SYNOPSYS

Dynamic Analysis 2020.12 Administration Tutorial

Dynamic Analysis is part of Coverity Analysis.
Copyright 2020 Synopsys, Inc. All rights reserved worldwide.

Table of Contents

1. Overview of DYNAmIC ANAIYSIS ... ccuniiiiii et et e e et eaa s 1
2. Running Dynamic AnalysiS 0N Java PrOgramsSceuuieuueeiu it et e et e et eei e et e eanaeean s 5
3. Dynamic Analysis defeCtS FEPOITS i e 18
4. TroubIESNOOLING ...ceeiiiie i ettt aas 24
A. Dynamic Analysis Agent command-line options and Ant task attributesc.o.ccoi, 31
B. Dynamic Analysis Broker information and referencecoooeeiiiiiiiiiiniin e 35

Chapter 1. Overview of Dynamic Analysis

Table of Contents

Dynamic Analysis finds actual and potential race conditions, deadlocks, and resource leaks by watching
your Java program while it runs. Coverity Analysis also finds these types of defects, but Dynamic
Analysis finds defects that are difficult or impossible for any static analysis software to find. While Static
Analysis considers all possible execution paths, Dynamic Analysis focuses on those that it actually
observes on test workloads. Neither is superior to the other, but their focus is different. Coverity Analysis
and Dynamic Analysis, used together, provide the most thorough analysis of race conditions, deadlocks,
and resource leaks. At this time, Dynamic Analysis only supports Java programs.

1.1. How Dynamic Analysis works

The following figure depicts the flow of data between a Java program, the Dynamic Analysis Agent, and
the Dynamic Analysis Broker.

Overview of Dynamic Analysis

Figure 1.1. Dynamic Analysis data flow

"

Dynamic Analysis
Agent

g
o~

Your Java
Program

Dynamic Analysis "
Agent

I Dynamic Analysis
Your Java Broker
Program

—(Coverity Connect

Dynamic Analysis
Agant

"'|l|'-

Your Java Coverity
Program Connect GU|

A Dynamic Analysis Agent runs in a JVM (Java Virtual Machine) along with the Java program you want
to dynamically analyze. The Dynamic Analysis Agent watches your program run and looks for actual
resource leaks, potential race conditions, and potential deadlocks. If it finds any, it sends a defect report
to the Dynamic Analysis Broker, which forwards the data to the Coverity Connect server.

Each Dynamic Analysis Agent can run on a different machine and watch for defects as different tests or
instances of your application run. You can view the defect data and source code at any time during this
process by bringing up Coverity Connect in a web browser.

1.2. Obtaining thorough analysis results

Dynamic Analysis observes a run of your Java program. Thus, the more thoroughly your test workload
exercises code paths in your program, the more useful your Dynamic Analysis results. Dynamic Analysis
cannot report defects on code that does not execute. Because race conditions and deadlocks require the

Overview of Dynamic Analysis

interaction of multiple threads, Dynamic Analysis does not report these defect types if only one thread
accesses a field or acquires locks during the run it observes.

To thoroughly test your application for race conditions and deadlocks, you must design tests that cause
multi-threaded execution of your code base. This requires a technical understanding of concurrency in
Java, how your program uses it, and how to simulate it in a test environment.

Dynamic Analysis amplifies your existing testing. It provides more comprehensive results if you test your
program using varied workloads. Small single-threaded unit tests do not provide the type of workloads
needed to yield good results. System tests, integration tests, load tests, or even ad hoc testing is likely to
cover your application more thoroughly than most unit tests, and thus yield more useful results.

g Important

When running Dynamic Analysis on a Java program, expect the program to run as much as 2-5
times slower than normal. Dynamic Analysis also requires additional memory. Without adequate
heap memory, the Java program will fail with an Qut O Menror yExcept i on. In practice, the peak
memory usage increases as much as 800%. To allocate additional heap memory, use the - Xnx
parameter to the j ava command when you invoke your test. For more information about this error
see the Qut of Menor yErr or question and answer

1.3. Fitting Dynamic Analysis into your development and testing
environments

Dynamic Analysis can be integrated into your development and testing environment in many ways, but
most commonly you will want to integrate it into your manual and automatic tests.

Ad hoc analysis. In this model, you run your application with Dynamic Analysis, and exercise

the program thoroughly, running it through different work flows and using multiple users or tasks
simultaneously. Focus on concurrency or resource-related code, and exercise it so that multiple threads
access shared data.

Desktop analysis. In this model, developers work on their code and run Dynamic Analysis on the
functions they develop. They can run the entire program manually or use automated tests that simulate
aspects of the application outside their control, rather than run the entire program. For example, they
might run a test that runs their business logic code in an automated test framework that simulates user
requests and database accesses. This scenario provides a focused analysis of the code being developed
and the code with which it interacts. It also allows developers to fix defects before they check their code
into the build.

The desktop and ad hoc analysis models are the easiest ways to start using Dynamic Analysis. To
integrate Dynamic Analysis into your development environment, set up an automated process that sends
you defect information as you develop, test, and build your software.

Automated analysis. In this model, testers run automated tests with Dynamic Analysis. You can set
up Dynamic Analysis to run with your nightly builds or at some other regular test interval.

Overview of Dynamic Analysis

g Important

While it might be useful to run Dynamic Analysis with your program in a production-like
environment, we strongly recommend against running your programs with Dynamic Analysis
in an actual production environment. The program runs much slower, requires more memory,
and disables the security manager (see the overri de- security- manager Agent option in
Section A.2). Dynamic Analysis also introduces more failure modes: if Coverity Connect goes
down, the Broker and your program also go down (see the f ai | f ast Agent option, also in
Section A.2).

1.4. Installing and licensing Dynamic Analysis

Dynamic Analysis is installed as part of Coverity Analysis and so requires a Coverity Analysis license.
If you have a current | i cense. dat file with Dynamic Analysis enabled, place itin <i nstal | _dir>/
bi n/ . If you have an old Coverity Thread Analyzer or Dynamic Analysis license but no Coverity Analysis

license, start the Dynamic Analysis Broker with the - - security-fil e <license_pat h>Ed option.

cov_command_ref.pdf#cov-start-da-broker

Chapter 2. Running Dynamic Analysis on Java programs

Table of Contents

This procedure in this chapter uses a simple program example to demonstrate how to perform a dynamic
analysis. It explains how to perform this action from the command line. To run Dynamic Analysis using
Apache Ant tasks, see Section 2.6.

z Note

In most cases, examples in this chapter use UNIX command-line syntax. You can also run
examples in Windows by using the appropriate Windows command-line syntax, typically . /
some_conmmand. exe followed by any necessary command options.

To run Dynamic Analysis on a Java program:

1. Create Dynamic Analysis streams for your Java program in Coverity Connect.

2. Provide a Java program that compiles and runs to be dynamically analyzed.
3. Start the Dynamic Analysis Broker.

4. Run your Java program with the Dynamic Analysis Agent.

5. Stop the Dynamic Analysis Broker.

2.1. Step 1: Create Dynamic Analysis projects and streams in Coverity
Connect

The first step in running Dynamic Analysis with your Java program is to create a Coverity Connect project
that contains the streams to receive the source code and defects that Dynamic Analysis reports on

your program. When you start the Dynamic Analysis Broker in Section 2.3, you will specify the Dynamic
Analysis defect stream created in this step. You only need to create streams once for each code base.

S Requirement

To complete this procedure, you must have Administrator or Configuration Manager privileges to
Coverity Connect. If you do not, contact your Coverity Connect administrator.

To set up projects and streams:

1. Get the hostname for Coverity Connect, the Coverity Connect HTTP port to which you point your
browser (default: 8080), and the commit port where your Broker sends defects (default: 9090).

Your Coverity Connect administrator should have this information. These values were specified
during the installation of Coverity Connect.

2. Open Coverity Connect in your web browser:

http://<host>:<Cl M http_port>

Running Dynamic Analysis on Java programs

4,

For example, if Coverity Connect is installed on the ci m exanpl e. comwith the default settings,
the URLis http://ci m exanpl e. com 8080. If Coverity Connect does not start, see the
Coverity Platform 2020.12 User and Administrator Guide for Coverity Connect start, stop and status
instructions.

Create a new project that contains a Java (dynamic analysis) stream called Exanpl e- dynami c.

In Coverity Connect, be sure to create a Java (dynamic analysis) stream (not a Java stream) so that
Dynamic Analysis can commit defect data to it.

For more information about creating projects and streams in Coverity Connect, see the Coverity
Platform 2020.12 User and Administrator Guide.

Proceed to Section 2.2, “Step 2: Provide a program to be dynamically analyzed”.

2.2. Step 2: Provide a program to be dynamically analyzed

Because Dynamic Analysis watches a running program, you must have a program that compiles and runs
without Dynamic Analysis.

7

Note

Though unnecessary for running Dynamic Analysis, you can also run Coverity Analysis on the
source code to see the differences between the two analyses.

For recommendations that supplement the steps in this procedure, see Section 2.7, “Deploying
Dynamic Analysis in a production environment”.

The following procedure uses a sample program, Exanpl e. j ava, to demonstrate the tasks that are
required to perform a dynamic analysis. The sample forces race condition, deadlock, and resource leak
defects to occur so that you can see how Dynamic Analysis and Coverity Connect work. Exanpl e. j ava
is available at <i nst al | _di r>dynani c_anal ysi s/ dynani c- anal ysi s/ deno/ src/ si npl e.

To build the sample program:

1.

