
Coverity 2020.12 Command Reference
Reference for Coverity Analysis, Coverity Platform, and Coverity Desktop.

Copyright 2020 Synopsys, Inc. All rights reserved worldwide.

Table of Contents
1. Coverity Analysis Commands ... 1

cov-analyze ... 2
cov-blame .. 53
cov-build .. 58
cov-capture .. 89
cov-collect-models ... 97
cov-commit-defects .. 99
cov-configure ... 113
cov-copy-overrun-triage (Deprecated) ... 132
cov-count-lines ... 134
cov-emit .. 137
cov-emit-cs .. 151
cov-emit-go .. 155
cov-emit-java ... 156
cov-emit-swift ... 169
cov-emit-vb .. 171
cov-export-cva ... 176
cov-extract-scm ... 178
cov-find-function ... 185
cov-format-errors ... 188
cov-generate-hostid .. 193
cov-help .. 194
cov-import-msvsca ... 195
cov-import-results ... 199
cov-import-scm .. 202
cov-install-updates ... 206
cov-link .. 213
cov-make-library .. 217
cov-manage-emit ... 223
cov-preprocess .. 265
cov-record-source .. 268
cov-run-desktop ... 270
cov-run-fortran ... 296
cov-security-da .. 312
cov-test-configuration ... 314
cov-translate .. 318
cov-upgrade-static-analysis .. 327
cov-wizard ... 329

2. Coverity Analysis Ant Tasks ... 330
covanalyzeandcommit .. 331
covbuild ... 338

3. Test Advisor Commands .. 340
cov-emit-server .. 341
cov-emit-server-control ... 343
cov-manage-history .. 345
cov-patch-bulleye ... 349

ii

Coverity 2020.12 Command Reference

4. Dynamic Analysis Commands .. 350
cov-start-da-broker ... 351
cov-stop-da-broker ... 354

5. Dynamic Analysis Ant Tasks .. 356
cov-dynamic-analyze-java .. 357
cov-dynamic-analyze-junit .. 360
cov-start-da-broker ... 362
cov-stop-da-broker ... 365

6. Coverity Connect Commands ... 367
cov-admin-db ... 368
cov-archive .. 376
cov-get-certs .. 380
cov-im-ctl ... 381
cov-import-cert ... 382
cov-manage-im .. 383
cov-start-im .. 414
cov-stop-im .. 415
cov-support .. 416

7. CVSS Report ... 418
cov-generate-cvss-report .. 419

8. Coverity Integrity Report .. 422
cov-generate-integrity-report ... 423

9. MISRA Report ... 425
cov-misra-report ... 426
cov-generate-misra-report .. 427

10. OWASP Web Top 10 ... 429
cov-generate-owasp2017-report .. 430

11. Mobile OWASP Top 10 .. 431
cov-generate-mobile-owasp-report .. 432

12. PCI DSS ... 433
cov-generate-pci-dss-report .. 434

13. Security Report .. 435
cov-security-report ... 436
cov-generate-security-report ... 437

14. Coverity CERT Report ... 439
cov-cert-report ... 440
cov-generate-cert-report ... 441

A. Accepted date/time formats ... 443
B. Coverity Glossary .. 444
C. Coverity Legal Notice .. 456

C.1. Legal Notice ... 456

iii

Coverity Analysis Commands

1

Name
cov-analyze Analyze an intermediate directory for quality and security defects.

Synopsis

cov-analyze --dir <intermediate_directory> [OPTIONS]

Description

The cov-analyze command runs checkers on captured code in an intermediate directory and stores
analysis results in that directory, which is specified with --dir. This command typically follows cov-
build and precedes cov-commit-defects invocations on the same intermediate directory. Though cov-
analyze does not report defects in Java and .NET bytecode, nor in some forms of source code not
written by a person, the command does run an analysis of them for the benefit of finding interprocedural
defects in editable source code.

A log file (analysis-log.txt) with information about the checkers used in the analysis, including
notices of crashes, is located in the following directory: <intermediate_directory>/output

Note

If you get a fatal No license found error when you attempt to run this command, you need to
make sure that license.dat was copied correctly to <install_dir>/bin.

On some Windows platforms, you might need to use administrative privileges when you copy the
Coverity Analysis license to <install_dir>/bin. Due to file virtualization in some versions of
Windows, it might look like license.dat is in <install_dir>/bin when it is not.

Typically, you can set the administrative permission through an option in the right-click menu of the
executable for the command interpreter (for example, Cmd.exe or Cygwin) or Windows Explorer.

Options

--aggressiveness-level <level>
Enables a set of checker flags and cov-analyze options that cause Coverity Analysis to make more
aggressive assumptions during analysis. Higher levels report more defects, and the analysis time
increases. Values for level are low, medium, or high. Default is low.

Starting in version 7.0, this option applies to all programming languages that undergo analysis with
cov-analyze. If a checker option applies to multiple languages, the aggressiveness level tuning will
apply to that option for all supported languages. Changes to checker options that do not apply to a
given language have no effect or related warnings.

The aggregate false positive rate for all checkers that are not parse warnings checkers is
approximately 50% higher for medium, and 70% higher for high. Different aggressiveness levels do
not change the rate of false positives that parse warning checkers report. A higher aggressiveness
level for parse warning checkers enables more warnings for less severe defects.

The value low uses the default for all checkers and options. For a list of checker option defaults, see
"Checker Enablement and Option Defaults by Language" in the Coverity Checker Reference .

2

cov-analyze

The value medium uses the settings at the low level with the overrides shown in the following table:

Table 1. Increasing aggressiveness from ‘low’ to ‘medium’

Checker Option Low → Medium Languages

BAD_ALLOC_STRLEN report_plus_any false → true C, C++, CUDA,
Objective C, Objective C
++

BAD_EQ stat_threshold 80 → 70 C#, Visual Basic

report_empty_overridesfalse → true C#, Visual BasicCALL_SUPER

threshold 0.65 → 0.55 C#, Java, Visual Basic

error_on_use false → true C, C++, CUDA, Go,
Java, Objective-C,
Objective-C++

CHECKED_RETURN

stat_threshold 80 → 55 C, C++, CUDA, Go,
Java, Objective-C,
Objective-C++

CONSTANT_EXPRESSION_RESULTreport_bit_and_with_zerofalse → true C, C++, CUDA, Go,
Java, JavaScript,
Objective-C, Objective C
++, Ruby, TypeScript

 report_constant_logical_operandsflase → true C, C++, CUDA, Go,
Java, Objective-C,
Objective C++, PHP,
Ruby, Scala, Swift

aggressive_null_sourcesfalse → true C, C++, CUDA,
Objective-C, Objective
C++, C#, Go, Java,
JavaScript, PHP, Python
2, Python 3, Ruby,
Scala, Swift, TypeScript,
Visual Basic

deref_zero_errors false → true C, C++, CUDA,
Objective-C, Objective
C++, Go, JavaScript,
TypeScript

FORWARD_NULL

track_macro_nulls false → true C, C++, CUDA, Go,
JavaScript, Objective-
C, Objective-C++,
TypeScript

INFINITE_LOOP allow_asm false → true C, C++, CUDA

3

cov-analyze

Checker Option Low → Medium Languages

allow_pointer_derefsfalse → true C, C++, CUDA, C#,
Java, Objective-C,
Objective-C++

INTEGER_OVERFLOW enable_const_overflowsfalse → true C, C++, CUDA,
Objective-C, Objective-C
++

report_restore_not_dominated_by_modifyfalse → true C, C++, C#, CUDA,
Java, Objective-C,
Objective-C++

MISSING_RESTORE

report_uncorrelated_with_returnfalse → true C, C++, C#, CUDA,
Java, Objective-C,
Objective-C++

MIXED_ENUMS report_anonymous_enumsfalse → true C, C++, CUDA,
Objective-C, Objective-C
++

self_assign_to_localfalse → true C, C++, CUDA,
JavaScript, Objective-
C, Objective-C++, PHP,
Ruby, Scala, Typescript

NO_EFFECT

unsigned_enums false → true C, C++, CUDA,
Objective-C, Objective-C
++

allow_unimpl false → true C, C++, C#, CUDA,
Go, Java, JavaScript,
Objective-C, Objective-C
++, TypeScript

3 → 10 C#, Java

1 → 10 JavaScript, TypeScript

stat_bias

0 → 10 C, C++, CUDA,
Objective-C, Objective-C
++

stat_min_checked 1 → 0 JavaScript, TypeScript

stat_threshold 80 → 50 C, C++, C#, CUDA,
Go, Java, JavaScript,
Objective-C, Objective-C
++, TypeScript

NULL_RETURNS

suppress_under_related_conditionaltrue → false C#, Java, Objective-C++

OVERFLOW_BEFORE_WIDENcheck_macros false → true C, C++, CUDA,
Objective-C, Objective-C
++

4

cov-analyze

Checker Option Low → Medium Languages

check_nonlocals false → true C, C++, CUDA, C#,
Java, Objective-C,
Objective-C++, Scala

relaxed_operator_contextfalse → true C, C++, CUDA, C#,
Java, Objective-C,
Objective-C++, Scala

report_intervening_widenfalse → true C, C++, CUDA, C#,
Java, Objective-C,
Objective-C++, Scala

OVERRUN report_underrun false → true C, C++, CUDA,
Objective-C, Objective-C
++

allow_cast_to_int false → true C, C++, CUDA,
Objective-C, Objective-C
++

allow_main false → true C, C++ , CUDA,
Objective-C, Objective-C
++

allow_overwrite_modelfalse → true C, C++, CUDA,
Objective-C, Objective-C
++

allow_unimpl false → true C, C++, CUDA,
Objective-C, Objective-C
++

RESOURCE_LEAK

track_fields false → true C, C++ , CUDA,
Objective-C, Objective-C
++

SIZEOF_MISMATCH strict_memcpy false → true C, C++, CUDA,
Objective-C, Objective-C
++

TAINTED_SCALAR tainting_byteswaps false → true C, C++, CUDA,
Objective-C, Objective-C
++

check_arguments false → true C, C++, CUDA,
Objective-C, Objective-C
++

UNINIT

check_mayreads false → true C, C++, CUDA,
Objective-C, Objective-C
++

5

cov-analyze

Checker Option Low → Medium Languages

enable_write_contextfalse → true C, C++, CUDA,
Objective-C, Objective-C
++

UNINIT_CTOR report_scalar_arraysfalse → true C++, CUDA, Objective-C
++

UNREACHABLE report_unreachable_empty_incrementfalse → true C#, Java, JavaScript,
PHP, TypeScript, Visual
Basic

report_dominating_assignmentfalse → true C, C++, C#, CUDA,
Go, Java, Objective-C,
Objective-C++

report_unused_final_assignmentfalse → true C, C++, C#, CUDA,
Go, Java, Objective-C,
Objective-C++

UNUSED_VALUE

report_unused_initializerfalse → true C, C++, C#, CUDA,
Go, Java, Objective-C,
Objective-C++

include_current_object_call_sitesfalse → true C, C++, C#, CUDA,
Java, Objective-C,
Objective-C++

include_macro_call_sites_fnfalse → true C, C++ , CUDA,
Objective-C, Objective-C
++

USELESS_CALL

include_macro_call_sites_plainfalse → true C, C++ , CUDA,
Objective-C, Objective-C
++

The value high uses all the medium level settings, with the overrides shown in the following table:

Table 2. Increasing aggressiveness from ‘medium’ to ‘high’

Checker Option Medium → High Languages

BAD_EQ stat_bias 0.25 → 0.5 C#

report_bit_and_with_zero_in_macrosfalse → true C, C++ , CUDA,
Objective-C, Objective-C
++

report_constant_logical_operands_in_macrosfalse → true C, C++ , CUDA,
Objective-C, Objective-C
++

CONSTANT_EXPRESSION_RESULT

report_unnecessary_op_assignfalse → true C, C++, C#, CUDA,
Go, Java, JavaScript,
Objective-C, Objective-

6

cov-analyze

Checker Option Medium → High Languages
C++, PHP, Python 2,
Python 3, Scala, Swift,
TypeScript

FORMAT_STRING_INJECTIONparanoid false → true C, C++, CUDA,
Objective-C, Objective-C
++

aggressive_derefs false → true C, C++, C#, CUDA,
Go, Java, JavaScript,
Objective-C,
Objective-C++, PHP,
Python 2, Python 3,
Ruby, Scala, Swift,
TypeScript ,VisualBasic

FORWARD_NULL

as_conversion false → true C#

report_bound_type_mismatchfalse → true C, C++, C#, CUDA,
Java, Objective-C,
Objective-C++

INFINITE_LOOP

suppress_in_macro true → false C, C++, CUDA,
Objective-C, Objective-C
++

enable_all_overflow_opsfalse → true C, C++, CUDA,
Objective-C, Objective-C
++

INTEGER_OVERFLOW

enable_deref_sink false → true C, C++, CUDA,
Objective-C, Objective-C
++

LOCK track_globals false → true C, C++, CUDA,
Objective-C, Objective-C
+++

MIXED_ENUMS report_disjoint_enumsfalse → true C, C++, CUDA,
Objective-C, Objective-C
++

NESTING_INDENT_MISMATCHreport_bad_indentationfalse → true C, C++, C#, CUDA,
Java, JavaScript,
Objective-C, Objective-
C++, PHP, Scala,
TypeScript

NO_EFFECT self_assign_in_macrofalse → true C, C++, CUDA,
Objective-C, Objective-C
++

NULL_RETURNS stat_threshold 50 → 0 C, C++, C#, CUDA,
Go, Java, JavaScript,

7

cov-analyze

Checker Option Medium → High Languages
Objective-C, Objective-C
++, TypeScript

check_bitwise_operandsfalse → true C, C++, C#, CUDA,
Java, Objective-C,
Objective-C++, Scala

check_types (?:unsigned)?long
long|.*64.* → .*

C, C++, CUDA,
Objective-C, Objective-C
++

ignore_types s?size_t|off_t|
time_t|__off64_t|
ulong|.*32.* → ^$

C, C++ , CUDA,
Objective-C, Objective-C
++

general_operator_contextfalse → true C, C++, C#, CUDA,
Java, Objective-C,
Objective-C++, Scala

OVERFLOW_BEFORE_WIDEN

relaxed_operator_contexttrue → false C, C++, C#, CUDA,
Java, Objective-C,
Objective-C++, Scala

OVERRUN check_nonsymbolic_dynamicfalse → true C, C++, CUDA,
Objective-C, Objective-C
++

REGEX_CONVERSION report_character_hidingfalse → true Java

allow_address_taken false → true C, C++, CUDA,
Objective-C, Objective-C
++

allow_constructor false → true C++ , CUDA, Objective-
C++

allow_template false → true C++, CUDA, Objective-C
++

RESOURCE_LEAK

allow_virtual false → true C++, CUDA, Objective-C
++

UNCAUGHT_EXCEPT report_all_fun false → true C++, CUDA, Objective-C
++

allow_unimpl false → true C, C++, CUDA,
Objective-C, Objective-C
++

UNINIT

assume_loop_always_takentrue → false C, C++, CUDA,
Objective-C, Objective-C
++

8

cov-analyze

Checker Option Medium → High Languages

check_malloc_wrappersfalse → true C, C++, CUDA,
Objective-C, Objective-C
++

UNINIT_CTOR allow_unimpl false → true C++, CUDA, Objective-C
++

UNREACHABLE report_unreachable_in_macrofalse → true C, C++, CUDA,
Objective-C++

--all
Enables almost all checkers that are disabled by default (exceptions are noted below). Using this
option is equivalent to using all of the following options:

• --concurrency

• --enable-parse-warnings

• --enable PARSE_ERROR

• --enable STACK_USE

• --security

To find out whether a checker can be enabled with this option, see the --list-checkers option.

Exceptions
The following checkers are disabled by default, and the --all option does not turn them on:

• Android security checkers (which are enabled with the --android-security option).

• DC.STRING_BUFFER

• ENUM_AS_BOOLEAN

• HARDCODED_CREDENTIALS

• HFA

• LOCK_INVERSION (for C#)

• MISRA_CAST

• ODR_VIOLATION for C++

• ORM_LOST_UPDATE

• Rule checkers (which are enabled with the --rule option).

9

cov-analyze

• SECURE_CODING (Deprecated)

• SIZECHECK (Deprecated)

• UNENCRYPTED_SENSITIVE_DATA

• USER_POINTER

• WEAK_GUARD

• WEAK_PASSWORD_HASH

• Web application security checkers (such as XSS) are not affected by this option. To enable
them, see --webapp-security.

• XML_INJECTION

Default checkers are enabled by default and are therefore unaffected by this option.

For information about enabling individual checkers, see the --enable option.

--allow-unmerged-emits
By default, the analysis fails if an intermediate directory contains emits of builds from multiple hosts.
Specify this option to disable error checking and permit the analysis to continue in these cases.

If you use cov-manage-emit add-other-hosts to associate all emit repositories in the current
intermediate directory with the current host, --allow-unmerged-emits is not needed to continue
the analysis.

--analyze-node-modules
By default, cov-analyze does not analyze code in the node_modules/ directories for JavaScript
or TypeScript projects. This option enables analysis of the translation units in the node_modules/
directories.

Even when you use the --tu or the --tu-pattern option, you must specify --analyze-node-
modules in order to analyze translation units in node_modules/ directories.

--append
Append defects from the last analysis run to the defects from this run.

By default, each analysis run includes individual checker-result files, the analysis summary file, and a
metrics file. The --append option adds analysis results to the individual checker-result and summary
files, but leaves the metrics file unchanged. So when you use the --append option, the metrics file
will reflect the initial analysis without incremental analysis results for subsequent analyses that use
the --append option.

The --append option is intended for appending issues found by custom Extend SDK checkers (see
Coverity Extend SDK 2020.12 Checker Development Guide) and for importing issues by the cov-
import-results and cov-import-msvsca commands. This option does not allow multiple cov-

10

cov_extend_sdk_checker_dev_guide.pdf

cov-analyze

analyze commands with standard checkers to write results into the same intermediate directory. To
analyze a mixed-language code base, use a single cov-analyze invocation.

When this option is used with the --output-tag option, --append applies to the output location that is
specified through --output-tag.

--brakeman-aggressiveness-level <low|medium|high>
Tune the aggressiveness of Brakeman Pro to only report defects that are above a certain confidence
level. A higher setting reports more defects and increases the likelihood that any given defect is a
false positive. Accepted values for this option are low, medium, or high. Default is high.

--checker-option <checker_name>:<option>[:<option_value>], -co
<checker_name>:<option>[:<option_value>]

Passes a checker option. Checker options and their default values are documented in the Coverity
2020.12 Checker Reference .

Example:

INFINITE_LOOP:report_no_escape:true

Starting in version 7.0, when you specify the value of a checker option for a checker that supports
the analysis of multiple languages, the value that you specify will apply to all languages to which that
checker option applies. For example, if you set the stat_threshold to NULL_RETURNS, and you
run an analysis on C/C++, C#, and Visual Basic code bases, the value you set for that option will
apply to both languages. If you do not set the value, the checker will use the default values for those
options, which in a very limited number of cases can vary by language.

Some checker options are language-specific, such as FORWARD_NULL:dynamic_cast. This option
is only available for (and can only apply to) C/C++ even though the FORWARD_NULL checker
supports multiple languages.

--code-identity-file <file>
The name of a code identity file, when required by the license. This file contains information about
which files to include and/or exclude from line counts and analysis, as well as a signature of the
licensed code base. The inclusions and exclusions are based on settings to --search, --search-
extensions, and --third-party-regex in cov-count-lines. The code identity file should match the
signature indicated by the optional string parameter cbi_hash in the license file.

When required by the license, cov-analyze searches for a matching file with a cbi extension in the
following locations:

• The directory from which cov-analyze is invoked.

• The bin/ subdirectory of the Coverity Analysis installation directory.

• The file specified by --code-identity-file (if provided).

Note that for licenses requiring a code identity file, --strip-path must be provided. See also the --
code-identity_file option to cov-count-lines.

11

cov_checker_ref.pdf
cov_checker_ref.pdf

cov-analyze

--code-version-date <date>
For Test Advisor and Desktop Analysis, use this option to specify the date of the source code. This
date is used for impact analysis. If possible, it is recommended to use the SCM checkout date of the
code being analyzed.

