible with the current version of cov-analyze.

Recommendation

If you analyze code from several languages in the same intermediate directory, you should use
version 4 or later because the language field restricts the evaluation of directives to source
code in the specified language(s), and therefore avoids unintended application of directives and
useless evaluation of directives on unintended languages.

Table 2.1. Supported format_version field values in release 2020.12

Valid value Changes in this version

12 For Visual Basic, introduced support for DC.CUSTOM_CHECKER custom
directives.

11 • For Visual Basic, introduced support for DF.CUSTOM_CHECKER directives.

• Introduced ".NET" as a language value that can match C#, Visual Basic,
and .NET bytecode.

5

Configuration file syntax

Valid value Changes in this version

8 • Added the TEXT.CUSTOM_CHECKER directive.

• Changed how to specify custom don’t-call (DC.*) and custom dataflow
(DF.*) checkers.

• Updated CSRF directives.

• Updated MISSING_AUTHZ directives.

• Added the "sink_kind" field.

• Added the "read_from_HANA_library_import" directive.

6 • Added JavaScript support.

• Added the Java and C# directive sanitizer_for_checker.

5 • For Java and C#, introduced the "with_annotation" MethodSet and
ClassSet through the new AnnotationSet object.

• For Java and C#, introduced support for DF.CUSTOM_CHECKER custom
checker directives.

• Introduced support for these new directives:

• For Java and C#: sink_for_checker

• For Java Android: android_safe_categories

• For Java Android: android_protected_intent_actions

4 Required the top-level language field and added C# support for many former
Java-only directives.

3 Introduced support for these Java directives:

• method_returns_tainted_data

• sensitive_operation (see WEAK_GUARD checker annotations)

• xss_sanitizer_method

2 or greater Introduced support for a Java directive: simple_entry_point

1 or greater Support for all other directives (pre-version 2 directives)a

aSee Section 3.1, “User directives”.

• language: This field became mandatory, starting in version 4. Directives in this file apply only to
source code in the specified language or language family. The following table describes valid values for
the language field values in release 2020.12 (matches are case insensitive).

6

Configuration file syntax

Table 2.2. language values

Value Meaning

C-like Directives apply to C, C++, Objective-C, and Objective-C++ code.

C# Directives apply to C# code. Note that unsafe C# code blocks and raw pointer
types are not supported.

Java Directives apply to Java code.

JavaScript Directives apply to all JavaScript code, including client-side JavaScript,
JavaScript in HTML, and Node.js code.

.NET Directives apply to all C# and Visual Basic code. This is only usable at the top
level.

Visual Basic Directives apply to all Visual Basic code.

In format_version : 4 and earlier, there is no language field. In those versions,
the "dc_checker_name" and "method_set_for_dc_checker" directives for
DC.CUSTOM_CHECKER apply to the C-like, Java, and C# languages. Other directives apply only
to Java.

Requirement

You can specify a maximum of one language field and value per file. For example, imagine that
you have some directives that you want to apply to Objective-C, others that you want to apply
to C++ code, and yet others that you want to apply to C# code. You need at least two directives
files, one with "language" : "C-like" for the Objective-C and C++ directives and one with
"language" : "C#" for the C# directives.

• directives: An array of User Directive values. See Section 3.1, “User directives”.

The directives array contains the directive fields that specify this particular configuration.

Schema example:

{
 "type" : "Coverity analysis configuration",
 "format_version" : 12,
 "language" : "Java",
 "directives" : [
 // directives appropriate for Java go here
]
}

2.3.2. Objects in the configuration file

In the configuration file, each directive is a JSON object. The directive contains fields to specify a
particular analysis behavior. A configuration file can also include data objects that support the work of the
directives.

The directives themselves are described in Section 3.1, “User directives”.

7

Configuration file syntax

Objects associated with directives are described in Section 3.2, “Other object types used by user
directives”.

8

Chapter 3. Configuration file usage

Table of Contents
3.1. User directives .. 9
3.2. Other object types used by user directives ... 62

What your configuration file does, depends on the contents of the directives object. These entries can
be directives themselves, or definitions of other objects that the directives use.

3.1. User directives

Each directive is a JSON object (see Section 2.2, “JSON Terminology”) that contains fields to specify a
particular analysis behavior.

3.1.1. android_protected_intent_actions
Supported Languages: Java Android only

The android_protected_intent_actions directive specifies Android Intent actions to treat as
protected.

The Android analysis considers some Intent actions to be protected because Intent objects that
contain such an Intent action can only come from a trusted source (for example, from the Android
system). If each intent-filter of an Android application component either contains a safe
category or contains only protected Intent actions, the analysis assumes that the component can
only receive Intent objects from trusted sources.

Examples of Intent actions that the analysis considers to be protected:

• android.intent.action.AIRPLANE_MODE

• android.intent.action.BATTERY_CHARGED

• android.intent.action.BATTERY_LOW

If multiple android_protected_intent_actions directives are specified, the analysis considers the
union of all the Intent actions specified in all the android_protected_intent_actions directives.

3.1.1.1. Fields

This directive uses the following field:

android_protected_intent_actions
Specifies a JSON array of strings. Each string is the name of a protected Intent action.

3.1.1.2. See also

The android_safe_categories directive.

9

Configuration file usage

3.1.2. android_safe_categories
Supported Languages: Java Android only

The android_safe_categories directive specifies categories within Android Intent objects to treat
as safe.

If an Intent object contains a category that the analysis deems safe, the analysis will also assume that
the Intent object comes from a trusted source. If each intent-filter of an Android application
component either contains a safe category or contains only protected Intent actions, the analysis
considers that the component can only receive Intent objects from trusted sources.

By default, the analysis considers the following categories to be safe:

• android.intent.category.HOME

• android.intent.category.LAUNCHER

This directive can be used to extend the list of categories that the analysis considers to be safe.

If multiple android_safe_categories directives are specified, the analysis considers the union of all
the categories specified in all the android_safe_categories directives.

3.1.2.1. Fields

This directive uses the following field:

android_safe_categories
Specifies a JSON array of strings. Each string is the name of a safe category.

3.1.2.2. See also

The android_protected_intent_actions directive.

3.1.3. async_method
Supported Languages: JavaScript only

The async_method directive identifies callback functions such as event handlers, Web application
entry points, or other callbacks that some framework or runtime system calls asynchronously. It also
provides details about the arguments with which the function is called. This directive is similar to the
local_callback directive, but it is for callbacks that are called asynchronously instead of immediately.

3.1.3.1. Fields

This directive uses the following fields:

"async_method"
Specifies a WritableProgramData value to identify the callback function that is called later. See
Section 3.2.26, “WritableProgramData”.

"handler_kind"
Specifies a JSON string to describe the kind of callback being called. This field can have one of the
following values:

10

Configuration file usage

"event_listener"
The callback might be called many times, as part of an event loop.

"async_method"
The callback is called once; for example, after an asynchronous operation completes.

"webapp_entry_point"
The callback might be called many times, in response to requests from a client.

"input_tags"
(Optional) Specifies a non-empty JSON array of InputTag values. These values indicate that
particular parameters to the callback have particular tags. See Section 3.2.10, “InputTag”.

"input_taints"
(Optional) Specifies a non-empty JSON array of InputTaint values. These values indicate that
particular parameters to the callback are tainted. See Section 3.2.9, “InputTaint”.

"input_values"
(Optional) Specifies a non-empty JSON array of InputValue values. If this field is present,
async_method must be a "to_callsite" WritableProgramData value. The InputValue
elements describe how arguments at the call site that registers the callback (that is, the call site
specified in the to_callsite sub-element of async_method) flow to parameters of the callback.

See Section 3.2.26.1, “to_callsite”, Section 3.1.3, “async_method”, Section 3.2.11, “InputValue”, and
Section 3.2.26, “WritableProgramData”.

3.1.3.2. Examples

JavaScript example 1:

The following directive indicates that any function assigned to the onkeydown property of any object
is an event listener (and thus potentially invoked many times in the event loop). For example, the
anonymous function in element.onkeydown = function () { flag = true; } would be
registered as an event handler.

{
 "async_method": {
 "write_off_any": [{ "property": "onkeydown" }]
 },
 "handler_kind" : "event_listener"
}

JavaScript example 2:

The following is a simplified version of an webapp_entry_point async_method directive for
Express.js.

Directive:

{
 "tag" : "ExpressApp",
 "data_has_tag" : {

11

Configuration file usage

 "from_callsite" : {
 "call_on" : {
 "read_from_js_require" : "express"
 }
 },
 "output" : "return"
 }
},
{
 "async_method" : {
 "to_callsite" : {
 "call_on" : {
 "read_from_object_with_tag" : "ExpressApp",
 "path" : [{ "property" : "post" }]
 }
 },
 "input" : "arg2"
 },
 "input_tags" : [
 {
 "input" : "arg1",
 "tag" : "ExpressRequest"
 },
 {
 "input" : "arg2",
 "tag" : "ExpressResponse"
 }
],
 "handler_kind" : "webapp_entry_point"
}

The first directive says that app in the code below has the tag "ExpressApp". The "async_method"
directive uses this tag to recognize the anonymous function in the code below as a Web application entry
point and to tag its parameters with "ExpressRequest" (for req) and "ExpressResponse" (for res).
Other directives might build on these tags to define sources or sinks.

var app = require("express")();
app.post("/path1", function (req, res) {
 // ...
}

JavaScript example 3: Directive

{
 "async_method" : {
 "to_callsite" : {
 "call_on" : {
 "read_path_off_global" : [{ "property" : "dbQuery" }]
 }
 },
 "input" : "arg3"
 },
 "handler_kind" : "async_method",

12

Configuration file usage

 "input_taints" : [{
 "input" : "arg2",
 "taint_kind" : "database",
 "is_deep_taint" : true
 }]
}

This directive indicates that the global function dbQuery registers its third argument as a callback and
that the second parameter of that callback is deeply tainted with a "database" taint. For example, in the
code below, the anonymous function is the callback, and "data" is deep tainted with database data. that
is, data.firstName, data.address.city, and so on are tainted with database data.

dbQuery(connectionString, "SELECT * FROM user", function (result, data) {
 // ... data.firstName ... data.address.city
});

3.1.4. class_like_print_writer_for_servlet_output
Supported Languages: C#, Java, and Visual Basic

The class_like_print_writer_for_servlet_output directive indicates classes with print(),
println(), and write() methods that function like PrintWriter methods of the same name, and
that should always be treated as if they were writing to a servlet output stream. The XSS checker reports
a defect on tainted data that flows to a servlet output stream without proper escaping.

3.1.4.1. Fields

This directive uses the following field:

class_like_print_writer_for_servlet_output
Specifies a ClassSet value. See Section 3.2.6, “ClassSet”.

3.1.4.2. Examples

Configuration example:

//"class_like_print_writer_for_servlet_output" directive example

{
 "class_like_print_writer_for_servlet_output" :
 { "named" : "examples.LikeServletPrintWriter" }
},

Java code example:

//"class_like_print_writer_for_servlet_output" directive example

package examples;

interface LikeServletPrintWriter
{
 public void print(String s);
 public void println(String x);

13

Configuration file usage

 public void write(String s);
}

class Test_class_like_print_writer_for_servlet_output extends HttpServlet
{
 LikeServletPrintWriter writer;
 Locale l;
 public void doGet(HttpServletRequest request, HttpServletResponse resp)
 throws IOException
 {
 // XSS reported on 'print' 'println' and 'write' due to the directive
 // treating these calls like writing to servlet output.
 writer.print(request.getParameter("taint"));
 writer.println(request.getParameter("taint"));
 writer.write(request.getParameter("taint"));
 }
}

3.1.5. csrf_check_needed
Supported Languages: JavaScript only

Use the csrf_check_needed directive to tell the CSRF checker which function calls require CSRF
protection. The CSRF checker will report a defect on any web application entry point that calls such
functions without CSRF protection.

3.1.5.1. Fields

This directive uses the following fields:

"csrf_check_needed"
Specifies a CallsiteSet that identifies call sites to which this directive applies.

"update_type"
Sets a string value that specifies the type of update made to the server. Valid values include
"database" and "filesystem".

3.1.5.2. Examples

JavaScript example:

{
 csrf_check_needed" : {
 "call_on" : {
 "read_path_off_global" : [{ "property" : "deleteDatabase" }]
 }
 },
 "update_type" : "database"
}

The csrf_check_needed directive above matches the deleteDatabase() call site in this Node.js
JavaScript code. This will result in a CSRF defect being reported at the web application entry point
app.get("/", function) which calls deleteDatabase().

14

Configuration file usage

var express = require("express");
var app = express();

app.get("/", function(req, res) {
 deleteDatabase();
});

app.listen(3000, function() {
 console.log("Listening");
});

3.1.5.3. See also

"csrf_validator"

3.1.6. csrf_validator
Supported Languages: JavaScript only

Use the csrf_validator directive to tell the CSRF checker which function calls protect Web
application entry points from CSRF attacks; for example, by comparing a CSRF token in a user’s session
with the one submitted in the request. The CSRF checker does not report defects on a Web application
entry point that calls one of these functions.

3.1.6.1. Fields

This directive uses the following field:

"csrf_validator"
Sets a CallsiteSet value that identifies call sites to which this directive applies.

3.1.6.2. Examples

JavaScript example:

{
 "csrf_validator" : {
 "call_on" : {
 "read_path_off_global" : [{ "property" : "myCsrfValidator" }]
 }
 }
}

The csrf_validator directive above matches the myCsrfValidator() call site in this Node.js
JavaScript code. Normally, a CSRF defect would be reported at both Web application entry
points app.get("/a", function) and app.get("/b", function) because they both call
db.createCollection("my_collection"), which updates the database. However, since
app.get("/b", function) calls myCsrfValidator(), no CSRF defect is reported for this Web
application entry point.

var MongoClient = require("mongodb").MongoClient;

15

Configuration file usage

var express = require("express");
var app = express();

var url = "mongodb://localhost:27017/myDatabase";

app.get("/a", function(req, res) {
 MongoClient.connect(url, function(err, db) {
 console.log("Creating new database collection");
 db.createCollection("my_collection");
 res.send("Visiting /a");
 });
});

app.get("/b", function(req, res) {
 MongoClient.connect(url, function(err, db) {
 console.log("Creating new database collection");
 myCsrfValidator();
 db.createCollection("my_collection");
 res.send("Visiting /b");
 });
});

app.listen(3000, function() {
 console.log("Listening");
});

3.1.6.3. See also

"csrf_check_needed".

3.1.7. data_has_tag
Supported Languages: JavaScript only

The data_has_tag directive assigns an arbitrary string-valued "tag" to a specified piece of data; for
example, to the return value of a specific function or to a specific global variable. Other structures, such
as read_from_object_with_tag and write_to_object_with_tag, can refer to this piece of data
using this "tag" value. Tagging this data has no other effect on the analysis: It simply enables the use of
these other structures.

See Section 3.2.19.2, “read_from_object_with_tag” and Section 3.2.26.2, “write_to_object_with_tag”.

3.1.7.1. Fields

This directive uses the following fields:

"data_has_tag"
Specifies a ReadableProgramData value that specifies the data to which to apply the tag. See
Section 3.2.19, “ReadableProgramData”.

"tag"
Sets a JSON string that specifies the tag.

16

Configuration file usage

3.1.7.2. Examples

See Section 3.2.26.2, “write_to_object_with_tag” for an example.

3.1.8. dataflow_checker_name
Supported Languages: C#, Java, JavaScript, and Visual Basic

The dataflow_checker_name directive defines a DF.CUSTOM_CHECKER.

3.1.8.1. Fields

The custom dataflow checker description uses the following fields:

"dataflow_checker_name"
Specifies a JSON string that names the custom checker. This name must begin with "DF.".
After that prefix, it must contain only capital letters or the underscore character (_). For example,
"DF.MY_CHECKER" is allowable, but "DF.My_Checker" is not.

"taint_kinds"
Specifies a TaintKindGroup value that defines the kinds of taint that the checker tracks (subject to
the global trust options; see Section 3.2.23, “TaintKind” for details).

See also Section 3.2.24, “TaintKindGroup”.

"sink_message"
Sets a JSON string to print as the event message where the tainted data flows into the sink. For
defects in JavaScript code, this string appears in an event after several other events that describe the
sink and the tainted data that flowed into it. For Java and C# checkers, you can use the following two
placeholder values in this string:

{0}
This substring will be replaced by the name of the tainted expression that reached the sink.

{1}
This substring will be replaced by the name of the sink.

"remediation_advice"
Specifies a JSON string to print as remediation advice in each defect report.

"new_issue_type"
(Optional) Sets an IssueTypeDefinition value to describe the sorts of issues that this checker
reports. See Section 3.2.12, “IssueTypeDefinition”. The fields of this IssueTypeDefinition object
are all optional in this context. Missing fields default to the following values:

• "type": "USER." followed by the name of your checker

• "name": "Tainted data reached a sink."

• "description": "User-controllable data reached a sink."

• "local_effect": "Custom Dataflow Checker"

17

Configuration file usage

• "impact": "Medium"

• "category": "Medium impact security"

• "quality_kind": "false"

• "security_kind": "true"

Note

The new_issue_type field replaces the deprecated "checker_properties"
field. If dataflow_checker_name specifies neither "new_issue_type" nor
"checker_properties", then all the default values listed above are used.

3.1.8.2. Deprecated fields—from prior to format version 8

As of Security Configuration format version 8, the fields described in this section are deprecated and
have been replaced with the "new_issue_type" field; future Security Configuration format versions are
not guaranteed to support them.

"local_effect", "impact", "category", "cwe"
These fields are deprecated. See the documentation of the correspondingly named fields in
Section 3.2.12, “IssueTypeDefinition”.

"long_description"
This field is deprecated. See the documentation for the "description" field in Section 3.2.12,
“IssueTypeDefinition”.