Create a local, writeable copy of the Dynamic Analysis / deno directory.
This directory is located under <i nst al | _di r >dynam c_anal ysi s/ dynam c- anal ysi s.
Use one of the following build procedures.
« Recommended way to build the program:
a. Use cov- confi gur e to set up your Java compiler.
> <install _dir>dynam c_anal ysi s/ bi n/cov-configure --java
If successful, the console will output the following message:

Generated coverity config.xm at location <install _dir>dynani c_anal ysi s/
config/coverity_config.xm

Running Dynamic Analysis on Java programs

Successfully generated configuration for the conpilers: apt java javac

b. From your local copy of the Dynamic Analysis / deno directory, use the cov- bui I d command
to capture a build of the sample program to an intermediate directory.

Execute the following commands:
> nkdir classes
> <jnstall _dir>dynani c_anal ysi s/ bi n/ cov-build

--dir internediate_dir_name
javac -d cl asses src/sinpl e/ Exanpl e. java

You can specify any hame for your intermediate directory.

The cov- bui | d process takes more time to complete than a build process that uses only the
native compiler. Upon success, the console outputs the following message:

The cov-build utility conpleted successfully.
« Alternative build procedure to follow only if using cov- bui | d is infeasible:
a. Compile your code base using j avac.
b. Runcov-enit-java --conpil er-out puts for each invocation of j avac.

For example:

> cov-enmt-java --findsource src --findjars lib:build-lib/ --dir
ny/internmediate/dir --conpiler-outputs build/classes/;build/junitclasses/

g Note

Alternatively, you can run cov- eni t - j ava alone, without - - conpi | er - out put s, for
each compiler invocation. Then, after running it for all invocations, you can run the cov-
em t - j ava command a final time with - - conpi | er - out put s.

For more detailed information about cov- eni t - j ava, see the Coverity Analysis.

Confirm that you can run the sample program without Dynamic Analysis:

> java -cp cl asses sinple. Exanpl e

The console displays the following sort of output when you run the program without Dynamic
Analysis:

*** RESOURCE_LEAK exanpl e
*** RACE_CONDI TI ON exanpl e
race=- 260

race=0

race=-46

race=-23

race=370

race=53

Running Dynamic Analysis on Java programs

race=-1324
race=248
race=- 310
race=- 205

*** DEADLOCK exanmple (this exanple mght actually deadl ock and need to
be forcibly terni nated)

@ Note

This test should finish in less than ten seconds. If it continues to run after thirty sections, use
Ctrl+C to kill the program.

The numbers after r ace= might vary per run.

4. Proceed to Section 2.3, “Step 3: Start the Dynamic Analysis Broker”.

2.3. Step 3: Start the Dynamic Analysis Broker
The Dynamic Analysis Broker performs two distinct tasks:
* It gathers source code and sends it to Coverity Connect.

« It accepts connections from Dynamic Analysis Agents and then sends their defect reports to Coverity
Connect. You will run the Agent in Section 2.4.

You start the Dynamic Analysis Broker with the cov- st art - da- br oker command after creating a
defect stream in Coverity Connect but before running your program with the Dynamic Analysis Agent.

@ Note

You can set several Broker options through a configuration file and environment variables. For
more information about this topic, see Appendix B.

The following procedure demonstrates source transfer from the Dynamic Analysis Broker to Coverity
Connect.

To run the Dynamic Analysis Broker:

1. Execute the cov- st art -da- br oker command from your local copy of the Dynamic Analysis /
deno directory. For example:

> <install _di r>dynam c_anal ysi s/ dynani c- anal ysi s/ bi n/ cov- st art - da- br oker
--host ci mexanpl e. com --dataport 9090 --user jdoe
--password secret --stream Exanpl e-dynanic
--dir internedi ate_dir_nane

The options perform the following actions:

e The - -host and - - dat aport options specify the Coverity Connect server.

e The - -user and - - passwor d options specify your Coverity Connect user name and password.

Running Dynamic Analysis on Java programs

e The - - st r eamoption specifies the Coverity Connect stream that will receive source and defects
from the Broker.

e The - - di r option identifies the intermediate directory that you specified for the cov- bui | d
command. The Broker sends resources that are in the directory to Coverity Connect.

The console displays the following sort of output when you start the Broker:

Dynam ¢ Anal ysis Broker 5.3.0 (cda5. 3t-push-696. 1)
Using Java 1.6.0_21 ...

Saving |l ogs and other information to run directory at
'/ hore/ j doe/ Cl C/ dynani c- anal ysi s/ deno/ cda_dat a/ br oker _1' .

Connecting to server at cimexanple.com 9090.

Aut henticating as 'jdoe'.

Preparing to commit to dynamic stream ' Exanpl e-dynam c'.
[SOURCE_COW T] starting xrefs.

[BROKER]: listening for agent connections on port 4422.

The console displays the following sort of output during the source commit to Coverity Connect:

[SOURCE_COW T] finished xrefs.

[SOURCE_COW T] starting source comit.

[SOURCE_COW T] finished source comit.

[SOURCE_COWM T] out put: 2010-10-26 18:05:58 UTC - Conmitting 8 files...
[0---------- 25- - 50---------- 75--------- 100|

EE R R R S R S S S I S S R I S R R R R S R O O

2010-10-26 18:05:59 UTC - Committing cross-references for 8 files...
[0---------- 25- - 50---------- 75--------- 100|

EE R R S S S S S I S R S R R R R S R R S

2010-10- 26 18:06: 00 UTC - Committing 102 functions...

[0---------- 25- - 50---------- 75--------- 100|

EE R R R S R S S S R S S R R R R R R R S O

2010-10-26 18:06: 00 UTC - Conmitting 5 output files...

[0---------- 25- - 50---------- 75--------- 100|

LR E R R SRR RS EEEEEEEEEEREEREEEEEEEEEEEEEREEEEEEEEEEEEES]

New snapshot | D 10009 added.

Sendi ng queued defects to server. Subsequent defects will be streaned.

For additional information about this command and its options, see the cov- da- st ar t - br oker B
command documentation.

2. Proceed to Section 2.4, “Step 4: Run a program with the Dynamic Analysis Agent”.
2.4. Step 4: Run a program with the Dynamic Analysis Agent

The Dynamic Analysis Agent sends the defects that it finds in your running Java program to the Dynamic
Analysis Broker, which forwards the data to a Dynamic Analysis stream in Coverity Connect, where

cov_command_ref.pdf#cov-start-da-broker

Running Dynamic Analysis on Java programs

you can view and triage the defects. After defining a Dynamic Analysis stream in Coverity Connect and
starting the Dynamic Analysis Broker, you can run your program with the Dynamic Analysis Agent.

To run the Dynamic Analysis Agent:

1.

While the Broker is running, open a new console to your local copy of the Dynamic Analysis / deno
directory and execute the following command from it:

> cov-build --test-capture --java-da --da-broker |ocal host \
--build-id-dir internediate_dir_nane \
--log-dir internediate_dir_nanme \
java -cp cl asses si npl e. Exanpl e

With the - - j ava- da and - - da- br oker opt i ons, the cov- bui | d B command injects the
Java Dynamic Analysis agent into JVM invocations under an arbitrary command. In this case, the
command is a single direct JVM invocation.

Alternatively, you can manually configure the agent for a JVM invocation, as in this command:

> java -javaagent:<install _dir>dynam c_anal ysi s/ dynam c- anal ysi s/
dynami c- anal ysis.jar -cp cl asses sinpl e. Exanpl e

On Windows, you need to surround the options in double quotes if you use a directory path that
contains spaces. For example:

> java "-javaagent:\Program Fil es\ Coverity Integrity
Cent er\ dynani c- anal ysi s\ dynam c- anal ysi s.jar"
-cp cl asses sinpl e. Exanpl e

2 Note

This step assumes that you usually start your Java applications with j ava <ar gurment s>, so
it adds the - j avaagent argument to start the Dynamic Analysis Agent. The command takes
the following form:

> java -javaagent:<install _dir>dynam c_anal ysi s/ dynami c- anal ysi s/
dynam c- anal ysi s.jar[=opti ons] <argunents>

Here, opt i ons specifies a list of opt i onnanme=val ue settings separated by commas without
spaces. These options specify the behavior of the dynamic analysis. See Appendix A for
examples and a description of the Dynamic Analysis Agent options.

After you execute the command line, the Dynamic Analysis Agent watches the program run and
looks for actual and potential race conditions, deadlocks, and resource leaks.

The console displays the following sort of output when you run the program:

Dynami c Anal ysis for Java 5.0.0 (cdab. Ot-push-516. 169)
Using Java 1.6.0_14-ea (from Sun M crosystens Inc.) on .
Connecting to DA broker at |ocal host: 4422
Java agent transforner installed
*** RESOURCE LEAK exanpl e

10

cov_command_ref.pdf#cov-build

Running Dynamic Analysis on Java programs

*** RACE_CONDI TI ON exanpl e

race=- 30
race=74
race=- 3196
race=- 5359
race=- 1450
race=264
race=980
race=- 3240
race=-12688
race=-1619

*** DEADLOCK example (this exanple mght actually deadl ock and need
to be forcibly term nated)

Once the Dynamic Analysis Agent connects to the Broker, the Broker console displays the following
sort of output:

[AGENT: | ocal host, workload:run_1, timestanp: . . .]: agent connected.
[AGENT: | ocal host, workload:run_1, tinestanp: . . .]: finished
normal | y.