If this option is not specified, the products will use the latest invocation timestamp of cov-build as
stored in the intermediate directory. If that is not available, then the current date and time are used
instead.

This option is required when analyzing historical versions of your source code.

See Appendix A, Accepted date/time formats for proper formatting of the <date> argument.

Note

So that Test Advisor can correctly interpret function history used for impact analysis, please
ensure that EITHER:

1. All machines used to do analysis have the same timezone setting.

2. A timezone is specified for all dates in the policy file and the --code-version-date
argument. For example, use 2010-01-01 00:00-08:00 instead of 2010-01-01.

--codexm <checker-file>*
Specifies the CodeXM (.cxm) file or files to use in the analysis.

Example:

 cov-analyze --dir mycxm --codexm myChecker.cxm --codexm myOtherChecker.cxm

CodeXM is a specialized language used to write customized checkers that run using the Coverity
engine.

--codexm-print-debug
Enables the CodeXM debug() function.

When enabled, the debug() function prints values or messages to the system console.

If this option is not present when cov-analyze is invoked, calls to debug() are treated as no-ops.

--coding-standard-config <path/to/codingstandard_configuration_file>
[C/C++ MISRA option, required for a MISRA analysis.] Provides the path to a configuration file for
a coding standard to run as part of the analysis. You can provide the option multiple times, with
different configuration files to use multiple coding standards in an analysis run. Note that you cannot
specify two configurations for the same standard in a single run.

Note

Any analysis involving --coding-standard-config requires the information generated
during cov-build when including the --emit-complementary-info option. See --emit-
complementary-info for more information.

12

cov-analyze

You can find sample configuration files in <install_dir>/config/coding-
standards/<name_of_standard>. We recommend that you create a custom configuration based
on these samples.

Coding standard analysis normally runs along with regular analysis. To analyze only for a single
coding standard, use the --disable-default option along with --coding-standard-
config

A configuration file can specify one of the following standards. These examples enable all supported
rules for their respective standards.

• MISRA C 2004

Content for a configuration file for all supported 2004 standards (and no deviations):

{ version : "2.0",
 standard : "misrac2004",
 title: "your_title_here",
 deviations : []
}

• MISRA C++ 2008

Content for a configuration file for all supported 2008 standards (and no deviations):

{ version : "2.0",
 standard : "misrac++2008",
 title: "your_title_here",
 deviations : []
}

• MISRA C 2012

Content for a configuration file for all 2012 standards (and no deviations):

{ version : "2.0",
 standard : "misrac2012",
 title: "your_title_here",
 deviations : []
}

• AUTOSAR

The configuration files are all in the following directory:

<install-dir>/config/coding-standards/autosarcpp14/autosarcpp14-all.config

• CERT-C/CPP

The product is shipped with predefined configuration files (e.g. cert-c-all.config, cert-c-L1-L3.config,
cert-c-L2-L3.config, cert-c-L3-only.config, cert-c-L1-L2.config, cert-c-L1-only.config, and cert-c-L2-
only.config) under <install>/config/coding-standards/cert*/.

13

cov-analyze

The levels are documented in the CERT-C/CPP specifications:

• If you want to target only a specific level or permutation of levels, you can point to the predefined
configuration file that matches, or you can define your own configuration file with your own
custom deviations.

• If you want the entire set of standards rules that we support, you can use the cert-c-
all.config file.

Content for a configuration file for all rules in CERT-C standard (and no deviations):

{ version : "2.0",
 standard : "cert-c",
 title: "your_title_here",
 deviations : []
}

The HIS Metrics checker can also be used to measure MISRA coding standards. This is an optional
checker setting that is enabled by adding the HIS Metrics settings to your MISRA configuration file.
Once the checker is enabled, the defects that are found by the HIS Metrics checker are included in
the emit process.

You can run the HIS Metrics checker by adding the following HIS Metrics settings to your MISRA
configuration file:

{
 HIS_Metrics : {
 raw_metrics_filename : "raw-metrics.txt", // file in the output folder to
 which to dump the raw metrics for each function
 html_report_filename : "HIS_report.html", // The HTML report file
 policies : [// Optional list of policies for each HIS metric
 {
 name : “COMF", // Could be one COMF, PATH, GOTO, CCM,
 CALLING, CALLS, PARAM, STMT, LEVEL, RETURN, VOCF, CYCLE
 compliant_range : {low : 0.4, high : 1,} // High and low values for
 the compliant range for this metric. Both are optional.
 },
 // More entries for each policy.
]
 }
}

Here's what the config looks like after adding the HIS Metrics settings to the MISRA configuration file.
The raw-metics.txt file is the file in the output folder to which the raw metrics for each function
are dumped. The HIS_report.html file is the HTML report file. The compliant_range values set
high and low values for the compliant range for this metric. Both are optional.

{
 "version": "2.0",
 "standard": "misrac2012",
 "title": "MISRA C-2012 All Rules",

14

cov-analyze

 "deviations": [],
 HIS_Metrics : {
 raw_metrics_filename : "raw-metrics.txt",
 html_report_filename : "HIS_report.html",
 policies : [
 {
 name : "COMF",
 compliant_range : {low : 0.0, high : 1,}
 },

 // Could be one COMF, PATH, GOTO, CCM, CALLING, CALLS, PARAM, STMT,
 LEVEL, RETURN, VOCF, CYCLE
]
 }
}

To commit the HIS Metrics checker results, run the cov-analyze --coding-standard-config
command prompt. Then, type the cov-commit-defects command to commit all of the found HIS
Metrics checker defects. The coding standard violations are then reported to Coverity Connect as an
HIS Metric Violation.

If one or more HIS Metrics are unspecified in the configuration file, then the missing metric will
typically default to the list of HIS Metrics values. Each metric has its own range of compliant values.
(Default values for HIS Metrics are published and can be found online.) Note that there are two
exceptions, where it is recommended that you modify the upper or lower bounds.

• The Coverity HIS Metrics checker for COMF defaults to a range between 0.2 and 100 (while the
standard default range is between 0.2 and 1).

• The Coverity HIS Metrics checker for CALLING defaults to a range between 1 and 5 (while the
standard default range is between 0 and 5).

The sample configuration files in <install_dir>/config/coding-
standards<name_of_standard> specify a configuration and any deviations, along with the rules
covered by the configuration. No violations will be reported for the rules specified in the deviations
field.

Configuration example with deviations:

{
 version : "2.0",
 standard : "c2004",
 title: "C-2004 example with some deviations",
 deviations : [
 // Deviations for this example are Rules 5.6, 6.1, and 20.1.
 { deviation: "Rule 5.6", reason: "Currently disabled in the analysis
 configuration." },
 { deviation: "Rule 6.1", reason: "Currently disabled in the analysis
 configuration." },
 { deviation: "Rule 20.1", reason: "Currently disabled in the analysis
 configuration." }

15

cov-analyze

]
}

Note that for MISRA, the deviations are reported in the MISRA report, so they should explain why
the deviation is claimed (either explaining in-line the measures being taken to mitigate risk or citing
a separate document that does so) as per MISRA documentation. To keep a record of the claimed
deviations, you might choose to store your configuration file in your source revision control repository.

The filenames of the sample configuration files identify what category of rules are run. The
categories of rules vary between standards, but for example in MISRA_c2004, the configuration file
misrac2004-required-only.config will run only the rules in the category required. In CERT,
cert-c-L1-L2.config will run the rules in the categories L1 and L2.

For your custom configuration file, you can create and edit a copy of one of the samples instead of
editing the file that Coverity provides. Using the copy will prevent the loss of your configuration upon
upgrade and avoid the potential for other undesired behavior. Coverity also recommends adding the
copy to your source stream to ensure that the history of changes to that file are tracked.

For MISRA rules and directives, see "MISRA Rules and Directives" in the Coverity 2020.12
Checker Reference.

For the MISRA analysis workflow, see "Running coding standard analyses" in Coverity Analysis
2020.12 User and Administrator Guide.

--command <checker_pathname>
[Extend SDK analysis option] Uses a Extend SDK checker at the specified path name.

--concurrency
[C/C++ analysis option] Enables C/C++ concurrency checkers that are disabled by default.

For a list of concurrency checkers that you can enable with this option, see list-checkers.

--cpp
[C/C++ analysis option] Filters by C/C++ translation units on which this command operates or reports.
The command will fail with an informative error message if none of the translation units in the emit
subdirectory match any of the specified language options in the intermediate directory.

--cs
[C# analysis option] Filters by C# translation units on which this command operates or reports. The
command will fail with an informative error message if none of the translation units in the emit
subdirectory match any of the specified language options in the intermediate directory.

--cxx
This option is deprecated and no longer has any effect. The corresponding checkers
BAD_OVERRIDE, CTOR_DTOR_LEAK, DELETE_ARRAY, INVALIDATE_ITERATOR,
PASS_BY_VALUE, UNCAUGHT_EXCEPT, UNINIT_CTOR, WRAPPER_ESCAPE, and, on
Windows, COM.BAD_FREE and COM.BSTR.CONV, are now enabled by default. Checkers that can
only find defects in C++ code automatically do not run on C code. Note that PASS_BY_VALUE can
find defects in C code. If you were using --disable-default --cxx, replace it with individual --
enable options.

16

cov_checker_ref.pdf
cov_analysis_administration_guide.html#finding_code_defects

cov-analyze

--cxx-container-type-regex <regex>
Allows you to specify C++ container types for all checkers that look for them. The analysis will
consider C++ classes whose name matches the specified <regex> to be container classes.

--dc-config <file.json>
Identifies a JSON file for one or more DC.CUSTOM_* (custom Don’t Call) checkers that you intend to
run in the analysis (see DC.CUSTOM_CHECKER in the Coverity 2020.12 Checker Reference)

Note that use of this option enables all the DC.CUSTOM_* checkers that are configured in the JSON
file. You can disable them individually with --disable <checker-name>. The --disable-default option
will disable all of them.

Note

CodeXM is a language specifically designed for writing new checkers. If you have not already
invested in custom DC checker configuration, we recommend you use CodeXM rather than
the JSON configuration. See the section “Writing Your Own Don’t Call Checker” in the manual
Learning to Write CodeXM Checkers.

--derived-model-file <derived_file.xmldb>
[Deprecated as of version 7.7.0] This option will be removed and replaced in a future release. Use --
model-file instead.

--dir <intermediate_directory>
Path name to an intermediate directory that is used to store the results of the build and analysis.

--disable <checker_name>, -n <checker>
Disables a checker. This option can be specified multiple times. See also --list-checkers and
--disable-default.

To find out whether a checker is enabled or disabled by default, see the --list-checkers option.

You can also use this option to disable individual SpotBugs bug patterns. To specify a pattern, you
need to add an FB prefix to it. For example:

--disable FB.DM_EXIT

To disable SpotBugs bug patterns, you can also use --disable-fb or --fb-exclude.

--disable-android-security
Disables the Android application security checkers. Note that these checkers are disabled by default.

See also, --android-security.

--disable-brakeman
Disables Brakeman Pro checkers. Use the --enable-brakeman option to re-enable these
checkers.

--disable-default
Disables default checkers. This option is useful if you want to disable all default checkers and then
enable only a few with the --enable option.

17

cov_checker_ref.pdf

cov-analyze

For a list of checkers that are disabled through this option, see the --enable option documentation
for the cov-analyze command.

--disable-fnptr
[C/C++ analysis option] Disables analysis of calls to function pointers for defects. See also --enable-
fnptr.

--disable-jshint
[JavaScript option] Disables JSHint analysis. The JSHint analysis is disabled by default.

Do not specify both --enable-jshint and --disable-jshint on the same command line.

--disable-parse-warnings
[C/C++/Swift analysis option] Disables all parse warnings, and override other arguments that might
have enabled them, such as --all or --enable-parse-warnings. The order of command-line
options is irrelevant; the --disable-parse-warnings option takes precedence.

--disable-openapi
Disables Spectral OpenAPI checkers (OPENAPI.*). The checkers are enabled by default. See the
description of OPENAPI.* checkers in the Checker Reference Guide.

--enable <checker_name>, -en <checker>
Enables a checker that is not otherwise enabled by default. The checker name is case insensitive.
This option will enable a checker for all languages supported by the checker. Note that default
enablement of a given checker can vary by language.

Checkers are enabled by name, so related checkers such as MISSING_LOCK and
GUARDED_BY_VIOLATION are enabled independently. The checker name is case insensitive. You
can specify this option multiple times. See also --list-checkers and --disable-default.

Unlike the --disable option, this option does not work with SpotBugs bug patterns.

--enable-audit-mode
Enables audit-mode analysis, which is intended to expose more potential security vulnerabilities by
considering additional data sources that could be used in an exploit.

Using this option usually reports more defects that are less likely to represent true vulnerabilities.
Audit mode analysis will take noticeably longer to complete: It analyzes all functions that are present
in the source, not just those that are present in the call tree. This level of testing can be useful for
auditors and for any users who want to see the maximum number of defects.

The --enable-audit-mode option is the equivalent of enabling the following two options:

• --enable-audit-checkers

Enables additional audit-mode checkers that normally are off by default: for example,
SQL_NOT_CONSTANT and INSECURE_COOKIE.

For a list of all Audit Mode checkers, refer to the “Checker Enablement and Option Defaults by
Language” chapter in the HTML version of the Coverity Checker Reference.

• --enable-audit-dataflow

18

cov-analyze

This option has the following effects:

• It sets the --webapp-security-aggressiveness-level to high.

• It sets --distrust-all.

• For tainted dataflow security checkers, it introduces additional audit-mode sources of untrusted
(tainted) data to model potential attacks. Such sources include all function parameters, and the
return value from external functions (those that are not visible in the source code or bytecode,
and for which no model exists).

--enable-brakeman
Enables Brakeman Pro checkers (default). Use --disable-brakeman to disable these checkers.

--enable-callgraph-metrics
Creates <intermediate_directory>/output/callgraph-metrics.txt and
<intermediate_directory>/output/checked-return.csv.

The callgraph-metrics.txt file has information about which functions are analyzed. The
file lists whether a function is implemented, which means it is analyzed, or whether a function is
unimplemented, which means that it is not analyzed. A model is used if it is available. It also shows
the number of callers for each function.

The checked-return.csv file stores information on the percentage of times that each the return
value of each function is checked. This information can help you understand situations where the
statistical checkers report different defects in local builds than they do in full builds.

For details, see Coverity Analysis 2020.12 User and Administrator Guide.

Starting in version 7.0, applies to all programming languages.

--enable-constraint-fpp
Enables additional filtering of potential defects by using an additional false-path pruner (FPP). This
option can increase the analysis time up to 20% (normally much less), but decrease the number
of false positives that occur along infeasible paths. Because this FPP uses a different method for
pruning false positives, it is possible that a very small number of true positives are pruned as well.

Note that use of this option requires an additional 200MB of memory per worker.

Starting in version 7.0, this option applies to C/C++, C#, Visual Basic, and Java.

--enable-default
Enables all default checkers. This option takes precedence over the --disable-default option or
the --test-advisor option. That is, if this option is specified then all default checkers are enabled
regardless of the use of those options. However, individual checkers can still be disabled using the
--disable option.

--enable-exceptions
Enables exceptional control flow analysis for C++. If specified, this option will report the following type
of resource leak as a defect:

19

cov_analysis_administration_guide.pdf#callgraph_metrics

cov-analyze

 bool maybe;
 void test1() {
 int *x = new int;
 if (maybe) {
 throw 0; // x is leaked
 }
 delete x;
 }

By default, the analysis ignores the exception type std::bad_alloc because some applications
might not be designed to handle out-of-memory scenarios. If you specify --enable-exceptions
--handle-badalloc, the analysis will report the following example as a defect. The example leaks
memory if new char throws a std::bad_alloc exception:

 void test() {
 int *x = new int;
 char *y = new char; // Leaks 'x' if this throws std::bad_alloc
 delete y;
 delete x;
 }

Note that defects are not limited to leaks. For example, the FORWARD_NULL checker finds the
following defect:

 int *global;

 void foo() {
 int *y = 0;
 try {
 // if std::bad_alloc is thrown, y remains null
 global = new int;
 y = global;
 } catch (...) {
 // empty
 }
 *y = 1; //FORWARD_NULL defect.
 }

This option is disabled by default for C++ but enabled by default for Java, Visual Basic, and C#.

See also, --handle-badalloc.

--enable-fnptr
[C/C++ analysis option] Enables analysis of calls to function pointers for defects. By default, calls
through function pointers are not used by the analysis engine for interprocedural analysis. When
specified, this option allows up to 100 function resolutions for any function pointer. If that limit is
exceeded, the analysis engine reverts to the default behavior.

When using this option, the analysis time typically increases by approximately 20%. However, the
false positive rate might increase. See also --disable-fnptr.

20

cov-analyze

--enable-jshint
[JavaScript option] Enables the JSHint analysis of captured JavaScript source code except for
minified source files (see JSHINT.* in the Coverity 2020.12 Checker Reference for details). Note
that running a JSHint analysis requires an additional pass over all analyzed JavaScript code, which
can significantly increase overall analysis time. The JSHint analysis is disabled by default.

JSHint reports a large number of defects, unless a custom configuration is used to trim down the
results or the code is highly polished.

If you want to run the JSHint analysis with a custom .jshintrc configuration file, use --use-jshintrc.
Otherwise, the analysis will use the Coverity default configuration file in jshint/config.json and
ignore any .jshintrc files in your source tree.

Do not specify both --disable-jshint and --enable-jshint on the same command line.

--enable-parse-warnings
[C/C++/Swift analysis option] Enables parse warnings, recovery warnings, and semantic warnings
that are produced by the cov-build command so that they appear as defects in Coverity Connect.
See also --parse-warnings-config.

This option is set automatically if the --aggressiveness-level option is set to medium (or to
high).

--enable-single-virtual
Enables single, virtual-call resolution. By default, a C++ analysis treats all virtual functions as
unimplemented, whereas full virtual call resolution is enabled by default for Java, Visual Basic, and
C# analyses. When this option is enabled, interprocedural analysis across virtual calls takes place
when the analysis engine finds only one implementation of a virtual function. When the analysis
engine finds more than one implementation, it assumes that the virtual function is unimplemented. Do
not specify this option if you specify the --enable-virtual option.

A C++ analysis can take longer than the default analysis because the analysis engine looks at
implementations of virtual functions, which can result in more defect reports. Though this using this
option might expedite Java, Visual Basic, and C# analyses, it also significantly affects results for
interprocedural checkers.

Specify this option, or --enable-virtual, to enable interprocedural analysis of Apple Block
invocations in C and C++ code.

Starting in version 7.0, applies to all programming languages.

--enable-openapi
Enables Spectral OpenAPI checkers (OPENAPI.*). The checkers are enabled by default, but this can
be used in conjunction with the --disable-default option to selectively enable them. See the
description of OPENAPI.* checkers in the Checker Reference Guide.

--enable-test-metrics
This option creates test metrics data files (in the intermediate directory) that can be subsequently
committed to Coverity Connect for storage. This option can be specified with other cov-analyze

21

cov_checker_ref.pdf

cov-analyze

options and it does not require cov-analyze to be invoked with --test-advisor option. This
option turns on all the necessary passes of the analysis that are required to compute test metrics.

Test metrics contain a mapping from the tests available in the emit directory to the functions that
each test covers. This data is used during Test Prioritization to calculate properties of the tests (for
example, the covered_function_count property) which can be used as part of the test score.

The -enable-test-metrics- option requires --strip-path option.

This option works with C/C++, C#, Visual Basic, and Java.

--enable-virtual
Enables full, virtual-call resolution. By default, a C++ analysis treats all virtual functions as
unimplemented, whereas full virtual call resolution is enabled by default for Java and C# analyses.
When specified, this option allows up to 100 function resolutions for any virtual method. If that limit is
exceeded, the analysis engine reverts to the default behavior.

Do not use this option if you specify the --enable-single-virtual option. The analysis can take
significantly longer than the default or when the --enable-single-virtual option is enabled
because the analysis engine looks at all implementations of virtual functions, which can result in more
defect reports.

Specify this option, or --enable-single-virtual, to enable interprocedural analysis of Apple
Block invocations in C and C++ code.

Note

To make the analysis resolve to a model of a virtual or pure virtual function without using --
enable-virtual, see "Analyzing models of virtual functions" in the Coverity 2020.12 Checker
Reference .