"type"
This field is deprecated. See the documentation for the "name" field in Section 3.2.12,
“IssueTypeDefinition”. (Be aware: This deprecated "type" field is unrelated to the "type" field of
IssueTypeDefinition.)

"kind"
This field is deprecated. See the documentation for the "quality_kind" and "security_kind"
fields in Section 3.2.12, “IssueTypeDefinition” and the discussion of migration in the following section.
Valid values for this property are: "security" (for security issues), "quality" (for quality issues),
or "both" (for security and quality issues).

3.1.8.2.1. Migrate the format from version 8 to version 12

To migrate away from using the deprecated fields to the "new_issue_type" field that replaces them,
proceed as follows:

1. Ensure that your directives file has a "format_version" of 8 or greater.

2. Add a "new_issue_type" field containing a JSON object to your checker definition.

3. Move your "category", "cwe", "impact", "local_effect", "long_description", and
"type" fields into this new object, but rename "long_description" to "description" and

18

Configuration file usage

rename "type" to "name". If you omitted any of these fields (and thus used the default values),
there’s no need to create them: The defaults remain the same.

4. Set the "quality_kind" and "security_kind" fields of "new_issue_type" according to your
old "kind" field.

• "kind" : "quality" translates to "quality_kind": "true", "security_kind": "false"

• "kind" : "security" translates to "quality_kind": "false", "security_kind":
"true"

• "kind" : "both" translates to "quality_kind": "true", "security_kind": "true"

5. Remove your old "kind" field.

6. Optionally, add a "type" field of "new_issue_type".

3.1.9. dataflow_through_callsite
Supported Languages: JavaScript only

The dataflow_through_callsite directive tells the analysis how data flows from arguments to
return values or to other function outputs for calls to a particular function.

3.1.9.1. Fields

This directive uses the following fields:

"dataflow_through_call_site"
Specifies a CallsiteSet that indicates the function call sites to which this directive applies. See
Section 3.2.3, “CallsiteSet”.

"from"
Specifies a non-empty JSON array of InputAndAccessPathSpecifier values that indicate
the inputs to the function that flow to the outputs specified in the "to" field. See Section 3.2.8,
“InputAndAccessPathSpecifier”.

"to"
Specifies a non-empty JSON array of OutputAndAccessPathSpecifier values that indicate
the outputs of the function that correspond to the inputs specified in the "from" field. See
Section 3.2.16, “OutputAndAccessPathSpecifier”.

3.1.10. dc_checker_name
Supported Languages: C, C++, C#, Java, Objective-C, and Objective-C++

The dc_checker_name directive defines a DC.CUSTOM_CHECKER.

Note

As of version 2020.03, if you need to migrate from the legacy checker SECURE_CODING, we
recommend that you use CodeXM instead of creating a new DC.CUSTOM_CHECKER. We also

19

Configuration file usage

recommend that you migrate custom DC checkers to CodeXM code. See “Migrate DC Custom
Checkers to CodeXM” in the Checker Reference.

3.1.10.1. Fields

In a configuration file, two directives manage custom DC checkers:

"dc_checker_name"
Defines a new DC checker and specifies the checker name; for example, "dc_checker_name" :
"DC.CUSTOM_MY_CHECKER".

"method_set_for_dc_checker"
Adds methods to a DC custom checker. Use this directive when you define a new DC
checker, or to add methods to an existing DC checker. For a description, see Section 3.1.22,
“method_set_for_dc_checker”.

Two other fields can be present:

"new_issue_type"
(Optional) Specifies an IssueTypeDefinition value that describes the sort of issues that this
checker reports. See Section 3.2.12, “IssueTypeDefinition”.

In the context of "new_issue_type", all of these fields are optional. If a field is not present, its
value defaults to the value shown in the following list:

• "type": "USER." followed by your custom checker name

• "name": "Calling risky function."

• "description": "The called function is unsafe for security related code."

• "local_effect": "May result in a security violation."

• "impact": "Low"

• "category": "Security best practices violations"

• "quality_kind": false

• "security_kind": true

• "cwe": 676

Note

The new_issue_type field replaces the deprecated fields "category", "cwe",
"impact", "kind", "local_effect", "long_description", and "type". If both the
"new_issue_type" field and the subfield it replaces are absent, all of the default values listed
above are used.

20

Configuration file usage

"antecedent_checker"
A string that names the custom DC checker (or SECURE_CODING checker) on which the present
checker is based.

Rather than use this field, unless you need to maintain legacy code we recommend that you use
CodeXM to write new Don’t Call checkers. See “Migrated DC Custom Checkers to CodeXM” in the
Checker Reference.

The antecedent_checker field preserved existing triage results for the specified
DC.CUSTOM_NAME checker in Coverity Connect. There were two use cases for this property:

• When migrating from SECURE_CODING to a DC.CUSTOM_* checker, you would specify
SECURE_CODING.

• When renaming a DC.CUSTOM_* checker, you would specify the old name of the checker.

3.1.10.2. Deprecated fields—from prior to format version 8

As of Security Configuration format version 8, the fields described in this section are deprecated and
have been replaced with the "new_issue_type" field; future Security Configuration format versions are
not guaranteed to support them.

"local_effect", "impact", "category", "cwe"
These fields are deprecated. See the documentation of the correspondingly named fields in
Section 3.2.12, “IssueTypeDefinition”.

"long_description"
This field is deprecated. See the documentation for the "description" field in Section 3.2.12,
“IssueTypeDefinition”.

"type"
This field is deprecated. See the documentation for the "name" field in Section 3.2.12,
“IssueTypeDefinition”. (Be aware: This deprecated "type" field is unrelated to the "type" field of
IssueTypeDefinition.)

"kind"
This field is deprecated. See the documentation for the "quality_kind" and "security_kind"
fields in Section 3.2.12, “IssueTypeDefinition” and the discussion of migration in the following section.
Valid values for this property are: "security" (for security issues), "quality" (for quality issues),
or "both" (for security and quality issues).

3.1.10.2.1. Migrate the format from version 8 to version 12

We don’t recommend that you follow these steps unless it is necessary to support legacy code. See
“Migrate DC Custom Checkers to CodeXM” in the Checker Reference.

To migrate away from using the deprecated fields to the "new_issue_type" field that replaces them,
proceed as follows:

1. Ensure that your directives file has a "format_version" of 8 or greater.

21

Configuration file usage

2. Add a "new_issue_type" field containing a JSON object to your checker definition.

3. Move your "category", "cwe", "impact", "local_effect", "long_description", and
"type" fields into this new object, but rename "long_description" to "description" and
rename "type" to "name". If you omitted any of these fields (and thus used the default values),
there’s no need to create them: the defaults remain the same.

4. Set the "quality_kind" and "security_kind" fields of "new_issue_type" according to your
old "kind" field.

• "kind" : "quality" translates to "quality_kind": true, "security_kind": false

• "kind" : "security" translates to "quality_kind": false, "security_kind": true

• "kind" : "both" translates to "quality_kind": true, "security_kind": true

5. Remove your old "kind" field.

6. Optionally, add a "type" field of "new_issue_type".

3.1.11. define_lookup_method_call_map
Supported Languages: C#, Java, and Visual Basic

The define_lookup_method_call_map directive defines a map that can be shared across many
MethodCallSpecifier objects in other directives. In particular, the "lookup_by_constant_param"
variant of MethodCallSpecifier can refer to this map by name.

See Section 3.2.13, “MethodCallSpecifier” and Section 3.2.13.2, “lookup_by_constant_param”.

3.1.11.1. Fields

This directive uses the following fields:

"define_lookup_method_call_map"
A JSON string value that names the map defined by this directive.

"map"
A JSON object that consists of a series of fields, to be interpreted as follows:

• The name of each field is a lexical expression string that is mapped to the value of the field.

Valid lexical expression strings are described in the section Section 3.2.13.2,
“lookup_by_constant_param” value.

• The value of the field must be either a "method_call" MethodCallSpecifier value or a
JSON null literal. See Section 3.2.13.1, “method_call”.

3.1.11.2. Examples

Configuration example:

22

Configuration file usage

See Configuration example 3 for method_with_servlet_sinks_on_input [p. 39] and Configuration
example 4 for method_with_servlet_sinks_on_input [p. 41].

Java code example:

See Java code example 3 for method_with_servlet_sinks_on_input [p. 40] and Java code example 4
for method_with_servlet_sinks_on_input [p. 42].

3.1.12. ignore_all_argument_dataflow_to_method
Supported Languages: C#, Java, and Visual Basic

The ignore_all_argument_dataflow_to_method directive applies to call sites that match a
specified MethodSet value. See Section 3.2.15, “MethodSet”.

The dataflow analysis ignores paths from the call site arguments to parameters of the called method. The
analysis also ignores any changes the method call appears to make to modifiable arguments.

Effectively, the dataflow analysis act as if the call site does not exist for the arguments, but the analysis is
still capable of reporting paths within the called method.

3.1.12.1. Fields

This directive uses the following field:

"ignore_all_argument_dataflow_to_method"
Specifies a MethodSet value that identifies the methods whose argument dataflow will be ignored.
See Section 3.2.15, “MethodSet”

3.1.12.2. Examples

Configuration example:

//"ignore_all_argument_dataflow_to_method" directive example

{
 "ignore_all_argument_dataflow_to_method" :
 { "named" :
 "examples.Test_ignore_all_argument_dataflow_to_method.appendAndPrintString(
 java.lang.StringBuffer, java.lang.String,
 javax.servlet.http.HttpServletResponse)void"
 }
},

Java code example:

//"ignore_all_argument_dataflow_to_method" directive example

package examples;

class Test_ignore_all_argument_dataflow_to_method extends HttpServlet

23

Configuration file usage

{
 public void appendAndPrintString(StringBuffer sb,
 String str,
 HttpServletResponse resp)
 {
 sb.append(str);
 PrintWriter pw = resp.getWriter();
 //no XSS because the directive suppresses taint flow from callers into 'str'
 pw.println(str);
 }

 public void doGet(HttpServletRequest request, HttpServletResponse resp)
 throws IOException
 {
 PrintWriter pw = resp.getWriter();

 String taint = request.getParameter("taint");

 StringBuffer sb = new StringBuffer();
 appendAndPrintString(sb, taint, resp);

 //no XSS due to the directive
 pw.println(sb.toString());
 }
}

3.1.13. ignore_method_dataflow
Supported Languages: C#, Java, and Visual Basic

The ignore_method_dataflow directive indicates methods where the analysis should ignore all
dataflow paths within the method. Dataflow paths added by the method_returns_param directive are
not ignored.

See Section 3.1.19, “method_returns_param”.

3.1.13.1. Fields

This directive uses the following field:

"ignore_method_dataflow"
Specifies a MethodSet value that identifies the methods whose dataflow will be ignored. See
Section 3.2.15, “MethodSet”.

3.1.13.2. Examples

Configuration example 1:

//"ignore_method_dataflow" directive example 1

{
 "ignore_method_dataflow" :

24

Configuration file usage

 { "named" :
 "examples.Test_ignore_method_dataflow1.getTaint(
 javax.servlet.http.HttpServletRequest,
 javax.servlet.http.HttpServletResponse)java.lang.String"
 }
},

Java code example 1:

//"ignore_method_dataflow" directive example 1

package examples;

class Test_ignore_method_dataflow1 extends HttpServlet
{
 boolean beSafe;

 // The directive suppresses all dataflow through this function.
 public String getTaint(HttpServletRequest request, HttpServletResponse resp)
 {
 if (beSafe) return "";

 PrintWriter pw = resp.getWriter();
 String taint = request.getParameter("taint");
 pw.println(taint); //no XSS due to directive

 return taint; // the directive squelches this tainted dataflow
 }

 public void doGet(HttpServletRequest request, HttpServletResponse resp)
 throws IOException
 {
 PrintWriter pw = resp.getWriter();
 String x = getTaint(request, resp); // untainted because of the directive
 pw.println(x); //no XSS due to directive
 }
}

Configuration example 2:

 //"ignore_method_dataflow" directive example 2

{
 "ignore_method_dataflow" :
 { "named" :
 "examples.Test_ignore_method_dataflow2.manyPaths(java.lang.String,
 java.lang.StringBuffer)java.lang.String"
 }
},

Java code example 2:

//"ignore_method_dataflow" directive example 2

25

Configuration file usage

package examples;

class Test_ignore_method_dataflow2 extends HttpServlet
{
 String field1;
 String field2;

 public void setField2(String str) {
 field2 = str;
 }

 // This method demonstrates several kinds of dataflow paths that the directive
 // suppresses.
 public String manyPaths(String str, StringBuffer sb) {
 field1 = str;
 setField2(str);
 sb.append(str);
 return str;
 }

 public void doGet(HttpServletRequest request, HttpServletResponse resp)
 throws IOException
 {
 PrintWriter pw = resp.getWriter();
 String taint = request.getParameter("taint");
 StringBuffer sb = new StringBuffer();

 // the directive suppresses all dataflow through manyPaths
 String ret = manyPaths(taint, sb);

 pw.println(ret); //no XSS due to directive
 pw.println(sb); //no XSS due to directive
 pw.println(field1); //no XSS due to directive
 pw.println(field2); //no XSS due to directive
 }
}

3.1.14. ignore_method_output
Supported Languages: C#, Java, and Visual Basic

The ignore_method_output directive indicates methods where the analysis should ignore dataflow
paths passing out of the method through the return value or a particular modified parameter, as specified
by the "output" field.

This directive rarely needs to be used, but it can be useful in cases where the analysis infers incorrect
data flow through a method. This directive does not suppress defect reports within the methods it
indicates, only those that rely on flow through the indicated method outputs.

3.1.14.1. Fields

This directive uses the following fields:

26

Configuration file usage

"ignore_method_output"
Specifies a MethodSet value that identifies the methods whose output will be ignored. See
Section 3.2.15, “MethodSet”.

"output"
A ParamOut value that specifies the value to ignore. See Section 3.2.18, “ParamOut”.

3.1.14.2. Examples

Configuration example:

//"ignore_method_output" directive example

{
 "ignore_method_output" :
 { "named" :

 "examples.Test_ignore_method_output.getTaint(javax.servlet.http.HttpServletRequest,
 javax.servlet.http.HttpServletResponse)java.lang.String"
 },
 "output" : "return"
 },

Java code example:

//"ignore_method_output" directive example

package examples;

class Test_ignore_method_output extends HttpServlet
{
 boolean beSafe;

 // The directive suppresses dataflow through the return value of this method.
 public String getTaint(HttpServletRequest request, HttpServletResponse resp)
 {
 PrintWriter pw = resp.getWriter();
 String taint = request.getParameter("taint");
 pw.println(taint); //XSS reported here unaffected by the directive

 if (beSafe) return "";

 return taint; // the directive squelches this tainted dataflow
 }

 public void doGet(HttpServletRequest request, HttpServletResponse resp)
 throws IOException
 {
 PrintWriter pw = resp.getWriter();
 String x = getTaint(request, resp); // untainted because of the directive
 pw.println(x); //no XSS due to directive
 }

27

Configuration file usage

}

3.1.15. local_callback
Supported Languages: JavaScript only

The local_callback directive identifies a callback function that is called immediately (usually by some
API) and provides details about the arguments with which the function is called. This directive is similar
to the async_method directive, but it deals with callbacks that are called immediately, as opposed to
asynchronously.

3.1.15.1. Fields

This directive uses the following fields:

"local_callback
Specifies "to_callsite" WritableProgramData value that identifies the callback function that
is called immediately. See Section 3.2.26, “WritableProgramData” and Section 3.2.26.1, “to_callsite”.

"input_tags"
(Optional) Specifies a non-empty JSON array of InputTag values that identify callback functions to
indicate that particular parameters to the callback function have particular tags. See Section 3.2.10,
“InputTag”.

"input_taints"
(Optional) Specifies a non-empty JSON array of InputValue values that describe how arguments
at the call site that registers the callback (that is, the call site specified by local_callback) flow to
parameters of the callback. See Section 3.2.11, “InputValue”.

3.1.15.2. Examples

JavaScript Example:

The following directive indicates that passing a function as the first argument of doCallWithArg()
invokes it immediately and passes the second argument of doCallWithArg() to its first argument.

{
 "local_callback" : {
 "to_callsite" : {
 "call_on" : {
 "read_path_off_global" : [{ "property" : "doCallWithArg" }],
 }
 },
 "input" : "arg1",
 },
 "input_values" : [
 {
 "value" : "arg2",
 "input" : "arg1"
 }
]

28

Configuration file usage

}

For example, because of the directive, the analysis sees the call to doCallWithArg(callback, x) as
making the following function call: callback(x).

function callback(arg) {
 // arg === x
}
doCallWithArg(callback, x);

3.1.16. map_read
Supported Languages: JavaScript only

The map_read directive indicates that a function call acts like a property read where one of its arguments
is the object whose property is read and another is the name of the property. The return value of the
function is the result of the property read.

3.1.16.1. Fields

This directive uses the following fields:

"map_read"
Specifies a CallsiteSet that identifies function call sites to which this directive applies. See
Section 3.2.3, “CallsiteSet”.

"map"
Specifies a ParamIn value that indicates which argument is the object whose property is being read.
See Section 3.2.17, “ParamIn”.

"key"
Specifies a ParamIn value that indicates which argument is the name of the property that is read
from "map". See Section 3.2.17, “ParamIn”.

This directive only applies if the argument indicated by key is a string literal.

3.1.16.2. Examples

JavaScript example:

The following directive indicates that localStorage.getItem(obj, "prop") reads property
"prop" from localStorage, just as localStorage.prop would.

{
 "map_read" : {
 "call_on" : {
 "read_path_off_global" : [
 { "property" : "localStorage" },
 { "property" : "getItem" }
]
 }
 },

29

Configuration file usage

 "map" : "this",
 "key" : "arg1"
}

3.1.17. map_write
Supported Languages: JavaScript only

The map_write directive indicates that a function call acts like a property write where one of its
arguments is the object whose property is written, another is the name of the property, and a third is the
value to write to that property.