Reported 3 defects before defect mergi ng (DEADLOCK: 1
RACE_CONDI TI ON: 1 RESOURCE_LEAK: 1)

The second line, which includes f i ni shed nor nal | y, can happen only after you kill a hung
process.

Log into Coverity Connect and view the four defects in the Example project.

Note that you can see Dynamic Analysis defects in Coverity Connect as soon as the Broker finishes
sending source code to Coverity Connect. You do not need to wait until your tests finish or the broker
shuts down.

To see the defects, click the link to the Example-dynamic project from the Projects menu.

Figure 2.1. Defects in Coverity Connect Projects screen

0 Example-dynamic-project ~ Configuration ¥ Help ¥ Admin User ¥ Enter CID(s)

= Issues: Project Scope | All In Project o Q

ciD Type Impact First Detected ¥ Owner Classification Severity Action Component Category

10002 Thread deadlock Medium 08/26/15 Other Program hangs

10001 Data race condition Medium 08/26/15 Other Concurrent data access

1 of 3 issues selected < |Page of1 »

You can also open the Quality dashboard in Coverity Connect to see a graphical representation of
the defect total for the project.

11

Running Dynamic Analysis on Java programs

Figure 2.2. Defects in the Coverity Connect Dashboard screen

Issue Trend 4 Total Issues Detected

Fale Posifves 0

T
% 255]
% of o
=— Foged = Quis@anging

Top 5 « lssues by Owner Top 5 = New by Owner Top 5 = Qutstanding by Cemaer

For additional examples from this exercise, see Chapter 3, Dynamic Analysis defects reports.

3. Proceed to Section 2.5, “Step 5: Stop the Broker”.

2.5. Step 5: Stop the Broker

After the program finishes, it is a good practice to stop the Broker.
To stop the Broker:
« From another console, execute the cov- st op- da- br oker command:
> <install _dir>dynam c_anal ysi s/ dynami c- anal ysi s/ bi n/ cov- st op- da- br oker
The console displays the following output when you stop the Broker:
Sendi ng request (BROKER_CLEAN SHUTDOWN) to broker at |ocal host: 4422.

[BROKER] : cl ean shutdown: shutting down when agents and source commit finish.

12

Running Dynamic Analysis on Java programs

[BROKER] : done |istening for agent connections.
[BROKER]: waiting for 0 agent(s) to conplete.

[BROKER] cl osed connection with server.

[BROKER] sent 3 defects to the server.

2 Note

If you do not stop the Broker, it will stop by default 600 seconds after the last Dynamic Analysis
Agent disconnects. You can change the number of seconds by using the - - shut down- af t er &2
option to cov- st art - da- br oker.

See the cov- st op- da- br oker Et reference page in the Coverity 2020.12 Command Reference
for a list and description of the command options.

2.6. Using an Ant build file to run Dynamic Analysis on your program

You can also use an Ant build file to run Dynamic Analysis on a Java program. The following procedure
provides general guidelines for adding Dynamic Analysis functionality to your Ant build file.

7 Note

To use a sample build file that follows these guidelines, see Section 2.6.1, “Using a sample Ant
build file”.

For recommendations that supplement the steps in this procedure, see Section 2.7, “Deploying
Dynamic Analysis in a production environment”.

To add Dynamic Analysis Ant tasks to a build file:
1. Include the following lines inside the <pr oj ect > element in the build file:

<t ypedef resource="conl coverity/anttask.xm"
cl asspat h=<i nstal | _di r>dynam c_anal ysi s/l ibrary/coverity-anttask.jar">

2. Incorporate any of the following Dynamic Analysis Ant tasks into the build file:

cov-dynani c- anal yze-j ava &
Run a Java program with Dynamic Analysis enabled using an Ant task.

For recommended build techniques, see Section 2.7, “Deploying Dynamic Analysis in a
production environment”.

cov- dynami c-anal yze-j unit &
Run tests from the JUnit testing framework with Dynamic Analysis enabled.

cov-start-da-broker B2
Start the Dynamic Analysis Broker from an Ant task.

cov- st op- da- br oker B
Stop the Dynamic Analysis Broker using an Ant task.

13

cov_command_ref.pdf#clo_shutdownafter
cov_command_ref.pdf#cov-stop-da-broker
cov_command_ref.pdf#cov-dynamic-analyze-java
cov_command_ref.pdf#cov-dynamic-analyze-junit
cov_command_ref.pdf#ant_start_da_broker
cov_command_ref.pdf#ant_stop_da_broker

Running Dynamic Analysis on Java programs

For more information about these tasks, see the Coverity 2020.12 Command Reference.
2.6.1. Using a sample Ant build file

Dynamic Analysis provides a sample Ant build file, <i nstal | _di r >dynani c_anal ysi s/ dynani c-
anal ysi s/ deno/ bui | d. xrml , that executes a Java class called si npl e. Exanpl e. This program is
described in Section 2.2, “Step 2: Provide a program to be dynamically analyzed”.

To run Dynamic Analysis on a sample program with bui | d. xni :

1. If you have not done so already, create a project in Coverity Connect called Example that
preconfigures a set of streams for Dynamic Analysis.

This step generates a Dynamic Analysis stream. If you performed this step in Section 2.1, you do not
need to repeat it. You can proceed to the next step, instead.

2. If you have not done so already, create a local copy of the Dynamic Analysis / deno directory.

This directory is located under <i nst al | _di r >dynami c_anal ysi s/ dynam c- anal ysi s/ . If
you performed this step in Section 2.2, you do not need to repeat it. You can proceed to the next
step, instead.

3. Update the attributes in your local copy of deno/ Exanpl e. br oker - conf i g to match the Coverity
Connect installation that supports your Example-dynamic stream.

The default configuration file looks something like the following:

Update these attributes to match your Coverity Connect configuration.
host =ci m exanpl e. com

dat apor t =9090

user =j doe

passwor d=secr et

st r eanrExanpl e- dynami c

If you do not know the values to use, contact your Coverity Connect administrator.
4. Run the following Ant command from your local copy of the deno directory:

> ant da. si npl e. exanpl e

The following console output is edited and abbreviated:

> ant da. si npl e. exanpl e
Bui l dfile: build.xm

si npl e. agent :

[cov-dynami c- anal yze-java] Loadi ng Dynam ¢ Anal ysis .

[cov-dynam c-anal yze-java] Dynami c Analysis for Java 5.0.0 .

[cov-dynam c- anal yze-java] Using Java 1.6.0_10 .

[cov-dynam c- anal yze-java] Connecting to DA broker at | ocal host: 4422
[cov-dynam c-anal yze-java] Java agent transfornmer installed

[cov-dynam c- anal yze-java] *** RESOURCE_LEAK exanpl e

14

Running Dynamic Analysis on Java programs

[cov-dynani c-anal yze-java] *** RACE_CONDI TI ON exanpl e

[cov-dynami c- anal yze-j ava] race=4378
[cov-dynami c- anal yze-j ava] race=28059
[cov-dynami c- anal yze-j ava] race=736

[cov-dynami c- anal yze-j ava] race=633

[cov-dynami c- anal yze-j ava] race=4574
[cov-dynami c- anal yze-j ava] race=-720
[cov-dynami c- anal yze-j ava] race=- 1256
[cov-dynami c- anal yze-j ava] race=- 3443
[cov-dynami c- anal yze-j ava] race=897

[cov-dynami c- anal yze-j ava] race=-1709

[cov-dynam c- anal yze-java] *** DEADLOCK exanpl e (exanple night need to be
t er mi nat ed)

2.6.2. Description of the sample Ant build file

The comments in <i nstal | _di r >dynam ¢_anal ysi s/ dynamni c- anal ysi s/ deno/ bui | d. xml
describe its targets and how they work together. The following lines define the property name and a path
ID that is called by the da. si npl e. exanpl e target.

<property nane="config.file" |ocation="Exanple. broker-config"/>
<l-- classpath to run the exanples and denpbs -->
<pat h i d="denvs. cl asspat h">
<pat hel ement | ocati on="cl asses"/>
<pat hel ement | ocation="lib/plot.jar"/>
</ pat h>

The da. si npl e. exanpl e target calls the following targets:
e test.cimconnection

Validates the configuration in Exanpl e. br oker - conf i g. This target uses cov- st art - da- br oker
with onl yt est connecti on="t rue". If this target fails, you need to fix the configuration file.

<target nane="test.ci mconnection"
descripti on="Test that the settings in 'Exanple. broker-config'
suffice to conmt defects &I M. ">
<cov- st art - da- br oker
failonerror="true"
configfile="${config.file}"
onl yt est connecti on="true"
/>
</target>

e source.comm t

Commits the source code to Coverity Connect. This target uses cov- st art - da- br oker with

onl ysour ceconmi t ="t rue" . Splitting the source commit from the dynamic defect commit —
especially in Ant build files— is a good practice because it ensures that the whole target will fail if the
source commit fails.

<property name="denos.idir" |ocation="exanple-idir"/>

15

Running Dynamic Analysis on Java programs

<target nane="source.comit" depends="buil d-project">
<cov- st art-da- br oker
failonerror="true"
configFile="${config.file}"
dir="${denos.idir}"
onl ySour ceCommi t ="t rue"
/>
</target>

* broker.listen

Starts the Broker in the background. This target uses cov- st art - da- br oker with
onlylisten="true" to listen for Dynamic Analysis Agent connections and to stream their defects to
Coverity Connect.