--export-summaries <true|false>
Collects function summary data for the analysis. The collected data provides interprocedural analysis
information for Desktop Analysis users, and must be committed to any stream that is used by
Desktop Analysis.

This option is true by default.

--field-offset-escape
[C++ analysis option] A pointer escapes the analysis if it is written to memory, passed to free(), or
passed to a function definition that is inaccessible to cov-analyze. Once the pointer escapes the
analysis, the storage to which it points will never be treated as a leak or uninitialized.

This option eliminates certain false positives in C++ by making the analysis treat &v->field as an
alias for v because some programs exploit the fact that (&v->field) - offsetof(typeof(v),
field) == v to free v given &v->field.

By default, this heuristic applies to only to C code (but not C++). This option enables this heuristic for
C++, as well.

22

cov_checker_ref.pdf#model_virtual_functions
cov_checker_ref.pdf#model_virtual_functions

cov-analyze

See also, --no-field-offset-escape.

--force
Turns off incremental analysis. This setting forces a full re-analysis of the source, even if the source
file or other source files on which it depends have not changed since it was previously analyzed.

--fnptr-models
[C/C++ analysis option] Enables function pointer models if the analysis fails to analyze certain
function pointers calls. You can enable analysis of calls to function pointers, without requiring explicit
models, using the --enable-fnptr option. For more information and examples, see "Modeling function
pointers" in the Coverity 2020.12 Checker Reference .

--handle-badalloc
[C/C++ analysis option] Causes the analysis as a whole to handle exceptions of type
std::bad_alloc, both for exceptional control flow and for UNCAUGHT_EXCEPT. By default, such
exceptions are otherwise ignored even when you use --enable-exceptions.

For an example, see --enable-exceptions.

--hfa
[C-only analysis option] Reports unnecessary header file includes. For more information, see "HFA"
in the Coverity 2020.12 Checker Reference .

The --all option does not enable this checker.

--hibernate-config
Specifies a directory that contains Hibernate mapping XML files, if applicable. Pertains to the
HIBERNATE_BAD_HASHCODE checker (see the Coverity 2020.12 Checker Reference for
details).

--ignore-deviated-findings
Set this option to prevent reporting defects that are deviated with annotations.

Any defects or false positives annotated using the #pragma Coverity compliance directive will be
suppressed and will not be reported by Coverity Connect. All recorded deviations in the current
project version are then written to a CSV file. For more information see the Coverity Checker
Reference.

--inherit-taint-from-unions
Enable taint to flow downwards from a C/C++ union to its component fields. This is required to check
code that writes to a union using memcpy(&u, &tainted, n) and later reads using u.field.

Affects security checkers TAINTED_SCALAR and INTEGER_OVERFLOW .

--java
[Java analysis option] Filters by Java translation units on which this command operates or reports.
The command will fail with an informative error message if none of the translation units in the emit
subdirectory match any of the specified language options in the intermediate directory.

23

cov_checker_ref.pdf
cov_checker_ref.pdf
cov_checker_ref.pdf
cov_checker_ref.pdf#static_checker_TAINTED_SCALAR
cov_checker_ref.pdf#static_checker_INTEGER_OVERFLOW

cov-analyze

--jobs <number-of-workers> | auto | max<number-of-workers>, -j <number-of-workers> | auto |
max<number-of-workers>

Allows you to control the number of analysis workers that run in parallel, subject to any limits
specified by your license. Starting in version 7.6.0, the need to use this option should be rare
because the default typically sets the appropriate number of workers to use for your hardware,
license, and analysis task. Note that the default for this option varies by license.

• Default for a non-Flexnet license (license.dat): --jobs auto

• Default for a Flexnet license: --jobs max8

In general, the analysis runs faster with more threads, but the scalability of that speed increase
depends on the kind of analysis, the code language(s), and other properties of the code base. In
general, analysis of C code parallelizes best, followed by C++, followed by C#, Visual Basic, and
Java quality analysis, followed by Web application security analysis, which is largely not parallelized.

This option must specify one of the following values:

• <number-of-workers>: Specifies number of analysis workers to run in parallel.

Example: --jobs 8

The specified number of workers is not allowed to exceed suggested limits for your hardware
unless you also use the --override-worker-limit option.

• auto: Automatically determines the number of workers to use. Hardware detection through --
jobs auto attempts to optimize for the case where the analysis has full or nearly-full use of the
machine's computational resources (memory and CPU). If that is not the case, you should consider
setting -j explicitly, for example, where the analysis occupies one of several "executors" on a
continuous integration server.

Example: --jobs auto

If --jobs auto is set, the analysis will determine the number of workers to run based on the
minimum of the following:

• The largest number of workers that keeps the recommended minimum physical memory
requirements below the actual physical memory of the machine.

• The number of logical CPUs, or virtual cores, on the machine. This is the number of threads or
processes that the operating system can schedule simultaneously on the hardware.

• Six (6) times the number of "physical" CPU cores, when known.

• 48: Coverity has not found performance improvements from using more than 48 workers, and
using more might reach limits on open file descriptors, and so on.

• The number permitted by the license or available for Flexnet checkout.

Detection of memory and logical CPUs should work on all analysis platforms, but detection might
fail or produce incorrect results in some virtualization environments.

24

cov-analyze

This value is not compatible with the --override-worker-limit option.

• max<number-of-workers>: Limits the number of analysis workers that can run in parallel based
on the maximum you set and the amount of memory and number of cores that are available.

Example: --jobs max8

This value is not compatible with the --override-worker-limit option.

See Running a Parallel Analysis and Running a Parallel Analysis with Coverity Analysis for Java
for guidance.

For backward compatibility, the --j <number-of-workers> syntax is still supported in this release.

--jvm-max-mem
Sets the value of the heap size for the JVMs used by the Java Web application security dynamic
analyzer and the SpotBugs analysis. The option specifies the size (an integer) in megabytes. The
option sets the option --fb-max-mem. An explicit --fb-max-mem setting overrides the heap size
set by --jvm-max-mem for a particular JVM.

--list-checkers
Displays a list of checkers that are available in the current release. Each entry indicates whether the
checker is enabled by default, and if not, how you can enable it. Some require the use of --enable,
while others can be enabled with other options (for example, --concurrency or --security), as
well. For detailed information about checkers, see the Coverity 2020.12 Checker Reference .

--max-loop <num>
Limits the maximum number of times that loops are traversed. The default limit is 32, which should be
encountered rarely. -1 means unlimited.

--max-mem <value>
Sets the maximum amount of memory, in megabytes, that a single analysis worker process will use
for the core analysis. The total memory required is approximately the product of the --max-mem and
-j options. The default value is 512.

The worker will use some additional memory for miscellaneous purposes, and even more memory if
you use --enable-constraint-fpp or enable INTEGER_OVERFLOW.

The analysis will reject a setting that is too large for the available physical memory and number of
workers.

On 32-bit Windows systems, do not set <value> to more than 512 megabytes.

out-of-memory error

An out-of-memory error indicates that the analysis is trying to use more memory than is
available to the system. If an out-of-memory error occurs, use the --max-mem option to
decrease the amount of memory that the analysis is allowed to use.

25

cov_analysis_administration_guide.pdf#parallel_analysis
cov_analysis_administration_guide.pdf#parallel_analysis_java
cov_checker_ref.pdf

cov-analyze

Note that JVM max-mem options work in the opposite way. So it is necessary to increase (not
decrease) the max-mem for out-of-memory errors related to the JVM. In this case, it is possible
that the system will run out of memory in the JVM.

--misra-config <path/to/misra_configuration_file>

Note

This option has been deprecated as of 2018.01 and will be removed in a future release. Use the --
coding-standard-config option instead.

[C/C++ MISRA option, required for a MISRA analysis.] Provides the path to a configuration file for
a MISRA analysis of C or C++ code according to one of the MISRA standards. If you want analysis
results for multiple MISRA standards, you must run separate analyses for each standard.

MISRA analysis can run together with non-MISRA analysis. To run a MISRA-only analysis, you can
use the --disable-default option with --misra-config.

We recommend that you create a custom configuration file that is based on one of the samples found
in <install_dir>/config/MISRA. Your configuration file should list the rules and deviations that
matter to your organization.

A configuration file can specify only one of the following standards:

• MISRA C 2004

Content for a configuration file for all supported 2004 standards (and no deviations):

{ version : "2.0",
 standard : "c2004",
 title: "your_title_here",
 deviations : []
}

• MISRA C++ 2008

Content for a configuration file for all supported 2008 standards (and no deviations):

{ version : "2.0",
 standard : "cpp2008",
 title: "your_title_here",
 deviations : []
}

• MISRA C 2012

Content for a configuration file for all 2012 standards (and no deviations):

{ version : "2.0",
 standard : "c2012",
 title: "your_title_here",

26

cov-analyze

 deviations : []
}

The sample configuration files in <install_dir>/config/MISRA specify a configuration and any
deviations, along with the rules covered by the configuration. No violations will be reported for the
rules specified in the deviations field.

Configuration example with deviations:

{
 version : "2.0",
 standard : "c2004",
 title: "C-2004 example with some deviations",
 deviations : [
 // Deviations for this example are Rules 5.6, 6.1, and 20.1.
 { deviation: "Rule 5.6", reason: "Currently disabled in the analysis
 configuration." },
 { deviation: "Rule 6.1", reason: "Currently disabled in the analysis
 configuration." },
 { deviation: "Rule 20.1", reason: "Currently disabled in the analysis
 configuration." }

]
}

Note that the deviations are reported in the MISRA report, so they should explain why the deviation
is claimed (either explaining in-line the measures being taken to mitigate risk or citing a separate
document that does so) as per MISRA documentation. To keep a record of the claimed deviations,
you might choose to store your configuration file in your source revision control repository.

The filenames of the sample configuration files (for example, MISRA_c2012_7.config) identify the
standard (MISRA_c2004, MISRA_cpp2008, or MISRA_c2012). Filenames ending in _7.config
cover all supported rules for a given standard. The lower the trailing number in the filename (for
example, the _1 in MISRA_c2012_1.config), the fewer the rules covered by the analysis and the
more deviations listed in the file. The numbering system is a legacy support feature.

For your custom configuration file, you can create and edit a copy of one of the samples instead of
editing the file that Coverity provides. Using the copy will prevent the loss of your configuration upon
upgrade and avoid the potential for other undesired behavior. Coverity also recommends adding the
copy to your source stream to ensure that the history of changes to that file are tracked.

For MISRA rules and directives, see "MISRA Rules and Directives" in the Coverity 2020.12
Checker Reference.

For the MISRA analysis workflow, see "Running MISRA analyses" in Coverity Analysis 2020.12
User and Administrator Guide.

--model-file <file>.xmldb
Uses the specified file to override any function models that are automatically derived from the
implementation. It can determine whether a specified file is for user or derived models. Note that

27

cov_checker_ref.pdf
cov_analysis_administration_guide.html#finding_code_defects

cov-analyze

if the default file at <install_dir_sa>/config/user_models.xmldb exists, it is used even
without specifying this option. This option can be specified multiple times.

Note that you can only use this option on the output of cov-collect-models or cov-make-library. For
more information, see "Model search order" in the Coverity 2020.12 Checker Reference .

--no-field-offset-escape
[C/C++ analysis option] Disables a heuristic that can cause RESOURCE_LEAK and UNINIT to
produce false negatives when tracking aliases of pointers.

A pointer escapes the analysis if it is written to memory, passed to free(), or passed to a function
whose definition is inaccessible to cov-analyze. Once the pointer escapes analysis, the storage to
which it points will never be considered leaked or uninitialized.

To eliminate false positives in C code (but not C++ code), the analysis considers &v-
>field to be an alias for v because some programs exploit the fact that (&v->field) -
offsetof(typeof(v), field) == v to free v given &v->field.

If a program does not use this idiom, this heuristic might lead to false negatives. For example, if
you call myfunction(&v->field) when this heuristic is enabled, the analysis assumes that v
escapes, so the analysis will not catch a RESOURCE_LEAK or UNINIT on v. This option disables the
application o f that heuristic.

This option is set automatically if the --aggressiveness-level option is set to medium (or to
high).

--no-java
Disables Java analysis. By default, the cov-analyze command otherwise analyses any Java code it
finds in the intermediate directory.

--no-log
Disables logging.

--one-tu-per-psf <true|false>
When set to true, analyzes exactly one translation unit (TU) found for a given primary source file
name. If there is more than one TU for a primary source file, the analysis will pick a single TU using
an algorithm that is intended to ensure consistency between analysis runs. However, if the build
command lines change, the analysis may make different choices and the results may vary, even
though the code appears to be unchanged. A false value enables analysis of all TUs, regardless of
primary source file duplication. The default value is true.

--output-tag <name>
Specifies a non-default location within the intermediate directory for the results of one or more
analyses. The name can be anything you choose, using characters allowed in file names. When
specified without the --append option, prior results found in that location are replaced. When specified
with --append, new results are added to the result set.

--override-worker-limit
Allows you to specify a value to -j that is greater than the recommended value. This option can be
useful when the license allows more workers than the number of cores in the machine.

28

cov_checker_ref.pdf

cov-analyze

--parse-warnings-config <filename>
[C/C++/Swift analysis option] Specifies the name for the configuration file, which allows you
to change the parse warnings that pass through a warning filter. For a sample, see config/
parse_warnings.conf.sample. See also --enable-parse-warnings.

--path-log-threshold <number>
If a function has more than <number> paths, this count is output to the log file.

--paths <number>
Sets the upper limit on the number of paths to traverse for each function. Default is 5000.

--preview
This option has been deprecated. For backwards compatibility, this option enables the same
checkers that it used to.

--print-paths
Prints the number of paths explored for each analyzed function.

--report-in-minified-js
[JavaScript application option] Enables the JavaScript checkers for minified source files. It ensures
that Coverity Analysis scans the minified JavaScript source files and reports any defects that are
found.

--resolve-calls-to-all-delegates <true|false>
When true (the default is false), it allows resolving more calls to C# delegates, which may report
more defects, notably LOCK_INVERSION defects. It may cause more false positives to be reported.

--rule
[C/C++ analysis option] Enables rule checkers.

For a list of rule checkers, you can use list-checkers.

@@<response_file>
Specify a response file that contains a list of additional command line arguments, such as a list of
files for analysis. Each line in the file is treated as one argument, regardless of spaces, quotes, etc.
The file is read using the platform default character encoding. Using a response file is recommended
when the list of input XML files is long or automatically generated.

Optionally, you can choose a different encoding, by specifying it after the first "@". For example:

cov-analyze [OPTIONS] @UTF-16@my_response_file.txt

You must use a supported Coverity encoding, listed under the cov-build --encoding option.

--security
[C/C++ and Objective-C/C++ analysis option] Enables C/C++ and Objective-C/C++ security-related
checkers.

For a list of the security checkers to which this option applies, you can use --list-checkers.

29

cov-analyze

--security-file <license file>, -sf <license file>
Path to a valid Coverity Analysis license file. If not specified, this path is given by the
<security_file> tag in the Coverity configuration or by license.dat (located in the Coverity
Analysis <install_dir>/bin directory). A valid license file is required to run the analysis.

--strip-path <path>, -s <path>
Strips the prefix of a file name path in error messages and references to your source files. If you
specify the --strip-path option multiple times, you strip all of the prefixes from the file names, in
the order in which you specify the --strip-path argument values.

This option is also available with cov-commit-defects and cov-import-results.

The leading portion of the path is omitted if it matches a value specified by this option. For example, if
the actual full pathname of a file is /foo/bar/baz.c, and --strip-path /foo is specified, then
the name attribute for the file becomes /bar/baz.c.

Important!

Coverity recommends using this option for a number of reasons:

Failure to use this option can result in poor Coverity Connect performance, triage issues related
to component maps, an unnecessary increase the size of the Coverity Connect database, and
even incorrect LOC counts.

This option shortens paths that Coverity Connect displays. It also allows your deployment to be
more portable if you need to move it to a new machine in the future.

In addition, using this option during the analysis, rather than when committing the analysis
results to Coverity Connect, can enhance end-to-end performance of the path stripping process
itself.

The --strip-path option is mandatory when running cov-analyze --test-advisor. This
changes how file-level violations are merged with existing violations in Coverity Connect. Violations
generated with Test Advisor 2020.12 will not be merged with violations generated with previous
versions of Test Advisor, and existing triage of previously-generated Test Advisor violations will not
be associated with the new violations.

Linux example:

> cov-analyze --dir myDir --strip-path=`pwd`

Windows example:

> cov-analyze --dir myDir --strip-path=%cd%

In the less common case, the option should specify the root of your build tree.

--suppress-vulnerabilities-in-dead-code
Java only. Suppresses security defects from tainted dataflow checkers when they require the
execution of dead code.

30

cov-analyze

--ticker-mode <mode>
Sets the mode of the progress bar ticker display to:

none
No progress bar at all.

no-spin
Print stars only, without the spinning bar.

spin
(default) Stars with a spinning bar at the end. Each analyzed function corresponds to one step of
spin.

--tu <translation_unit_id(s)>, -tu <translation_unit_id(s)>
Limits the scope of cov-analyze to a set of translation units (TUs), named by their numeric ID
attribute(s). A translation unit approximately maps to the output from a single run of a compiler.

This option requires a comma-separated list of id(s), and --tu can be specified multiple times. The
union of all these identifier sets is the set of TUs to operate on subsequently, for operations that work
on TUs.

Even when using the --tu or --tu-pattern options, you must specify the --analyze-node-
modules option in order to analyze translation units in node_modules.

It is an error if any of the specified IDs do not correspond to any existing translation unit. To get the
IDs for translation units, use the cov-manage-emit list sub-command.

You can use the --tu and --tu-pattern options together.

--tu-pattern <translation_unit_pattern>, -tp <translation_unit_pattern>
Limits the scope of cov-analyze to a set of translation units specified with a translation unit pattern.
The --tu-pattern option can be specified multiple times. Matching TU sets are unioned together
across all patterns.

Both --tu and --tu-pattern can be specified on a single command line. The final set of TUs
operated upon includes a given TU if it matches any specified translation unit pattern or its ID is listed
explicitly as an argument to --tu.

Even when using the --tu or --tu-pattern options, you must specify the --analyze-node-
modules option in order to analyze translation units in node_modules.

It is an error if at least one --tu-pattern argument is specified but no translation unit matches any
of the specified patterns.

You can get useful information on TUs by using the cov-manage-emit list sub-command.

See Translation unit matching for more information.

--use-jshintrc <path/to/your/.jshintrc>
[JavaScript analysis] Identifies a custom configuration to use for the JSHint analysis in place of the
default Coverity configuration file (see http://jshint.com/docs/ for information about .jshintrc file
configuration).

31

http://jshint.com/docs/

cov-analyze

Note that hierarchical configuration files, based on the source code directory hierarchy, are not
supported, due to limitations in capture and in how cov-analyze invokes JSHint.

When using --use-jshintrc, you must also pass --enable-jshint.

--user-model-file <user_file.xmldb>
[Deprecated as of version 7.7.0] This option will be removed and replaced in a future release. Use --
model-file instead.

--wait-for-license
Indicates that if a license cannot be obtained from the license server, cov-analyze must wait until
a license becomes available. After a license becomes available, cov-analyze acquires it and
proceeds with the analysis. This option is ignored if cov-analyze does not use a floating-node
license.

Extend SDK options

--dtd <directory>
[Deprecated Extend SDK analysis option] Use the --prevent-root option instead.

--prevent-root
[Extend SDK analysis option] When running a Extend SDK checker, specify the location of the
Coverity Analysis installation directory:

--prevent-root /<install_dir_sa>

See Coverity Extend SDK 2020.12 Checker Development Guide for more information.

Java SpotBugs options

--disable-fb
[SpotBugs analysis option for Java] Disables SpotBugs analysis.

An error will occur if you combine --enable-fb with --disable-fb.

--enable-fb
[SpotBugs analysis option for Java] Enables SpotBugs (version 2.0.1) analysis (requires a Coverity
license). You can use this option to enable SpotBugs analysis while disabling all other default
checkers through the --disable-default option. If you attempt to run an analysis when using this
option, but you do not have a Coverity license, Coverity Analysis will disable the checkers and print
an error message.

SpotBugs is an open source program for finding bugs (defects) in Java code. It provides a large
group of SpotBugs bug patterns that can detect a wide variety of defects.