3.1.17.1. Fields

This directive uses the following fields.

"map_write"
Specifies a CallsiteSet that identifies function call sites to which this directive applies. See
Section 3.2.3, “CallsiteSet”.

"map"
Specifies a ParamIn value that indicates which argument is the object whose property is being
written. See Section 3.2.17, “ParamIn”.

"key"
Specifies a ParamIn value that indicates which argument is the property of "map" that is being
overwritten. See Section 3.2.17, “ParamIn”

This directive only applies if the argument indicated by "key" is a string literal.

"value"
Specifies a ParamIn value that indicates which argument is the value being written. See
Section 3.2.17, “ParamIn”.

3.1.17.2. Examples

The following directive indicates that localStorage.setItem(obj, "prop", value) writes value
to property "prop" of localStorage just as localStorage.prop = value would.

{
 "map_write" : {
 "call_on" : {
 "read_path_off_global" : [
 { "property" : "localStorage" },
 { "property" : "setItem" }
]
 }
 },
 "map" : "this",
 "key" : "arg1",
 "value" : "arg2"
},

30

Configuration file usage

3.1.18. method_returns_constant
Supported Languages: C#, Java, and Visual Basic

The method_returns_constant directive specifies a constant for a method to return.

In a program where dataflow follows an unwanted conditional path (for example, because you are certain
the path is impossible in a production environment), the unwanted path can be avoided by modelling a
method evaluated in the conditional expression as returning a constant value.

3.1.18.1. Fields

This directive uses the following fields:

"method_returns_constant"
Specifies a MethodSet value to identify the methods to which this directive applies. See
Section 3.2.15, “MethodSet”.

"returns"
A ReturnConstant value to be returned by the identified methods. See Section 3.2.21,
“ReturnConstant”.

3.1.18.2. Examples

Configuration example:

//"method_returns_constant" directive example

{
 "method_returns_constant" :
 { "named" :
 "examples.Test_method_returns_constant.check_for_error()boolean"
 },
 "returns" : { "bool" : false }
},

Java code example:

//"method_returns_constant" directive example

package examples;

class Test_method_returns_constant extends HttpServlet
{
 boolean hasError;
 boolean check_for_error() { return hasError; }
 public void doGet(HttpServletRequest request, HttpServletResponse resp)
 throws IOException
 {
 PrintWriter pw = resp.getWriter();
 String taint = request.getParameter("taint");

 if (check_for_error()) {
 pw.println(taint); //no XSS due to directive

31

Configuration file usage

 }
 }
}

3.1.19. method_returns_param
Supported Languages: C# , Java, and Visual Basic

The method_returns_param directive specifies a particular parameter for a method to return.

This directive indicates methods where the analysis should follow dataflow paths as if the method directly
returned the specified parameter. This directive is useful when the analysis fails to infer dataflow from a
method parameter to its return value.

3.1.19.1. Fields

This directive uses the following fields:

"method_returns_param"
Specifies a MethodSet value to identify the methods to which this directive applies. See
Section 3.2.15, “MethodSet”.

"input"
A ParamIn value to be returned by the identified methods. See Section 3.2.17, “ParamIn”.

3.1.19.2. Examples

Configuration example:

//"method_returns_param" directive example

{
 "method_returns_param" :
 { "named" :

 "examples.Test_method_returns_param.example1(java.lang.String)java.lang.String"
 },
 "input" : "arg1"
},

{
 "method_returns_param" :
 { "named" :
 "examples.Test_method_returns_param.example2(java.lang.String,
 java.lang.String)java.lang.String"
 },
 "input" : "arg2"
},

{
 "ignore_method_dataflow" :
 { "named" :
 "examples.Test_method_returns_param.example2(java.lang.String,

32

Configuration file usage

 java.lang.String)java.lang.String"
 }
},

Java code example:

//"method_returns_param" directive example

package examples;

class Test_method_returns_param extends HttpServlet
{
 HttpServletResponse resp;

 // The directive adds a dataflow path where this method returns 'str'.
 public String example1(String str) {
 PrintWriter pw = resp.getWriter();
 pw.println(str); //XSS reported here is unaffected by the directive
 return "";
 }

 // The "ignore_method_dataflow" directive ignores the original dataflow and
 // the "method_returns_param" directive adds back a dataflow edge where the
 // method returns 'str2'. Together these directives replace the inferred
 // dataflow with something entirely new.
 public String example2(String str1, String str2) {
 PrintWriter pw = resp.getWriter();
 pw.println(str1); // no XSS due to ignore_method_dataflow
 return str1; // ignore_method_dataflow squelches this dataflow path
 }

 public void doGet(HttpServletRequest request, HttpServletResponse resp)
 throws IOException
 {
 PrintWriter pw = resp.getWriter();
 String taint = request.getParameter("taint");

 // XSS: method returns 'taint' due to 'method_returns_param' directive
 pw.println(example1(taint));

 // no XSS: first argument no longer returned due to 'ignore_method_dataflow'
 pw.println(example2(taint, ""));
 // XSS: second argument returned due to 'method_returns_param' directive
 pw.println(example2("", taint));
 }
}

3.1.20. method_returns_servlet_output_stream
Supported Languages: C#, Java, and Visual Basic

The method_returns_servlet_output_stream directive indicates that a method returns a stream
that writes data to the HTTP output. The XSS checker (for cross-site scripting) reports a defect if tainted
data is written to the stream without proper escaping.

33

Configuration file usage

In Java, the returned object type should extend the java.io.OutputStream or java.io.Writer
classes. In C#, the returned object type should extend the System.IO.Stream or
System.IO.TextWriter classes.

3.1.20.1. Fields

This directive uses the following field:

"method_returns_servlet_output_stream"
Specifies a MethodSet value that identifies the methods to which this directive applies. See
Section 3.2.15, “MethodSet”.

3.1.20.2. Examples

Configuration example:

//"method_returns_servlet_output_stream" directive example

{
 "method_returns_servlet_output_stream" :
 { "named" :
 "examples.Test_method_returns_servlet_output_stream.getServletWriter()
 java.io.PrintWriter"
 }
},

Java code example:

//"method_returns_servlet_output_stream" directive example

package examples;

class Test_method_returns_servlet_output_stream extends HttpServlet
{
 PrintWriter pwField;
 PrintWriter getServletWriter() { return pwField; }
 public void doGet(HttpServletRequest request, HttpServletResponse resp)
 throws IOException
 {
 PrintWriter pw = getServletWriter();
 String taint = request.getParameter("taint");
 pw.println(taint); //XSS defect due to directive
 }
}

3.1.21. method_returns_tainted_data
Supported Languages: C#, Java, and Visual Basic

The method_returns_tainted_data directive identifies methods that return tainted data. The
returned data should extend or implement a built-in taintable type, such as a string, byte array, input
stream, or collection. It cannot be used to indicate that members of a user-defined class instance are
tainted. The current trust model and trust options control whether the type of taint should be distrusted.

34

Configuration file usage

3.1.21.1. Fields

This directive uses the following fields:

"method_returns_tainted_data"
Specifies a MethodSet value that identifies the methods to which this directive applies. See
Section 3.2.15, “MethodSet”.

"taint_kind"
A TaintKind string value to be returned by the identified methods. See Section 3.2.23, “TaintKind”.

3.1.21.2. Examples

Configuration example:

// "method_returns_tainted_data" example
{
 "method_returns_tainted_data" : {
 "matching": "examples\\.Test_method_returns_tainted_data\
\.returns_tainted_data\\(.*"
 },
 "taint_kind" : "http"
}

Java code example:

package examples;
import java.sql.Statement;
import java.sql.Connection;

public class Test_method_returns_tainted_data {

 Connection connection;
 Statement statement;

 String returns_tainted_data() {
 return "foo";
 }

 void test_SQLI() throws Exception {
 String val = returns_tainted_data();

 // The method call to returns_tainted_data is considered to return
 // tainted data of "http" type.

 String sqlQuery1 = "select * from " + val;

 // An SQLI defect is reported on the following line
 statement = connection.prepareStatement(sqlQuery1);
 }
}

3.1.22. method_set_for_dc_checker
Supported Languages: C, C++, C#, Java, Objective-C, and Objective-C++

35

Configuration file usage

The method_set_for_dc_checker directive adds a method to a DC.CUSTOM_CHECKER. You can
use this directive to specify the method initially tested by the new DC custom checker. You can also use it
to add methods to an existing DC.CUSTOM_CHECKER.

Note

We recommend that you use CodeXM to develop custom “don’t call” checkers (which in releases
before 2020.03 had to be implemented using DC.CUSTOM_CHECKER directives). See “Migrate
DC Custom Checkers to CodeXM”in the Checker Reference.

3.1.22.1. Fields

A method set entry must contain a pair of directive fields, "method_set_for_dc_checker" and
"methods". A couple other fields can also be present.

"method_set_for_dc_checker"
Names the customn checker to which the methods will be added; for example,
"method_set_for_dc_checker" : "DC.CUSTOM_MY_CHECKER".

"methods"
A named MethodSet value that identifies the method to add to the method set; for example,
"methods" : { "named" : "strcmp" }, where strcmp() is the method to check. See
Section 3.2.15.1, “named”.

"txt_defect_message"
(Optional) Specifies a string to display when the checker finds an issue. This string should describe
the issue.

"txt_remediation_advice"
(Optional) Specifies a string to display when the checker finds an issue. This string should describe
how to avoid the issue.

3.1.23. method_with_servlet_sinks_on_input
Supported Languages: C# , Java, and Visual Basic

The method_with_servlet_sinks_on_input directive indicates that a method’s argument is written
to the HTTP output. The XSS (cross-site scripting) checker reports a defect if tainted data is written to the
HTTP output without proper escaping.

3.1.23.1. Fields

This directive uses the following fields:

"method_with_servlet_sinks_on_input"
Specifies a MethodSet that identifies the methods to which this directive will be applied. See
Section 3.2.15, “MethodSet”.

"input_param_sinks"
Specifies a JSON array. Each object in this array describes an argument that the method writes to
the HTTP output, and how that argument is escaped.

Objects in the "input_param_sinks" array use the following fields:

36

Configuration file usage

"input"
A ParamIn value that names the argument that this object describes. See Section 3.2.17,
“ParamIn”.

"escaper"
Either a MethodCallSpecifier value or a JSON null literal. See Section 3.2.13,
“MethodCallSpecifier”.

If this escaper field is the null literal, or if it evaluates to null, then the "input" is written to
the HTTP output as-is and without any escaping. Otherwise, the field indicates a method: The
method’s "input" is where input is passed in, and the method’s "output" is written to the
servlet output stream.

"servlet_context"
Specifies an HtmlOutputContext value (see Section 3.2.7, “HtmlOutputContext”).

This field indicates the HTML context (that is, the place in the HTML parse tree) into which the
argument flows. To avoid cross-site scripting (XSS), different contexts imply different escaping
obligations.

3.1.23.2. Examples

Configuration example 1:

//"method_with_servlet_sinks_on_input" directive example 1

// This example also demonstrates using the "html_prefix" HtmlOutputContext
// value to control the context.

{
 "method_with_servlet_sinks_on_input" :
 { "named" :

 "examples.Test_method_with_servlet_sinks_on_input1.pcdata_sink(java.lang.String)void"
 },
 "input_param_sinks" : [
 {
 "input" : "arg1",
 "escaper" : null,
 "servlet_context" : { "html_prefix" : "" }
 }
]
},

{
 "method_with_servlet_sinks_on_input" :
 { "named" :
 "examples.Test_method_with_servlet_sinks_on_input1
 .single_quoted_attribute_value_sink(java.lang.String)void"
 },
 "input_param_sinks" : [
 {
 "input" : "arg1",

37

Configuration file usage

 "escaper" : null,
 "servlet_context" : { "html_prefix" : "<tag foo='" }
 }
]
},

Java code example 1:

//"method_with_servlet_sinks_on_input" directive example 1

// This example also demonstrates using the "html_prefix" HtmlOutputContext
// value to control the context.

package examples;

class Test_method_with_servlet_sinks_on_input1 extends HttpServlet
{
 public void pcdata_sink(String val) {}

 public void single_quoted_attribute_value_sink(String val) {}

 public void doGet(HttpServletRequest request, HttpServletResponse resp)
 throws IOException
 {
 PrintWriter pw = resp.getWriter();

 String taint = request.getParameter("taint");

 // The directive makes the analysis treat the argument to this function as
 // being written to servlet output in the HTML PCDATA context, so we get an
 // XSS defect here.
 pcdata_sink(taint);

 // The directive makes the analysis treat the argument to this function as
 // being written to servlet output in the single-quoted HTML tag value
 // context, so we get an XSS defect here.
 single_quoted_attribute_value_sink(taint);
 }
}

Configuration example 2:

//"method_with_servlet_sinks_on_input" directive example 2

// This also demonstrates using the "html_attribute_value_where_name_is_from_param"
// HtmlOutputContext value to control the context.

{
 "method_with_servlet_sinks_on_input" :
 { "named" :
 "examples.Test_method_input_servlet_sinks2.sink(java.lang.String,
 java.lang.String)void"
 },
 "input_param_sinks" : [

38

Configuration file usage

 {
 "input" : "arg2",
 "escaper" : null,
 "servlet_context" : {
 "html_attribute_value_where_name_is_from_param" : "arg1",
 "value_quoting" : "single"
 }
 }
]
},

Java code example 2:

//"method_with_servlet_sinks_on_input" directive example 2

// This example also demonstrates using the
// "html_attribute_value_where_name_is_from_param" HtmlOutputContext value to
// control the context.

package examples;

class Test_method_input_servlet_sinks2 extends HttpServlet
{
 String unknownName;

 public void sink(String name, String val) {}

 public void doGet(HttpServletRequest request, HttpServletResponse resp)
 throws IOException
 {
 PrintWriter pw = resp.getWriter();

 String taint = request.getParameter("taint");

 // The directive makes the analysis treat 'taint' a being written to the
 // servlet output as the single-quoted value to a 'color' attribute, for
 // example:
 // "<font color='" + taint + ...
 // Thus the directive causes an XSS report here.
 sink("color", taint);

 // Similar to the above, but here it's an "onclick" single-quoted JavaScript
 // attribute value. Again the directive causes an XSS report here.
 sink("onclick", taint);

 // Here we have something other than a String literal for the attribute
 // name, so the analysis treats it as the 'color' case above (including
 // reporting an XSS defect) and logs a warning.
 sink(unknownName, taint);
 }
}

Configuration example 3:

39

Configuration file usage

//"method_with_servlet_sinks_on_input" directive example 3

// This example also demonstrates using a "lookup_by_constant_param"
// MethodCallSpecifier value to indicate that a boolean parameter controls an
// optional escaper.

{
 "define_lookup_method_call_map" : "escape_if_bool_is_true",
 "map" : {
 "true" : {
 "method_call" :
 "Escapers.escape_html(java.lang.String)java.lang.String",
 "input" : "arg1", "output" : "return"
 },
 "false" : null
 }
},

{
 "method_with_servlet_sinks_on_input" :
 { "named" :
 "examples.Test_method_input_servlet_sinks3.sink(java.lang.String,
 boolean)void"
 },
 "input_param_sinks" : [
 {
 "input" : "arg1",
 "escaper" : {
 "lookup_by_constant_param" : "arg2",
 "lookup_map" : "escape_if_bool_is_true"
 },
 "servlet_context" : { "html_prefix" : "" }
 }
]
},

Java code example 3:

//"method_with_servlet_sinks_on_input" directive example 3

// This also demonstrates using a "lookup_by_constant_param" MethodCallSpecifier
// value to indicate that a boolean parameter controls an optional escaper.

// NOTE: This example should include the Escapers.java code (for the
// 'escape_html' method call added by the directive).

package examples;

class Test_method_input_servlet_sinks3 extends HttpServlet
{
 boolean unknownBool;

 public void sink(String val, boolean escape) {}

40

Configuration file usage

 public void doGet(HttpServletRequest request, HttpServletResponse resp)
 throws IOException
 {
 PrintWriter pw = resp.getWriter();

 String taint = request.getParameter("taint");

 // The directive makes the analysis (1) treat the first argument to 'sink'
 // ('taint') as if it is written to HTML PCDATA context; and also (2) if the
 // second argument to 'sink' is 'true', the analysis assumes the first
 // argument has been passed through 'escape_html' first.

 // No XSS because the 'escape_html' makes 'taint' safe for HTML PCDATA.
 sink(taint, true);

 // XSS report because 'false' implies no escaping of 'taint'
 sink(taint, false);

 // Since the second argument is not a boolean literal ('true' or 'false'),
 // the analysis does not know if the first argument is escaped. It logs a
 // warning, but does not report a defect.
 sink(taint, unknownBool);
 }
}

Configuration example 4:

//"method_with_servlet_sinks_on_input" directive example 4

// This example also demonstrates using a "lookup_by_constant_param"
// MethodCallSpecifier value to indicate that an enum parameter controls an
// optional escaper.

{
 "define_lookup_method_call_map" : "escape_if_Choice_is_YES",
 "map" : {
 "examples.Choice.YES" : {
 "method_call" :
 "Escapers.escape_html(java.lang.String)java.lang.String",
 "input" : "arg1", "output" : "return"
 },
 "examples.Choice.NO" : null,
 "null" : null
 }
},

{
 "method_with_servlet_sinks_on_input" :
 { "named" :
 "examples.Test_method_input_servlet_sinks4.sink(java.lang.String,
 examples.Choice)void"
 },

41

Configuration file usage

 "input_param_sinks" : [
 {
 "input" : "arg1",
 "escaper" : {
 "lookup_by_constant_param" : "arg2",
 "lookup_map" : "escape_if_Choice_is_YES"
 },
 "servlet_context" : { "html_prefix" : "" }
 }
]
},

Java code example 4:

//"method_with_servlet_sinks_on_input" directive example 4

// This example also demonstrates using a "lookup_by_constant_param"
// MethodCallSpecifier value to indicate that an enum parameter controls an
// optional escaper.