<target name="broker.|isten">
<cov-start - da- broker
failonerror="true"
configfile="${config.file}"
onlylisten="true"
/>
</target>

* sinpl e. agent

Runs the example with the Dynamic Analysis Agent while connected to the Broker. This target uses the
cov- dynam c- anal yze-j ava Ant task, which sets the r epeat - connect option of the Agent to 20
by default. Note the similarity of this task to the si npl e. exanpl e task, which is how you would run it
without Dynamic Analysis.
<target name="sinpl e.agent"” depends="buil d-project">
<cov-dynani c-anal yze-j ava
cl assnanme="si npl e. Exanpl e" failonerror="true">
<cl asspath refi d="denos. cl asspath"/>
</ cov-dynani c- anal yze-j ava>
</target>

e br oker. shut down

Shuts down the Broker. This target uses the cov- st op- da- br oker Ant task.

<t arget nane="br oker. shut down">
<cov- st op- da- br oker shut downt ype="cl ean"/ >
</target>

2.7. Deploying Dynamic Analysis in a production environment
The following techniques are recommended.
* Build your program for use with Dynamic Analysis:

« To help ensure that the Dynamic Analysis Broker sends all of your source and class files to Coverity
Connect, use cov- bui | d (instead of the alternative build process) to capture these resources

16

Running Dynamic Analysis on Java programs

before you run the Broker. For examples of these build processes, see Section 2.2, “Step 2: Provide
a program to be dynamically analyzed”.

« Make sure the source code and bytecode that you capture through the build process is the same as
the bytecode that you run with Dynamic Analysis. Mismatches are likely to make Coverity Connect
report incorrect line numbers for the location of defects, events in defects, and stack traces in events.
As a consequence, it might be difficult for developers to find the issues in the source code.

« Make sure that your bytecode contains debug symbols and that no code coverage tools have
obfuscated or mangled it. Deployments that use aspect-oriented programming tools such as AspectJ
or other bytecode re-writing tools such as the EMMA code coverage tool can remove debugging
information or make it inaccurate. Running Dynamic Analysis on bytecode that has been altered
by such tools can cause an improper alignment between the Dynamic Analysis defect reports in
Coverity Connect and the source code.

Send the source code and defect reports to Coverity Connect separately. This practice allows you to
manage the two steps independently on different machines or at different times. If a problem occurs,
the two steps can fail separately.

On a build machine, you can run cov- bui | d and then use the - - onl y- sour ce- conmi t option
tocov-start - da- broker to send source code to Coverity Connect without any defect reports. At
another time, and perhaps on a different machine, you can run cov- st ar t - da- br oker with the - -
onl y-1i st en option and then run your tests with the Dynamic Analysis Agent.

If the broker and agent are running on different machines, you need to set the hostname or IP address
on which the Broker is running when you start the Dynamic Analysis Agent. You use the br oker -
host option for this purpose. For examples, see Section A.1, “Sample Dynamic Analysis start
commands”. For a list of options that you might find useful, see Section A.2, “Dynamic Analysis Java
Agent options and Ant attributes”. You need to make sure that no firewall blocks the connection.

Run tests that exercise as much of your program as possible and that perform multi-threaded
operations: Simple unit tests are unlikely to result in good defect reports. For details on this topic, see
Section 1.2, “Obtaining thorough analysis results”.

17

Chapter 3. Dynamic Analysis defects reports

Table of Contents

Dynamic Analysis generates reports for any RESOURCE_LEAK, RACE_CONDITION, and DEADLOCK
defects that it finds in a Java program. For more information about the specific types of defects, see the
Coverity 2020.12 Checker Reference. We use the program in <i nstal | _di r >/ dynam c- anal ysi s/
deno/ src/ si npl e/ Exanpl e. j ava from Chapter 2 as a case study to describe Dynamic Analysis
defect reports. To follow along with the discussion using Exanpl e. j ava, bring up Coverity Connect and
select the project named Example-dynamic.

Note

If you are following the case study, you have installed and started Coverity Connect, and stepped
through the procedures in Chapter 2. At this point you have compiled, run, dynamically analyzed,
and committed defect data for Exanpl e. j ava to Coverity Connect. After selecting your project,
you'll see a list of returned defects, similar to those in Figure 2.1, “Defects in Coverity Connect
Projects screen”.

3.1. A RESOURCE_LEAK defect

From your defects list, click the Resource leak defect. Coverity Connect displays a screen that looks

like Figure 3.1, “A RESOURCE_LEAK defect reported by Dynamic Analysis and displayed in Coverity
Connect”.

Figure 3.1. A RESOURCE_LEAK defect reported by Dynamic Analysis and displayed in Coverity
Connect

S | da-demo v

Configuration ¥ Help ¥ Admin User ™

= Issues: By Snapshot | Outstanding Issues 0 ﬁ

N > P =
CID Type Impact Status First Detected Owner Classification Severity Action Component 0250 R el oar
10258 Data race condition Medium New 07/24/18 Other The system resource will not be reclaimed and reused until
— " " S)) " " finalized, reducing the availability of the resource.
10259 Resc k High New 07/24/18 S ifie pecified Undecidec Other
- In simple.Example.simpleResourcelLeak: A system resource is
10260 Thread deadlock Medium New 07/24/18 Other

released only then the object is finalized, which may not be as
soon as expected (CWE-404)

w Triage
1 of 3 Issues selected < |Page[1lof1 > Classification: | Unclassified 4
¢+= ¥ m Examplejava . Severity: | Unspecified s
¢ CID 10259 (#1 of 1): Resource leak (RESOURCE_LEAK) Action: | Undecided g

resource_allocation: Allocating resource of type “java.io.PrintStream"
leaked = new PrintStream(new FileOutputStream(f), true, "UTF-8");
leaked.println("some stuff");
/* The file did not close. A resource was leaked before it
* went out of scope. */ Enter comments (See the Triage History section below for
leaked = null; previous comments)
} catch (Throwable e) {
System.err.println("Problem with RESOURCE_LEAK example: " + e);
}
quietlyDelete (f); Apply + Next Apply

Ext. Reference: |Type attribute text

Owner: |Unassigned

}

/* » Projects & Streams
* RACE_CONDITION defect:
* Two threads access a field without acquiring a lock.
*/
static class Race {

static int race = 0; ~ Occurrences

» Detection History

» Triage History

18

Dynamic Analysis defects reports

In the image above, you can see the defect description and impact statement that is reported by Dynamic
Analysis when a RESOURCE_LEAK is observed. It shows that some resource (like a socket or a file
handle) has been allocated, but not properly closed. The resource has leaked. The bottom section of the
report lists the streams where the defects were reported and the events that provide clues for finding the
sources of the defect.

Here's an example of some code where Dynamic Analysis, reported in the si npl eResour ceLeak
method, shows the RESOURCE_LEAK defect events (in italicized comments):

5 /*

16 * RESOURCE_LEAK defect:

17 ¢ File is opened for output and | ater not closed.
18 */

19 static PrintStream | eaked;
20 public static void sinpleResourceLeak() {

21 Systemout. println("*** RESOURCE_LEAK exanpl e");

22 File f = null;

23 try {

24 f = File.createTenpFil e("da-example", null);

/* Al'locating resource of type "java.io.PrintStreani. */

25 | eaked = new PrintStream(new Fil eQut put Strean(f), true, "UTF-8");
26 | eaked. printl n("some stuff");

27 /* The file did not close. A resource was | eaked before it

28 * went out of scope. */

29 | eaked = nul |l ;

30 } catch (Throwable e) {

31 Systemerr.println("Problemw th RESOURCE_LEAK exanple: " + e);
32 }

33 qui etl yDel ete(f);

34 }

Dynamic Analysis shows ar esour ce_al | ocati on event at the location in the code where the
resource is opened. The left pane of Coverity Connect shows the stack trace of method calls that lead
up to this event. In the preceding example, Dynamic Analysis observes that the Fi | eCut put St r eam
is opened and not closed, and reports a defect. The file handle (or file descriptor) associated with the
Fi | eQut put St r eamremains open until | eaked goes out of scope and the garbage collector gets
around to reclaiming its storage. For details about the RESOURCE_LEAK checker, see the Coverity
2020.12 Checker Reference.

3.2. A RACE_CONDITION defect

If you click the RACE_CONDITION defect, Coverity Connect displays a screen similar to Figure 3.2.

19

Dynamic Analysis defects reports

Figure 3.2. A Dynamic Analysis RACE_CONDITION defect displays in Coverity Connect

S | da-demo . Configuration ¥ Help ¥ Admin User ¥

= Issues: By Snapshot | Outstanding Issues o ﬁ

ID ATy | t tatt First Detectt I ificati i Acti it
Cl ype Impact Status irst Detected Owner Classification Severity ction Component 10258 Data race condition
10258 Dataracecondition ~ Medium New 07/24/18 | Unassigned | Unclassified Unspecified Undeelde:i Other The value of the shared data will be determined by the
10259 Resource leak High New 07/24/18 Other interleaving of thread execution.
_ In simple.Example$Race$Upper.run: This field is not protected by
10260 Thread deadlock Medium New 07/24/18 Other a consistent synchronization object (lock) at all times, causing a
race condition (CWE-366)
v Triage
1 of 3 issues selected < Page 1lof 1| > Classification: | Unclassified s
Severity: | Unspecified 5
+= X m Examplejava v ¥
3 quietlyDelete(f); Action: | Undecided 5
3 5 Ext. Reference: |Type attribute text
36 /* i
: \Unassigned
37 * RACE_CONDITION defect: Ores 9
as * Two threads access a field without acquiring a lock. Enter comments (See the Triage History section below for
39 */ previous comments)
static class Race { =]

static int race = 0;

static class Upper implements Runnable {
public void run() {
45 for (int i=0; 1<100000; ++i) {
€ CID 10258 (#1 of 1): Data race condition (RACE_CONDITION) » Projects & Streams
field_write: Thread "upper_0" writes field “race" of class "simple.Example$Race" while holding no locks.