A SpotBugs analysis complements the analysis with Coverity Analysis for Java checkers. By default,
cov-analyze detects those medium-priority and high-priority SpotBugs defects that do not generate
too many unimportant results (for details, see <install_dir_sa>/spotbugs-ext/config/
include.coverity-default.xml). The default analysis also excludes results that overlap with

32

cov_extend_sdk_checker_dev_guide.pdf
http://findbugs.sourceforge.net/

cov-analyze

non-deprecated Coverity Analysis for Java checkers. However, you can include or exclude other
bugs from the analysis. To refine the SpotBugs results, see --fb-include, --fb-exclude, and
--disable.

You can use cov-analyze to run a SpotBugs analysis on builds in your intermediate directory,
which are generated by cov-build or by cov-emit-java. However, Coverity Analysis for Java
does not integrate with SpotBugs running outside of the cov-analyze command. The SpotBugs
analysis should add no more than about 20% to the running time of cov-analyze, assuming that
most Coverity checkers are enabled.

Coverity Analysis uses the FB prefix to distinguish defects that match SpotBugs bug patterns from
defects found by Coverity checkers. For example, Coverity Analysis for Java uses FB.DM_EXIT
for the SpotBugs DM_EXIT bug pattern. The console prints a summary of the results, which looks
something like the following:

 SpotBugs Checkers: 74 errors
 FB.DE_MIGHT_IGNORE 1
 FB.DM_EXIT 5
 FB.DP_CREATE_CLASSLOADER_INSIDE_DO_PRIVILEGED 2
 FB.EI_EXPOSE_REP 14
 ...

Keep in mind that the defect summary identifies the number of defect occurrences, which is likely to
be somewhat larger than the number of CIDs in Coverity Connect.

When you run the analysis, the console output looks something like the following:

 [STATUS] Running SpotBugs:
 Scanning archives (2 / 2)
 2 analysis passes to perform
 Pass 1: Analyzing classes (2862 / 2862) - 100% complete
 Pass 2: Analyzing classes (1793 / 1793) - 100% complete
 Done with analysis

An error will occur if you combine --disable-fb with --enable-fb.

After running the analysis, you continue to run cov-commit-defects to commit the analysis results
to Coverity Connect. Because the SpotBugs bugs are Static Java defects, Coverity Connect displays
them in a Static Java stream along with the results of the Coverity Analysis for Java checkers.
Coverity Connect lists defects found by SpotBugs according to the bug categories that come from
SpotBugs, such as "SpotBugs: Correctness."

--fb-dont-exclude-overlap
[SpotBugs analysis option for Java. Not recommended for production use] Disables the default
exclusion of certain SpotBugs checkers. By default, cov-analyze prevents SpotBugs analysis from
reporting defects that are best found using Coverity checkers. In other words, Coverity checkers are
better at finding some portion of the defects SpotBugs can report because the defects reported by the
Coverity checkers generally have lower false positive (FP) rates and consist of more true positives.
This "overlap" with SpotBugs is excluded by default when cov-analyze invokes SpotBugs analysis.

33

http://findbugs.sourceforge.net/bugDescriptions.html

cov-analyze

After using this option to disable the default exclusions, you can then customize the exclusions with
--fb-exclude option and a filter file. You can base your file filter on exclude.overlap.xml
filter file.

--fb-exclude concurrency | <filter_file_name>
[SpotBugs analysis option for Java] Specifies a set of SpotBugs bug patterns to exclude when you
run an analysis. By default, the analysis excludes SpotBugs results that overlap with non-deprecated
Coverity Analysis for Java checkers because the latter return more true positive defects, fewer
false positive defects, or both in cases where such overlap occurs. You can use --fb-exclude to
exclude additional defects from the analysis results.

Note

If you exclude a defect, it will not appear in the results even if the defect has been included
through --fb-include.

This option accepts one or more of the following values:

• concurrency

Exclude concurrency-related SpotBugs results. For details, see <install_dir>/spotbugs-
ext/config/exclude.concurrency.xml.

• <filter_file_name>

Uses a SpotBugs filter file to specify the SpotBugs bug patterns or bug categories that you want
to exclude. For example, to produce results equivalent to --disable FB.DE_MIGHT_DROP --
disable FB.DE_MIGHT_IGNORE, you can specify the following in your filter file:

 <SpotBugsFilter>
 <Match>
 <Bug pattern="DE_MIGHT_DROP,DE_MIGHT_IGNORE"/>
 </Match>
 </SpotBugsFilter>

To create a filter file, see the SpotBugs documentation at http://spotbugs.readthedocs.io/ .
Note that you can use filter files not only to exclude or include individual bug patterns, but also to
exclude or include categories of SpotBugs bugs. For example, to exclude medium-priority and low-
priority bugs in the SpotBugs MT_CORRECTNESS (Multi-threaded correctness) category, you can
use the following:

 <SpotBugsFilter>
 <Match>
 <Bug category="MT_CORRECTNESS"/>
 <Or>
 <Priority value="2"/>
 <Priority value="3"/>
 </Or>
 </Match>

34

http://spotbugs.readthedocs.io/

cov-analyze

 </SpotBugsFilter>

You can specify filter files using relative or absolute paths. If you are using Cygwin, specify
Windows native paths, not Cygwin paths.

You can specify this option multiple times on the command line. The order of the exclusions does not
matter.

You can also use the --fb-include option. If a defect is excluded, it will not appear in the results
even if the defect has been included through --fb-include.

--fb-include high-priority | medium-priority | low-priority | <filter_file_name>
[SpotBugs analysis option for Java] Specifies a set of SpotBugs bug patterns to run on your code.
You can use this option to find defects based on SpotBugs priority categories, or you can use a filter
file for this purpose.

This option accepts only a single value. For example:

• --fb-include low-priority

Returns the most SpotBugs results.

• --fb-include medium-priority

Returns only the defects that SpotBugs identifies as medium-priority or high-priority bugs.

Note that cov-analyze detects a significant subset of these defects by default (for details, see
<install_dir_sa>/spotbugs-ext/config/include.coverity-default.xml).

• --fb-include high-priority

Returns only the defects that SpotBugs identifies as high-priority bugs.

• --fb-include [<my_inclusions.xml>]

Uses a SpotBugs filter file to specify the SpotBugs bug patterns or bug categories that you want to
include. For guidance, see the --fb-exclude option for filter files.

If the option is not specified, the default file <install_dir>/spotbugs-ext/config/
include.coverity-default.xml is used.

If <install_dir>/spotbugs-ext/config/include.<arg>.xml exists as a file, it is used as
the filter file and it overrides the default file settings.

You can use this option at most once on the command line.

SpotBugs rates bugs based on their priority (high, medium, or low). These priorities are similar to the
Coverity defect impacts described in each Coverity Integrity Report. In SpotBugs, high-priority defects
are most likely to be actionable, while low-priority defects are least likely to require action. Note that
Coverity Integrity Report rates bugs in the following SpotBugs categories as medium-impact defects:
Correctness, Multithreaded correctness, and Security. All other categories of bugs are rated as low-
impact defects.

35

cov-analyze

You can also use the --fb-exclude or --disable option. If a defect is excluded or disabled, it will
not appear in the results even if the defect has been included through --fb-include.

--fb-max-mem
[SpotBugs analysis option for Java] Sets the JVM heap size of the VM that is running SpotBugs. This
option is similar to --max-mem in that it takes an integral value of megabytes, but differs in that the
action to take if SpotBugs execution runs out of memory is to provide a larger value. If the option is
not specified, the default value is 1024.

Kotlin Detekt options

–-disable-detekt
Disables Detekt analysis, which is otherwise enabled by default.

An error will occur if you combine --enable-detekt with --disable-detekt

--enable-detekt
Enables Detekt analysis (version 1.0.1) of captured Kotlin source code (see the DETEKT.* checker
in the Coverity 2020.03 Checker Reference Guide for details). The Detekt analysis is enabled by
default.

Coverity Analysis provides a default configuration that can be found at <install_dir>/config/
detekt/coverity-default-detekt-config.yml. However, you can apply your own custom
configuration instead by using the --detekt-config-file *.yml option, where *.yml
specifies your configuration (see https://arturbosch.github.io/detekt/configurations.html for information
about *.yml file configuration). If you do not use the option, the analysis will run the default
configuration file and ignore any *.yml files in your source tree.

An error will occur if you combine --enable-detekt with --disable-detekt

--detekt-config-file
Identifies a custom configuration to use for the Detekt analysis in place of that defined in the default
Coverity configuration file (see https://arturbosch.github.io/detekt/configurations.html for information
about *.yml file configuration).

--enable-formatting-ruleset
Enables the Detekt formatting rule set. For more information about the Detekt rule sets, see https://
arturbosch.github.io/detekt/index.html.

Web and mobile application security options

--add-password-regex <regular_expression>
[Web and mobile application security option] Treats field and method parameter names that match
the specified regular expression as a password source. You can specify this option multiple times.
Note that if you use the --add-password-regex and --replace-password-regex, the default
regular expression will be replaced, then extended.

This option affects analysis by the WEAK_PASSWORD_HASH and SENSITIVE_DATA_LEAK
checkers. See also, --replace-password-regex.

36

https://arturbosch.github.io/detekt/configurations.html
http://jshint.com/docs/
https://arturbosch.github.io/detekt/configurations.html
http://jshint.com/docs/
https://arturbosch.github.io/detekt/index.html
https://arturbosch.github.io/detekt/index.html

cov-analyze

--allow-jsp-include-param-blacklist
[Java web application security option] Treats any servlet request parameters that are set through
a <jsp:include> tag as untainted. This option reduces false positives when a servlet request
parameter that is used from an included JSP file never contains tainted data but increases the risk of
false negatives in cases where the parameter can be tainted.

This setting changes the default behavior of the XSS checker, a web and mobile applications security
checker.

--android-security
Enables the checkers used for Android application security analysis. Use these checkers only if
you need them because the security analysis adds non-trivial time and memory requirements to the
overall analysis.

See "Running mobile application security analysis" in Coverity Analysis 2020.12 User and
Administrator Guide. for information about using this option.

See also, --disable-android-security.

--directive-file <JSON_file>
[Security option] Takes a path to a JSON file with a number of user configuration directives, including
Web and Android application security directives.

To create this file, see the appendix, "Security Configuration File Reference," in Coverity 2020.12
Checker Reference).

Use this option instead of --webapp-security-config.

--disable-webapp-security
[Web application security option] This option has been deprecated. Disables the Web application
security checkers. Note that these checkers are disabled by default.

See --webapp-security.

--disable-webapp-security-preview
[Web application security option] This option has been deprecated. If you use this option, a warning
will be displayed, but no other action will be taken.

--distrust-all
[Security option] This option is equivalent to setting all the --distrust-* options. It applies to all
the checkers in the group Security (Tainted dataflow checker). For details, see the Coverity 2020.12
Checker Reference .

This option cannot be used with --trust-all.

--distrust-mobile-other-app
[Mobile application security option] Specifies the default behavior of the analysis, which is to treat
data as tainted when it is received from any mobile application that does not require a permission to
communicate with the current application component.

This option cannot be used with --trust-mobile-other-app.

37

cov_analysis_administration_guide.pdf#analysis_android_security
cov_analysis_administration_guide.pdf#analysis_android_security
cov_checker_ref.pdf
cov_checker_ref.pdf
cov_checker_ref.pdf
cov_checker_ref.pdf

cov-analyze

--distrust-mobile-other-privileged-app
[Mobile application security option] Treats data as though it is tainted when it is received from any
mobile application that requires a permission to communicate with the current application component.
Such data is otherwise trusted by default.

This option cannot be used with --trust-mobile-other-privileged-app.

--distrust-mobile-same-app
[Mobile application security option] Treats data received from the same mobile application as though
it is tainted. Such data is otherwise trusted by default.

This option cannot be used with --trust-mobile-same-app.

--distrust-mobile-user-input
[Mobile application security option] Specifies the default behavior of the analysis, which is to treat
data obtained from user input as though it is tainted.

This option cannot be used with --trust-mobile-user-input.

--distrust-command-line
[Web application security option] Treats command line arguments as though they are tainted. Such
data is otherwise trusted by default. For details, see the Coverity 2020.12 Checker Reference .

See also, --trust-command-line.

--distrust-console
[Web application security option] Treats data obtained from a console (for example, reading from
System.in) as though it is tainted. Such data is otherwise trusted by default. This option applies
to all the checkers in the group Security (Tainted dataflow checker). For details, see the Coverity
2020.12 Checker Reference .

Note that the checker-level version of this option (not available to all checkers in this group) overrides
the command-level version.

The following example produces an issue report:

 public class ConsoleInj {
 public void testInjection(Statement stmt) throws Exception {
 BufferedReader reader = new BufferedReader(new
 InputStreamReader(System.in));
 String query = reader.readLine();
 stmt.executeQuery(query);
 }
 }

This option cannot be used with --trust-console.

--distrust-cookie
[Web application security option] Specifies the default behavior of the analysis, which is to distrust
data from HTTP cookies and treat it as though it is tainted. This option applies to all the checkers of
type Security (Tainted dataflow checker). See the Coverity 2020.12 Checker Reference for details.

38

cov_checker_ref.pdf
cov_checker_ref.pdf
cov_checker_ref.pdf
cov_checker_ref.pdf

cov-analyze

Note that the checker-level version of this option (not available to all checkers in this group) overrides
the command-level version.

The following example produces an issue report:

 class SqlInjFromCookie extends HttpServlet {
 Statement sql_stmt;
 public void doPost(HttpServletRequest req, HttpServletResponse
 resp) {
 try {
 sql_stmt.executeQuery(req.getCookies()[0].getValue());
 } catch(Exception e) {
 // ...
 }
 }
 }

This option cannot be used with --trust-cookie

--distrust-database
Treats data obtained from a database (for example, SQL query results and Hibernate objects) as
though it is tainted. Such data is otherwise trusted by default. This option applies to all the checkers
in the group Security (Tainted dataflow checker). For details, see the Coverity 2020.12 Checker
Reference .

Note that the checker-level version of this option (not available to all checkers in this group) overrides
the command-level version.

The following example produces an issue report:

 public class DatabaseInj {
 public void testInjection(int columnIndex, Statement stmt) throws
 Exception {
 ResultSet rs = stmt.executeQuery("SELECT * FROM *");
 String query = "SELECT * FROM " + rs.getString(columnIndex);
 stmt.executeQuery(query);
 }
 }

This option cannot be used with --trust-database.

--distrust-environment
[Web application security option] Treats data that the checker identifies as environment variables
as though it is tainted. Such data is otherwise trusted by default. This option applies to all the
checkers in the group Security (Tainted data checker). For details, see the Coverity 2020.12 Checker
Reference .

Note that the checker-level version of this option (not available to all checkers in this group) overrides
the command-level version.

39

cov_checker_ref.pdf
cov_checker_ref.pdf
cov_checker_ref.pdf
cov_checker_ref.pdf

cov-analyze

The following example produces an issue report:

 public class EnvironmentInj {
 public void testInjection(Statement stmt, String getVar) throws Exception
 {
 String envVar = System.getEnv(getVar);
 String query = "SELECT * FROM " + envVar;
 stmt.executeQuery(query);
 }
 }

This option cannot be used with --trust-environment.

--distrust-filesystem
[Web application security option] Treats data obtained from a file system as though it is tainted. Such
data is otherwise trusted by default. This option applies to all the checkers of type Security (Tainted
dataflow checker). For details, see the Coverity 2020.12 Checker Reference .

Note that the checker-level version of this option (not available to all checkers in this group) overrides
the command-level version.

--trust-filesystem.

The following example produces an issue report:

 public class FilesysInj {
 public void testRead(FileInputStream fis) throws Exception {
 byte[] b = new byte[50];
 fis.read(b);
 stmt.executeQuery("SELECT * FROM " + new String(b));
 }
 }

This option cannot be used with --trust-filesystem.

--distrust-http
[Web application security option] Specifies the default behavior of the analysis, which is to treat Web
input (for example, GET and POST parameters) as though it is tainted. This option applies to all the
checkers of type Security (Tainted dataflow checker). For details, see the Coverity 2020.12 Checker
Reference .

Note that the checker-level version of this option (not available to all checkers in this group) overrides
the command-level version.

The following Java example produces an issue report:

 class ServletInj extends HttpServlet {
 Statement sql_stmt;
 public void doPost(HttpServletRequest req, HttpServletResponse resp)
 {

40

cov_checker_ref.pdf
cov_checker_ref.pdf
cov_checker_ref.pdf

cov-analyze

 try {
 sql_stmt.executeQuery(req.getParameter("x"));
 } catch(Exception e) {
 // ...
 }
 }
 }

This option cannot be used with --trust-http.

--distrust-http-header
[Web application security option] Specifies the default behavior of the analysis, which is to distrust
data from HTTP headers as though it is tainted. This option applies to all the checkers of type
Security (Tainted dataflow checker). For details, see the Coverity 2020.12 Checker Reference .

Note that the checker-level version of this option (not available to all checkers in this group) overrides
the command-level version.

The following example produces an issue report:

 class HttpHeaderInj extends HttpServlet {
 Statement sql_stmt;
 public void doPost(HttpServletRequest req, HttpServletResponse resp)
 {
 try {
 sql_stmt.executeQuery(req.getHeader("user-agent"));
 } catch(Exception e) {
 // ...
 }
 }
 }

This option cannot be used with --trust-http-header.

--distrust-js-client-cookie
Treats data from document.cookie as though it is tainted. The default is to trust this data.

This option cannot be used with --trust-js-client-cookie.

--distrust-js-client-external
Treats response data from the response to XMLHttpRequest and similar requests as though it is
tainted. This is the default behavior for this option. See also, --distrust-js-client-http-
header.

This option cannot be used with --trust-js-client-external.

--distrust-js-client-html-element
Treats data from user input on HTML elements such as textarea and input elements as though it
is tainted. The default is to trust this data.

This option cannot be used with --trust-js-client-html-element.

41

cov_checker_ref.pdf

cov-analyze

--distrust-js-client-http-referer
Treats data from the referer HTTP header (from document.referrer) as though it is tainted.
This is the default behavior.

This option cannot be used with --trust-js-client-http-referer.

--distrust-js-client-http-header
Treats data as tainted when it is from the HTTP response header of the response to
XMLHttpRequest or to a similar request. This data is trusted by default. See also, --distrust-
js-client-external.

This option cannot be used with --trust-js-client-http-header.

--distrust-js-client-other-origin
Treats data as tainted when it is from content in another frame or from another origin, for
example, from window.name. This is the default behavior.

This option cannot be used with --trust-js-client-other-origin.

--distrust-js-client-url-query-or-fragment
Treats data as tainted when it is from the query or fragment part of the URL, for example,
location.hash or location.query. This is the default behavior.

This option cannot be used with --trust-js-client-url-query-or-fragment.

--distrust-network
[Web application security option] Specifies the default behavior of the analysis, which is to treat data
obtained from a network connection (for example, a TCP socket or HTTP connection) as though it
is tainted. This option applies to all the checkers of type Security (Tainted dataflow checker). For
details, see the Coverity 2020.12 Checker Reference .

Note that the checker-level version of this option (not available to all checkers in this group) overrides
the command-level version.

The following example produces an issue report:

 class NetworkInj {
 public void func(Socket s, Statement stmt) throws SQLException,
 IOException {
 InputStream is = s.getInputStream();
 InputStreamReader isr = new InputStreamReader(is);
 BufferedReader br = new BufferedReader(isr);
 String query = br.readLine();

 query = "SELECT * FROM " + query;
 stmt.executeQuery(query);
 }
 }

This option cannot be used with --trust-network.

42

cov_checker_ref.pdf

cov-analyze

--distrust-rpc
[Web application security option] Specifies the default behavior of the analysis, which is to distrust
data obtained from a Remote Procedure Call (RPC) as though it is tainted. This option applies to
all the checkers in the group Security (Tainted data checker). For details, see the Coverity 2020.12
Checker Reference .

Note that the checker-level version of this option (not available to all checkers in this group) overrides
the command-level version.

The following example, which uses an Enterprise Java Bean (EJB), produces an issue report:

 @Remote(RemoteInterface.class)
 public class TestEJB implements RemoteInterface {
 Statement stmt;
 public void testWrite(String taint) {
 ResultSet rs = stmt.executeQuery("SELECT * FROM *");
 String query = "SELECT * FROM " + rs.getString(columnIndex);
 stmt.executeQuery(query);
 }
 }

This option cannot be used with --trust-rpc.