// NOTE: This example should include the Escapers.java code (for the
// 'escape_html' method call added by the directive).

package examples;

enum Choice { YES, NO }

class Test_method_input_servlet_sinks4 extends HttpServlet
{
 Choice unknownChoice;

 public void sink(String val, Choice escape) {}

 public void doGet(HttpServletRequest request, HttpServletResponse resp)
 throws IOException
 {
 PrintWriter pw = resp.getWriter();

 String taint = request.getParameter("taint");

 // Similar to the example above, the directive causes the analysis to behave
 // as if 'taint' flows to a HTML PCDATA context after being escaped with
 // 'escape_html' and so the analysis does not report a defect here.
 sink(taint, Choice.YES);

 // According to the directive, a Choice.NO argument indicates no escaping,
 // so the analysis reports an XSS defect report here.
 sink(taint, Choice.NO);

 // The directive also indicates that the null Choice argument means no
 // escaping, so the analysis reports an XSS defect here too.
 sink(taint, null); // XSS sink from directive + no escaper

42

Configuration file usage

 // The Choice controlling escaping is not an expected literal, so the
 // analysis logs a warning but does not report a defect.
 sink(taint, unknownChoice);
 }
}

3.1.23.3. See also

Section 3.1.11, “define_lookup_method_call_map”, Section 3.2.13, “MethodCallSpecifier” for
define_lookup_method_call_map

3.1.24. method_with_servlet_sinks_on_output
Supported Languages: C#, Java, and Visual Basic

The method_with_servlet_sinks_on_output directive indicates that one of the outputs of a
method (its return value or the final state of one of its mutable parameters) is written to the HTTP output.
The XSS (cross-site scripting) checker reports a defect if tainted data is written to the HTTP output
without proper escaping.

3.1.24.1. Fields

This directive uses the following fields:

"method_with_servlet_sinks_on_output"
Specifies a MethodSet that identifies the methods to which this directive will be applied. See
Section 3.2.15, “MethodSet”.

"output_param_sinks"
Specifies a JSON array. Each object in this array indicates that one of the outputs of this method
(either its return value, or the final state of one of its mutable parameters) flows to the HTTP output.

Objects in the "output_param_sinks" array use the following fields:

"output"
Specifies a ParamOut value that names the output of the method that this object describes. See
Section 3.2.18, “ParamOut”.

"servlet_context"
An HtmlOutputContext value that indicates the HTML context (that is, the place in the HTML
parse tree) into which the "output" flows. Different contexts imply different escaping obligations
to avoid cross-site scripting (XSS). See Section 3.2.7, “HtmlOutputContext”.

Caution

The "servlet_context" is an HtmlOutputContext value but its type must not be
"html_attribute_value_where_name_is_from_param" (see Section 3.2.7.1,
“html_attribute_value_where_name_is_from_param”).

3.1.24.2. Examples

Configuration example:

43

Configuration file usage

// "method_with_servlet_sinks_on_output" directive example

// This example also demonstrates using the "html_prefix" HtmlOutputContext
// value to control the context.

{
 "method_with_servlet_sinks_on_output" :
 { "named" :
 "examples.Test_method_with_servlet_sinks_on_output.appendString_PCDATAsink(
 java.lang.StringBuffer,
 java.lang.String)void"
 },
 "output_param_sinks" : [
 {
 "output" : "arg1",
 "servlet_context" : { "html_prefix" : "" }
 }
]
},

{
 "method_with_servlet_sinks_on_output" :
 { "named" :
 "examples.Test_method_with_servlet_sinks_on_output.appendString_AttrValSink(
 java.lang.StringBuffer,
 java.lang.String)void"
 },
 "output_param_sinks" : [
 {
 "output" : "arg1",
 "servlet_context" : { "html_prefix" : "<tag attr='" }
 }
]
},

Java code example:

//"method_with_servlet_sinks_on_output" directive example

// This example also demonstrates using the "html_prefix" HtmlOutputContext
// value to control the context.

package examples;

class Test_method_with_servlet_sinks_on_output extends HttpServlet
{
 public void appendString_PCDATAsink(StringBuffer sb, String str) {
 // The directive makes the analysis treat appending to 'sb' as writing to
 // servlet output in the HTML PCDATA context, so we get an XSS defect here.
 sb.append(str);
 }

 public void appendString_AttrValSink(StringBuffer sb, String str) {

44

Configuration file usage

 // The directive makes the analysis treat appending to 'sb' as writing to
 // servlet output in the single-quoted HTML tag value context, so we get an
 // XSS defect here.
 sb.append(str);
 }

 public void doGet(HttpServletRequest request, HttpServletResponse resp)
 throws IOException
 {
 PrintWriter pw = resp.getWriter();

 String taint = request.getParameter("taint");

 appendString_PCDATAsink(new StringBuffer(), taint);
 appendString_AttrValSink(new StringBuffer(), taint);
 }
}

3.1.25. move_xss_outside_method
Supported Languages: C#, Java, and Visual Basic

The move_xss_outside_method directive directs the analysis to report cross-site scripting (XSS)
defects outside the specified methods.

3.1.25.1. Fields

This directive uses the following field:

"move_xss_outside_method"
A MethodSet value that identifies the methods that this directive will affect. See Section 3.2.15,
“MethodSet”.

3.1.25.2. Examples

Configuration example:

//"move_xss_outside_method" directive example

{
 "move_xss_outside_method" :
 { "named" :
 "examples.Test_move_xss_outside_method.addUrlPrefix(
 java.lang.String)java.lang.String"
 }
},

Java code example:

//"move_xss_outside_method" directive example

package examples;

45

Configuration file usage

class Test_move_xss_outside_method extends HttpServlet
{
 public String addUrlPrefix(String str) {
 return "http://" + str; //directive moves XSS out of this method. no defect
 }

 public void doGet(HttpServletRequest request, HttpServletResponse resp)
 throws IOException
 {
 PrintWriter pw = resp.getWriter();

 String taint1 = request.getParameter("taint1");
 pw.println(addUrlPrefix(taint1)); //directive moves XSS report to here

 String taint2 = request.getParameter("taint2");
 pw.println(addUrlPrefix(taint2)); //directive moves XSS report to here
 }
}

3.1.26. sanitizer_for_checker
Supported Languages: C#, Java, and Visual Basic

The sanitizer_for_checker directive identifies a method that when passed a tainted argument,
renders the argument’s value safe for a checker’s sinks. That checker will no longer report defects for
values that are passed through the sanitizer method. Other checkers will not be affected. Common
applications include sanitizers, encoders, and escapers.

This directive can only be used with user-defined checkers such as DF.CUSTOM_CHECKER. It is not
applicable to built-in checkers.

3.1.26.1. Fields

This directive uses the following fields:

"sanitizer_for_checker"
A JSON string that contains the name of the checker to which this directive applies.

"sanitizer"
A "to_call_site" WritableProgramData value that specifies the value that will replace the
tainted argument. See Section 3.2.26.1, “to_callsite”.

3.1.26.2. Examples

Example (Java):

{
 sanitizer_for_checker : "DF.MY_CUSTOM_DATAFLOW_CHECKER",
 sanitizer : {
 to_callsite : {
 callsite_with_static_target : {
 "named" : "examples.SanitizerForChecker.Clean(java.lang.String,
 boolean)java.lang.String"

46

Configuration file usage

 },
 },
 input : "arg1"
 }
}

Source code for the example:

package examples;

import javax.servlet.http.HttpServletRequest;

public class SanitizerForChecker
{
 // This is defined as a sink for a custom checker
 // through an sink_for_checker directive (not shown).
 public native void SinkStuff(String data);

 // This is defined as a sanitizer for the same custom checker
 // through the sanitizer_for_checker directive above.
 public String Clean(String data, boolean useUnderscore) {
 if (useUnderscore) {
 return data.replaceAll(" ", "_");
 } else {
 return data.replaceAll(" ", "");
 }
 }

 public void Demonstrate(HttpServletRequest req)
 {
 // Read an untrusted HTTP request parameter.
 // This is a built-in "HTTP" taint source.
 String x = req.getParameter("unsafe");

 // It is a defect to pass 'x' to the sink!
 SinkStuff(x);

 // It is safe to pass a sanitized 'x' after calling Clean.
 SinkStuff(Clean(x, true));
 }
}

3.1.27. sensitive_action
Supported Languages: JavaScript only

Use the sensitive_action directive to tell the MISSING_AUTHZ checker which function calls perform
a sensitive action that requires an authorization check. The MISSING_AUTHZ checker reports a defect
on code that performs a sensitive action that isn’t protected by an authorization check.

3.1.27.1. Fields

This directive uses a single field:

47

Configuration file usage

"sensitive_action"
Specifies a CallsiteSet that identifies calls to functions that perform sensitive operations that
require authorization. See Section 3.2.3, “CallsiteSet”.

3.1.27.2. Examples

JavaScript example:

{
 sensitive_action" : {
 "call_on" : {
 "read_path_off_global" : [{ "property" : "addUser" }]
 }
 },
}

The sensitive_action directive above matches the addUser() call site in the following Node.js
JavaScript code. If such a call is not guarded by an authorization check, MISSING_AUTHZ reports a
defect on it.

addUser("guest");

The addAdminUser() function is also considered a sensitive action because it calls a function that
performs a sensitive action. MISSING_AUTHZ reports a defect on the call to addAdminUser() unless it
is guarded by an authorization check.

function addAdminUser() {
 addUser("admin");
}
// …
addAdminUser();

3.1.28. sensitive_operation
Supported Languages: Java only

The sensitive_operation directive promotes a defect found by the WEAK_GUARD checker to high
impact in programs where a weak guard is used to control the execution of a sensitive operation.

3.1.28.1. Fields

This directive uses the following field:

"sensitive_operation"
Specifies a MethodSet value to identify those methods that should be treated as sensitive
operations. See Section 3.2.15, “MethodSet”.

3.1.28.2. Examples

Configuration example:

{

48

Configuration file usage

 "sensitive_operation" : {
 "named" : examples.WeakGuard.secretOperation()void"
 }
},

Java code example:

package examples;

public class WeakGuard {
 native void secretOperation();

 void test(HttpServletRequest request) throws IOException {
 String sourceIP = request.getRemoteAddr();
 if (sourceIP != null && sourceIP.equals("134.23.43.1")) {
 secretOperation();
 }
 }
}

3.1.29. simple_entry_point
Supported Languages: C#, Java, and Visual Basic

The simple_entry_point directive identifies methods that are entry points for a Web application. By
default all parameters of the methods will be deeply tainted (meaning that the object, its fields, and the
fields that belong to those fields are treated as though they are tainted) with the specified taint types. You
can override this behavior with the optional "tainted_args" field. The level of depth of fields that are
tainted is affected by the cov-analyze option --webapp-security-aggressiveness-level.

3.1.29.1. Fields

This directive uses the following fields:

"simple_entry_point"
Specifies a MethodSet to identify the methods that are entry points to the Web app. See
Section 3.2.15, “MethodSet”.

"taint_kinds"
A JSON array of "TaintKind" values that identify the kinds of taint to report. See Section 3.2.23,
“TaintKind”.

"tainted_args"
(Optional) Specifies an array of ParamIn values that identify which arguments passed to the entry
point should be considered tainted. If "tainted_args" is not present, all arguments passed to the
entry point are considered to be tainted.

"treat_as_xss_entry_point"
(Optional) A JSON Boolean value.

If this value is set to true, any output to the HTTP response of this method will be rendered as
HTML, and the the XSS checker will report defects if untrusted strings are not escaped correctly.

49

Configuration file usage

If this value is not specified, or if it is set to false, output to the method’s HTTP response is not
handled by the XSS checker.

3.1.29.2. Examples

Configuration example:

//"simple_entry_point" directive example

{
 "simple_entry_point" : {
 "named" : "examples.Test_simple_entry_point.entry(java.lang.String,
 examples.UserBean)void"
 },
 "taint_kinds" : ["http", "network"]
},

Java code example:

//"simple_entry_point" directive example

package examples;
import java.sql.Connection;
import java.sql.Statement;

class InnerInnerBean
{
 private String innerInnerData;

 public String getInnerInnerData() { return innerInnerData; }
 public void setInnerInnerData(String arg) { innerInnerData = arg; }
}

class InnerBean
{
 private String innerData;
 private InnerInnerBean innerInnerBean;

 public String getInnerData() { return innerData; }
 public void setInnerData(String arg) { innerData = arg; }
 public InnerInnerBean getInnerInnerBean() { return innerInnerBean; }
 public void setInnerInnerBean(InnerInnerBean arg) { innerInnerBean = arg; }
}

class UserBean
{
 private String data;
 private InnerBean innerBean;

 public String getData() { return data; }
 public void setData(String arg) { data = arg; }
 public InnerBean getInnerBean() { return innerBean; }
 public void setInnerBean(InnerBean arg) { innerBean = arg; }

50

Configuration file usage

}

public class Test_simple_entry_point
{
 Connection connection;
 Statement statement;

 public void entry(String simpleString, UserBean customData)
 throws Exception
 {
 // The string 'simpleString' is considered to be tainted with
 // "http" and "network" taint. SQLI cares about both so it
 // reports a defect when we see the taint (aliased to sqlQuery1)
 // flow into connection.prepareStatement.
 String sqlQuery1 =
 "select * from " + simpleString;
 statement = connection.prepareStatement(sqlQuery1); //SQLI

 // This example demonstrates that we consider fields of classes
 // as tainted in addition to simple objects like "simpleString".
 String sqlQuery2 =
 "select * from " + customData.getData();
 statement = connection.prepareStatement(sqlQuery2); //SQLI

 // This example demonstrates that, at default aggressiveness levels,
 // we do not consider InnerInnerBean's fields as tainted.
 String sqlQuery3 =
 "select * from " +
 customData.getInnerBean().getInnerInnerBean().getInnerInnerData();
 statement = connection.prepareStatement(sqlQuery3); //no SQLI
 }
}

3.1.30. sink_for_checker
Supported Languages: Java, C#, JavaScript, and Visual Basic

The sink_for_checker directive identifies a sink for a checker.

3.1.30.1. Fields

This directive uses the following fields:

"sink_for_checker"
A JSON string that contains the name of the checker. This checker can be one of the following
checker types:

• A user-defined checker, created with the dataflow_checker_name directive.

• (JavaScript only) Any built-in tainted dataflow checker.

The checker indicated in "sink_for_checker" reports a defect when data that has a taint kind
the checker cares about (and does not trust) is routed to the sink indicated by the "sink" field. The

51

Configuration file usage

DF.CUSTOM_CHECKER section in the Checker Reference explains in more detail how trust/distrust
settings affect when a dataflow checker reports a defect.

"sink"
A WritableProgramData value that describes the sink; for example, by identifying a particular
argument to a particular function. See Section 3.2.26, “WritableProgramData”.

The analysis supports different kinds of WritableProgramData values for "sink" depending on
the programming language to which this directive applies.

• For Java, Visual Basic, and C#, "sink" must be a "to_callsite" WritableProgramData
object. See Section 3.2.26.1, “to_callsite”.

• For JavaScript, "sink" can be any of the following kinds of WritableProgramData objects:

• "to_callsite"

See Section 3.2.26.1, “to_callsite”.

• "write_to_object_with_tag"

See Section 3.2.26.2, “write_to_object_with_tag”.

• "write_path_off_global"

See Section 3.2.26.3, “write_path_off_global”.

• "write_off_any"

See Section 3.2.26.4, “write_off_any”.

"sink_kind"
This field is only supported by the JavaScript SENSITIVE_DATA_LEAK checker.

Specifies a SinkKind string, which specifies the type of "sink". See Section 3.2.22, “SinkKind”.

3.1.30.2. Examples

Java directive example:

{
 sink_for_checker : "DF.MY_CUSTOM_DATAFLOW_CHECKER",
 sink : {
 to_callsite : {
 callsite_with_static_target : {
 "named" : "examples.SinkForChecker.SinkStuff(java.lang.String)void"
 },
 },
 input : "arg1"
 }
}

Java source code example:

52

Configuration file usage

package examples;

public class SinkForChecker
{
 // This could be defined in source, defined in bytecode, or
 // somewhere else. The part we care about is the "call" to
 // this method.
 public void SinkStuff(String data) {
 // Sinks the data.
 }

 // This method illustrates a call to SinkStuff. The directive
 // matches the call to SinkStuff. The directive is told that
 // "arg" (arg1) of SinkStuff is what is sinking.
 public void SomeOtherMethod()
 {
 SinkStuff("arg");
 }
}

Client-side JavaScript example:

The following directive adds a sink to the DOM_XSS checker (which checks for cross-site scripting via
the Document Object Model). Writing tainted data to the global variable location results in a defect report.

{
 "sink_for_checker" : "DOM_XSS",
 "sink" : {
 "write_path_off_global" : [{ "property" : "location" }]
 }
}

3.1.31. tainted_data
Supported Languages: JavaScript only

The tainted_data directive identifies tainted data, which is data that an attacker can influence to cause
security vulnerabilities.

3.1.31.1. Fields

This directive uses the following fields:

"tainted_data"
Specifies a ReadableProgramData value that indicates which data to consider tainted. See
Section 3.2.19, “ReadableProgramData”.

"taint_kind"
Specifies a TaintKind string that indicates the kind of taint with which "tainted_data" is tainted.
See Section 3.2.23, “TaintKind”.

The analysis considers any program data (global variable, function return value, and so on) that
matches "tainted_data" to be tainted with a taint of kind "taint_kind".

53

Configuration file usage

"is_deep_taint"
(Optional) A JSON Boolean value. When "is_deep_taint" is set to true, then properties of the
"tainted_data" (array elements, properties of the properties, and so on) are considered to be
similarly tainted.

If this value is not specified, or if it is set to false, then properties of "tainted_data" are not
themselves considered to be tainted.