Apply + Next ‘ Apply

» Detection History

field_read: Thread "upper_0" reads field "race" of class "simple.Example$Race" while holding no locks.
46 ++race;
Thread.yield(); ~ Occurrences

» Triage History

48 }

In the image above, we see the defect description and impact statement of a RACE_CONDITION

that's been reported by Dynamic Analysis. A RACE_CONDITION defect is found when multi-threaded
accesses to a field are not protected by synchronizing on the same lock. The bottom section of the report
lists the streams where the defects are reported and also shows the events that help you identify the
source of the defect

Here's an example of some code that shows the RACE_CONDITION defect events in italicized
comments:

36 /*

37 * RACE_CONDI Tl ON def ect :

38 * Two threads access a field w thout acquiring a | ock.
39 */

40 static class Race {

41 static int race =0

42

43 static class Upper inplenments Runnable {

44 public void run() {

45 for (int i=0; i<100000; ++i) {

/* Thread "upper_0" wites field "race" of class "sinple. Exanpl e$Race" whil e hol di ng
no | ocks. */
/* Thread "upper_0" reads field "race" of class "sinple. Exanpl e$Race" whil e hol di ng no
| ocks. */
46 ++r ace;
47 Thr ead. yi el d();
48 }
49 }
50 }
51

20

Dynamic Analysis defects reports

52 static class Downer inplenents Runnable {
53 public void run() {
54 for (int i=0; i<100000; ++i) {

/* Thread "downer_0" reads field "race" of class "sinple. Exanpl e$Race" whil e hol di ng
no | ocks. */

55 --race,

56 Thread. yiel d();

57 }

58 }

59 }

60

61 public static void sinpleRaceCondition() {

62 Systemout. println("*** RACE_CONDI TI ON exanpl e");
63 for (int i=0; i<10; ++i) {

64 race = 0;

65 runThr eadsToConpl et i on(

66 new Thr ead(new Upper (), "upper_" + i)
67 , hew Thread(new Downer (), "downer_" + i)
68)

69 Systemout. println(" race=" + race);

70 }

71 }

72 }

You might expect the preceding code to print r ace=0 after each iteration of the f or loop in

si mpl eRaceCondi t i on() . Each iteration of the f or loop in si npl eRaceCondi ti on() starts two
concurrent threads. One thread runs Upper . r un() and the other runs Downer . run() . The Upper
thread increments r ace 100,000 times and the Downer thread decrements r ace 100,000 times,

which one might expect to make r ace==0. However, if you run the preceding code, you see many
different outputs for r ace. The output depends on the details of how the Upper and Downer threads are
scheduled. For example, the following thread schedule shows what can go wrong:

1. Upper reads r ace==0.

2. Downer reads r ace==0.

3. Upper computes r ace+1==1 and stores 1 back into r ace.
4. Downer computes r ace- 1==- 1 and stores it back into r ace.
5. Now race==-1.

Many other variations are possible, hence the many numbers after "r ace="in the output. Dynamic
Analysis notices this race condition in the output. When Dynamic Analysis watches this preceding
program run, it notices that the field r ace is accessed by two different threads that do not hold a lock
that could guard r ace and prohibit problematic thread schedules. Thus, Dynamic Analysis reports a
potential RACE_CONDITION defect in this code. Notice that Dynamic Analysis reports fi el d_r ead and
field_wite events where threads upper _0 and downer _0 accessr ace.

3.3. A DEADLOCK defect

If you click the DEADLOCK defect, Coverity Connect displays a screen similar to Figure 3.3:

21

Dynamic Analysis defects reports

Figure 3.3. A Dynamic Analysis DEADLOCK defect displays in Coverity Connect

S da-demo - Configuration ¥ Help ¥ Admin User ¥

= |Issues: By Snapshot | Outstanding Issues ﬁ o

CID ~ Type Impact Status First Detected Owner Classification Severity Action Component 10260 Thread deadlock
10258 Data race condition Medium New 07/24/18 Other Two or more threads will be stuck waiting forever if each holds a
10259 Resource leak High New, 07/24/18 Other lock the other needs to acquire.
fffff Y " " ” / In simple.Example$Deadlock$BA.run: Threads may try to acquire
10260 Thre Medium New if inspecified Undecidec Other two or more locks in different orders, potentially causing deadlock
(CWE-833)
v Triage
1 of 3 issues selected < Page| 1t|of1 > Classification: | Unclassified :
Severity: | Unspecified s
+= X W Examplejava v Y
dowork () ; Action: | Undecided 9
}
} Ext. Reference: Type attribute text |
sleep();
} t Owner: |Unassigned ‘
} 4
} Enter comments (See the Triage History section below for

previous comments)
static class BA implements Runnable {
public void run() {
for (int i = 0; i < 100; ++i) {
lock: Acquiring lock 0x1e409145, an instance of "java.lang.Object’ AR
synchronized (B) {
€ CID 10260 (#1 of 1): Thread deadlock (DEADLOCK) » Projects & Streams
nested_lock: Acquiring lock 0x5f7d9b7e, an instance of *java.lang.Obiject*, while holding lock 0x1e409145, an instance of *java.lang.Object".
synchronized (A) {
doWork () ; » Triage History
}

» Detection History

v Occurrences

In this screenshot, Dynamic Analysis reports a DEADLOCK defect that explains the defect description
and impact statement (on the right side of the screen). A DEADLOCK occurs when threads try to acquire
two or more locks in different orders. The bottom section of the report lists the streams where the defects
were reported and the event that provides a clue for finding the source of the defect.

Here's an example of some code that shows the DEADLOCK defect events in italicized comments:

74 /*
75 * DEADLCCK def ect :
76 * Two threads acquire two |l ocks in different orders.
77 */
78 static class Deadl ock {
79 static bject A = new Object();
80 static bject B = new Object();
81
82 static class AB inplenents Runnabl e {
83 public void run() {
84 for (int i =0; i < 100; ++i) {
/* Acquiring | ock 0x1d03a4e, an instance of "java.lang. Object". */
85 synchroni zed (A) {

/* Acquiring | ock Oxd5cabc, an instance of "java.lang.Object", while holding | ock
0x1d03ade, an instance of "java.lang. Object". */
86 synchroni zed (B) {
87 doWbr k() ;
88 }
89 }
90 sl eep();
91 }
92 }

22

Dynamic Analysis defects reports

93
94
95
96
97

}

static class BA inplements Runnable {
public void run() {
for (int i =0; i < 100; ++i) {

/* Acquiring | ock Oxd5cabc, an instance of "java.lang.Object". */

98

synchroni zed (B) {

/* Acquiring | ock 0x1d03a4e, an instance of "java.lang. Object", while holding | ock

Oxd5cabc,

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

You might expect the preceding example to call doWor k() 200 times while holding locks A and B (100

an instance of "java.lang. Cbject". */

synchroni zed (A) {
doWwbr k() ;
}

sl eep();

}

public static void sinpleDeadl ock() {
Systemout. println("*** DEADLOCK exanple (this exanple may"
+ " actually deadl ock and need to be forcibly term nated)");
runThr eadsToConpl et i on(
new Thread(new AB(), "AB")
, new Thread(new BA(), "BA")

DE

times from AB. run() and 100 times from BA. r un()). Often, those 200 calls are all that happens.

However, the AB thread and the BA thread can deadlock: they can enter a state in which both are stuck

and neither can escape.

Consider what happens if AB acquires lock A, but before it can acquire lock B, BA acquires it. Now thread
AB is holding A and is waiting on lock B, but thread BA is holding lock B and is waiting on lock A. Neither
thread will release the lock it holds nor acquire the lock it waits for, and so neither thread can progress.

As Dynamic Analysis watches this program run, it notices the potential for these threads to hold locks

while waiting for other locks in such a way that deadlock is possible. Thus, Dynamic Analysis reports a

DEADLOCK on this code.

23

Chapter 4. Troubleshooting

Table of Contents

This chapter describes various Dynamic Analysis problems and solutions.

4.1. I'm having problems starting the Dynamic Analysis Broker or
connecting to Coverity Connect.

Solution:

Use the following steps to ensure that the Broker and Coverity Connect operate and connect properly.

1.

Check the Broker start command options.

Verify Coverity Connect server hostname (specified with the - - host command line option) the user
name (- - user), password (- - passwor d), and dynamic analysis stream name (- - st r eam). The host
name for Coverity Connect server is the same as the one you connect to when accessing the Coverity
Connect web interface. The user name and password are the same as those used to log on to the
web interface of Coverity Connect. All of these options, excluding stream, are similar to options for the
cov-comi t - def ect s command (the command used to commit Coverity Analysis results to Coverity
Connect). If you are unsure about these settings, check with your Coverity Connect administrator.

To test the Broker connection to Coverity Connect, run a valid cov- da- st art - br oker command
with the - - onl y-t est - connect i on option. If you get a message similar to the following, then your
options are correct and the Broker successfully listens for defects for Dynamic Analysis instances:

SUCCESS: everything seens to work (see messages above). Exiting now
since this is only a test.

. Check the Broker source commit.