--distrust-servlet
[Deprecated Web application security option] This option has been deprecated as of version 7.7.0
and will be removed from a future release. Use --distrust-http, instead.

This option cannot be used with --trust-servlet.

--distrust-system-properties
[Web application security option] Treats system properties (those obtained from
System.getProperty()) as though they are tainted. Such properties are otherwise trusted by
default. This option applies to all the checkers in the group Security (Tainted dataflow checker). For
details, see the Coverity 2020.12 Checker Reference .

Note that the checker-level version of this option (not available to all checkers in this group) overrides
the command-level version.

The following example produces an issue report:

 public class SystemPropertiesInj {
 public void testInjection(Statement stmt, String p) throws Exception {
 stmt.executeQuery("SELECT * FROM " + System.getProperty(p));
 }
 }

This option cannot be used with --trust-system-properties.

--framework-analyzer-timeout
[Web application security option] Increase the timeout (specified in minutes) for the framework
analyzer. The default value is 60 (60 minutes).

43

cov_checker_ref.pdf
cov_checker_ref.pdf
cov_checker_ref.pdf

cov-analyze

Use this option if the framework analyzer takes too long and is killed. Note that the need to use this
option suggests that the hardware in use is most likely overloaded and not powerful enough for the
analysis.

--not-tainted-field <fully_qualified_field_name>
[Web application security option] The value <fully_qualified_field_name> is a Perl regular
expression describing a fully qualified field name. Any matching fields will be asserted to be
untainted. Additional defects may be reported by the TAINT_ASSERT checker, but reported issues
involving unsafe uses of the value will be suppressed in the Web application security checkers.

The option can be specified multiple times on a single command line.

See Adding Assertions that Fields are Tainted or Not Tainted for details.

--replace-password-regex <regular_expression>
[Web application security option] Replaces the default regular expression that the checker uses to
infer passwords. You can specify this option only once. Note that if you use the --add-password-
regex and --replace-password-regex, the default regular expression will be replaced, then
extended.

This option affects analysis by the WEAK_PASSWORD_HASH and SENSITIVE_DATA_LEAK
checkers. See also, --add-password-regex.

--report-null-field-address
When you specify this option, the analysis considers "&p->field" as dereferencing "p". Specifying
this option would cause the "check NULL dereferencing" checkers (for example FORWARD_NULL,
NULL_RETURNS, etc) to report more defects. While it is undefined behavior to form p->field
when p is null, in practice "&p->field" just adds a constant to the value of "p" without performing a
dereference. Some code relies on this behavior to delay the null check on "p", so by default, this is
not reported as a defect. See also --field-offset-escape

--skip-android-app-sanity-check
[Android application security option] Suppresses the warning message that normally appears if
Android application security checkers are enabled with the --android-security option, but no
Android application was captured.

The check, which this option overrides, is designed to catch the case where someone intended to run
Android application security checkers but forgot to capture the Android application using cov-build
filesystem capture, for example, with the --fs-capture-search or --fs-capture-list options
to cov-build.

--skip-webapp-sanity-check
[Java-only Web application security option] Suppresses the warning message that normally appears
if any Web application security checkers are enabled but cov-emit-java --webapp-archive
was not used to emit the Web application (web-app) archive or directory.

The check, which this option overrides, is designed to catch the case where someone intended to
run Web application security checkers but forgot to emit the WAR file. It is technically possible, but
highly unlikely, for Java classes to contain an entire Web application (without any JSPs or framework
configuration), in which case there would be no need for a WAR file.

44

cov_checker_ref.pdf#java_tainted_assertions

cov-analyze

For additional details, see --webapp-security and --skip-war-sanity-check.

--tainted-field <fully_qualified_field_name>
[Web application security option] Takes a Perl-style regular expression that describes a fully qualified
field name. Any matching fields will be asserted to be tainted. Additional defects may be reported by
the Web application security checkers, if any of the specified fields are used in an unsafe manner.
The option can be specified multiple times on a single command line. As an example, passing the
command line option –tainted-field com.coverity.examples.Table.* will assert that the
fields title and values are tainted in the following code.

 Package com.coverity.examples;

 class Table {
 String title;
 String value;
 int id;
 }

See Adding Assertions that Fields are Tainted or Not Tainted for more information.

--trust-all
[Security option] This option is equivalent to providing all the --trust-* options. This option applies
to all the checkers in the group Security (Tainted data checker). For details, see the Coverity 2020.12
Checker Reference .

This option cannot be used with --distrust-all.

--trust-mobile-other-app
[Mobile application security option] Trusts data received from any mobile application when it does not
require a permission to communicate with the current application component. Such data is otherwise
distrusted by default.

This option cannot be used with --distrust-mobile-other-app.

--trust-mobile-other-privileged-app
[Mobile application security option] Specifies the default behavior of the analysis, which is to trust
data received from any mobile application that requires a permission to communicate with the current
application component.

This option cannot be used with --distrust-mobile-other-privileged-app.

--trust-mobile-same-app
[Mobile application security option] Specifies the default behavior of the analysis, which is to trust
data received from the same mobile application.

This option cannot be used with --distrust-mobile-same-app.

--trust-mobile-user-input
[Mobile application security option] The analysis treats data obtained from user input as though it is
not tainted. Such data is otherwise distrusted by default.

45

cov_checker_ref.pdf#java_tainted_assertions
cov_checker_ref.pdf
cov_checker_ref.pdf

cov-analyze

This option cannot be used with --distrust-mobile-user-input.

--trust-command-line
[Web application security option] Specifies the default behavior of the analysis, which is to treat
command line arguments as though they are not tainted. For details, see the Coverity 2020.12
Checker Reference .

See also, --distrust-command-line.

--trust-console
[Web application security option] Specifies the default behavior of the analysis, which is to treat data
obtained from a console (for example, reading from System.in) as though it is not tainted. This
option applies to all the checkers in the group Security (Tainted data checker). For details, see the
Coverity 2020.12 Checker Reference .

This option cannot be used with --distrust-console.

--trust-cookie
[Web application security option] Treats data that is obtained from an HTTP cookie as though it is
not tainted. Such data is otherwise distrusted by default. This option applies to all the checkers in the
group Security (Tainted dataflow checker). For details, see the Coverity 2020.12 Checker Reference

 .

This option cannot be used with --distrust-cookie

--trust-database
[Web application security option] Specifies the default behavior of the analysis, which is to treat data
obtained from a database (for example, SQL query results and Hibernate objects) as though it is not
tainted. This option applies to all the checkers in the group Security (Tainted dataflow checker). For
details, see the Coverity 2020.12 Checker Reference .

This option cannot be used with --distrust-database.

--trust-environment
[Web application security option] Specifies the default behavior of the analysis, which is to treat data
from environment variables as though it is not tainted. This option applies to all the checkers in the
group Security (Tainted data checker). For details, see the Coverity 2020.12 Checker Reference .

Note that the analysis trusts data from environment variables by default.

This option cannot be used with --distrust-environment.

--trust-filesystem
[Web application security option] Specifies the default behavior of the analysis, which is to treat data
obtained from a file system as though it is not tainted. This option applies to all the checkers in the
group Security (Tainted data checker). For details, see the Coverity 2020.12 Checker Reference .

Note that the analysis trusts data from filesystem sources by default.

This option cannot be used with --distrust-filesystem.

46

cov_checker_ref.pdf
cov_checker_ref.pdf
cov_checker_ref.pdf
cov_checker_ref.pdf
cov_checker_ref.pdf
cov_checker_ref.pdf
cov_checker_ref.pdf
cov_checker_ref.pdf

cov-analyze

--trust-http
[Web application security option] Treats Web input (for example, GET and POST parameters) as
though it is not tainted. Web input is otherwise treated as tainted by default. This option applies to all
the checkers in the group Security (Tainted dataflow checker). For details, see the Coverity 2020.12
Checker Reference .

This option cannot be used with --distrust-http.

--trust-http-header
[Web application security option] Treats data that is obtained from an HTTP header as though it is
not tainted. Such data is otherwise distrusted by default. This option applies to all the checkers in the
group Security (Tainted dataflow checker). For details, see the Coverity 2020.12 Checker Reference

 .

This option cannot be used with --distrust-http-header.

--trust-js-client-cookie
Trusts data from document.cookie.

This option cannot be used with --distrust-js-client-cookie. This is the default behavior.

--trust-js-client-external
Trusts response data from the response to XMLHttpRequest and similar requests. The default is to
distrust this data. See also, --trust-js-client-http-header.

This option cannot be used with --distrust-js-client-external.

--trust-js-client-html-element
Trusts data from user input on HTML elements such as textarea and input elements. This is the
default behavior.

This option cannot be used with --distrust-js-client-html-element.

--trust-js-client-http-referer
Trusts data from the referer HTTP header (from document.referrer). The default is to distrust
this data.

This option cannot be used with --distrust-js-client-http-referer.

--trust-js-client-http-header
Trusts data from the HTTP response header of the response to XMLHttpRequest and similar
requests. This is the default behavior. See also, --trust-js-client-external

This option cannot be used with --distrust-js-client-http-header.

--trust-js-client-other-origin
Trusts data from content in another frame or from another origin, for example, from
window.name. The default is to distrust this data.

This option cannot be used with --distrust-js-client-other-origin.

47

cov_checker_ref.pdf
cov_checker_ref.pdf
cov_checker_ref.pdf
cov_checker_ref.pdf

cov-analyze

--trust-js-client-url-query-or-fragment
Trusts data from the query or fragment part of the URL, for example, location.hash or
location.query. The default is to distrust this data.

This option cannot be used with --distrust-js-client-url-query-or-fragment.

--trust-network
[Web application security option] Treats data obtained from a network connection (for example, a
TCP socket or HTTP connection) as though it is not tainted. Such data is otherwise distrusted by
default. This option applies to all the checkers in the group Security (Tainted dataflow checker). For
details, see the Coverity 2020.12 Checker Reference .

This option cannot be used with --distrust-network.

--trust-rpc
[Web application security option] Treats data obtained from a Remote Procedure Call (RPC) as
though it is not tainted. Such data is otherwise distrusted by default. This option applies to all the
checkers in the group Security (Tainted data checker). For details, see the Coverity 2020.12 Checker
Reference .

This option cannot be used with --distrust-rpc.

--trust-servlet
[Web application security option] This option has been deprecated as of version 7.7.0 and will be
removed from a future release. Use with --trust-http, instead.

This option cannot be used with --distrust-servlet.

--trust-system-properties
[Web application security option] Specifies the default behavior of the analysis, which is to treat data
obtained from system properties (for example, System.getProperty()) as though it is not tainted.
This option applies to all the checkers in the group Security (Tainted data checker). For details, see
the Coverity 2020.12 Checker Reference .

This option cannot be used with --distrust-system-properties.

--webapp-security
[Web application security option] Enables the checkers that are used for Web application security
analysis.

Java Prerequisite: Prior use of the --webapp-archive option to cov-emit-java for the WAR file.
See Running a Security Analysis on a Java Web Application for details.

.NET Recommendation: Coverity highly recommends ensuring that cov-build captured your
Web application template and configuration files. See Running a Security Analysis on a Java Web
Application for details.

Note

Use these checkers only if you need them because the security analysis adds non-trivial time
and memory requirements to the overall analysis.

48

cov_checker_ref.pdf
cov_checker_ref.pdf
cov_checker_ref.pdf
cov_checker_ref.pdf
cov_analysis_administration_guide.pdf#analysis_java_security
cov_analysis_administration_guide.pdf#analysis_csharp_security
cov_analysis_administration_guide.pdf#analysis_csharp_security

cov-analyze

--webapp-security-aggressiveness-level <low|medium|high>
[Web application security option] Tunes the aggressiveness of assumptions that the analysis makes
to find potential security vulnerabilities (security defects). Higher levels report more defects, but the
analysis time increases and memory usage is likely to increase. Higher levels also increase the
likelihood that any given defect is a false positive. Values for level are low, medium, or high. Default
is low.

This option can assist security auditors who need to see more defects than developers might need to
see.

When analyzing code that uses unsupported Web application frameworks, medium or high
aggressiveness levels can be more useful than the default.

--webapp-security-config <JSON_file>
[Java Web application security option] Alias for --directive-file.

--webapp-security-preview
[Web application security option] Deprecated. Does the same thing as --webapp-security.

See also --webapp-security.

Test Advisor options

--compute-test-priority
[Test Advisor option] For Test Advisor test prioritization, this option creates a prioritized list of test
(outputs to the location specified in --test-priority-output) using the specified test priority
policy (specified in --test-priority-policy.

For usage information, see Test Advisor 2020.12 User and Administrator Guide.

This option works with C/C++, C#, Visual Basic, and Java.

--disable-test-metrics
Disables Test Advisor test prioritization metric data. If specified, this option takes precedence over --
enable-test-metrics.

--test-advisor
Enables Test Advisor analysis. The --strip-path option is required for Test Advisor.

--test-advisor-policy <policy_file>
Specifies that the file is read as the policy for the Test Advisor run. The file must be a JSON file.
For more information about construction policy files, see "Creating Test Advisor policies" in the Test
Advisor 2020.12 User and Administrator Guide.

--test-advisor-eval-output <eval_output_dir>
Causes the filter evaluation output to be written to the specified directory when Test Advisor runs.
The specified directory is created if it does not already exist. All source files that are analyzed by Test
Advisor are copied to this directory, and lines within each file that are excluded from analysis by the
test policy are annotated with the filter that caused the exclusion.

49

test_advisor_use_and_admin_guide.pdf#ta_prior_overivew

cov-analyze

--test-advisor-eval-rule <rule_number>
Causes the filter evaluation to be written only for the specified rule of the policy. Rules are numbered
starting from 1 in order of their appearance in the policy file. This option has no effect unless --
test-advisor-eval-output option is also used.

--test-advisor-verbose
Causes the output of verbose messages during the execution Test Advisor.

--test-priority-eval-output <eval_output_file>
For Test Advisor test prioritization, this option specifies the path and name for a file to which details
about the analysis performed by test prioritization will be written. This option can be used to help
debug the test prioritization policy.

The output file is in CSV format, where each line contains a record with the following information:

• A function, identified by its mangled name and filename

• A test, identified by its suitename and testname

• A rule from the policy file, identified by its name
Each record represents a function which passed the filters for the given rule, and a test which covers
the function. If more than one test covers the function, that function shall have multiple records in the
eval output, one for each test.

The filtered_function_count rule property for a given (test,rule) pair is thus the number
of records which have that (test,rule) pair in the eval output. The functions listed in those records
are the functions which contributed to the filtered_function_count. The eval output provides
a way to validate that the filtered_function_count is correct. If a score in the test prioritization
output is not as expected, the functions contributing to the rule's filtered_function_count can
be examined to determine why the discrepancy exists.

The first line of the eval output contains a header which indicates the format of the subsequent lines,
and does not contain a record itself.

Due to the volume of data involved, the output file size may be large. The --tu-pattern option of
cov-analyze can be used to restrict analysis to specific translation units in order to limit the size of
the output.

--test-priority-output <output_file>
For Test Advisor test prioritization, this option specifies the path and name for the file to which the
test prioritization output will be written.

For information about the output format, see "Test scoring policy language" in the Test Advisor
2020.12 User and Administrator Guide.

--test-priority-policy <policy_file>
For Test Advisor test prioritization, this option specifies the path and name of the policy file which is
used by test prioritization to determine how tests are scored. The file must be a JSON file.

For information about the policy file format, see "Test scoring policy language" in the Test Advisor
2020.12 User and Administrator Guide.

50

cov-analyze

Shared options

--config <coverity_config.xml> , -c <coverity_config.xml>
Uses the specified configuration file instead of the default configuration file located at
<install_dir_sa>/config/coverity_config.xml.

--debug, -g
Turn on basic debugging output.

--ident
Displays the version of Coverity Analysis and build number.

--info
Displays certain internal information (useful for debugging), including the temporary directory, user
name and host name, and process ID.

--redirect stdout|stderr,<filename> -rd stdout|stderr,<filename>
Redirect either stdout or stderr to <filename>.

--tmpdir <tmp>, -t <tmp>
Specifies the temporary directory to use. On UNIX, the default is $TMPDIR, or /tmp if that variable
does not exist. On Windows, the default is to use the temporary directory specified by the operating
system.

--verbose <0, 1, 2, 3, 4>, -V <0, 1, 2, 3, 4>
Sets the detail level of command messages. Higher is more verbose (more messages). Defaults to 1.
Use --verbose 0 to disable progress bars.

Exit codes

• 0: The analysis was successful. Results should be considered usable and are ready to be committed
with cov-commit-defects.

• 2: The command was unable to complete the requested task. This error typically includes an error
message and some remediation advice.

• 4: An unexpected error occurred. This error should not occur when the product is used in a supported
way. Very likely, the requested task was not completed. This error typically provides some diagnostic
and/or debugging output, such as a stack trace.

Although the console output can provide diagnostics and warnings that might help to improve the analysis
configuration, or suggest reporting "recoverable errors" to Coverity support, this information is auxiliary
to the exit code. Users and scripts should rely on the exit code when determining whether to proceed in
consuming the analysis results.

Examples

Analyze the intermediate directory at /home/user/apache using only the DEADCODE checker:

> cov-analyze --dir /home/user/apache --disable-default --enable DEADCODE

51

cov-analyze

See Also

cov-build

cov-commit-defects

cov-make-library

52

Name
cov-blame Compute Coverity Connect automatic owner assignment based on SCM history.

Synopsis

cov-blame
 --dir <intermediate_directory>
 --preview-report <filename>
 [--scm <scm_type>]
 [--scm-tool <scm_tool_path>]
 [--scm-project-root <scm_root_path>]
 [--scm-tool-arg <scm_tool_arg>]
 [--scm-command-arg <scm_command_arg>]
 [--no-triage-filters]
 [--owner-assignment-rules <RULE1>,<RULE2>...,<RULEn>]
 [--stop-after <limit>]
 [OPTIONS]

Description

The cov-blame command computes the automatic ownership assignments based on SCM (source code
management) history and owner assignment rules. The SCM history consists of when, where, and by
whom the code was changed and the ownership rules derive the owner of an issue based on the SCM
history.

This command requires that source files remain in their usual locations in the checked-out source tree. If
the files are copied to a new location after checkout, the SCM query will not work.

There are two main use cases for this command:

1. cov-blame is automatically called for owner assignment as part of the commit process.

In this case, cov-commit-defects automatically calls cov-blame based on owner assignment
rules provided to the Coverity Connect UI. cov-commit-defects invokes cov-blame to compute
the ownership assignments. If the rule assigned to the stream requires SCM data, cov-blame first
attempts to retrieve SCM data for files related to defects from the intermediate directory. If SCM data
has not been imported to the intermediate directory, the command can directly query the SCM for the
relevant history data using the --scm* options defined in cov-commit-defects. The assigned
owners (SCM users) are then written back into the intermediate directory. cov-commit-defects
then picks up the ownership assignment files and Coverity Connect sets the owner accordingly in the
triage pane.

2. cov-blame is manually invoked to test and compare ownership rules.

You can invoke cov-blame to produce a report of owner assignments for defects to help you
accomplish the following:

• Verify, before you commit, that the automatic ownership is producing the proper/expected
assignments. You can specify one or more owner assignment rules through the --owner-
assignment-rules option for comparison.

53

cov-blame

• To compare automatic owner assignment to the owners that are already defined in Coverity
Connect. In this way, you can see how successful an owner assignment rule would have been for
historical defects that have already been manually assigned in Coverity Connect.

Before you run cov-blame, you must have a have an existing preview report or generate one using
cov-commit-defects --preview-report-v2.

Options

--dir <int_dir>
Pathname to an intermediate directory that is used to store the results of the build and analysis. This
is required.

--no-triage-filters
Calculate owner assignment for all defects whose merge key is present in the preview report,
regardless of the triage values. By default, owner assignment is only calculated for defects whose
current triage values satisfy the following conditions:

• The Owner attribute is unset

• The Classification attribute is Unclassified, Pending, Bug, or Untested.

This option is useful, for example, to calculate owner assignment for comparison with owner
assignments that have already been made manually in Coverity Connect to evaluate the accuracy of
the owner assignment rules. In this case, you must use the --no-trage-filters option.