3.1.31.2. Examples

Configuration example:

The following is an example of using this directive for client-side JavaScript code. This example marks
global variable myLibrary.queryParam as tainted with kind js_client_url_query_or_fragment
(similar to the JavaScript window.location.query).

{
 "taint_kind" : "js_client_url_query_or_fragment",
 "tainted_data" : {
 "read_path_off_global" : [
 { "property" : "myLibrary" },
 { "property" : "queryParam" }
]
 }
}

JavaScript code example:

The following client-side JavaScript code illustrates the effect of this directive.

function tainted_data_client() {
 var t = myLibrary.queryParam;
 document.write(t); // DOM_XSS

 var n = myLibrary.somethingElse;
 document.write(n); //no DOM_XSS
}

The local variable t is tainted because of the directive, but local variable n is not. When t flows into
the first argument of a call to document.write, the analysis reports a DOM_XSS defect (this checker
reports cross-site scripting via the Document Object Model).

The following is an example that uses this directive for server-side JavaScript code. This directive
says that the return value of require('myLib').getObjectFromRequestParam() contains
deeply tainted data from HTTP request parameters; in other words, that it was entirely constructed (or
deserialized from) data in an HTTP request.

{
 "taint_kind" : "http",
 "is_deep_taint" : true,
 "tainted_data" : {
 "output" : "return",
 "from_callsite" : {

54

Configuration file usage

 "call_on" : {
 "read_from_js_require" : "myLib",
 "path" : [{ "property" : "getObjectFromRequestParam" }]
 },
 }
 }
},

The following Node.js code illustrates the effect of this directive. In this example, the local variable o is
deeply tainted because of the directive. The effect of the deep taint is that o.s.cmd is tainted, so its flow
into the argument of exec results in an OS_CMD_INJECTION defect report.

function node() {
 var myLib = require("myLib");
 var o = myLib.getObjectFromRequestParam();
 // Because 'o' is deeply tainted, 'o.s.cmd' is tainted.
 // Hence, passing it to an API that executes it results in a
 // OS_CMD_INJECTION defect report.
 require("child_process").exec(o.s.cmd); // OS_CMD_INJECTION
}

3.1.32. text_checker_name
Supported File Types: Text, XML

The text_checker_name directive defines a TEXT.CUSTOM_CHECKER.

3.1.32.1. Fields

The custom text checker directive uses the following fields:

"text_checker_name"
A JSON string that specifies the checker name. This string must start with "TEXT.", and what
follows must consist of all capital letters or the underscore character.

For example, TEXT.MY_CHECKER is a valid name, but neither "TEXT.My_Checker" nor
"MY_CHECKER" would be valid.

"file_pattern"
A RegularExpression value that describes filename paths in which defects will be reported
(see Section 3.2.20, “RegularExpression”). Files whose name does not match this pattern are not
analyzed. This directive treats file names and paths in the following standardized manner:

• The name is made absolute, including the drive letter on Windows systems.

• The forward-slash character (/) separates name components.

• When no drive letter is present, the name begins with a forward-slash character (/); otherwise, a
forward-slash character (/) follows the drive letter.

"defect_pattern"
A RegularExpression value that specifies a pattern to match in files being analyzed (see
Section 3.2.20, “RegularExpression”). Analysis will report a defect at each location that matches this
pattern.

55

Configuration file usage

"defect_message"
(Optional) A JSON string to print in the defect event message.

"remediation_advice"
(Optional) A JSON string to print as remediation advice in each defect report.

"new_issue_type"
(Optional) An IssueTypeDefinition object that specifies the checker properties, a CWE
mapping, and issue taxonomy. See Section 3.2.12, “IssueTypeDefinition”.

When used as a "new_issue_type" value, all of the IssueTypeDefinition fields are optional.

3.1.33. xss_sanitizer_method
Supported Languages: C#, Java, and Visual Basic

The xss_sanitizer_method directive describes the string replacements that the cross-site-scripting
(XSS) sanitizer method performs. Use this directive to improve the XSS checker results in cases where
the checker does not correctly recognize what a sanitizer does.

3.1.33.1. Fields

This directive uses the following fields:

"xss_sanitizer_method"
A MethodSet that identifies the methods to which this directive applies. See Section 3.2.15,
“MethodSet”.

"input"
A ParamIn value to identify the unsanitized input to the methods in "xss_sanitizer_method".
See Section 3.2.17, “ParamIn”.

"output"
A ParamOut value to identify the sanitized output from the methods in "xss_sanitizer_method".
See Section 3.2.18, “ParamOut”.

"step1"
A JSON array. Each field in this array describes a string operation that the sanitizer method performs
on the "input" in order to compute the "output". In other words, the operations in each step
array describe a series of character replacements.

"step2", "step3", ... and so on
(Optional) You can add additional step arrays, as needed. Each additional step should have the
same structure as "step1".

Some sanitizers handle nested language contexts (for instance, a string inside JavaScript inside an
HTML attribute value). These require multiple steps.

For another example, a step might describe HTML entity encoding (changing & to &, and so on)
for an HTML attribute value, while a different step describes transforming newline characters to \n for
JavaScript strings.

The replacement operations specified in each step have the following requirements:

56

Configuration file usage

• They do not interfere with each other.

In other words, the order in which the replacements within a step are applied does not change the
outcome of the step as a whole.

• They apply to the same language context.

For example, operations for escaping an HTML attribute value should not be mixed with operations
for escaping a string value in a JavaScript program.

For more information, see “Step entries and step examples”.

3.1.33.2. Step entries and step examples

‘step1’ example. The following is an example of a step:

 "step1":
 [
 { PREPEND_BACKSLASH : ["\"", "'"] },
 { JS_CHAR_CODE : ["\n"] },
],

This step describes how three different characters are replaced in a JavaScript string:

• Prepend a backslash in front of any single-quote or double-quote character.

• Replace the newline character with an escape sequence that is different from simply placing a
backslash in front of the character. (This distinction is important because it removes the newline from
the string.)

The replacements in this step can be performed in any order to obtain the same result, and they all apply
to the same language context: a string in JavaScript.

‘step2’ example. If you also want the sanitizer to perform HTML entity encoding on the quote and
double-quote characters, you need to add another step to use the JavaScript string in an HTML attribute
value, as shown in the following example:

 "step2":
 [
 { HTML_CHAR_REF : ["\"", "'"] },
],

The steps occur in order, taking the output of the preceding step. That is, step1 replaces a quote with
\', and step2 turns that into \".

A step value is a JSON array of values representing an unordered set of replacements that apply to
different characters.

Each array element is a JSON object that has a single field:

• The name describes the kind of replacement operation.

• The value describes a set of replaced characters.

57

Configuration file usage

The set of replaced characters can be described in two ways:

• Using an array of JSON strings that represent individual characters.

JSON string escape sequences might be needed to express certain characters.

Example:

 "step1":
 [
 { REMOVE : ["\"", "'", "\u2029"] },
],

• Using a regular expression to match a set of characters.

Example:

 "step1":
 [
 { REMOVE : { regex-charset : "[^a-zA-Z0-9]" } },
],

Names and meanings of character-replacement operations:

• PREPEND_BACKSLASH

Insert a \ in front of the character. This is used in JavaScript and CSS strings, for certain characters, to
literally mean those characters. Some characters (for example, n in JavaScript, or A in CSS) cannot be
escaped this way, since the result will mean something different.

Within a step, this operation can be mixed with either JS_STRING_CHAR_CODE or
CSS_CHAR_CODE operations.

Example:

Replacing " with \".

Not an example:

Replacing newline with \n is not an example of PREPEND_BACKSLASH.

• HTML_CHAR_REF

Replace the character with a numeric or named HTML character reference.

Within a step, this operation cannot be mixed with other kinds of operations.

Examples:

Replacing & with & or & or &

• JS_STRING_CHAR_CODE

58

Configuration file usage

Replace a character in a JS string with a numeric or reserved escape sequence that is different from
PREPEND_BACKSLASH.

Within a step, this operation can be mixed with PREPEND_BACKSLASH operations.

Examples:

• \n for newline

• \u000A for newline

• CSS_CHAR_CODE

Replace a character in a CSS string with a numeric escape sequence.

Within a step, this operation can be mixed with PREPEND_BACKSLASH operations.

Example:

\00000A for newline

• URI_PERCENT

Replace the character with a percent escape sequence used in URIs.

Within a step, this operation cannot be mixed with other kinds of operations.

Example:

Replace & for %26

• REMOVE

Remove the character.

Within a step, this operation cannot be mixed with other kinds of operations.

3.1.33.3. Configuration and Java code examples

Configuration example:

// This is a 1-step sanitizer model for HTML escaping an attribute value.
{
 "xss_sanitizer_method" :
 { "named" :
 "examples.Test_xss_sanitizer_method.escapeAttributeValue(
 java.lang.String)java.lang.String"
 },
 "input" : "arg1",
 "output" : "return",
 "step1":
 [

59

Configuration file usage

 { HTML_CHAR_REF : ["\"", "'", "&"] },
],
},

// This is also a 1-step sanitizer model for HTML escaping an attribute value.
// This demonstrates using a regular expression for specifying the affected
// characters.
{
 "xss_sanitizer_method" :
 { "named" :
 "examples.Test_xss_sanitizer_method.escapeAttributeValue_regex_spec(
 java.lang.String)java.lang.String"
 },
 "input" : "arg1",
 "output" : "return",
 "step1":
 [
 { HTML_CHAR_REF : { regex-charset : "[\"'&]" } },
],
},

// This is a 1-step sanitizer model for removing dangerous characters from an
 attribute value.
// This also demonstrates using a regular expression to specify a character set.
{
 "xss_sanitizer_method" :
 { "named" :
 "examples.Test_xss_sanitizer_method.filterAttributeValue(
 java.lang.String)java.lang.String"
 },
 "input" : "arg1",
 "output" : "return",
 "step1":
 [
 { REMOVE : { regex-charset : "[\"'&]" } },
],
},

// This is a 1-step sanitizer model for escaping a JavaScript string.
{
 "xss_sanitizer_method" :
 { "named" :
 "examples.Test_xss_sanitizer_method.escapeJavaScriptString(
 java.lang.String)java.lang.String"
 },
 "input" : "arg1",
 "output" : "return",
 "step1":
 [
 { JS_STRING_CHAR_CODE : ["\"", "'", "\\"] },
],
},

60

Configuration file usage

// This is a 2-step sanitizer model:
// Step 1: escape for a JavaScript string.
// Step 2: escape for an HTML attribute value.
{
 "xss_sanitizer_method" :
 { "named" :
 "examples.Test_xss_sanitizer_method.escapeJavaScriptStringInAttributeValue(
 java.lang.String)java.lang.String"
 },
 "input" : "arg1",
 "output" : "return",
 "step1":
 [
 { JS_STRING_CHAR_CODE : ["\"", "'", "\\"] },
],
 "step2":
 [
 { HTML_CHAR_REF : ["\"", "'", "&"] },
],
},

Java code example:

package examples;

import java.util.*;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

class Test_xss_sanitizer_method extends HttpServlet
{

// The XSS analysis will use the xss_sanitizer_method directive for
// the sanitization models, rather than these implementations.

 String escapeAttributeValue(String val) {
 return val;
 }
 String escapeJavaScriptString(String val) {
 return val;
 }
 String escapeJavaScriptStringInAttributeValue(String val) {
 return val;
 }

 public void doGet(HttpServletRequest request, HttpServletResponse resp)
 throws IOException
 {
 PrintWriter pw = resp.getWriter();
 String taint = request.getParameter("taint");

 // Demonstrate an XSS from unsanitized text in a title attribute value.

61

Configuration file usage

 pw.print("<p title=\"" + taint + "\">"); // XSS

 // Demonstrate text sanitized using the 1-step sanitizer model
 // for the attribute value escaper.
 String safe_text = escapeAttributeValue(taint);
 pw.print("<p title=\"" + safe_text + "\">"); // no XSS

 // The same as the previous example.
 // The difference is that the xss_sanitizer_method uses a
 // regular expression to specify the escaped characters.
 String safe_text2 = escapeAttributeValue_regex_spec(taint);
 pw.print("<p title=\"" + safe_text2 + "\">"); // no XSS

 // Demonstrate an XSS from an unsanitized string in JavaScript
 // in an onclick attribute value.
 String unsafe_js = "alert('" + taint + "');";
 pw.print("<div onclick=\"" + unsafe_js + "\">"); // XSS

 // Demonstrate sanitizing the string-in-JavaScript-in-attribute using
 // two escapers with 1-step sanitizer models.
 String safe_js = escapeJavaScriptString(taint);
 String safe_attrval = "alert('" + escapeAttributeValue(safe_js) + "');";
 pw.print("<div onclick=\"" + safe_attrval + "\">"); // no XSS

 // Demonstrate sanitizing the string-in-JavaScript-in-attribute using
 // an escaper with a 2-step sanitizer model.
 String safe_js_attrval =
 "alert('" +
 escapeJavaScriptStringInAttributeValue(taint) +
 "');";
 pw.print("<div onclick=\"" + safe_js_attrval + "\">"); // no XSS

 }
}

3.2. Other object types used by user directives

This section describes other kinds of JSON objects (see Section 2.2, “JSON Terminology”) used by the
user directives. These objects specify data types used by the directives, particular directive behaviors,
and so on.

3.2.1. AccessPathElement

Used by these objects: InputAndAccessPathSpecifier, OutputAndAccessPathSpecifier,
ReadableProgramData, WritableProgramData

An access path from a base value to another value is represented as a non-empty array of
AccessPathElement values. One AccessPathElement describes a single step in the access path.

3.2.1.1. Fields

This object uses a single field:

62

Configuration file usage

"property"
A JSON string value that names a property of the object at this point in the access path.

3.2.1.2. Example

The following array of AccessPathElement values, if applied to the object baseObj, would represent
the value baseObj.x.y.z.

[{ "property" : "x" }, { "property" : "y" }, { "property" : "z" }]

3.2.2. AnnotationSet

Used by these objects: ClassSet, MethodSet

An AnnotationSet value describes a set of analysis annotations (called annotations in Java or
attributes in C#) found in the program source. An AnnotationSet can be specified using one of the
following field names:

• "named"

• "matching"

3.2.2.1. named

A "named" AnnotationSet matches all uses of the Java annotation or C# attribute whose entire
mangled class name matches the "named" string. See Section 3.2.5, “ClassName” for a description of
the mangled name format.

3.2.2.1.1. Fields

A "named" AnnotationSet has a single field called "named":

"named"
A JSON string value that specifies the mangled class name of the analysis annotation to match.

3.2.2.1.2. Examples

The following example of a named AnnotationSet matches uses of the Java @Deprecated
annotation:

{ "named": "java.lang.annotation.Deprecated" }

3.2.2.2. matching

A "matching" AnnotationSet includes all uses of any Java annotation or C# attribute whose entire
mangled class name matches the regular expression in the "matching" string (a substring match is
insufficient). See Section 3.2.5, “ClassName” for a description of the mangled name format.

3.2.2.2.1. Fields

A "matching" AnnotationSet has a single field called "matching":

63

Configuration file usage

"matching"
A JSON string that contains a Perl-style regular expression that specifies an analysis annotation
class name to match.

3.2.2.2.2. Examples

The following "matching" AnnotationSet example matches uses of annotation classes named
EntryPoint in any package.

{ "matching": ".*EntryPoint" }

3.2.3. CallsiteSet

Used by these directives: csrf_check_needed, csrf_validator,
dataflow_through_call_site, map_read, map_write, sensitive_action

Used by these objects: ReadableProgramData, WritableProgramData

A CallsiteSet identifies a set of function call sites in the source program. There are a few different
ways to specify a CallsiteSet. The different kinds of CallsiteSet are supported for different
programming languages. The sections that follow describe the kinds of CallsiteSet:

• "callsite_with_static_target

• "call_on"

• "new_on"

3.2.3.1. callsite_with_static_target
Supported Languages: C# , Java, and Visual Basic

A "callsite_with_static_target" CallsiteSet matches call sites whose static call target
(that is, the function to which the call resolves before considering virtual call resolution) is in a specified
MethodSet.

3.2.3.1.1. Fields

"callsite_with_static_target"
Specifies a MethodSet. Function call sites that call a function in this set are included in the
CallsiteSet.

3.2.3.1.2. Examples

Java Example:

{
 callsite_with_static_target : {
 "named" : "battle.robot.api.RobotService.run(java.lang.String, int)void"
 }
},

The CallsiteSet above matches the call site in this Java code:

64

Configuration file usage

void doRotate(battle.robot.api.RobotService robot) {
 robot.run("rotate", 180);
}

3.2.3.2. call_on
Supported Languages: JavaScript only

A "call_on" CallsiteSet matches call sites where the function value itself (not the result of the call,
but the expression being called) matches a specified ReadableProgramData value.

3.2.3.2.1. Fields

"call_on"
Specifies a ReadableProgramData value that the function value at a call site must match, in order
to be included in this CallsiteSet.

"when"
(Optional) If present, specifies a CallsiteCondition that a call site must satisfy to be included in
this CallsiteSet.

3.2.3.2.2. Examples

JavaScript example:

{
 "call_on" : {
 "read_off_any" : [{"property" : "addEventListener"}]
 },
 "when" : {
 "only_if_arg_index" : 1,
 "iequals_string" : "click"
 }
}

The CallsiteSet above matches the JavaScript call site this call site:

anything.addEventListener("CLICK", x);

However, it does not match the following call sites because they do not satisfy the
CallsiteCondition.

anything.addEventListener("CLACK", x);
anything.addEventListener();

call_on will also match call sites using new with a construction function. Consider the following Node.js
JavaScript example:

{
 "from_callsite" : {
 "call_on" : {
 "read_from_js_require" : "myLib",
 "path" : [{ "property" : "myCtor" }]
 }

65

Configuration file usage

 },
 "output" : "arg1"
}

The CallsiteSet above inside from_callsite matches the new myLib.myCtor call site in this
Node.js JavaScript code:

var myLib = require("myLib");
var myObject = new myLib.myCtor(myParam)

The example also shows that ParamOut values such as "arg1" can be used when using the
"call_on" field to match a constructor call (this differs from using the "new_on" CallsiteSet, which
only allows the "return" ParamOut value).