You can test this by running the Broker source commit function separately from the Broker listen/send
function (that is, the function that listens for Dynamic Analysis Agent connections and sends defects to
Coverity Connect). Run the Broker with all of the options from step 1, plus - - onl y- sour ce- conmmi t
and any source commit options necessary to do a source commit. Wait for the source commit process
to finish, then run the Broker with - - onl y- | i st en and start the Dynamic Analysis Agents. Once the
source commit function and the listen/send functions are properly debugged and configured, you can
run both Broker functions together (the default behavior).

. Make sure there is no firewall or other security software preventing the Broker from listening on its

port, the Broker contacting Coverity Connect, or Agents contacting the Broker.

4.2. Where are the cov- da- st art - br oker log files and other
information files?

By default, cov- da- st art - br oker log files and other information files are in the directory
<br oker _dir>/cda_dat a/ br oker _<numnber >/, where <Br oker _di r > is the directory where you

24

Troubleshooting

ran cov- start-da- Broker. The file | og_br oker. t xt records Broker activity such as the status of a
source commit, Agent connections and disconnections and warnings. The console on the machine where
the Broker runs displays most of the same data, although | og_br oker . t xt might contain additional

data. The other log files are used for support. You can change the location of the run directory with the - -

rundi r & option.

4.3. In starting the Broker and Agent from a script, the Broker starts,
but the Agent fails with Coul d not connect to Broker.

Example:

Fatal error: Could not connect to Broker at | ocal host: 4422
(j ava. net . Connect Excepti on: Connecti on refused)

Solution:
When starting the Broker and Agent from a script, be sure to set the r epeat - connect option for
the Agent to something greater than 0 (20 is a good starting point, but a slow network or overloaded

machines might require a longer wait). The Broker needs time to start up and listen for Agent
connections. Having the Agent start immediately and trying to connect might fail.

4.4. 1think Dynamic Analysis Agent might be causing a problem with
my program.

To determine if Dynamic Analysis Agent is causing a problem with your program, verify that your program
runs correctly by itself in the same environment:

Does your Java program run by itself without errors?
* On the same machine?

* On the same JVM?

* With the same environment and configuration?

* With the same command line (if running your program from the command line, batch file, script and so
on)?

* Running the cov- dynani c- anal yze-j uni t task with enabl ed="f al se" or turning a cov-
dynam c-anal yze-j unit task into a junit task or a cov- dynani c- anal yze-j ava task into a Java
task?

» Are you running on a supported JVM?

25

cov_command_ref.pdf#clo_rundir
cov_command_ref.pdf#clo_rundir

Troubleshooting

4.5. The Agent is running with a program when the VM runs out of
memory and throws an Qut O Menor yEr r or error that is related to
heap memory.

g Note

If this error occurs with the Broker, see Section 4.7, “The Broker runs out of memory and throws an
OutOfMemoryError error that is related to heap memory.”.

Dynamic Analysis causes your application to use as much as eight times the normal memory. Adjust
the maximum heap size by using the JVM - Xnx argument (for details, run the j ava - X command-line
documentation).

For example:

java - Xmx2000
Switch to a new machine with more RAM, if possible.

If you are running on a 64-bit machine and a 64-bit JVM that supports the - XX: +UseConpr essedQops
option, use it. If you are using an older 64-bit VM without - XX: +UseConpr essedQops support, upgrade.
If you are using a 32-bit VM on a 64-bit machine with a lot of RAM, use a 64-bit JVM and the - XX:
+UseConpr essedQops option. If you can run the program on a smaller workload that demands less
memory, then do so.

You can also exclude instrumentation of non-essential classes using the excl ude-i nstrunment ati on
ori nst runent - onl y options to the Agent (see Section A.2, “Dynamic Analysis Java Agent options
and Ant attributes”). These options allow you to specify non-essential classes that Dynamic Analysis
does not need to watch. In general such excluding causes Dynamic Analysis to run faster and use less
memory, but it might also miss defects. In particular, it misses all RESOURCE_LEAK defects in excluded
code, as well as any lock acquisitions or field accesses in excluded code that could contribute toward

a RACE_CONDI TI ON or DEADLQOCK report. For example, one might exclude classes related to the
application server or other third party code, or include only com nmyconpany.

Another possibility is to live with the Qut of Menor y exceptions if the program is able to continue to run
and Dynamic Analysis is able to report useful defects. Although unlikely, some programs can and do
continue despite bursts where they go out of memory and skip some processing. If all else fails, run
Dynamic Analysis once with the race detector disabled and again with only the race detector enabled.

4.6. The Agent is running with a program that dies with an
Qut of Menor yError error that is related to permanent generation (or

per ngen).
g Note

If this error occurs with the Broker, see Section 4.8, “The Broker is running with a program that dies
with an OutofMemoryError message about permanent generation (or permgen).”.

26

Troubleshooting

Increase the size of the permanent generation with the - XX: MaxPer nSi ze command line option to the
JVM.

For example:
- XX: MaxPer nSi ze=128M

If you use a JVM other than the Sun Hotspot VM, the error message and command line option might be
different.

@ Note

The Permanent Generation space is removed in Java 1.8. The JVM will ignore the options -
XX: Per nSSi ze and - XX: MaxPer nfSi ze.

4.7. The Broker runs out of memory and throws an
Qut OF Menor yError error that is related to heap memory.

7 Note

If this error occurs with the Agent, see Section 4.5, “The Agent is running with a program when the
VM runs out of memory and throws an OutOfMemaoryError error that is related to heap memory.”.

Use one of the following solutions to increase the heap size:

» Create or edit a file called Cl C/ dynami c- anal ysi s/ bi n/ cov- st art -da- broker. viopti ons
that contains the following single line:

- Xmx2000M
 Use the following option with the cov- st art - da- br oker command:
- J- Xmx2000M

You can test that the command is passing arguments to the JVM by running the following command
and making sure that it prints the help message for the JVM:

> cov-start-da-broker -J-help

» Specify the | NSTALL4J _ADD VM PARAMS environment variable through your shell, in your shell script,
or on the command line. The following example sets it on the command line:

> | NSTALL4J_ADD VM PARAMB="- Xnx2000M' cov- st art - da- br oker
@ Note
This setting does not work on Windows platforms.

You can test that the setting is passing arguments to the JVM by running the following command and
making sure that it prints the help message for the JVM:

27

Troubleshooting

> | NSTALL4J_ADD VM PARANMS="- hel p" cov-start-da- br oker

4.8. The Broker is running with a program that dies with an
Qut of Menor yEr r or message about permanent generation (or

per ngen).

7

Note

If this error occurs with the Agent, see Section 4.6, “The Agent is running with a program that dies
with an OutofMemaoryError error that is related to permanent generation (or permgen).”.

Note

The Permanent Generation space is removed in Java 1.8. The JVM will ignore the options -
XX: Per nf5i ze and - XX: MaxPer ni ze.

Use one of the following solutions to increase the per ngen size:

Create or edit a file called Cl C/ dynam c- anal ysi s/ bi n/ cov-start-da-broker. vnoptions
that contains the following single line:

- XX: MaxPer nSi ze=128M
Use the following option with the cov- st art - da- br oker command:
- J- XX: MaxPer nSi ze=128M

You can test that the command is passing arguments to the JVM by running the following command
and making sure that it prints the help message for the JVM:

> cov-start-da-broker -J-help

Specify the | NSTALL4J _ADD_VM PARANMS environment variable through your shell, in your shell script,
or on the command line. The following example sets it on the command line:

> | NSTALL4J_ADD VM PARANMS=" - XX: MaxPer nSi ze=128M' cov- st art - da- br oker
@ Note
This setting does not work on Windows platforms.

You can test that the setting is passing arguments to the JVM by running the following command and
making sure that it prints the help message for the JVM:

I NSTALL4J_ADD VM PARAMS="- hel p" cov-start - da- br oker

Allocate more memory if the 128M allocation is too small.

If you are having trouble committing source or do not want to wait for the source commit to complete, and
you do not need to see the source, you can run the Dynamic Analysis Broker with the - -onl y-1i st en
option and commit defects without source.

28

Troubleshooting

4.9. How can | speed up the Dynamic Analysis process?

Use one or more of the following processes to speed up Dynamic Analysis:

» Give your program as much heap space as the process can allocate physical memory using - Xnx.
This is described in Section 4.5, “The Agent is running with a program when the VM runs out of
memory and throws an OutOfMemoryError error that is related to heap memory.”). More is better even
if the application is not throwing an Qut Of Menor yEr r or .

» Exclude instrumentation of non-essential classes as described in Section 4.5, “The Agent is running
with a program when the VM runs out of memory and throws an OutOfMemoryError error that is related
to heap memory.”

* Run Dynamic Analysis twice. The first time, run it with only the RACE_CONDI TI ON detector enabled.
The second time, run it with only DEADLOCK and RESOURCE_LEAK enabled.

« If you have multiple tests to run, start concurrent Dynamic Analysis Agents on different machines, each
of which runs on a different test or instance of your application. The Broker acts as a multiplexor that
collects and compiles defect data from various Agents to send to Coverity Connect.

4.10. | get defects inside j avax. swi ng. *. Are there defects in Swing?

Most likely your application is accessing Swing objects outside the event-dispatch thread. This is likely
a bug. Look further up in the stack trace to locate where your code first accesses Swing. To use Swing
properly within the presence of multiple threads, see this article: http://java.sun.com/products/jfc/tsc/

articles/threads/threads1.html &

4.11.1getan | nval i dCl assExcepti on when | run Dynamic Analysis.