--owner-assignment-rules <RULE1>,<RULE2>,...,<RULEn>
Determines an owner by consulting history from the SCM system. If this option is specified, you must
include at least one <rule>. Multiple <rule> options must be comma-separated. If this option is
not specified, then all rules are applied. In the descriptions below, main event refers the event that
Coverity Connect first highlights when the user clicks on the defect in the defects list.

The rules are:

• file - Queries the SCM for the person that most recently modified the file containing the main
event, and that SCM user is the chosen owner.

• line - Queries the SCM for the person that most recently modified the particular line of code that
has the main event.

• function - If there is a function associated with the main event, then cov-blame queries the
SCM for the person who most recently modified that function. Otherwise, this rule acts the same as
the file rule.

• top_events - Retrieves all of the lines of code that contain a non-interprocedural defect event in
the issue, then returns the person that most recently modified any of those lines.

• all_events - Similar to the top_events rule, except that it also considers all interprocedural
defect events.

54

cov-blame

• all_functions - Combines the function and all_events rules to query for the person who
most recently modified the functions associated with all the defect events. If there are no functions
at all, this rule behaves like the all_files rule.

• all_files - Combines the file rule with the all_events rule to query for the person who
most recently modified the files containing all of the defect events.

• default_component_owner - Reports the issue's owner as the designated default owner for the
component in Coverity Connect. The output of this rule, unlike all of the other rules, is a Coverity
Connect user, and not an SCM user. This rule can yield no assignment if a component does not
have a default owner.

--preview-report <filename>
Specifies the path and name of the preview report generated by cov-commit-defects --
preview-report-v2. This option is required.

--scm <scm_type>
Specifies the name of the source control management system. For this option to function correctly,
your source files must remain in their usual locations in the checked-out source tree. If the files are
copied to a different location after checkout, the SCM query will not work.

Possible scm_type values:

• Accurev: accurev

• Azure DevOps Server (ADS): ads

Windows only.

• ClearCase: clearcase

• CVS: cvs

• GIT: git

• Mercurial: hg

• Perforce: perforce

• Plastic: plastic|plastic-distributed.

Use plastic when working in a non- or partially-distributed Plastic configuration. Use plastic-
distributed when working in a fully-distributed Plastic configuration.

• SVN: svn

• Team Foundation Server (TFS): tfs

Windows only.

For usage information for the --scm option, see cov-extract-scm.

55

cov-blame

Note

The following commands or setup utilities must be run before cov-blame in order to
successfully communicate with the SCM server:

• accurev:

Login command

• perforce

The environment variable P4PORT should be set to the value expected by the p4 tool.

• tfs or ads:

Windows credentials in Credential Manager to access the TFS or ADS server

--scm-command-arg <scm_command_arg>
This option has been deprecated. Instead of using --scm-command-arg arg1, use --scm-
param annotate_arg=arg1. Specifies additional arguments that are passed to the command that
retrieves the last modified dates. This option can be specified multiple times.

For usage information for the --scm option, see cov-extract-scm .

---scm-param
Specify extra arguments to be passed to the SCM tool in a context-aware manner. For usage
information of the --scm option, see cov-extract-scm.

--scm-project-root <scm_root_path>
Specifies a path that represents the root of the source control repository. This option is only used
when specifying accurev as the value to --scm. When this is used, all file paths that are used to
gather information are interpreted as relative to this project-root path.

For usage information for the --scm option, see cov-extract-scm .

--scm-tool <scm_tool_path>
Specifies the path to an executable that interacts with the source control repository. If the executable
name is given, it is assumed that it can be found in the path environment variable. If it is not provided,
the command uses the default tool for the specified --scm system.

For usage information for the --scm option, see cov-extract-scm .

--scm-tool-arg <scm_tool_arg>
This option has been deprecated. Instead of using --scm-tool-arg arg1, use --scm-param
tool_arg=arg1. Specifies additional arguments that are passed to the SCM tool, specified in the
--scm-tool option, that gathers the last modified dates. The arguments are placed before the
command and after the tool. This option can be specified multiple times.

For usage information for the --scm option, see cov-extract-scm .

56

cov-blame

--stop-after <limit>
Stops computing owner assignments after a certain number of defects, as specified in <limit>.
This allows you to quickly experiment with rules without waiting for a long time for each defect to be
assigned an owner.

Shared options

--debug, -g
Turn on basic debugging output.

--ident
Displays the version of Coverity Analysis and build number.

--info
Displays certain internal information (useful for debugging), including the temporary directory, user
name and host name, and process ID.

--tmpdir <tmp>, -t <tmp>
Specifies the temporary directory to use. On UNIX, the default is $TMPDIR, or /tmp if that variable
does not exist. On Windows, the default is to use the temporary directory specified by the operating
system.

--verbose <0, 1, 2, 3, 4>, -V <0, 1, 2, 3, 4>
Set the detail level of command messages. Higher is more verbose (more messages). Defaults to 1.

Exit codes

Most Coverity Analysis commands can return the following exit codes:

• 0: The command successfully completed the requested task.

• 1: The requested task is complete, but it did not return (or find) any results. Note that some Coverity
Analysis commands do not return this error code.

• 2: The command was unable to complete the requested task. This error typically includes an error
message and some remediation advice.

• 4: An unexpected error occurred. This error should not occur when the product is used in a supported
way. Very likely, the requested task was not completed. This error typically provides some diagnostic
and/or debugging output, such as a stack trace.

For exceptions, see cov-commit-defects(Coverity 2020.12 Command Reference), cov-analyze, and cov-
build.

See Also

cov-commit-defects

cov-import-scm

cov-extract-scm

57

Name
cov-build Intercept all calls to the compiler invoked by the build system and capture source code from the
file system.

Synopsis

C, C++, C#, CUDA, Go, Java, JavaScript, Kotlin, Objective-C, Objective-C++, PHP, Python, Ruby, Scala,
Swift, and Visual Basic:

cov-build (--dir <intermediate_directory> | --emit-server <emit_servername:port> | --da-broker
<broker_servername:port>) [--capture-ignore <program.extension>] [--c-coverage | --cs-coverage | --
java-coverage] [--fs-capture-list <file>] [--fs-capture-search <directory>] [--test-capture] [OPTIONS]
BUILD_COMMAND | --no-command

Description

The cov-build command is the primary tool to capture and emit source code. It performs build capture,
where source code is emitted by intercepting all calls to the compiler invoked by the build system. It
also performs filesystem capture, where source code is emitted directly from the file system. (For more
information about the build capture processes, see The build .)

Note

Parallel builds for ASP.NET 4 and earlier applications cannot be virtualized directly with the cov-
build command.

Caution

When capturing compilations using the fast Scala compiler, you must run the fsc -shutdown
command first.

In general, the cov-build command name and option can prefix the original build command. However,
if the cov-build command depends on features of the command shell that usually invokes it, such as
certain shell variables or non-alphanumeric arguments, you can invoke it using a wrapper script. This
preserves the original behavior because the cov-build command is again invoked directly by the shell
type (on which it depends).

For example, if the normal invocation of a Windows build is:

> build.bat Release"C:\Release Build Path\"

use cov-build as follows:

> cov-build --dir <intermediate_directory> <wrapper.bat>

where <wrapper.bat> is an executable command script that contains the original and unmodified build
command.

On Windows, specify both the filename and extension for the build command when using cov-build.
For example:

> cov-build --dir <intermediate_directory> custombuild.cmd

58

cov_analysis_administration_guide.pdf#build_source_code

cov-build

Because cov-build uses the native Windows API to launch the build command, the appropriate
interpreter must be specified with any script that is not directly executable by the operating system. For
example, if the normal invocation of a build within Msys or Cygwin is:

> build.sh

prefix cov-build with the name of the shell:

> cov-build --dir <intermediate_directory> sh build.sh

Similarly, if a Windows command file does not have Read and Execute permissions, or if you want cov-
build to report the command file's %ERRORLEVEL%, explicitly invoke it as a cmd.exe command string.
For example, to run the Java builder ant.bat:

> cov-build --dir <intermediate_directory> cmd /c "ant && exit/b"

Note

If you run cov-build more than once, only the last build's metrics are saved.

Note

If you change the set of compilation options used by your build process, delete the
<intermediate_directory> and capture a full build from scratch. Otherwise, the translation units
captured using the old options will remain in the emit. The new translation units will not replace the
old translation units due to the changed compilation options.

As a final step, this command invokes cov-security-da, which runs a dynamic analysis in order to
perform a security assessment.

Note

Coverity Security Dynamic Analysis for C# and Visual Basic requires a Windows 64-bit or Linux 64-
bit system that supports .NET Core 3.1.

C, C++, C#, and Visual Basic build capture

For C, C++, C#, and Visual Basic source code, after the compiler calls have been intercepted, cov-
build captures the compiler command line and other information and invokes cov-translate to translate
the native command line into one appropriate for cov-emit, cov-emit-cs, or cov-emit-vb, which in
turn parses and emits the code. Before running cov-build, you need to configure your compiler (such
as gcc or msvc) by using the cov-configure command.

For C# and Visual Basic only, if an ASP.NET 4 and earlier Web application is detected, cov-build will
attempt to run Aspnet_compiler.exe on the Web application. The output of Aspnet_compiler.exe
is required by the C# security checkers.

Note

C# and Visual Basic build capture is supported on Windows and Linux platforms. C# Unity Projects
using the Roslyn Compiler are supported on MacOSX.

59

cov-build

The cov-build command creates a log file called build-log.txt in the intermediate directory. This
log file shows each command that is intercepted, including compiler invocations. For each compiler
invocation, the call to cov-translate and cov-emit are shown, along with any parsing errors and any
other compilation errors.

The cov-build command intercepts compiler invocations for single-threaded builds and parallel builds
on a single machine. Distributed builds, which use remote procedure calls or some other protocol to
invoke builds or compilations on several machines, cannot be virtualized directly with cov-build.
Contact Coverity support for assistance.

On UNIX, cov-translate is invoked before each native compiler invocation. On Windows, cov-
translate is invoked after each native compiler invocation.

The cov-build command expects the configured C and C++ compilers to be those used by the build.
The analysis might be skewed if different compiler versions are used. So, consider values that the build
scripts and makefiles might define for $PATH, $CC, and so on. If compiler pathnames are unknown,
configure a template.

See the section called “Build and filesystem capture examples”.

Go build capture

Go source files are emitted by performing a native build and intercepting calls to the Go command line
tool (that is, go <command> [arguments]) when the command is test or build.

Note

If the Go command line tool is invoked by way of some other Go application, the invocation of the
Go command line tool is not captured.

Java, Kotlin, and Scala build capture

The cov-build command works somewhat differently for the Java, Kotlin, and Scala compilers (than
for the C, C++, and C# compilers). In addition to gathering and compiling source files, the cov-build
command for Java, Kotlin, and Scala also collect compiled files and any JAR files or class files in the
classpath.

For Java, Kotlin, and Scala, the command also runs the compilers in debug mode so that Coverity
Analysis can analyze the compiled code. This automatic behavior is equivalent to running the javac -g
command prompt or using the debug="true" property setting in an Ant compile task.

Note

You must use supported compilers when using cov-build with Java, Kotlin, and Scala. For
details, see the Coverity 2020.12 Installation and Deployment Guide.

You can use the --config option to cov-configure and cov-build to establish and maintain
separate configuration directories for each language.

The cov-build command expects the build to use the configured Java, Kotlin, and Scala compilers.
Compile commands with different pathnames will not be analyzed because cov-build cannot identify

60

cov-build

the compiler version. So, consider which compilers the build scripts and tools might invoke. For example,
ant can refer to $JAVA_HOME or a default pathname (not $PATH) to find the java command. When
using ant on the Mac OS, you need to set the $JAVA_HOME. Otherwise, the Mac OS will select
something other than what cov-configure will set. If compiler pathnames are unknown, then a
template must be configured.

Note

When running 64-bit Coverity Analysis tools against a 32-bit Java SDK, cov-build may fail to
capture compilations. Use --instrument to work around the issue.

See the section called “Build and filesystem capture examples”.

Java filesystem capture

Once Java file system capture is enabled, the cov-build command may be run to capture Java source
files into the intermediate directory. To capture these Java source files, use the cov-build command
along with one or more of the following options: --no-command, --fs-capture-search and --fs-
capture-list.

> cov-build --dir <intermediate_directory> --no-command --fs-capture-search <source-
directory>

The cov-build command line options above recursively search all files in the specified directory for
Java source files (and JSP or Java Android files). It then emits them into the intermediate directory
specified using the --dir option.

Additional notes:

The --no-command option is mandatory when filesystem capture is performed without build capture.

To improve build capture and analysis fidelity, you can look up any missing types in the build log and
specify the required library files. Use the --fs-library-path option to add any required classes or
JAR files to the classpath. These additions will be used for the compilation of Java source files and for
the compilation of JSP files by the Jasper engine. All JAR files present in the captured directory are
automatically included in the classpath.

Use the --fs-capture-search-exclude-regex option to make the cov-build command ignore
any files that match a specific expression. Use this option to exclude any test code in the source directory
from analysis.

For more information on Java filesystem capture, see the "Filesystem capture (for Java)" section in the
Coverity Analysis 2020.12 User and Administrator Guide .

Filesystem capture for interpreted languages

Filesystem capture emits files directly from the filesystem without needing to see a compilation. The
command uses --fs-capture-search and/or --fs-capture-list to generate a list of files for

61

cov_analysis_administration_guide.pdf#build_source_code

cov-build

JavaScript, JavaServer Pages (JSPs), Python, PHP, or Ruby files that the command captures into the
intermediate directory.

See the section called “Build and filesystem capture examples”. For more detailed advice, see
"Filesystem capture" in Coverity Analysis 2020.12 User and Administrator Guide .

Swift build capture

Swift source files are emitted using build capture by performing a native build and intercepting calls to
the Swift compiler. (This workflow is similar to the build capture process for C/C++, C#, Objective-C, and
Objective C++).

Swift build capture is only supported on macOS.

You must use one of the cov-build filesystem capture options, in order to point to the project root
directory, or to emit any important configuration files. (Buildless capture is not supported for Swift.)
See the example of running a “combined” capture in the section called “Build and filesystem capture
examples”.

Build and filesystem capture examples

• For compiled languages (build capture), including Java build capture:

> cov-build --dir <intermediate_directory> <BUILD_COMMAND>

• For scripts and interpreted code (filesystem capture), and Java filesystem capture:

> cov-build --dir <intermediate_directory> --no-command \
 --fs-capture-search <path/to/source/code>

If you are only performing a filesystem capture and not also performing a build capture, you need
to pass the --no-command command. For more details, see Coverity Analysis 2020.12 User and
Administrator Guide .

• For a combined source code capture (build and filesystem capture):

> cov-build --dir <intermediate_directory> \
 --fs-capture-search <path/to/source/code> <BUILD_COMMAND>

Note that the build command must be specified last.

Options

--add-arg <arg>
Specifies an --add-arg <arg> option to the cov-translate invocations that are launched by
cov-build. See the description of this option in the cov-translate command documentation.

--append-log
Append a log of the current cov-build run to an existing build log file, instead of performing the
default behavior, which is to overwrite the log file. For details about the file, see the section called “C,
C++, C#, and Visual Basic build capture”.

62

cov_analysis_administration_guide.pdf
cov_analysis_administration_guide.pdf#build_source_code
cov_analysis_administration_guide.pdf#build_source_code

cov-build

--auto-diff
Compatible with C and C++ builds only. Have cov-translate attempt to diff preprocessed files
when a compilation fails. See the description of --auto-diff in cov-help cov-translate.

--build-description <string>
[Test Advisor option] Provides an optional description of the build. <string> represents the
description. The description is used in the build ID. Some examples might include using a tag:

cov-build ... --test-capture --build-description linuxbuild-rev1

--build-id <build-id>
[Test Advisor option] Specifies the build ID to use for the test capture run. You can specify only one
of the following options: --build-id-file, --build-id-dir, or --build-id.

The build ID is a string that uniquely identifies a build. Every intermediate directory is associated with
a build ID. The build ID string has the following format:

<user.specified.string>-<our.unique.md5>

The MD5 portion is an MD5 hash which identifies the build. Users can specify an additional string
to prepend to this hash, which helps identify the build in a human-readable fashion. This additional
string can be specified during the invocation of cov-build. For example:

cov-build --dir idir --c-coverage gcov --build-description \
 "linux-build-tag-1234" make build

would identify the build with a build ID of the form:

linux-build-tag-1234-<md5-of-this-covbuildinvocation>

Generally, the user-specified portion of the build ID should contain information specific to the build
that the user is interested in. Examples:

• Build platform - If you build the same codebase on different platforms, this tag can be used to
identify the platform used for a particular build.

• Revision control tag - If you build different revisions of a codebase, this tag can be used to identify
the tag associated with a particular build. A date may also be used here.

If you want to run cov-build multiple times on a single intermediate directory (for example
if multiple commands need to be run to generate a build) and you do not want a new build ID
generated for each invocation, use --no-generate-build-id.

The build ID for a given intermediate directory can be determined using cov-manage-emit, for
example:

cov-manage-emit --dir idir query-build-id

--build-id-dir <dir>
[Test Advisor option] Identifies a directory that contains build-id.txt, a file that specifies a build
ID [p. 63]. The --build-id-dir option is exactly like --build-id-file <dir>/build-
id.txt. It is useful when the intermediate directory with the appropriate build ID is available locally,
but the --dir option is not used.

63

cov-build

You can specify only one of the following options: --build-id-file, --build-id-dir, or --
build-id.

--build-id-file <filename>
[Test Advisor option] Specifies a filename (including the file path to the file) that contains the build
ID [p. 63] to use for this run. You can specify only one of the following options: --build-id-
file, --build-id-dir, or --build-id.

--build-id-output <filename>
[Test Advisor option] Writes the build ID that is generated for this run to the specified filename.
This provides an easy way to transfer the build ID to different machines when remotely collecting
coverage. For example:

cov-build --dir idir --c-coverage gcov --build-description \
 "mybuild" --build-id-output write-build-id-here.txt make

--bullseye-dir <dir>
[Test Advisor option] Compatible with C and C++ builds only. Specifies the location of the Bullseye
tools for use with cov-build. This option should point to the location of BullseyeCoverage
installation directory. For example, /opt/bullseye.

This option must not include the /bin portion of the directory.

--bullseye-lib-dir <dir>
[Test Advisor option] Used in conjunction with --c-coverage bullseye-small to specify the
directory where the small runtime was built. This has no effect with --c-coverage bullseye, and
will produce a warning.

--c-coverage <tool>
[Test Advisor option] Compatible with C and C++ builds only. Enables C and C++ coverage collection
using the specified coverage tool. <tool> represents the coverage tool. The options are gcov,
bullseye, bullseye-small, and function.

Using the bullseye or bullseye-small options require a valid BullseyeCoverage installation.

• The following example demonstrates command line usage for gcov:

cov-build --dir idir --c-coverage gcov make build

• The following example demonstrates command line usage with Bullseye. With this option, you
must also specify the --bullseye-dir option:

cov-build --dir t1 --c-coverage bullseye --bullseye-dir /opt/bullseye make build

• The following example demonstrates using a Bullseye small runtime with Test Advisor with
bullseye-small. With this option, you must also specify the --bullseye-dir and --
bullseye-lib-dir options:

cov-build --dir idir --c-coverage bullseye-small \
 --bullseye-dir /path/to/bullseye \
 --bullseye-lib-dir <output-dir>/lib make build

64

cov-build

Note

You must build the Bullseye small runtime before you can use it with cov-build. On
Windows, the Bullseye small runtime only supports MSVC-based builds (for example, Visual
Studio cl).or more information, see Test Advisor 2020.12 User and Administrator Guide.

You can use c-coverage along with java-coverage and/or cs-coverage, for example:

cov-build --dir idir --c-coverage gcov --java-coverage cobertura make build

• The following example demonstrates command line usage for Function Coverage Instrumentation:

cov-build --dir t1 --c-coverage function make build

--capture
Run the specified build command, and capture the actions and translation units in the
<intermediate_directory> that is created by the --initialize option.

Alternatively, a build system can directly invoke cov-translate, possibly in several concurrent
processes.