3.2.3.3. new_on
Supported Languages: JavaScript only

A "new_on" CallsiteSet matches constructor calls that use the new operator where the constructor
expression matches a specified ReadableProgramData value.

3.2.3.3.1. Fields

"new_on"
Specifies a ReadableProgramData value that the constructor expression must match to be
included in this CallsiteSet

"when"
(Optional) If present, specifies a CallsiteCondition that a call site must satisfy to be included in
this CallsiteSet.

3.2.3.3.2. Using a CallsiteSet

Follow these guidelines for best results:

• When using a "new_on" CallsiteSet, only the "return" ParamOut value is
allowed for ParamOut fields related to the call site (for example, on a "from_callsite"
ReadableProgramData value).

• If non-"return" ParamOut values such as "arg1" are needed, use the "call_on" version of
CallsiteSet to match the constructor call.

• Use "call_on" for "new" call sites, unless the directive should match only "new" call sites.

3.2.3.3.3. Examples

Node.js JavaScript example:

{
 "from_callsite" : {
 "new_on" : {
 "read_from_js_require" : "myLib",
 "path" : [{ "property" : "myCtor" }]
 }

66

Configuration file usage

 },
 "output" : "return"
}

The CallsiteSet above inside "from_callsite" matches the new myLib.myCtor() call site in
this Node.js JavaScript code:

var myLib = require("myLib");
var myObject = new myLib.myCtor(myParam)

The ParamOut "output" field above is restricted and can only be set to "return" (See ParamOut).
In this example, the result of new myLib.myCtor(...) is matched, but the result of a direct call to
myLib.myCtor is not matched.

3.2.4. CallsiteCondition

Used by these objects: CallsiteSet

A CallsiteCondition value provides a condition that must be satisfied in order for a CallsiteSet
value to match a given call site.

3.2.4.1. Fields

This object uses the following fields.

The "only_if_arg_index" field must always be present:

"only_if_arg_index
An integer value, starting from 1, that specifies the position of the argument to which this condition
applies.

The following optional fields are mutually exclusive. Only one of these, if any, must be present:

"equals_string
(Optional) A JSON string value. If this field is present, the argument indicated by
"only_if_arg_index" must be a string literal that has exactly this value and capitalization.

iequals_string
(Optional) A JSON string value. If this field is present, the argument indicated by
"only_if_arg_index" must be a string literal that equals this value. The comparison for the
iequals_string is not case-sensitive.

"regex_string"
(Optional) A JSON string value that specifies a Perl-style regular expression. If this field is present,
the argument indicated by "only_if_arg_index" must match this regular expression. The
comparison for the "regex_string" is case-sensitive.

"iregex_string"
(Optional) A JSON string value that specifies a Perl-style regular expression. If this field is present,
the argument indicated by "only_if_arg_index" must match this regular expression. The
comparison for the "iregex_string" is not case-sensitive.

67

Configuration file usage

"equals_int"
(Optional) Specifies an integer value. If this field is present, the argument indicated by
"only_if_arg_index" must be an integer literal that equals this value.

Finally, the following field, "is_last_arg", can be specified alone or in concert with one of the other
optional fields:

"is_last_arg"
(Optional) A JSON Boolean value.

If this field is present, the argument indicated by "only_if_arg_index" must be the last argument
in the call site.

If "is_last_arg" is the only optional field specified, then "only_if_arg_index" is allowed to
equal 0, in order to express that the call site has no arguments.

3.2.4.2. See also

The example of a "call_on" CallsiteSet for a CallsiteCondition example.

3.2.5. ClassName

Used by these objects: AnnotationSet, ClassSet, MethodCallSpecifier

A ClassName value describes the mangled name for a class type.

The mangled name uses the fully qualified name of that type, without including any generic type
arguments.

Java. For Java, mangled type names follow the grammar below (using regex-style notation):

class_name ::= (package ".")* class ("$" inner_class)*
package ::= identifier
class ::= identifier
inner_class ::= identifier

An identifier non-terminal is a valid source-code identifier.

Visual Basic. For C# and Visual Basic, mangled type names follow the grammar below (using regex-
style notation):

class_name ::= (namespace ".")* class ("/" inner_class)*
namespace ::= identifier
class ::= identifier generic_arity?
inner_class ::= identifier generic_arity?
generic_arity::= "`" [0-9]+

3.2.6. ClassSet

Used by these directives: class_like_print_writer_for_servlet_output

Used by these objects: MethodSet

68

https://en.wikipedia.org/wiki/Terminal_and_nonterminal_symbols

Configuration file usage

A ClassSet describes a set of classes from the program. You can specify a ClassSet using one of the
following field names:

• "named"

• "matching"

• "with_super"

• "with_annotation"

3.2.6.1. named

A "named" ClassSet locates a class by name.

3.2.6.1.1. Fields

This kind of ClassSet object has a single field:

"named"
Specifies a ClassName value. The "named" ClassSet matches this class with the mangled name
in named. See the ClassName section for a description of the mangled name format.

3.2.6.1.2. Examples

The following example matches the Java String class:

{ "named": "java.lang.String" }

3.2.6.2. matching

The "matching" ClassSet includes any class whose entire mangled name matches the regular
expression in the "matching" string (a substring match is insufficient). See the ClassName section for
a description of the mangled name format.

3.2.6.2.1. Fields

This kind of ClassSet object has a single field:

"matching"
A JSON string that contains a Perl-style regular expression that specifies the class name to match.

3.2.6.2.2. Examples

The following example matches classes with names that end with "Writer" in the com.example
package.

{ "matching": "com\\.example\\..*Writer" }

3.2.6.3. with_super ClassSet

A "with_super" ClassSet locates classes within the "with_super" set that are categorized as a
super-class or super-interface.

69

Configuration file usage

3.2.6.3.1. Fields

This kind of ClassSet object has a single field:

"with_super"
A ClassSet value. A "with_super" ClassSet matches all class types with a super-class or
super-interface that are members of the "with_super" set.

3.2.6.3.2. Examples

The following example matches all subclasses of "java.util.Collection".

{ "with_super": { "named": "java.util.Collection" } }

3.2.6.4. with_annotation

A "with_annotation" ClassSet uses an AnnotationSet value to match a class whose definition
has any of the specified annotations.

3.2.6.4.1. Fields

This kind of ClassSet object has a single field:

"with_annotation"
An AnnotationSet value that contains names or regular expressions to identify classes that will be
included in the ClassSet.

3.2.6.4.2. Examples

The following "with_annotation" ClassSet example matches any class defined with the annotation
java.lang.annotation.Documented.

{ "with_annotation":
 { "matching": "java\\.lang\\.annotation\\.Documented" }
}

Example of a matching Java class definition:

@Documented
public class FooBar {
 // ...
}

The following "with_annotation" ClassSet example matches any class defined with the annotation
MyWebController.

{ "with_annotation":
 { "named": "MyWebController" }
}

Example of a matching C# class definition:

[MyWebController]

70

Configuration file usage

class AccountController {
 // ...
}

3.2.7. HtmlOutputContext

Used by these directives: method_with_servlet_sinks_on_input,
method_with_servlet_sinks_on_output

An HtmlOutputContext value describes the lexical context that precedes an HTML fragment.

An HtmlOutputContext can be specified using one of the following field names:

• "html_attribute_value_where_name_is_from_param_value"

• "html_prefix"

3.2.7.1. html_attribute_value_where_name_is_from_param

Locates the HTML context using input parameter values.

3.2.7.1.1. Fields

A "html_attribute_value_where_name_is_from_param_value" HtmlOutputContext has
the following fields:

"html_attribute_value_where_name_is_from_param"
A ParamIn value that is evaluated by a directive against a particular call site.

value_quoting
A JSON string that indicates how the attribute is quoted. This string must have one of the following
values:

• "single" indicates using single quotes.

• "double" indicates using double quotes.

• "none" indicates using no quotes (the attribute is delimited by white space).

3.2.7.2. html_prefix

Locates the HTML context using a text string.

3.2.7.2.1. Fields

A "html_prefix_value" HtmlOutputContext has the following fields:

html_prefix
A JSON string. If this string begins an HTML page, this field represents the lexical context at the end
of the string.

71

Configuration file usage

3.2.7.3. Examples

See the examples in Section 3.1.24, “method_with_servlet_sinks_on_output” and Section 3.1.23,
“method_with_servlet_sinks_on_input”.

3.2.8. InputAndAccessPathSpecifier

Used by the following directives: dataflow_through_call_site

An InputAndAccessPathSpecifier object uses a path to locate an input value.

3.2.8.1. Fields

This object uses the following fields:

"input"
A ParamIn value. This specifies a base value that is input to the call site. Without a "path" entry,
this value is the input value.

"path"
(Optional) A non-empty array of AccessPathElement values. When present, the input value is
found on this access path, using the base value.

3.2.9. InputTaint

Used by the following directives: async_method

An InputTaint value marks the parameter of a callback as tainted with a specific taint kind.

3.2.9.1. Fields

This object uses the following fields:

"input"
A ParamIn value that indicates the parameter to the callback that is tainted.

"taint_kind"
A TaintKind string value that specifies the kind of taint that "input" has.

"is_deep_taint"
(Optional) Specifies a JSON Boolean value.

Setting this field to true indicates that properties of "input" are also tainted, along with the
parameter itself.

Not specifying this field is equivalent to setting it to false.

An InputTaint value is used together with identifying a callback. The analysis considers the callback
parameter given by "input" to be tainted with taint of kind "taint_kind". If "is_deep_taint"

72

Configuration file usage

is true, the analysis also considers properties of that parameter object (including array elements,
properties of those properties, and so on) to be similarly tainted.

3.2.10. InputTag

Used by these directives: async_method, local_callback

An InputTag value assigns an arbitrary string-valued "tag" to a specific parameter to a callback. Other
structures, such as read_from_object_with_tag and write_to_object_with_tag, can refer
to these parameters using this "tag" value. Tagging a callback parameter has no other effect on the
analysis; it simply enables the use of these other structures.

3.2.10.1. Fields

This object uses the following fields:

"tag"
A JSON string that names the tag. Use this string to identify the tag in other directives.

"input"
A ParamIn value that indicates the parameter of the callback to which to assign the tag.

3.2.11. InputValue

Used by these directives: async_method, local_callback

An InputValue indicates that some argument at a call site flows into some parameter of a callback.

3.2.11.1. Fields

This object uses the following fields:

"value"
A ParamIn value that indicates the call site argument that flows to the callback’s "input"
parameter.

"input"
A ParamIn value that indicates the parameter of the callback to which "value" flows.

3.2.12. IssueTypeDefinition

Used by these directives: dataflow_checker_name, dc_checker_name, text_checker_name

An IssueTypeDefinition value describes the sort of issues that a checker reports. Coverity Platform
and other issue-display interfaces use the fields of this object to describe issues the checker reports, and
to support sorting and filtering of issues from this checker.

3.2.12.1. Fields

This object uses the following fields:

73

Configuration file usage

"type"
A JSON string to be used as an opaque ID within the security directives file. It is not meant to be
visible in the user interface.

The "type" string must contain between one and sixty-four ASCII characters, each of which must
be a letter, number, underscore, or period. In other words, the string must match the following regular
expression ^[A-Za-z0-9_.]{1,64}$.

Note

The user of a prefix (such as USER.*) is highly recommended for all user-defined types. This
ensures forward-compatibility with any new built-in issue types introduced in future versions of
the Coverity Analysis tool.

"name"
A JSON string that briefly describes the kind of issue that this checker reports; for example, "SQL
Injection".

"description"
A JSON string that provides a longer description of the issue; for example, "Unsafe use of
tainted data in constructing an SQL query".

"local_effect"
A JSON string that explains what effect this issue might have on the execution of the code in which
it is reported; for example "An attacker might be able to execute arbitrary SQL
queries of their choice.".

"cwe"
(Optional) A JSON integer value that indicates which entry in the Common Weakness Enumeration
(CWE) best describes this issue.

"impact"
One of the following JSON string values: "High", "Medium", "Low", or "Audit".

"category"
A JSON string that describes the general class of issue that this defect belongs to; for example,
"Injection Vulnerability" or "API Misuse".

"quality_kind"
(Optional) A JSON Boolean value.

If "quality_kind" is true, issues from this checker will have a "kind" that equals "quality",
and that appears accordingly when filtering issues in the user interface. You can set either, both, or
neither of "quality_kind" and "security_kind" to be true.

"security_kind"
If "security_kind" is true, issues from this checker will have a "kind" that equals
"security", and that appears accordingly when filtering issues in the user interface. You can set
either, both, or neither of "quality_kind" and "security_kind" to be true.

74

Configuration file usage

3.2.12.2. Examples

 "new_issue_type" : {
 "type" : "leftover_debug_code",
 "name" : "Deployed test servlet",
 "description" : "A possible test servlet will be deployed.",
 "local_effect" : "Leftover debug or test code is not intended to be deployed
 with the application in a production environment, and it may expose unintended
 functionality or bypass security features.",

 "cwe" : 489,
 "impact" : "Medium",
 "category" : "Medium impact security",
 "security_kind" : true,
 }

3.2.13. MethodCallSpecifier

Used by these directives: define_lookup_method_call_map,
method_with_servlet_sinks_on_input

A MethodCallSpecifier value describes a method to invoke, an argument to that method, and a
parameter that the method outputs.

You can specify a MethodCallSpecifier by using one of the following field names:

• "method_call"

• "lookup_by_constant_param"

3.2.13.1. method_call

A "method_call" MethodCallSpecifier explicitly names the method and an input and output of
that method.

3.2.13.1.1. Fields

The "method_call" MethodCallSpecifier has the following fields:

"method_call"
Specifies a MethodName value.

"input"
Specifies a ParamIn value to pass to "method_call".

"output"
Specifies a ParamOut value for "method_call" to return.

3.2.13.2. lookup_by_constant_param

A "lookup_by_constant_param" MethodCallSpecifier indicates that the method to call
depends on the value of another argument, which is interpreted within the scope of the directive that
contains this MethodCallSpecifier).

75

Configuration file usage

3.2.13.2.1. Fields

The "lookup_by_constant_param_value" MethodCallSpecifier has the following fields:

"lookup_by_constant_param"
A ParamIn value.

Given a call site indicated by the parent directive, the ParamIn value indicates a particular argument.

"lookup_map"
A JSON string.

The "lookup_map" value is the name of a String to MethodCallSpecifier map
defined by a define_lookup_method_call_map directive. See Section 3.1.11,
“define_lookup_method_call_map”.

If the argument expression’s String form is a key in the map, the corresponding
MethodCallSpecifier value or JSON null literal is evaluated in place of this
"lookup_by_constant_param" MethodCallSpecifier.

If the key is not in the map, the parent directive using this lookup cannot be evaluated, and a warning
is logged.

Coverity supports matching the String form of the following kinds of constant literals:

• null for a null reference

• true/false for a Boolean constant

• An enum constant

This is the name of the enum class (in ClassName value format), followed by a dot, followed by the
identifier for the constant.

3.2.14. MethodName

Used by these objects: MethodCallSpecifier, MethodSet

A MethodName value describes the mangled name for a method.

The mangled method name uses the non-generic types of the arguments and return values.

• Unconstrained type variables are replaced with java.lang.Object (Java) or System.Object (C#).

• Constrained type variables are replaced with their upper bound.

Java: For Java, mangled method names follow the grammar below (using regex-style notation):

method_name ::= class_name "." method "(" arg_list? ")" return_type
method ::= identifier

76

Configuration file usage

class_name ::= (package ".")* class ("$" inner_class)*
package ::= identifier
class ::= identifier
inner_class ::= identifier

arg_list ::= (arg_type ", ")* arg_type
arg_type ::= type

return_type ::= type | "void"

type ::= array_type | class_name | "boolean" | "byte" | "short" | "char" |
 "int" | "long" | "float" | "double"
array_type ::= type "[]"

An identifier non-terminal is a valid source code identifier.

Constructors have the string "<init>" for the method identifier and "void" for the return_type.

.NET: For C# and Visual Basic, mangled method names follow the grammar below (using regex-style
notation):

method_name ::= class_name "::" method "(" arg_list? ")" return_type
method ::= identifier generic_arity?

class_name ::= (namespace ".")* class ("/" inner_class)*
namespace ::= identifier
class ::= identifier generic_arity?
inner_class ::= identifier generic_arity?

arg_list ::= (arg_type ",")* arg_type
arg_type ::= type

return_type ::= type | "System.Void"

type ::= array_type | class_name
array_type ::= type "[]"

generic_arity::= "`" [0-9]+

Constructors have the string .ctor for the method identifier and System.Void for the return_type.
For example:

NS.Foo::.ctor()System.Void

Static constructors have the string .cctor for the method identifier and System.Void for the
return_type. For example:

NS.Foo::.cctor()System.Void

Note

Primitive names are converted to the corresponding fully qualified class name; for example:

77

https://en.wikipedia.org/wiki/Terminal_and_nonterminal_symbols

Configuration file usage

bool -> System.Boolean
byte -> System.Byte
sbyte -> System.SByte

.

3.2.15. MethodSet

Used by these directives: ignore_all_argument_dataflow_to_method,
ignore_method_dataflow, ignore_method_output, method_returns_constant,
method_returns_param, method_returns_servlet_output_stream,
method_returns_tainted_data, method_set_for_dc_checker,
method_with_servlet_sinks_on_input, method_with_servlet_sinks_on_output,
move_xss_outside_method, sensitive_operation, simple_entry_point,
xss_sanitizer_method

Used by these objects;. CallsiteSet

A MethodSet value describes a set of methods from the program. You can specify a MethodSet value
by using one of the following field names:

• "named"

• "matching"

• "overrides"

• "implemented_in_class"

• "and"

• "with_annotation"

3.2.15.1. named

A "named" MethodSet matches the method with the mangled name in the "named" field.