Other instrumentation tools, such as EMMA, produce class files with invalid debug information. The JVM
verifier accepts these files, but Dynamic Analysis might not. If you see this problem try the following:

» Exclude instrumentation of the problematic class. That is, specify that Dynamic Analysis not watch its
execution using the excl ude-i nstrunent ati on ori nstrunent - onl y options to the Agent (see
Section A.2, “Dynamic Analysis Java Agent options and Ant attributes”).

» Send the class or a reproducer to Coverity if possible.

4.12. I've committed source code to the wrong stream, now all the
source code in that stream is gone.

Commit the right source code to that stream (see cov-start-da-broker --only-source-commit). Any defects
committed between committing the wrong source code and committing the right source code might not
properly associate with their source code.

4.13. How can | run the Dynamic Analysis Agent on tests that were
started with a Maven build?

Use the following steps as a guide. Both steps vary by environment.

29

http://java.sun.com/products/jfc/tsc/articles/threads/threads1.html
http://java.sun.com/products/jfc/tsc/articles/threads/threads1.html

Troubleshooting

1. Make sure that Maven forks a new JVM to run your tests.
2. Modify the arguments that start this JVM.
In place of <j vmar gs> in the following examples, you need to specify -
j avaagent: <install _dir_cic>/dynam c-anal ysi s/ dynani c- anal ysi s. j ar where

<i nstall _dir_cic>isyour Coverity Analysis installation directory.

« If you are using the Maven Surefire Plugin, try the following command-line argument to launch
your tests with different VM arguments:

nvn - DargLi ne="<j vmargs>" test

« If you are using the Maven 1.x default style of running JUnit tests, try the following command-line
argument:

maven - Dmaven. junit.fork=true -Dmaven.junit.jvmargs="<jvmargs>
For additional guidance, see the Maven documentation and your testing plugin.
s Note

Do not rely on unit tests for comprehensive Dynamic Analysis results. For more information, see
Section 1.2, “Obtaining thorough analysis results”.

30

Appendix A. Dynamic Analysis Agent command-line options
and Ant task attributes

Table of Contents

This appendix describes the Dynamic Analysis Agent command-line options and attributes for the cov-
dynam c-anal yze-j ava and cov- dynam c- anal yze-j uni t Apache Ant tasks. It also provides
three Dynamic Analysis Agent start examples.

A.l. Sample Dynamic Analysis start commands

Three sample Dynamic Analysis start commands are shown below. Note that you cannot have spaces
between the options and comma.

Example 1: This example starts the Java program and Dynamic Analysis Agent. It sets the options
br oker - host , br oker - port, fail fast (exitthe program if Dynamic Analysis can't connect to the
Broker), and r epeat - connect (try to reconnect to the Broker 60 times before giving up).

> java -javaagent:<install _dir>/dynam c-anal ysi s/ dynamni c-anal ysis.jar=
br oker - host =sf . host . com br oker - port =4423, f ai | f ast =Fal se, r epeat - connect =60
-cp cl asses/ sinpl e. Exanpl e

Example 2: This example starts the Java program and Dynamic Analysis Agent and disables the
RACE_CONDI Tl ON detector.

> java -javaagent:<install _dir>/dynan c-anal ysi s/dynam c-anal ysi s.jar
=br oker - host =sf . host . com br oker - port =4423, det ect -r aces=Fal se -cp cl asses/
si npl e. Exanpl e

Example 3: This example uses the excl ude- i nst runent at i on option to tell Dynamic Analysis not
to watch any of the classes in the example program. This reports no defects. Instead the console displays
the message Excluding instrumentation for classes whose fully qualified names start with si npl e. The
commands also set the fai | f ast and r epeat - connect options.

> java -javaagent:<install _dir>/dynam c-anal ysi s/ dynam c-anal ysi s.jar=
excl ude-i nstrunent ati on=si npl e., fail fast=true, repeat-connect =60

A.2. Dynamic Analysis Java Agent options and Ant attributes

Below are the Dynamic Analysis Java Agent options. Default values are in parenthesis. (For the Ant
attributes for cov- dynanmi c- anal yze-j ava and cov- dynani c- anal yze-j uni t, see cov-

dynani c- anal yze- j ava reference page B in the Coverity 2020.12 Command Reference for details
and options.)

det ect - deadl ocks=<bool ean>
Detect deadlocks. (True)

det ect - races=<bool ean>
Detect race conditions. (True.)

31

cov_command_ref.pdf#cov-dynamic-analyze-java_parameters
cov_command_ref.pdf#cov-dynamic-analyze-java_parameters

Dynamic Analysis Agent command-line options and Ant task attributes

det ect - r esour ce- | eaks=<bool ean>
Detect resource leaks. (True.)

use-resour ce- nodel s=<Fi | e>
(No Ant attribute.) Provide the RESOURCE_LEAK detector a file containing a list of additional
resource management methods. Specifying OPEN and CLOSE methods for a class tells the
RESOURCE_LEAK detector to report a RESOURCE_LEAK when an instance of that class has an
OPEN method called without a subsequent CLOSE method being called.

The format of this file is as follows:

<type>, <resource cl ass nane>, <resource net hod name>, <nethod
si gnat ur e>, <num par ans>, <i ndex of resource>

Where:
» <type>is one of:
« OPEN if this method creates the resource.
» CLOSE if this method releases the resource.
* OPEN_WRAPPER if this method wraps another resource.

e <resource class nane>: The class name for the resource. This name adheres to the syntax
used by the JVM specification.

e <resource et hod name>: The method name. This name adheres to the syntax used by the
JVM specification.

» <met hod si gnat ur e>: The signature for the method. The signature adheres to the syntax used
by the JVM specification.

* <num par ans>: The number of parameters the method takes.

» <index of resource>: The index of the wrapped resource in the parameter list. This should be
greater than 0 and less than <num par ans>. It is only valid for OPEN_WRAPPER, and should be - 1
for all other cases.

Here are some simple examples:

Specify the create/rel ease nethods for User Resource
OPEN, coni coverity/tests/resourceleak/ UserResource, <init> ()V,0,-1
CLOSE, confcoverity/tests/resourcelLeak/ User Resource, dispose,()V,0,-1

Specify a wapper for UserResource
CLOSE, comf coverity/tests/resourcelLeak/ User W appi ngResour ce, dispose,()V,0,-1
OPEN, coni coverity/tests/resourcelLeak/ User Wappi ngResour ce,
<init> (Ljava/lang/String;)V,1,-1
OPEN_WRAPPER, conf coverity/tests/resourcelLeak/ User W appi ngResour ce,
<init> (Lcom coverity/tests/resourcelLeak/ UserResource;)V, 1,0

32

Dynamic Analysis Agent command-line options and Ant task attributes

The j dkResour ceLi st . txt filein<i nstal | _di r>/dynam c-anal ysi s/ dynam c-
anal ysi s. j ar contains many more examples.

br oker - host =<host _or | P>

Specify the hostname or IP address on which you ran the Broker. (localhost)

br oker - port =<port _nunber >

Specify the port on which the Broker is listening. This is set with the br oker - port option to cov-
start-da- broker. If you intend to run more than one Broker instance simultaneously on the same
machine, it is a good practice to use non-default ports to avoid collisions. (4422)

col l ections-fil e=<fil ename>

(No Ant attribute.) Load a list of collection operations that the RACE_CONDITION detector uses to
detect races in collections. This option implies setting i nst r unent - col | ecti ons totrue. (None.)

excl ude-i nstrunent ati on=<col on_separated_I|ist_of _prefi xes>

fa

Exclude classes from being watched by Dynamic Analysis to speed up Dynamic Analysis. However,
Dynamic Analysis does not detect defects in excluded code nor as a result of actions performed in
excluded code (such as field access or lock acquisitions).

This option consists of a colon-separated list of prefixes of the fully qualified names to exclude. For
example:

"excl ude-i nstrumnent ati on=A. B" excludes any class whose name starts with "A. B", such as
"A. B", "A. B. c", or "A. Bc".

"excl ude-i nstrunent ati on=A. B. " (with a period) excludes "A. B. c", but not "A. B" nor "A. Bc".
(The default is to exclude nothing.)

| f ast =<bool ean>

If True, the Dynamic Analysis Agent exits the program it is watching if the Dynamic Analysis Agent
loses its connection to the Broker or has other problems. If False, the Dynamic Analysis Agent quietly
allows the program to continue running, even if Dynamic Analysis Agent cannot run properly. (False.)

i nstrunent -onl y=<col on_separated |ist_of prefixes>

Specify a colon-separated list of classes watched by Dynamic Analysis. Dynamic Analysis excludes
all other classes (same as if they were all specified as options to excl ude-i nstrunent ati on).
As with excl ude-i nst runent at i on above, using this option might speed up Dynamic Analysis,
but at the cost of missing defects. This option consists of a colon-separated list of prefixes of fully
qualified names to include. For example:

"I nst rument - onl y=A. B" includes any class whose name starts with "A. B", such as "A. B",
"A. B. c", or"A. Bc".

"i nstrument - onl y=A. B. " includes "A. B. ¢", but not "A. B" nor "A. Bc".

(The default is to include everything.)

i nstrunent - arrays=<bool ean>

Watch reads and writes into arrays to report race conditions. (False.)