For C and C++ analysis, you can run concurrent, distributed builds across multiple machines with the
--capture option if the <intermediate_directory> is located on an NFS partition. Distributed
builds are only supported on Linux and Solaris systems.

--capture-ignore <program-name-with-extension>
On Windows 2000 only, use this option to specify the base name (including the extension) of a
program invoked by the native build that does not exit during the build, such as a service or a
daemon. Otherwise, cov-build will hang at the end the native build waiting for these programs to
terminate. cov-build is already aware of NTVDM.EXE and MSPDBSVR.EXE. The program name
is case insensitive.

--chase-symlinks
Compatible with C and C++ builds only. Follow symbolic links when determining filenames to report.

--chcmdline-type <type>
Do not use this option. It has been deprecated. Also, this option has no effect.

--coverage-instrumentation-error-threshold <percentage>
[Test Advisor option] The --coverage-instrumentation-error-threshold option sets a
lower bound for measuring success in instrumenting source code for function coverage. The default
threshold is 95 percent. If the instrumentation success rate falls below this threshold, instrumentation
is considered unsuccessful, is reported as an error, and cov-build returns a non-zero exit code.
This option can only be used in combination with the --c-coverage function option.

The following example demonstrates the --coverage-instrumentation-error-threshold
option with a threshold of 60%:

cov-build --dir t1 --c-coverage function \
 --coverage-instrumentation-error-threshold 60 make build

65

test_advisor_use_and_admin_guide.pdf#ta_bullseye_small

cov-build

--coverity-response-file=<response_file>
Specify a "response file" that contains a list of additional command line arguments, such as a list of
input files. Each line in the file is treated as one argument, regardless of spaces, quotes, etc. The
file is read using the platform default character encoding. The response file cannot contain the build
command, either in full or in part.

--cs-coverage <tool>
[Test Advisor option] Compatible with C# builds only. Enables C# coverage collection using
the specified coverage tool, represented by <tool>. Currently, the only coverage tool option is
opencover.

Running this command line option will cause Test Advisor to attempt to register the profiler DLL
in order to collect coverage. In some situations, this might fail. To work around this, you will need
to manually register the profiler DLL and then use the --cs-no-register-profiler on the
command line to prevent the command from trying to register the profiler DLLs again. See --cs-no-
register-profiler for instructions.

If you are running from a Cygwin shell you might see an error similar to the following:

Unhandled Exception: System.ArgumentException: Item has already been added.
Key in dictionary: 'TMP' Key being added: 'tmp'

To avoid this, unset the Cygwin versions of the environment variables, for example:

% unset tmp
% unset temp

You can use cs-coverage along with java-coverage and c-coverage.

--cs-opencover-arg
Used in conjunction with --cs-coverage opencover to specify arguments to pass to OpenCover.
For example:

cov-build --dir idir --cs-coverage opencover --cs-opencover-arg "-threshold:1" make
 build

An invalid argument will cause OpenCover to fail. For more information about OpenCover arguments,
see the OpenCover documentation.

--cs-filter <filters>
[Test Advisor option] Used in conjunction with --cs-coverage opencover to specify a list of
filters to OpenCover. Specifying a filter allows you to control what assemblies are instrumented for
coverage collection. For example:

+[*]* -[Test*]*

This filter would instrument everything except for those modules that start with 'Test'. For more
information on filters, see the OpenCover documentation .

--cs-no-register-profiler
[Test Advisor option] Instructs Test Advisor to NOT attempt to automatically register the profiler DLL.
If you use this argument, you must manually register the profiler DLLs. To do so, use regsvr32:

66

https://github.com/opencover/opencover/wiki/Usage#understanding-filters

cov-build

 % regsvr32 <install_dir>/bin/x86/OpenCover.Profiler.dll
 % regsvr32 <install_dir>/bin/x64/OpenCover.Profiler.dll

This option should be used when you want to run multiple cov-build with the --cs-coverage
opencover option.

You can change the regsvr32 command to only register per-user, for example:

% regsvr32 /n /i:user <install_dir>/bin/x86/OpenCover.Profiler.dll
 % regsvr32 /n /i:user <install_dir>/bin/x64/OpenCover.Profiler.dll

If you are not on a 64-bit platform, you do not need to register the x64 DLL.

--cs-test-config <properties-xml-file>
[Test Advisor option] Used in conjunction with --cs-coverage to provide the location of a user-
created C# test properties file (<properties-xml-file>). This file configures per-test separation
for C# coverage. If both --cs-test and --cs-test-config are specified, the value given to --
cs-test-config takes precedence.

--cs-test <test-framework-name>
[Test Advisor option] Used in conjunction with --cs-coverage to select a pre-configured C# test
properties file (<test-framework-name>). This file configures per-test separation for C# coverage.
Valid values are:

• nunit - for NUnit tests.

• xunit - for XUnit tests.

• mstest - for MSTest tests.

Test Advisor provides three configuration files that specify test boundary configuration for the popular
test execution frameworks: MSTest, NUnit and XUnit. The properties files are located in the following
directory (but note that in the option parameter, you only need to specify the name, not the entire
path):

<install_dir_ca>/config/

--cygpath <path>
Specify the path to the directory, which contains the bin directory of the Cygwin installation, if it is not
in the PATH environment variable.

--cygwin
Compatible with C and C++ builds only. On Windows, indicates that the build is done with Cygwin.
This option allows Cygwin-style paths to be used in the native build command. However, you must
use Windows-style paths for all Coverity Analysis commands.

--da-broker <broker_servername:port>
[Dynamic Analysis option] Specifies the Dynamic Analysis broker server to receive Dynamic Analysis
results for this run. You can specify a hostname or an IP address. The port is optional (the default
is 4422). Currently, only IPv4 addresses are supported. This option is only used in conjunction

67

cov-build

with --java-da and cannot be combined with --dir, but using --log-dir is recommended for
diagnostic purposes.

See also, --java-da-opts.

--default-instrumentation-mode (include|exclude), -im (include|exclude)
[Test Advisor option] When used with "--c-coverage function", an optional way to tell
whether files not referenced by --include-instrumentation-path or --exclude-
instrumentation-path should be instrumented or not. If none of these three options are used,
the default behavior is to instrument all source files, including system header files. If --include-
instrumentation-path is used without --default-instrumentation-mode, then the default
behavior changes to exclude all source files from instrumentation unless explicitly included.

See also: --include-instrumentation-path, --exclude-instrumentation-path.

For more information, see Test Advisor 2020.12 User and Administrator Guide

--defer-decomp
Only records the decompilations of byte code during the build. It does not attempt to decompile and
emit the byte code. Later, cov-build can be rerun with --replay-decomp to decompile and emit
the byte code.

See also, --replay-decomp.

--delete-stale-tus
Automatically deletes translation units that are created from source files that were renamed or
removed. This capability is off by default. Use this command when you perform an incremental build
when you have deleted/renamed source files.

--desktop
The --desktop option can be used when running cov-build in preparation for Desktop Analysis.
It behaves similarly to --record-only for C/C++ builds, disables bytecode decompilation in Java and
C# builds, and does a full build for other languages.

Please note that this option is supported for backward compatibility. The preferred method for
capturing a build for Desktop Analysis is the cov-run-desktop --build option.

--dir <intermediate_directory>
Pathname to an intermediate directory that is used to store the results of the build and analysis.

Exactly one of the options --emit-server, --da-broker, or --dir must be specified. Coverity
recommends that you use --log-dir when you are not using --dir.

--disable-aspnetcompiler
[C# and Visual Basic builds only] Disables the automatic invocation of Aspnet_compiler.exe
for any ASP.NET 4 and earlier Web applications that are detected in the build. The output of
Aspnet_compiler.exe is required by the C# and Visual Basic security checkers.

Use this option if you are manually running Aspnet_compiler.exe as part of your native build or
as part of your Coverity Analysis workflow. For further information, see "Capturing an ASP.NET Web
application" in Coverity Analysis 2020.12 User and Administrator Guide.

68

test_advisor_use_and_admin_guide.pdf#controlling_instrumented_files
cov_analysis_administration_guide.pdf#note_build_asp_net_webapp
cov_analysis_administration_guide.pdf#note_build_asp_net_webapp

cov-build

--disable-compute-coverability
[Test Advisor option] Skips computing coverability when you run a build or capture. This option is
useful if the test will be run in a separate step. Using this option can speed up the build process.

--disable-cs-parse-error-recovery
Disables extra attempts to recover from problems parsing C# or Visual Basic source. Though this
recovery process takes some extra time, it greatly reduces the impact of parsing problems in most
cases. It works by attempting to emit subsets of the input files that would not otherwise reach the emit
database.

Typically, this option is needed only if the recovery process takes too long and becomes
unmanageable. Note that unlike for Java, this mode is enabled by default for C# and Visual Basic
because it uses a more efficient algorithm.

--disable-gcov-arg-injection
[Test Advisor option] This option is compatible with C and C++ builds only, and is used in conjunction
with --c-coverage gcov. It prevents cov-build command from automatically injecting the gcov
command line arguments into the native build. This is useful if you want to use your build system's
own gcov targets instead of having this command run it automatically. For example:

cov-build --dir idir --c-coverage gcov --disable-gcov-arg-injection make gcov

--disable-java-per-class-error-recovery
Disables per-class error recovery, which is the default behavior of cov-build. Enabling per-class
error recovery increases the percentage of source files that can be emitted by attempting to use the
class files of the source files that cause parse errors. This default behavior could potentially increase
the time to emit files, but it is usually faster than --enable-java-per-file-error-recovery
because it does not try to emit each file one at a time.

Per-class error recovery is unlikely to correct cov-emit-java crashes. It also requires the presence
of output class files. To address such issues, see --enable-java-parse-error-recovery.

--disable-local-emit-server
Prevents the command from starting the emit server (as part of the automated startup process). This
option is not for general use and should only be used if startup problems occur. This option only
takes effect when --emit-server is specified.

--disable-ms-pch
When capturing a build that uses Microsoft compilers and precompiled headers, the Coverity
compiler emulates the native precompiled header rules to improve build performance. This behavior
is enabled by default and can be disabled by using the --disable-ms-pch option with cov-
build.

--emit-cmd-line-id
Deprecated. This option is deprecated as of the 4.4 release.

--emit-complementary-info
Enables emitting of complementary information for compliance checkers such as MISRA checkers.
Selecting this option results in a slower build capture but a faster analysis, and it should be applied
when using compliance checkers. The default value is --no-emit-complementary-info

69

cov-build

Note

Enabling the --emit-complementary-info option prior to running an analysis is likely to
turn up additional defects.

.

Any analysis involving --coding-standard-config requires the information generated during
cov-build when including the --emit-complementary-info option. The cov-build command
will take longer, so this option should only be used when cov-analyze is used with --coding-
standard-config.

If cov-build did not include the --emit-complementary-info option and cov-analyze does
include --coding-standard-config, cov-analyze automatically re-runs every cov-emit
command (for the Translation Units to be analyzed). This excludes the native build and the cov-
translate overhead, but it will add significant overhead to cov-analyze. Note that analysis will
fail if the emit database does not include source; that is re-emit is not possible.

--emit-parse-errors
Deprecated. Compatible with C and C++ builds only. Uses the --enable PARSE_ERROR option in
cov-analyze instead. Specifies that compile failures should be made visible in Coverity Connect,
appearing as defects.

--emit-server <emit_servername:port>
[Test Advisor option] Specifies the emit server to send coverage to for this run. You can specify
a hostname or an IP address. The port is optional (the default is 15772). Currently, only IPv4
addresses are supported.

This option is only used in conjunction with --c-coverage gcov.

--enable-java-parse-error-recovery
Enables the error recovery algorithm that produces the highest emit percentage in most cases.
Currently, this option enables per-class error recovery with automatic fallback to per-file recovery in
case of non-recoverable errors such as cov-emit-java crashes, but its behavior might change in
future. Note that this algorithm is also enabled by default if no error recovery option is specified on
the command line.

Explicitly enabling an error recovery algorithm on the command line will automatically disable any
incompatible error recovery algorithms.

--enable-java-per-class-error-recovery
[Deprecated as of 7.6.0] The cov-build command now performs per-class error recovery by
default, so it is no longer necessary to use this option.

For information about per-class error recovery and about how to disable it, see --disable-java-
per-class-error-recovery. See also, --enable-java-per-file-error-recovery.

--enable-java-per-file-error-recovery
Use this option if your native Java compiler is able to compile your source code successfully, but
cov-emit-java crashes. This option might also help when cov-emit-java has parse errors and
there are no class files available for per-class error recovery.

70

cov-build

--enable-pch
Compatible with C and C++ builds only. Tells cov-emit to use pre-compiled header files when
the Microsoft Visual Studio compiler uses them. This is not strictly necessary for a Microsoft Visual
Studio project that uses pre-compiled headers, but should improve performance. This option is only
supported on 64-bit platforms.

--encoding <enc>
Compatible with C, C++, and JavaScript builds only. Specifies the encoding of source files. Use this
option when the source code contains non-ASCII characters so that Coverity Connect can display the
code correctly. The default value is US-ASCII. Valid values are the ICU-supported encoding names:

US-ASCII

UTF-8

UTF-16

UTF-16BE
UTF-16 Big-Endian

UTF-16LE
UTF-16 Little-Endian

UTF-32

UTF-32BE
UTF-32 Big-Endian

UTF-32LE
UTF-32 Little-Endian

ISO-8859-1
Western European (Latin-1)

ISO-8859-2
Central European

ISO-8859-3
Maltese, Esperanto

ISO-8859-4
North European

ISO-8859-5
Cyrillic

ISO-8859-6
Arabic

ISO-8859-7
Greek

71

cov-build

ISO-8859-8
Hebrew

ISO-8859-9
Turkish

ISO-8859-10
Nordic

ISO-8859-13
Baltic Rim

ISO-8859-15
Latin-9

Shift_JIS
Japanese

EUC-JP
Japanese

ISO-2022-JP
Japanese

GB2312
Chinese (EUC-CN)

ISO-2022-CN
Simplified Chinese

Big5
Traditional Chinese

EUC-TW
Taiwanese

EUC-KR
Korean

ISO-2022-KR
Korean

KOI8-R
Russian

windows-1251
Windows Cyrillic

windows-1252
Windows Latin-1

windows-1256
Windows Arabic

72

cov-build

Note

If your code is in SHIFT-JIS or EUC-JP, you must specify the --output_object_encoding
SHIFT-JIS or --output_object_encoding EUC-JP option (respectively) for cov-emit in
order to avoid receiving STRING_OVERFLOW false positives.

--exclude-instrumentation-path <path-or-file>, -ep <path-or-file>
[Test Advisor option] When used with "--c-coverage function", specifies a source file or
path that will not be instrumented for function coverage. If a path is given, then all source files in
subdirectories are also excluded. May be used more than once to specify multiple files or paths.

This option has higher precedence if it overlaps with files specified by --include-
instrumentation-path.

See also: --include-instrumentation-path, --default-instrumentation-mode.

For more information, see Test Advisor 2020.12 User and Administrator Guide

--finalize, -fin
Compatible with C and C++ builds only. Combines the build log and metrics from all the host
machines that ran cov-build with the same <intermediate_directory>, and indicate any
additional steps that are needed to prepare for a C and C++ analysis.

Do not specify a build command when using the --finalize option.

--force
Specifying this options causes the Coverity compiler to attempt all source files, including files that
have already been emitted and whose timestamps have not changed. This is equivalent to --force
in the respective compiler, for example cov-emit.

--fs-capture-just-print-matches
[Filsystem capture option] This option is for debugging purposes only.

Suppresses the emission of files matched with filesystem capture, and outputs a list of files that
would have been emitted. This should generally be used with --no-command.

--fs-capture-list <file>
[Filsystem capture option] Specifies a file that contains a list of files to use as analysis inputs. Files
that are recognized as useful for analysis, such as those matching patterns established in calls to
cov-configure, will be emitted into the intermediate directory. For example, cov-configure --
python marks *.py as useful for analysis, and cov-configure --javascript marks *.js,
*.html, and *.htm as useful.

This option is a lower-level supplement to or an alternative to --fs-capture-search.

A recommended way of using this option is to provide a list of revision-controlled files as the potential
analysis inputs. Example for a git repository:

git ls-files > scm_files.lst
 cov-build --fs-capture-list scm_files.lst <other options>

Note that this option can be specified more than once to include multiple lists of analysis inputs.

73

test_advisor_use_and_admin_guide.pdf#controlling_instrumented_files

cov-build

See also, --fs-capture-search and --no-command.

--fs-capture-search <directory>
[Filsystem capture option] Recursively searches all files in the specified directory for analysis inputs.
Files that are recognized as useful for analysis, such as those matching patterns established in calls
to cov-configure, will be emitted into the intermediate directory. For example, cov-configure
--python marks *.py as useful for analysis, and cov-configure --javascript marks *.js,
*.html, and *.htm as useful. However, this option ignores any file matching --fs-capture-
search-exclude-regex and certain files and directories when the specified directory is in the
path:

• Symlinks are ignored unless the specified directory is itself a symlink or is located under a symlink.

• Files and directories starting with a period (.), including their contents, are ignored unless the
specified directory itself starts with a period or is located under such a directory.

• Directories named SCCS, including their contents, are ignored unless the specified directory itself is
named SCCS or is located under such a directory.

• Coverity intermediate directories and their contents are ignored.

Note that this option can be specified more than once to search multiple directories for analysis
inputs.

See also, --fs-capture-list, --fs-capture-search-exclude-regex, and --no-command.

--fs-capture-search-exclude-regex <regex>
[Filsystem capture option] This option only applies when --fs-capture-search is used. Otherwise, it
results in an error.

While --fs-capture-search searches its specified directory for analysis inputs, any files or
subdirectories that match the specified regex will be excluded from the search, and thus will not
be included in the analysis (unless they are independently selected by the --fs-capture-list
option). Excluded directories will not have their contents searched for further matches, unless a
subdirectory is specifically passed to --fs-capture-search.

The regular expression is matched against the filename using case insensitive matching.

We recommend using --fs-capture-search-exclude-regex "[/\\]node_modules[/\
\]" when capturing Node.js applications that contain third-party modules installed by npm within
the application directory. This exclusion is applied by default when using the cov-configure --
javascript shortcut.

Note

Regular expressions are searched in full absolute paths, in host format. Thus, matching forward
slash without also matching backslash, or vice-versa, will make the pattern platform-specific.
For example, to exclude JavaScript files starting with 'mock', use the following (assuming bash-
style single quoting):

--fs-capture-search-exclude-regex "[/\\]mock.*[.]js$"

74

cov-build

Without the leading "[/\\]", a file called 'hammock.js' would be excluded. Similarly, to exclude
all contents of directories named 'test' with parent directory named 'src', use the following:

--fs-capture-search-exclude-regex "[/\\]src[/\\]test$"

--fs-library-path <path/to/lib>
[Java and JSP filesystem capture option] For Java filesystem capture, the --fs-library-path
option is added to the class and source paths of the Java compiler. Specifying this option is the
equivalent to passing the --classpath <path/to/lib> argument and --sourcepath <path/
to/lib> as command line options to the Java compiler.

For example, the following command adds classes, some.jar, and extrasrc to the Java
compiler's class and source paths (in this order):

cov-build --config config.xml \
--fs-library-path path/to/classes \
--fs-library-path path/to/some.jar \
--fs-library-path path/to/extrasrc \
--fs-capture-search path/to/source/code

[See the cov-configure variant for --fs-library-path if you want to extend the class and
source paths only once and do not need to set different --fs-library-path values for different
cov-build invocations.]

[JavaScript, PHP, and Python filesystem capture option] Specifies third-party library locations for
JavaScript Node.js require modules, ECMAScript 6 module imports, JavaScript HTML script
src= includes, HANA XSC libraries imported with $.import, PHP include/include_once/
require/require_once and Python imports. By default, these inclusions and imports are resolved
relative to the source file doing the inclusion/import (according to language specific rules). The cov-
build command also attempts to resolve them relative to directories passed to the --fs-library-
path option.

For example, the following command adds lib1 and lib2 as additional library paths (searched in
this order):

cov-build --config config.xml \
--fs-library-path lib1 \
--fs-library-path lib2 \
--fs-capture-search path/to/source/code

[See the cov-configure variant for --fs-library-path if you want to set the paths to the libraries only
once, and if you do not need to set different --fs-library-path values for different cov-build
invocations.]