See the MethodName section for a description of the mangled name format.

3.2.15.1.1. Fields

"named"
A MethodName value to identify the method.

3.2.15.1.2. Examples

The following example of a "named" MethodSet matches a single print method in
mypackage.MyClass.

{ "named": "mypackage.MyClass.print(java.lang.String)void" }

78

Configuration file usage

3.2.15.2. matching

A "matching" MethodSet matches method names by using a Perl-style regular expression.

3.2.15.2.1. Fields

A "matching" MethodSet has a single field.

"matching"
A JSON string that contains a regular expression. It matches any method whose mangled name
satisfies the regular expression. The entire name must be matched; a substring match is insufficient.

See the MethodName section for a description of the mangled name format.

3.2.15.2.2. Examples

The following "matching" MethodSet example matches any method
named print() in mypackage.MyClass, regardless of the method’s
signature (for example, mypackage.MyClass.print(int)int and
mypackage.MyClass.print(java.lang.String)void).

{ "matching": "mypackage\\.MyClass\\.print\\(.*" }

Note

While . (a dot) and $ (a dollar sign) are characters that can appear in mangled names, they
are also regex metacharacters and so must be backslash-escaped. Since a backslash is a
metacharacter in JSON, it too must be escaped. Hence, when using one of these characters as a
literal in a regex context, you need to escape it by prefixing it with two backslashes (\\. or \\$) as
in the example above. If instead, the regex above were mypackage.MyClass.print.*, it would
match mangled names such as mypackageXMyClass.print(char)void.

3.2.15.3. overrides

An "overrides" MethodSet specifies a MethodSet to match any method that overrides a method in
overrides. This includes methods in "overrides" itself.

3.2.15.3.1. Fields

The "overrides" MethodSet has a single field:

"overrides"
A MethodSet. If a method in this set overrides a method in overrides, the overridden method is
matched.

3.2.15.3.2. Examples

For example, the following "overrides" MethodSet matches methods such as
java.util.ArrayList.add(java.lang.Object)boolean:

{ "overrides":
 { "named": "java.util.Collection.add(java.lang.Object)boolean" } }

79

Configuration file usage

3.2.15.4. implemented_in_class

An "implemented_in_class" MethodSet uses a ClassSet to identify methods.

3.2.15.4.1. Fields

The "implemented_in_class" MethodSet has a single field:

"implemented_in_class"
A ClassSet value. The "implemented_in_class" MethodSet matches any method that is
a member of this set, including constructors and static initializers but not including any methods
inherited from super-classes.

3.2.15.4.2. Examples

For example, given the class A below, the "implemented_in_class" MethodSet that follows the
class declaration would match these objects:

• The method A.getX()int

• The A constructor A.<init>(int)void

• The implicitly created, static initializer of A

It would not match methods that A inherits, such as java.lang.Object.hashCode()int.

class A {
 int x;
 int getX() { return x; }
 A(int x0) { x = x0; }
}]]

{ "implemented_in_class": { "named": "A" } }

3.2.15.5. and

An "and" MethodSet creates a new MethodSet by performing a logical AND between methods in the
source codes and methods in a specified array of MethodSet values.

3.2.15.5.1. Fields

The "and" MethodSet has a single field:

"and"
A JSON array of MethodSet values. The "and" MethodSet matches the intersection of the
methods in the source and the methods matched by methods that are members of the MethodSet
array.

3.2.15.5.2. Examples

For example, the following "and" MethodSet matches methods in a particular package that override a
particular method.

80

Configuration file usage

{ "and":
 [
 { "overrides": { "named": "com.example.C.print(java.lang.String)void" } },
 { "matching": "com\\.example\\.package\\..*" }
]
}

3.2.15.5.3. See also

For additional details, see Section 3.2.15.2, “matching” and Section 3.2.15.3, “overrides”.

3.2.15.6. with_annotation

A "with_annotation" MethodSet uses an AnnotationSet to match methods in the source code
that contain the annotations specified by the set.

3.2.15.6.1. Fields

The "with_annotation" MethodSet has a single field:

"with_annotation"
An AnnotationSet value. The "with_annotation" MethodSet matches a method whose
definition contains any of the specified analysis annotations.

3.2.15.6.2. Examples

The following "with_annotation" MethodSet example matches any method defined with the
annotation java.lang.annotation.Documented.

{ "with_annotation":
 { "matching": "java\\.lang\\.annotation\\.Documented" }
}

Example of a matching Java method definition:

@Documented
void printHello() {
 System.out.println("Hello!");
}

The following "with_annotation" MethodSet example matches any method defined with the
annotation MyCsharpAttribute.

{ "with_annotation":
 { "named": "MyCsharpAttribute" }
}

Example of a matching C# method definition:

[MyCsharpAttribute]
string GetCorporateName() {
 return "Synopsys";
}

81

Configuration file usage

3.2.16. OutputAndAccessPathSpecifier

Used by these directives: dataflow_through_call_site

3.2.16.1. Fields

An OutputAndAccessPathSpecifier uses the following fields:

"output"
A ParamOut value to specify a base value that is output from the call site. If a "path" field is not
present, this is the output value itself.

"path"
(Optional) A non-empty array of AccessPathElement values. When this field is present, the
"output" value is found on this access path, using the base value.

In an OutputAndAccessPathSpecifier values, if the "path" field is not specified, then "return" is
the only allowed ParamOut value for the "output" field.

3.2.16.2. Examples

Directive for JavaScript example:

{
 dataflow_through_callsite: {
 "call_on" : {
 "read_off_any" : [{"property" : "returnsArgDotX"}]
 },
 },
 from: [{input: "arg1", path: [{property: "x"}] }],
 to: [{ output: "return" }]
}

The directive above indicates that a call to returnsArgDotX() returns the x property of its argument.
The following client-side JavaScript code shows how this directive can result in a DOM_XSS defect report
(this checker reports cross-site scripting via the Document Object Model).

The directive indicates that the call to returnsArgDotX(o) returns o.x. Since o.x contains tainted
data and the return value of the function flows into the argument of document.write() (a DOM_XSS
sink), the analysis reports a DOM_XSS defect.

var o = { x: location.hash, y: "safe" };
document.write(returnsArgDotX(o)); // DOM_XSS

3.2.17. ParamIn

Used by these directives: map_read, map_write, method_returns_param,
method_with_servlet_sinks_on_input, xss_sanitizer_method

Used by these objects: HtmlOutputContext, InputAndAccessPathSpecifier, InputTaint,
InputTag, InputValue, MethodCallSpecifier, WritableProgramData

82

Configuration file usage

A ParamIn value describes an input to a function call.

3.2.17.1. Fields

This object can use the following fields:

"this"
When present, indicates the receiver object on instance methods.

"arg1", "arg2", ...
These fields represent the parameters (arguments) to the function.

The first non-this parameter field is "arg1", and subsequent argument fields are numbered in
sequence.

3.2.18. ParamOut

Used by these directives: method_with_servlet_sinks_on_output,
xss_sanitizer_method

Used by these objects: CallsiteSet, MethodCallSpecifier,
OutputAndAccessPathSpecifier, ReadableProgramData

A ParamOut value describes an output of a function call.

3.2.18.1. Fields

This object can use the following fields:

"return"
Indicates the function’s return value.

"this"
When present, indicates the receiver object on instance methods.

"arg1", "arg2", ...
These fields represent the parameters (arguments) to the function.

The first non-this parameter field is "arg1", and subsequent argument fields are numbered in
sequence.

3.2.19. ReadableProgramData

Used by these directives: data_has_tag, tainted_data

A ReadableProgramData object identifies the location of a readable value: either for the purpose of
noticing reads from that location, or to indicate that something is read from that location. You can specify
a ReadableProgramData object by using one of the following field names:

• "from_call_site"

83

Configuration file usage

• "read_from_object_with_tag"

• "read_path_off_global"

• "read_off_any"

• "read_from_js_require"

• "read_from_HANA_library_import"

3.2.19.1. from_callsite
Supported Languages: JavaScript only

A "from_callsite" ReadableProgramData value identifies readable values produced by call sites.

3.2.19.1.1. Fields

The "from_call_site" ReadableProgramData object has the following fields:

"from_call_site"
A CallsiteSet value that identifies call sites of interest.

"output"
A ParamOut value that identifies a base value passed in or returned from a call site.

"path"
(Optional) a non-empty array of AccessPathElement values. This is an access path to apply to the
base value.

If no "path" field is specified, then the readable value is the base value indicated by the "output"
field. Adding a "path" field indicates a readable value along the access path that is off of the base
value.

3.2.19.1.2. Examples

{
 "from_callsite" : {
 "call_on" : {
 "read_off_any" : [{ "property" : "exampleCall" }]
 }
 },
 "output" : "return",
 "path" : [{ "property" : "f"}, { "property" : "g" }]
}

The "from_callsite" ReadableProgramData value above will match the readable value
exampleCall().f.g based off of the return value of this call site:

 exampleCall();

3.2.19.2. read_from_object_with_tag
Supported Languages: JavaScript only

84

Configuration file usage

A "read_from_object_with_tag" ReadableProgramData value identifies readable values
found along an access path relative to a value that has been tagged by a data_has_tag directive. See
Section 3.1.7, “data_has_tag”.

3.2.19.2.1. Fields

The "read_from_object_with_tag" ReadableProgramData object has the following fields:

"read_from_object_with_tag
A string value to identify values tagged by any data_has_tag directive that has the specified name.
See Section 3.1.7, “data_has_tag”.

"path"
A non-empty array of AccessPathElement values. This field specifies an access path to apply to
the tagged values.

3.2.19.2.2. Examples

{
 "read_from_object_with_tag" : "myTagName",
 "path" : [{ "property" : "f"}, { "property" : "g" }]
},

The "read_from_object_with_tag" ReadableProgramData value above with the following
data_has_tag will match the readable value at location exampleTaggedValue.f.g because it tags
the property exampleTaggedValue with the tag "myTagName".

{
 "data_has_tag" : { "read_off_any" : [{ "property" : "exampleTaggedValue" }] },
 "tag" : "myTagName"
}

3.2.19.3. read_path_off_global
Supported Languages: JavaScript only

A "read_path_off_global" ReadableProgramData value identifies a readable value that is found
along a given access path off of the global variable.

3.2.19.3.1. Fields

The "read_path_off_global" ReadableProgramData object has the following field:

"read_path_off_global"
A non-empty array of AccessPathElement values that specify paths where readable values can be
found.

3.2.19.3.2. Examples

For examples that use "read_path_off_global" ReadableProgramData, see Section 3.1.31,
“tainted_data”, Section 3.1.3, “async_method”, Section 3.1.15, “local_callback”, and Section 3.1.17,
“map_write”.

85

Configuration file usage

3.2.19.4. read_off_any
Supported Languages: JavaScript only

A "read_off_any" ReadableProgramData value identifies a readable value found along a given
access path.

3.2.19.4.1. Fields

A "read_off_any" ReadableProgramData object has the following field:

"read_off_any"
A non-empty array of AccessPathElement values that specify paths where readable values can be
found. Paths in "read_off_any" do not have to be relative to the global variable.

3.2.19.4.2. Examples

For examples that use "read_off_any" ReadableProgramData, see Section 3.1.9,
“dataflow_through_callsite”, "to_callsite", "from_callsite", and "write_to_object_with_tag".

3.2.19.5. read_from_js_require
Supported Languages: JavaScript only

A "read_from_js_require" ReadableProgramData value identifies a readable value along an
access path that is relative to a JavaScript module value returned from a require call site. Calling
require with the name of a module is a common approach to using modules, such as in Node.js
programs.

3.2.19.5.1. Fields

The "read_from_js_require" object has the following fields:

"read_from_js_require"
A string value that names the JavaScript module specified in the require call site.

"path"
(Optional) A non-empty array of AccessPathElement values for read_from_js_require to use.

3.2.19.5.2. Examples

For examples that use this ReadableProgramData, see Section 3.1.31, “tainted_data” and "new_on".

3.2.19.6. read_from_HANA_library_import
Supported Languages: JavaScript only

A "read_from_HANA_library_import" ReadableProgramData value identifies a readable value
along an access path that is relative to a HANA XSC library returned from a $.import call site found in
a .xsjs or .xsjslib source file.

This directive mirrors the $.import method, in that two import formats are supported:

86

Configuration file usage

1. A file path

This directive format uses the "read_from_HANA_library_import" field to specify a file path that
locates the library source file. The optional "package" field is not used.

This format corresponds to a call to $.import using a single argument.

2. A package specifier and a library name

In this directive format, the "read_from_HANA_library_import" field specifies the library name
(without the .xsjslib extension), and the "package" field specifies the library’s "."-separated
package name.

This format corresponds to a call to $.import using two arguments.

3.2.19.6.1. Fields

A "read_from_HANA_library_import" ReadableProgramData object has the following fields:

"read_from_HANA_library_import"
A string value that is either the name of the HANA XSC module specified in the $.import call site,
or a file path that locates the library file.

"package"
A string value. If this field is present, then import method #2, described above, is used.

"path"
(Optional) A non-empty array of AccessPathElement values, for use with import method #2.

3.2.19.6.2. Examples

The following two example directives are equivalent:

{
 "read_from_HANA_library_import" : "/package/name/lib.xsjslib",
 "path" : [{ "property" : "p"}]
},

{
 "read_from_HANA_library_import" : "lib",
 "package" : "package.name",
 "path" : [{ "property" : "p"}]
},

Both directives specified above will match both of the following equivalent import expressions found
within an .xsjs or .xsjslib source file.

{
var p1 = $.import("/package/name/lib.xsjslib").p;
var p2 = $.import("package.name", "lib").p;
},

87

Configuration file usage

3.2.20. RegularExpression

Used by these objects: AnnotationSet, IssueTypeDefinition

A RegularExpression value is a JSON string that represents a regular expression (regex) in Perl
syntax. Typically, a regular expression can match a substring of a target string. The regular expression
can include anchors (such as an opening ^ or closing $) to explicitly specify the beginning of a target
string, the end of the target string, or both.

Because the backslash is an escaping character in both JSON strings and Perl regular-expression
syntax, a backslash used in a Perl regular expression needs to be escaped with another backslash in the
JSON string. In a Perl regular expression, for example, a two-backslash sequence (\\) matches a single
backslash in the target string—so to match a single backslash, a RegularExpression value requires
four backslash characters: \\\\.

3.2.21. ReturnConstant

Used by these directives: method_returns_constant

A ReturnConstant value is a JSON object that describes the constant value returned by a method.

bool ReturnConstant value

• A JSON object describing a Boolean constant returned by a method.

• It has a field bool, taking a JSON Boolean value corresponding to the returned constant.

3.2.22. SinkKind

Used by these directives: sink_for_checker

A SinkKind value is a JSON string used in the sink_for_checker directive to specify a
type of sink. It is only applicable to SENSITIVE_DATA_LEAK sinks. For possible values, see the
SENSITIVE_DATA_LEAK SinkKind column of Table 4.2 Sensitive Data Sink types in the Checker
Reference. See also Section 3.1.30, “sink_for_checker”.

3.2.23. TaintKind

Used by these directives: dataflow_checker_name, method_returns_tainted_data,
simple_entry_point, tainted_data

Used by these objects: InputAndAccessPathSpecifier, TaintKindGroup

A TaintKind value describes a single taint kind. It has one of the values listed in this section.
TaintKind values are divided into different groups that you can refer to collectively in some directives
by using a TaintKindGroup.

The following taint kinds are relevant to server-side Web applications and other server-side applications:

• "cookie": Data from HTTP cookies. See the --trust-cookies and --distrust-cookies
options to the cov-analyze command.

88

http://perldoc.perl.org/perlre.html
http://perldoc.perl.org/perlre.html

Configuration file usage

• "command_line": Data from the command line. See the --trust-command-line and --
distrust-command-line options to the cov-analyze command.

• "console": Data from the console. See the --trust-console and --distrust-console options
to the cov-analyze command.

• "database": Data from a database. See the --trust-database and --distrust-database
options to the cov-analyze command.

• "environment": Data from environment variables. See the --trust-environment and --
distrust-environment options to the cov-analyze command.

• "filesystem": Data read from a file. See the --trust-filesystem and --distrust-
filesystem options to the cov-analyze command.

• "http": Data from incoming HTTP requests. This does not include headers or cookies. See the --
trust-http and --distrust-http options to the cov-analyze command.

• "http_header": Data from HTTP headers. See the --trust-http-header and --distrust-
http-header options to the cov-analyze command.

• "network": Data from network connections. This does not include data from incoming HTTP requests
or remote procedure calls. See the --trust-network and --distrust-network options to the
cov-analyze command.

• "rpc": Data returned from remote procedure calls (RPC). See the --trust-rpc and --distrust-
rpc options to the cov-analyze command.

• "system_properties": Data on system properties. See the --trust-system-properties and
--distrust-system-properties options to the cov-analyze command.

The following taint kinds are relevant to client-side JavaScript code (that is, JavaScript that runs in a Web
browser):

"js_client_cookie"
Data from the JavaScript document.cookie. See the --trust-js-client-cookie and --
distrust-js-client-cookie options to the cov-analyze command.

"js_client_external"
Data from the response to an XMLHttpRequest or similar. See the --trust-js-client-
external and --distrust-js-client-external options to the cov-analyze command.

"js_client_html_element"
Data from user input on HTML elements such as textarea and input elements. See the --
trust-js-client-html-element and --distrust-js-client-html-element options to
the cov-analyze command.

"js_client_http_referer"
Data from the 'referer' HTTP header (from document.referrer). See the --trust-js-
client-http-referer and --distrust-js-client-http-referer options to the cov-
analyze command.