33

Dynamic Analysis Agent command-line options and Ant task attributes

i nstrument - col | ecti ons=<bool ean>
Detect race conditions on collections. For example suppose map isaj ava. util . Map and one
thread executes map. put (" key", "val ue") without holding any locks. If Dynamic Analysis sees
another thread access this map, it reports a RACE_CONDI TI ON. (True.)

overri de-security-mnager =<bool ean>
Install a permissive security manager (j ava. | ang. Secur i t yManager) that allows all operations
except the installation of other security managers. This option exists because a restrictive security
manager causes Dynamic Analysis to fail. Setting this option to t r ue might allow Dynamic Analysis
of your program to proceed. If this option is f al se, running Dynamic Analysis on your application
might require adjusting your security policy or excluding classes that run within the restrictive security
manager (see the excl ude-i nstrunentati on andi nstrunent - onl y options). (False.)

r epeat - connect =<non- negat i ve_nunber >
If this option is set to a number greater than zero, and the initial attempt to connect to the Broker
fails, then the Agent tries to reconnect to the Broker that number of times, with a one second pause
between attempts, before giving up. For best results, set this option to something greater than zero
when starting both the Broker and Agents from a script or build file. (O when running the Agent from
the command line and 20 when running it through the cov- dynam c- anal yze-j ava or cov-
dynani c- anal yze-j uni t Anttasks.)

34

Appendix B. Dynamic Analysis Broker information and
reference

Table of Contents

This section describes some useful Dynamic Analysis Broker technology. For a list and description of
the Broker Ant attributes and command line options for cov- st ar t - da- br oker and cov- st op- da-
br oker, see the following reference pages in the Coverity 2020.12 Command Reference.

* cov-start-da-broker B Ant task reference page
* cov- st op- da- br oker B Ant task reference page
* cov-start-da-broker B command- line reference page

* cov- st op- da- br oker B command-line reference page

B.1. Configuring the Broker using environment variables and the
configuration file

This appendix describes how you can set certain cov- st art - da- br oker options with environment
variables and in a configuration file as well as on the command line. This can help integrate Dynamic
Analysis into your development and testing environment as well as saving you from extra typing.

For a complete description of these variables and options, see the cov- da- st ar t - br oker B Ant task
reference page.

B.1.1. cov- st art-da- br oker environment variables
The following cov- st ar t - da- br oker options can be set as environment variables.

e COVERI TY_HOST. Specifies the Coverity Connect server. Corresponding command line option: - -
host .

« COVERI TY_DATAPORT. Specifies the port on the Coverity Connect server to which commits go.
Corresponding command line option: - - dat aport .

* COVERI TY_USER. Specifies a user name for logging into the Coverity Connect server. Corresponding
command line option: - - user.

» COVERI TY_PASSWORD. Specifies the password for logging into the Coverity Connect server.
Corresponding command line option: - - passwor d.

If we set the environment variables as follows:

COVERI TY_HOST=ci m exanpl e. com
COVERI TY_DATAPCRT=9090

35

cov_command_ref.pdf#ant_start_da_broker
cov_command_ref.pdf#ant_stop_da_broker
cov_command_ref.pdf#cov-start-da-broker
cov_command_ref.pdf#cov-stop-da-broker
cov_command_ref.pdf#ant_start_da_broker

Dynamic Analysis Broker information and reference

COVERI TY_USER=j doe
COVERI TY_PASSWORD=secr et

Then our sample command line from Section 2.3, “Step 3: Start the Dynamic Analysis Broker” becomes:

> <install _dir_cic>/dynan c-anal ysi s/ bi n/ cov-start-da-broker --stream Exanpl e-dynani c
--dir internedi ate_dir_nane

B.1.2. cov- st art-da- broker configuration file

The -cf <configuration_file>cov-start-da-broker option allows you to specify a Java
properties file that contains Broker options. The format for specifying properties is as follows:

<confi g_property>=<val ue>
<confi g_property>is usually the same name as the command line argument.

For example, suppose we have the following stored in a file called Exanpl e. cda- br oker - confi g:

host =ci m exanpl e. com
dat aport =9090
user =j doe

passwor d=secr et

st r eanrExanpl e- dynam c

The command line for running the example becomes:

> cov-start-da-broker -cf exanple.broker-config

The following Dynamic Analysis properties can be set in a configuration file:

br oker - port =<port >
config-file=<file>

dat aport =<port _nunber >

host =<host nanme>

out put - di r=<di rectory>
passwor d=<passwor d>

rundi r=<run_directory>
run-prefix=<prefix>
security-file=<license_path>
shut down- af t er <seconds>

st reamr<dynam c_str eam nanme>
user =<user _nane>

B.1.3. Configuration file guidelines
Use the following guidelines when creating a configuration file:

» The character encoding for Java properties files is ISO 8859-1. Characters that cannot be directly
represented in this encoding can be written using Unicode escapes.

e The colon (:) is a special character for Java properties files. Specifying paths may involve adding
escape colons.

36

Dynamic Analysis Broker information and reference

The following web sites document the format of the Java properties files more thoroughly.
http://java.sun.com/javase/6/docs/api/java/util/Properties.html &
http://en.wikipedia.org/wiki/.properties &'

B.1.4. Configuration option processing order

The Dynamic Analysis cov- st art - da- br oker processes configuration options in the following order,
with later options overriding earlier ones:

1. Sets the user to the operating system user that runs the Dynamic Analysis Broker process.
2. Environment variables.
3. Command line arguments in order. Later command line options can override earlier ones.

4. Any configuration files specified with - cf are processed in their turn; later command line options can
override what is set. Because of the nature of Java properties files, duplicate entries (including the
confi g-fil e property) in a configuration file are resolved arbitrarily. Don't set a property (including
confi g-fil e) more than once inside a configuration file.

5. The--onl y-test-connecti on option overrides any conflicting options.

6. - - hel p and - - ver si on override everything.

B.2. Running the Broker from a script

Running Dynamic Analysis from a script involves starting the Broker in the background, launching
Agents, and shutting down the Broker. Several features of the Broker support running it from a script:

e The - -rundi r option allows you to specify a run directory where the Broker writes its logs and
several other information files (mentioned below). Remove or move any old run directories in any script
that starts the Broker. User errors, like a faulty command line, cause the Broker to leave the old run
directory in place, which can potentially confuse your script.

* When the Broker opens its socket to listen for Agents, it writes a file called br oker . st ar t ed to its run
directory.

* When the Broker finishes successfully (including explicit shutdowns with cov- st op- da- br oker and
the cov- st art - da- br oker shut down- af t er option), it writes a file called br oker . ok to its run
directory.

» When the Broker fails due to some kind of error, and if it has gotten far enough along that it has created
a run directory, it writes a file called br oker . f ai | to its run directory. If the Broker fails due to an
incorrect command line or other configuration error, it does not create a new run directory and does not
touch an existing run directory.

37

http://java.sun.com/javase/6/docs/api/java/util/Properties.html
http://en.wikipedia.org/wiki/.properties

	Dynamic Analysis 2020.12 Administration Tutorial
	Table of Contents
	Chapter 1. Overview of Dynamic Analysis
	1.1. How Dynamic Analysis works
	1.2. Obtaining thorough analysis results
	1.3. Fitting Dynamic Analysis into your development and testing environments
	1.4. Installing and licensing Dynamic Analysis

	Chapter 2. Running Dynamic Analysis on Java programs
	2.1. Step 1: Create Dynamic Analysis projects and streams in Coverity Connect
	2.2. Step 2: Provide a program to be dynamically analyzed
	2.3. Step 3: Start the Dynamic Analysis Broker
	2.4. Step 4: Run a program with the Dynamic Analysis Agent
	2.5. Step 5: Stop the Broker
	2.6. Using an Ant build file to run Dynamic Analysis on your program
	2.6.1. Using a sample Ant build file
	2.6.2. Description of the sample Ant build file

	2.7. Deploying Dynamic Analysis in a production environment

	Chapter 3. Dynamic Analysis defects reports
	3.1. A RESOURCE_LEAK defect
	3.2. A RACE_CONDITION defect
	3.3. A DEADLOCK defect

	Chapter 4. Troubleshooting
	4.1. I'm having problems starting the Dynamic Analysis Broker or connecting to Coverity Connect.
	4.2. Where are the cov-da-start-broker log files and other information files?
	4.3. In starting the Broker and Agent from a script, the Broker starts, but the Agent fails with Could not connect to Broker.
	4.4. I think Dynamic Analysis Agent might be causing a problem with my program.
	4.5. The Agent is running with a program when the VM runs out of memory and throws an OutOfMemoryError error that is related to heap memory.
	4.6. The Agent is running with a program that dies with an OutofMemoryError error that is related to permanent generation (or permgen).
	4.7. The Broker runs out of memory and throws an OutOfMemoryError error that is related to heap memory.
	4.8. The Broker is running with a program that dies with an OutofMemoryError message about permanent generation (or permgen).
	4.9. How can I speed up the Dynamic Analysis process?
	4.10. I get defects inside javax.swing.*. Are there defects in Swing?
	4.11. I get an InvalidClassException when I run Dynamic Analysis.
	4.12. I've committed source code to the wrong stream, now all the source code in that stream is gone.
	4.13. How can I run the Dynamic Analysis Agent on tests that were started with a Maven build?

	Appendix A. Dynamic Analysis Agent command-line options and Ant task attributes
	A.1. Sample Dynamic Analysis start commands
	A.2. Dynamic Analysis Java Agent options and Ant attributes

	Appendix B. Dynamic Analysis Broker information and reference
	B.1. Configuring the Broker using environment variables and the configuration file
	B.1.1. cov-start-da-broker environment variables
	B.1.2. cov-start-da-broker configuration file
	B.1.3. Configuration file guidelines
	B.1.4. Configuration option processing order

	B.2. Running the Broker from a script