89

Configuration file usage

"js_client_http_header"
Data from the HTTP response header of the response to an XMLHttpRequest or similar. See the --
trust-js-client-http-header and --distrust-js-client-http-header options to the
cov-analyze command.

"js_client_other_origin"
Data from content in another frame or from another origin, for instance, from window.name. See
the --trust-other-origin and --distrust-other-origin options to the cov-analyze
command.

"js_client_url_query_or_fragment"
Data from the query or fragment part of the URL, for instance, location.hash or
location.query. See the --trust-url-query-or-fragment and --distrust-url-
query-or-fragment options to the cov-analyze command.

The following taint kinds are relevant to mobile applications:

"mobile_other_app"
Data received from any mobile application that does not require a permission to communicate with
the current application component. See the --trust-mobile-other-app and --distrust-
mobile-other-app options to the cov-analyze command.

"mobile_same_app"
Data received from the same mobile application. See the --trust-mobile-same-app and --
distrust-mobile-same-app options to the cov-analyze command.

"mobile_user_input"
Data obtained from user inputs into a mobile application. See the --trust-mobile-user-input
and --distrust-mobile-user-input options to the cov-analyze command.

"mobile_other_privileged_app"
Data received from any mobile application that requires a permission to communicate with the current
application component. See the --trust-mobile-other-privileged-app and --distrust-
mobile--other-privileged-app options to the cov-analyze command.

The following taint kinds represent sensitive data, rather than data controlled by an attacker:

"decrypted"
Decrypted data

"password"
A password

"token"
An authentication token

"session_id"
A session ID

"mobile_id"
A mobile device ID

90

Configuration file usage

"user_id"
An application user ID

"national_id"
A national ID

"persistent_secret"
Persistent secret data, such as an encryption key

"transient_secret"
Transient secret data, such as a TLS ticket

"seed"
A seed for a randomization algorithm

"cardholder_data"
Payment cardholder data

"account"
Account data

"transaction"
Transaction data

"medical"
Medical data

"biometric"
Biometric data

"geographical"
Sensitive geographical data

"exception"
Information about an application exception

"source_code"
Application source code

"configuration"
Configuration data

"bug"
Information about a bug in the application

"file path"
A path on the filesystem

"directory_listing"
A directory listing

91

Configuration file usage

"system_memory"
Information about system memory usage

"system_user"
System user data

"platform"
Information about the runtime platform

3.2.24. TaintKindGroup

Used by these directives: dataflow_checker_name

A TaintKindGroup value describes a set of taint kinds. It consists of a JSON array of strings, each of
which is either a TaintKind string or one of the following special strings that denotes a set of related
taint kinds:

"all_server_taints"
(Java, C#, JavaScript) Includes all taint kinds that are relevant to server-side Web applications and
other server-side applications. See Section 3.2.23, “TaintKind”.

"all_jsclient_taints"
(JavaScript only) Includes all taint kinds that are relevant to client-side JavaScript code (JavaScript
that runs in a Web browser). See Section 3.2.23, “TaintKind”.

"all_android_taints"
(Java only) Includes all taint kinds that are relevant to Android applications. See Section 3.2.23,
“TaintKind”.

3.2.25. TextPattern

Used by these directives: text_checker_name

A TextPattern describes a pattern for matching text strings. It is used to define custom text checkers.
You can specify a TextPattern using one of the following field names:

• "regex"

• "xpath"

3.2.25.1. regex

A "regex" TextPattern describes a regular expression to match a string or the text contents of a file.

3.2.25.1.1. Fields

The "regex" TextPattern uses these fields:

"regex"
A string value that specifies a Perl-style regular expression. For the JSON code to parse correctly,
any special characters within the string need to be appropriately escaped.

92

Configuration file usage

"case_sensitive"
(Optional) A Boolean value. If set to false, the match will be insensitive to case. The default value is
true.

"line_match"
(Optional) A Boolean value. If true, the caret (^) and dollar-sign ($) symbols, respectively, match
the beginning and end of a line. This is equivalent to the Perl modifier //m. The default value is true.

"dot_matches_newline"
(Optional) A Boolean value. If true, the dot (.) character matches a newline character. This is
equivalent to the Perl modifier //s. The default value is true.

3.2.25.1.2. Examples

{
 "regex" : "WEB-INF\\/(.+)\\.xml$",
 "case_sensitive" : false
},

Note

The . (dot) and / (slash) characters are regex metacharacters and so must be backslash-escaped.
Since a backslash is a metacharacter in JSON, it too must be escaped. Hence, when using one
of these characters as a literal in a regex context, you need to escape it by prefixing it with two
backslashes (\\ or \\/) as in the example above.

3.2.25.2. xpath

An "xpath" TextPattern describes an Xpath 1.0 expression that can be used to match elements in
an XML document.

If this pattern is applied to an input that is not parsable as XML, it will not match.

3.2.25.2.1. Fields

The "xpath" TextPattern object has a single field:

"xpath"
A string value that specifies an Xpath expression.

3.2.25.2.2. Examples

{ "xpath" : "/Catalog/Product[@name = \"soup\"]" },

{ "xpath" : "/*[local-name()='project']/*[local-name()='dependencies'] and
 child::*[local-name()='artifactId']" },

Notice that the double quotes in the Xpath expression have been escaped for JSON, using a backslash.

Tip

The local-name() function can be a convenient way to ignore the stricter namespace-specific
element matching.

93

Configuration file usage

3.2.26. WritableProgramData

Used by these directives: async_method, local_callback, sanitizer_for_checker,
sink_for_checker

A WritableProgramData value identifies the location of a writable value: either for the purpose of
noticing writes to that location, or to indicate that something is written to that location. You can specify a
ReadableProgramData object by using one of the following field names:

• "to_callsite"

• "write_to_object_with_tag"

• "write_path_off_global"

• "write_off_any"

3.2.26.1. to_callsite

A "to_callsite" WritableProgramData value identifies writable values consumed by call sites.

3.2.26.1.1. Fields

The "to_call_site" WritableProgramData object has the following fields:

"to_callsite"
A CallsiteSet that identifies call sites of interest.

"input"
A ParamIn value that identifies a base value passed into the call site.

"path"
(Optional) An array of AccessPathElement values that specify an access path to apply to the base
value.

The "path" field is only allowed for JavaScript uses of "to_callsite" WritableProgramData.

If no "path" field is specified, the writable value is the base value indicated by the "input" field.
Adding a "path" field indicates a writable value along the access path off of the base value.

3.2.26.1.2. Examples:

JavaScript example:

{
 "to_callsite" : {
 "call_on" : {
 "read_off_any" : [{ "property" : "exampleCall" }]
 }
 },
 "input" : "arg1",
 "path" : [{ "property" : "f"}, { "property" : "g" }]

94

Configuration file usage

}

The "to_callsite" WritableProgramData value above will match the writable value
passedInValue.f.g when passedInValue is passed into this call site:

exampleCall(passedInValue);

3.2.26.2. write_to_object_with_tag

A "write_to_object_with_tag" WritableProgramData value identifies writable values found
along an access path relative to a value that has been tagged by a data_has_tag directive. See
Section 3.1.7, “data_has_tag”.

3.2.26.2.1. Fields

The "write_to_object_with_tag" WritableProgramData object has the following fields:

"write_to_object_with_tag"
A string value that names values tagged by any data_has_tag directive. See Section 3.1.7,
“data_has_tag”.

"path"
A non-empty array of AccessPathElement values. This specifies an access path to apply to the
tagged values.

3.2.26.2.2. Examples

{
 "data_has_tag" : { "read_off_any" : [{ "property" : "exampleTaggedValue" }] },
 "tag" : "myTagName"
},
{
 sink_for_checker : "DOM_XSS",
 sink : {
 "write_to_object_with_tag" : "myTagName",
 "path" : [{ "property" : "f"}, { "property" : "g" }]
 },
}

The "data_has_tag" directive marks property accesses off any object (including the global object)
with "myTagName". The "write_to_object_with_tag" WritableProgramData matches property
writes, such as "exampleTaggedValue.f.g = x".

3.2.26.3. write_path_off_global
Supported Languages: JavaScript only

A "write_path_off_global" WritableProgramData value identifies a writable value found along
a given access path off of the global variable.

3.2.26.3.1. Fields

The "write_path_off_global" WritableProgramData object has the following field:

95

Configuration file usage

"write_path_off_global"
A non-empty array of AccessPathElement values, specifying the path off the global variable.

3.2.26.3.2. Examples

See Section 3.1.30, “sink_for_checker” for an example of the use of "write_path_off_global"
WritableProgramData.

3.2.26.4. write_off_any
Supported Languages: JavaScript only

A "write_off_any" WritableProgramData value identifies a writable value found along a given
access path.

3.2.26.4.1. Fields

The "write_off_any" WritableProgramData object has the following field:

"write_off_any"
A non-empty array of AccessPathElement values, specifying a path that is not necessarily based
off of the global variable.

3.2.26.4.2. Examples

See Section 3.1.3, “async_method” for an example of the use of "write_off_any"
WritableProgramData.

96

	Coverity 2020.12 Security Directive Reference
	Table of Contents
	Chapter 1. Security configuration file
	1.1. Uses of directives
	1.2. Supported languages
	1.3. How to invoke a custom configuration

	Chapter 2. Configuration file syntax
	2.1. Extensions to JSON supported by the configuration file
	2.2. JSON Terminology
	2.3. Schema
	2.3.1. Top-level value
	2.3.2. Objects in the configuration file

	Chapter 3. Configuration file usage
	3.1. User directives
	3.1.1. android_protected_intent_actions
	3.1.1.1. Fields
	3.1.1.2. See also

	3.1.2. android_safe_categories
	3.1.2.1. Fields
	3.1.2.2. See also

	3.1.3. async_method
	3.1.3.1. Fields
	3.1.3.2. Examples

	3.1.4. class_like_print_writer_for_servlet_output
	3.1.4.1. Fields
	3.1.4.2. Examples

	3.1.5. csrf_check_needed
	3.1.5.1. Fields
	3.1.5.2. Examples
	3.1.5.3. See also

	3.1.6. csrf_validator
	3.1.6.1. Fields
	3.1.6.2. Examples
	3.1.6.3. See also

	3.1.7. data_has_tag
	3.1.7.1. Fields
	3.1.7.2. Examples

	3.1.8. dataflow_checker_name
	3.1.8.1. Fields
	3.1.8.2. Deprecated fields—from prior to format version 8
	3.1.8.2.1. Migrate the format from version 8 to version 12

	3.1.9. dataflow_through_callsite
	3.1.9.1. Fields

	3.1.10. dc_checker_name
	3.1.10.1. Fields
	3.1.10.2. Deprecated fields—from prior to format version 8
	3.1.10.2.1. Migrate the format from version 8 to version 12

	3.1.11. define_lookup_method_call_map
	3.1.11.1. Fields
	3.1.11.2. Examples

	3.1.12. ignore_all_argument_dataflow_to_method
	3.1.12.1. Fields
	3.1.12.2. Examples

	3.1.13. ignore_method_dataflow
	3.1.13.1. Fields
	3.1.13.2. Examples

	3.1.14. ignore_method_output
	3.1.14.1. Fields
	3.1.14.2. Examples

	3.1.15. local_callback
	3.1.15.1. Fields
	3.1.15.2. Examples

	3.1.16. map_read
	3.1.16.1. Fields
	3.1.16.2. Examples

	3.1.17. map_write
	3.1.17.1. Fields
	3.1.17.2. Examples

	3.1.18. method_returns_constant
	3.1.18.1. Fields
	3.1.18.2. Examples

	3.1.19. method_returns_param
	3.1.19.1. Fields
	3.1.19.2. Examples

	3.1.20. method_returns_servlet_output_stream
	3.1.20.1. Fields
	3.1.20.2. Examples

	3.1.21. method_returns_tainted_data
	3.1.21.1. Fields
	3.1.21.2. Examples

	3.1.22. method_set_for_dc_checker
	3.1.22.1. Fields

	3.1.23. method_with_servlet_sinks_on_input
	3.1.23.1. Fields
	3.1.23.2. Examples
	3.1.23.3. See also

	3.1.24. method_with_servlet_sinks_on_output
	3.1.24.1. Fields
	3.1.24.2. Examples

	3.1.25. move_xss_outside_method
	3.1.25.1. Fields
	3.1.25.2. Examples

	3.1.26. sanitizer_for_checker
	3.1.26.1. Fields
	3.1.26.2. Examples

	3.1.27. sensitive_action
	3.1.27.1. Fields
	3.1.27.2. Examples

	3.1.28. sensitive_operation
	3.1.28.1. Fields
	3.1.28.2. Examples

	3.1.29. simple_entry_point
	3.1.29.1. Fields
	3.1.29.2. Examples

	3.1.30. sink_for_checker
	3.1.30.1. Fields
	3.1.30.2. Examples

	3.1.31. tainted_data
	3.1.31.1. Fields
	3.1.31.2. Examples

	3.1.32. text_checker_name
	3.1.32.1. Fields

	3.1.33. xss_sanitizer_method
	3.1.33.1. Fields
	3.1.33.2. Step entries and step examples
	3.1.33.3. Configuration and Java code examples

	3.2. Other object types used by user directives
	3.2.1. AccessPathElement
	3.2.1.1. Fields
	3.2.1.2. Example

	3.2.2. AnnotationSet
	3.2.2.1. named
	3.2.2.1.1. Fields
	3.2.2.1.2. Examples

	3.2.2.2. matching
	3.2.2.2.1. Fields
	3.2.2.2.2. Examples

	3.2.3. CallsiteSet
	3.2.3.1. callsite_with_static_target
	3.2.3.1.1. Fields
	3.2.3.1.2. Examples

	3.2.3.2. call_on
	3.2.3.2.1. Fields
	3.2.3.2.2. Examples

	3.2.3.3. new_on
	3.2.3.3.1. Fields
	3.2.3.3.2. Using a CallsiteSet
	3.2.3.3.3. Examples

	3.2.4. CallsiteCondition
	3.2.4.1. Fields
	3.2.4.2. See also

	3.2.5. ClassName
	3.2.6. ClassSet
	3.2.6.1. named
	3.2.6.1.1. Fields
	3.2.6.1.2. Examples

	3.2.6.2. matching
	3.2.6.2.1. Fields
	3.2.6.2.2. Examples

	3.2.6.3. with_super ClassSet
	3.2.6.3.1. Fields
	3.2.6.3.2. Examples

	3.2.6.4. with_annotation
	3.2.6.4.1. Fields
	3.2.6.4.2. Examples

	3.2.7. HtmlOutputContext
	3.2.7.1. html_attribute_value_where_name_is_from_param
	3.2.7.1.1. Fields

	3.2.7.2. html_prefix
	3.2.7.2.1. Fields

	3.2.7.3. Examples

	3.2.8. InputAndAccessPathSpecifier
	3.2.8.1. Fields

	3.2.9. InputTaint
	3.2.9.1. Fields

	3.2.10. InputTag
	3.2.10.1. Fields

	3.2.11. InputValue
	3.2.11.1. Fields

	3.2.12. IssueTypeDefinition
	3.2.12.1. Fields
	3.2.12.2. Examples

	3.2.13. MethodCallSpecifier
	3.2.13.1. method_call
	3.2.13.1.1. Fields

	3.2.13.2. lookup_by_constant_param
	3.2.13.2.1. Fields

	3.2.14. MethodName
	3.2.15. MethodSet
	3.2.15.1. named
	3.2.15.1.1. Fields
	3.2.15.1.2. Examples

	3.2.15.2. matching
	3.2.15.2.1. Fields
	3.2.15.2.2. Examples

	3.2.15.3. overrides
	3.2.15.3.1. Fields
	3.2.15.3.2. Examples

	3.2.15.4. implemented_in_class
	3.2.15.4.1. Fields
	3.2.15.4.2. Examples

	3.2.15.5. and
	3.2.15.5.1. Fields
	3.2.15.5.2. Examples
	3.2.15.5.3. See also

	3.2.15.6. with_annotation
	3.2.15.6.1. Fields
	3.2.15.6.2. Examples

	3.2.16. OutputAndAccessPathSpecifier
	3.2.16.1. Fields
	3.2.16.2. Examples

	3.2.17. ParamIn
	3.2.17.1. Fields

	3.2.18. ParamOut
	3.2.18.1. Fields

	3.2.19. ReadableProgramData
	3.2.19.1. from_callsite
	3.2.19.1.1. Fields
	3.2.19.1.2. Examples

	3.2.19.2. read_from_object_with_tag
	3.2.19.2.1. Fields
	3.2.19.2.2. Examples

	3.2.19.3. read_path_off_global
	3.2.19.3.1. Fields
	3.2.19.3.2. Examples

	3.2.19.4. read_off_any
	3.2.19.4.1. Fields
	3.2.19.4.2. Examples

	3.2.19.5. read_from_js_require
	3.2.19.5.1. Fields
	3.2.19.5.2. Examples

	3.2.19.6. read_from_HANA_library_import
	3.2.19.6.1. Fields
	3.2.19.6.2. Examples

	3.2.20. RegularExpression
	3.2.21. ReturnConstant
	3.2.22. SinkKind
	3.2.23. TaintKind
	3.2.24. TaintKindGroup
	3.2.25. TextPattern
	3.2.25.1. regex
	3.2.25.1.1. Fields
	3.2.25.1.2. Examples

	3.2.25.2. xpath
	3.2.25.2.1. Fields
	3.2.25.2.2. Examples

	3.2.26. WritableProgramData
	3.2.26.1. to_callsite
	3.2.26.1.1. Fields
	3.2.26.1.2. Examples:

	3.2.26.2. write_to_object_with_tag
	3.2.26.2.1. Fields
	3.2.26.2.2. Examples

	3.2.26.3. write_path_off_global
	3.2.26.3.1. Fields
	3.2.26.3.2. Examples

	3.2.26.4. write_off_any
	3.2.26.4.1. Fields
	3.2.26.4.2. Examples