The search for the library file is permissive: If the search does not find the library at a relative path
specified by this option, a second search for the filename alone (excluding the specified path) will run.

--include-instrumentation-path <path-or-file>, -ip <path-or-file>
[Test Advisor option] When used with "--c-coverage function", specifies a source file or
path that will be instrumented for function coverage. If a path is given, then all source files in

75

cov-build

subdirectories are also included. May be used more than once to specify multiple files or paths. May
be overridden by --exclude-instrumentation-path.

When not used, the default behavior is to instrument all source files, including system header files,
unless explicitly overridden by --exclude-instrumentation-path. However, when this option
is used, the default behavior changes to exclude all source files from instrumentation unless explicitly
included.

See also: --exclude-instrumentation-path, --default-instrumentation-mode.

For more information, see Test Advisor 2020.12 User and Administrator Guide

--initialize, -init
Compatible with C and C++ builds only. Creates the specified <intermediate_directory> that
a set of subsequent builds will use. You can only use this option once, and without a build command,
before a parallel build.

--instrument
Compatible with Java, C, C++, C#, and Visual Basic builds on Windows only, uses the
instrumentation mode instead of the debugger. For certain builds, this configuration can significantly
improve build times. In particular, parallel builds will benefit most from --instrument.

Known issues and workarounds:

• If Visual Studio (2010 or newer) is running Tracker.exe, cov-build will skip running
Tracker.exe by default. (The rest of the build will remain unaffected.) This behavior can be
disabled with the --no-disable-tracker option.

Alternatively, you can set the environment variable COVERITY_TRACKER_WHITELIST to specify
those Tracker.exe binaries that should not be disabled. This environment variable is a semi-
colon delimited list. For example:

COVERITY_TRACKER_WHITELIST="C:\path1\Tracker.exe;C:\path2\Tracker.exe"

If the environment variable is set as in the example above, the cov-build command will not
disable the Tracker when it is run from C:\path1\Tracker.exe or C:\path2\Tracker.exe.

• If Tracker.exe is permitted to run, you may run into a few known issues, which are outlined
below.

• The template compiler configuration can cause link failures in the build. To work around this
issue, you can take either of the following actions:

• Generate a non-template compiler configuration.

• Disable file tracking in your build. If you use msbuild to build, you can disable the tracker by
adding /p:TrackFileAccess=false to your command line. If you use devenv to build,
you need to add the configuration value to your solution/project files.

• If Visual Studio (2010 or newer) is running Tracker.exe:

76

test_advisor_use_and_admin_guide.pdf#controlling_instrumented_files

cov-build

• The cov-build command issues a warning if it detects Tracker.exe.

• The capture DLL will still be loaded for persistent processes, even after cov-build exits. One
such example of a process like this is mspdbsvr.exe, which is a special case that is automatically
ignored. However, if you find another binary that persists, you can ignore it by adding --capture-
ignore foo.exe to the cov-build command line. It is important to note, however, that you can
only ignore the process if it does not start any compilations.

• The --instrument argument is incompatible with the __COMPAT_LAYER environment variable.
If your environment sets this variable, you must unset it to use --instrument.

--java-coverage <tool>
[Test Advisor option] Enables Java coverage collection for Test Advisor using the specified tool.
<tool> represents the coverage tool; either cobertura or jacoco.

You can use c-coverage along with java-coverage and/or cs-coverage, for example:

cov-build --dir idir --c-coverage gcov --java-coverage cobertura make build

--java-da
[Dynamic Analysis option] Enables the injection of a Dynamic Analysis agent into a command used
for exercising your program or running tests on it. The --java-da option is only compatible with
builds of Java code. This option disables build capture and coverage capture, so is incompatible with
options related to those tasks. It currently requires the --da-broker option to reference a running
Dynamic Analysis broker and a build id to be specified with one of --build-id, --build-id-dir,
or --build-id-file.

Note

We recommend that you use this option with the --test-capture option because it is not
necessary to capture the build.

This option is not currently compatible with --dir, but using --log-dir is recommended for
diagnostic purposes.

See also, the --java-da-opts option to this command.

--java-da-opts <da_agent_option_string>
[Dynamic Analysis option] Adds extra options to the Java agents that are started (see Dynamic
Analysis Agent command-line options and Ant task attributes in the Dynamic Analysis 2020.12
Administration Tutorial).

See also, the --java-da and --da-broker options to this command.

Example:

--java-da-opts detect-resource-leaks=false,exclude-instrumentation=com.foo.mock

--java-instrument-classes <list.csv>
[Test Advisor option] Specifies a file that contains a list of classes to be present on the execution
target to execute Java tests on a non-build host. <list.csv> is in CSV file format and has two columns:

77

dynamic_analysis_administration_tutorial.pdf#da_options-properties
dynamic_analysis_administration_tutorial.pdf#da_options-properties

cov-build

• Column 1: The name of the class.

• Column 2: The full path to the source file for the class.

To construct the contents for this file, use the list-compiled-classes subcommand to cov-
manage-emit.

--java-test <config-name>
[Test Advisor option] Used in conjunction with --java-coverage to select a pre-configured Java
test properties file (<test-framework-name>). This file configures per-test separation for Java
coverage. Valid values are:

• junit - for JUnit3 tests.

• junit4 - for JUnit tests.

Test Advisor provides two configuration files that specify test boundary configuration for the popular
test execution frameworks: JUnit3 and JUnit4. The properties files are located in the following
directory (but note that in the option parameter, you only need to specify the name, not the entire
path):

<install_dir_ca>>/config/

--java-test-config <path-to-config-file>
[Test Advisor option] Used in conjunction with --java-coverage to provide the location of a user-
created Java test properties file for the Java capture agent. This file configures per-test separation for
Java coverage. If both --java-test and --java-test-config are specified, the value given to
--java-test-config takes precedence.

--js-template-da
Deprecated as of 2019.06. The Javascript template dynamic-analysis will now be run
automatically as part of the build process if applicable.

--leave-raw-coverage
[Test Advisor option] Used in conjunction with --c-coverage gcov or --java-coverage
cobertura. When this option is specified, this build command will not automatically add the
collected coverage data to the emit, but will instead leave it inside the intermediate directory to be
used later.

--log-dir <dir>
When --dir is not used, this option specifies a directory, such as an intermediate directory, in which
to store the build log or capture log file. By default, when neither --dir nor --log-dir is used,
these logs go to a temporary directory that is erased.

--log-server
Compatible with C and C++ builds on Windows only, this argument allows cov-build to produce a
consistent build log when using --parallel-emit. All output in the build log can be attributed to
specific executions of each Coverity program. This is the default.

This argument has no effect to and cannot be used in combination with --instrument. You will
receive an error message.

78

cov-build

--merge-raw-coverage <raw-coverage-directory>
[Test Advisor option] Specifies a directory containing raw coverage data that should be added to the
emit. When this is specified, a build command is not allowed.

<raw-coverage-directory> is the path to a coverage directory that was previously created with --
leave-raw-coverage.

You can merge raw coverage from multiple directories in a single invocation by specifying each
directory to a separate --merge-raw-coverage argument. Each directory to merge may contain
any combination of coverage tools that are supported by the OS on which cov-build --merge-
raw-coverage is being run.

The following scenario shows the basic usage of --leave-raw-coverage --merge-raw-
coverage:

1. Perform your build.

cov-build --dir idir --c-coverage gcov make build

2. Run the tests, but leave the raw coverage, and copy it to a new location.

cov-build --test-capture --dir idir --c-coverage gcov --leave-raw-coverage make
 test

scp -r remote:idir /some/tmp/dir/idir-raw

3. Sometime later, merge in the raw coverage.

cov-build --test-capture --dir idir --merge-raw-coverage /some/tmp/dir/idir-
raw

--merge-raw-coverage-file <tool>:<filename>
[Test Advisor option] Merges raw coverage data in the given file that was generated by the JaCoCO
coverage tool. It is also possible to specify test meta properties with the following options:

• Test status with --teststatus.

• Test start date/time with --teststart.

• Test duration with --testduration.

• Suite name with --suitename.

• Test name with --testname.

--minimal-classpath-emit
Limits the group of emitted JAR files to those needed for compilation of the Java files. The default
behavior without this option is to emit all the JAR files in the classpath regardless of whether they are
referenced by a Java file in the compilation. This option can improve performance of Java builds with
large numbers of unused JAR files on the classpath at the risk of not capturing all the dependencies
of the those JAR files. For example if A.java references A.jar, which has dependencies on
B.jar, this option will prevent B.jar from getting emitted even if B.jar is on the classpath.

79

cov-build

--msbuild-shutdown-maxnodes <N>
For Visual Studio 2010 and newer (only available on Windows platforms): Specifies the maximum
number of nodes that cov-build should attempt to shut down. Typically, this value is equal to
the number of nodes that your Visual Studio project is configured to use. Use this option only if the
default behavior is undesirably slow.

--name <name>
Tags a build with a name. This name can then be used can be used for translation unit pattern
matching through the cov-manage-emit build_name argument.

--no-banner
Suppresses the cov-build application name and version banner from the console output.

--no-caa-info
Compatible with C and C++ builds only. Do not collect the information required for Coverity
Architecture Analysis in the intermediate directory.

--no-command
Specify this option if there is no command for build or test coverage capture. For example, in
JavaScript-only analysis, you specify this option with --fs-capture-search or --fs-capture-list. However,
if you are using both build capture and filesystem capture, a single invocation of cov-build is
recommended, without this option.

--no-disable-tracker
This option allows the user to force cov-build --instrument to run Tracker.exe. By default, if
Visual Studio (2010 or newer) is running Tracker.exe, then cov-build --instrument will skip
running the tracker executable. The --no-disable-tracker option allows the user to bypass this
skip.

Note

This option may cause build issues. See the Known Issues and Workarounds section under the
--instrument option.

--no-emit-complementary-info
Disables emitting of complementary information for compliance checkers such as MISRA checkers.

--no-error-recovery
Disables source-level error recovery in the parser. This typically should only be used if error recovery
is causing problems and you have been instructed to use this option by Coverity support.

--no-generate-build-id
Prevents a new build ID from being generated for every cov-build invocation, in the case where
you wish to run cov-build multiple times on a single intermediate directory.

--no-log-server
Compatible with C and C++ builds on Windows only, this argument forces cov-build to revert to
its original behavior without the log server, with respect to the build log. This is only intended for use
when issues arise using --log-server.

80

cov-build

--no-msbuild-shutdown
For Visual Studio 2010 and newer (only available on Windows platforms): Disables shutdown of
resident msbuilds that are created by the Microsoft Build Engine, msbuild. Use this option only if
you know that you will not have any msbuild processes running, or if you kill the resident msbuilds
through some other method.

--no-network-coverage
[Test Advisor option] Makes the command use the file system instead of the emit server. This option
only takes effect when --c-coverage gcov is specified.

--no-parallel-translate
Compatible with C and C++ builds only. Disables cov-translate parallelization. This will prevent
cov-translate from running in parallel regardless of the degree of parallelization requested,
either directly to cov-build, cov-translate, through configuration files, or native command line
translation.

This can also be added as a cov-emit argument in a configuration file (it is not actually passed to
cov-emit). For example:

<prepend_arg>--no-parallel-translate</prepend_arg>

--no-preprocess-next
Compatible with C and C++ builds only. Disables the --preprocess-next option.

--no-refilter, -nrf
Compatible with C and C++ builds only. When combined with --replay, calls cov-emit directly
with the previously translated command line arguments, instead of calling cov-translate again
(which is the default).

This option does not work with MSVC PCH.

--no-security-da
Disables the dynamic analysis—that is, the execution of cov-security-da—that is typically run at
the end of the build. The results of the dynamic analysis are used for a security analysis.

--optimize-pch-space
This option can be used to reduce disk space consumption by Coverity precompiled headers (PCH).
This is only effective when running cov-build --replay or --replay-from-emit, with PCH
enabled (--enable-pch).

Note

Note that this option may slow the build process down, and in some rare cases, may have no
effect on disk space consumption.

--parallel-emit
This C, C++, and Windows only argument will allow cov-emit processes to run in parallel. For
certain builds, this argument can significantly improve build times. This argument is enabled by
default (see --serial-emit).

81

cov-build

This argument has no effect and cannot be used in combination with --instrument. You will
receive an error message.

--parallel-translate=<number_of_processes>
Compatible with C and C++ builds only. Instructs cov-translate to run cov-emit in parallel when
multiple files are seen on a single native compiler invocation. This is similar to the Microsoft Visual
C and C++ /MP switch. Specify the <number_of_processes> to be greater than zero to explicitly
set the number of processes to spawn in parallel, or zero to auto-detect based on the number of
CPUs. When specified directly to either cov-build or cov-translate, this option will override any
settings set in configuration files or translated through the native command line.

This can also be added as a cov-emit argument in a configuration file (it is not actually passed to
cov-emit). For example:

<prepend_arg>--parallel-translate=4</prepend_arg>

--parse-error-threshold <percentage>
The percentage of translation units that must successfully compile for the cov-build command to
not generate a warning. If less than this percentage compiles, the cov-build command will give a
warning when the build completes. The default value is 95.

Note

When used in conjunction with --return-emit-failures, cov-build will return error
code 8, in addition to generating the warning, if less than the specified percentage compiled.

--preprocess-first
Compatible with C and C++ builds only. Uses the native compiler to preprocess source files and then
invokes cov-emit to compile the output of the native processor. By default, cov-emit (which is
invoked by cov-build) otherwise tries to preprocess and parse each source file.

Using this option can address some cases in which hard-to-diagnose causes for macro predefinitions
are different, or for header files that cannot be found by cov-emit. Usually, cov-configure
attempts to intelligently guess the native compiler's predefined macros and built-in include directories,
but sometimes cov-configure guesses incorrectly. Using the --preprocess-first option
circumvents the problem, but at the cost of losing macro information during analysis. Using --
preprocess-first does not always work because it requires rewriting the native compiler
command line, which the native compiler may or may not like.

See also, --preprocess-next.

--preprocess-next
Compatible with C and C++ builds only. Attempts to use cov-emit to preprocess source files. If
that attempt fails, or if cov-emit encounters a parse error, this option preprocesses the files with
the native preprocessor, and invokes cov-emit to compile the output of the native processor. This
offers the benefit of using the higher-fidelity cov-emit preprocessor, while also providing a fallback
in case of errors.

This option can be disabled with --no-preprocess-next (the latter has precedence over the former).
See --preprocess-first for information about the effects of using the native preprocessor.

82

cov-build

--python-version
Specify the major version of the Python language being used: '2' or '3'. By default, a Python script
is compiled assuming version 2 of the Python language, and if a syntax error occurs, an attempt
is made to recompile the script as Python 3. This option overrides a value, if specified, for the --
version option to the cov-configure --python command syntax.

--record-only, -ro
Compatible with C and C++ builds only. Only record the compiles done during the build, do not
attempt to parse and emit the code. Later, cov-build can be rerun with --replay to actually parse
and emit the code.

Note

Note that you must not relocate your intermediate directory (specified with --dir) between
the --record-only and --replay steps. If you need to move your intermediate directory to
a new location or separate machine, use --record-with-source and --replay-from-
emit.

--record-with-source, -rws
Compatible with C, C++, and Java builds only. Compile translation units far enough to pull in all the
#include files needed by the compilation, and store these in the emit. Later, cov-build can be
rerun with --replay-from-emit to actually parse and emit the code. See the entry for --replay-
from-emit for more information and examples.

This argument has no effect to and cannot be used in combination with either --preprocess-
first or --preprocess-next. You will receive an error message.

--replay, -rp
Compatible with C and C++ builds only. Replay the parse and emit steps that were previously
recorded for a build in the given intermediate directory. If you specify this option, do not specify a
build command. This option can be used to quickly update a previously emitted build if the source
files have changed.

Note

Note that you must not relocate your intermediate directory (specified with --dir) between
the --record-only and --replay steps. If you need to move your intermediate directory to
a new location or separate machine, use --record-with-source and --replay-from-
emit.

--replay-decomp
Decompile translation units from byte code source contained within the emit directory. Replaying
from the emit will have the same results, regardless of changes to the files in the filesystem (including
deletion).

See also, --defer-decomp.

--replay-failures, -rpf
Compatible with C and C++ builds only. Only attempt to replay the emit for files that had parsing or
other compilation failures.

83

cov-build

--replay-from-emit, -rpfe
Compatible with C, C++, and Java builds only. Recompile translation units from source contained
within the emit directory. Replaying from the emit will have the same results, regardless of changes to
the files in the filesystem (including deletion).

This can be used when translation units were added with normal cov-build processes (although
this will have no real effect unless --force has been passed), or with translation units added with
--record-with-source.

The advantage of using --record-with-source and --replay-from-emit is that temporary
files (such as created by #import) are captured in the emit, and so projects that use #import can be
replayed, which they cannot with --replay. In addition, it is possible to transport the intermediate
directory to a different computer/platform and replay it there.

For example, you can record a build on Windows and transfer the intermediate directory to Linux and
replay it there. (You will have to use cov-manage-emit reset-host-name to change the host.)

This argument has no effect to and cannot be used in combination with either --preprocess-
first or --preprocess-next. You will receive an error message.

--replay-processes <count>, -j <count>
Compatible with C and C++ builds only. When performing --replay, spawn up to <count> cov-
emit processes in parallel (on a single machine).

This option accepts the number of processes, or auto which sets the number of replay processes to
the number of logical processors in the machine (-j 0 is also accepted and is the same as auto).

--return-emit-failures
The cov-build command returns with an error code if an emit failure occurs. The return value is a
combination (binary OR) of the following flags:

1: The build returned an error code.

2: The build terminated with an uncaught signal (for example, segmentation fault).

4: No files were emitted.

8: Some files failed to compile. By default, this error code is returned if fewer than 95% of the
compilation units compiled successfully. You can change this percentage by using the --parse-
error-threshold option.

16: Command line error, such as an unrecognized option.

Note

The cov-build command always returns an error code if the native build fails.

--serial-emit
This C, C++, C#, and Visual Basic Windows-only argument forces cov-emit processes to run in
serial. This option is disabled by default (see --parallel-emit).

84

cov-build

This option has no effect and cannot be used in combination with --instrument. Attempts to use
the two options together will result in an error message.

--suitename <suitename>
Test suite name to attribute coverage to when using --merge-raw-coverage-file.

--system-encoding <enc>
Compatible with C and C++ builds only. Specifies the encoding to use when interpreting command
line arguments and file names. If not specified, a default system encoding is determined based on
host OS configuration.

See --encoding for a list of accepted encoding names.

This option has no effect when used in conjunction with one of the --replay options.

--telemetry-network-error-exit-code <exit code>
[Test Advisor option] Specifies the exit code to use when the process aborts due to it exhausting all
retries. This option can be customized to allow for the test harness to appropriately react to these
failures.

The default exit code is 19.

For more information, see "Error recovery" in the Test Advisor 2020.12 User and Administrator
Guide.

--telemetry-network-error-log <filename>
When a network error is encountered, by default an error will be written to STDERR which can
interfere with some test processes. This argument allows these errors to be redirected to a user-
specified file.

For more information, see "Error recovery" in the Test Advisor 2020.12 User and Administrator
Guide.

--telemetry-network-error-max-wait <# of seconds>
[Test Advisor option] Specifies the maximum time to wait when recovering from a network related
error. The behavior when encountering an error is to sleep and then retry. It will sleep for 1, 5, 30, 60
seconds, respectively, until the maximum wait time has been reached.

The default maximum wait time is 300 seconds.

For more information, see "Error recovery" in the Test Advisor 2020.12 User and Administrator
Guide.

--test-capture
[Test Advisor option] Use to gather test coverage. Additional Test Advisor options are provided for
further customization.

The cov-build command gathers source code and test coverage whether or not you use the --
test-capture option; this option is recommended if your tests run separately from your build. This
option modifies the behavior of cov-build in the following ways:

85

test_advisor_use_and_admin_guide.pdf#ta_flush_error
test_advisor_use_and_admin_guide.pdf#ta_flush_error
test_advisor_use_and_admin_guide.pdf#ta_flush_error
test_advisor_use_and_admin_guide.pdf#ta_flush_error
test_advisor_use_and_admin_guide.pdf#ta_flush_error
test_advisor_use_and_admin_guide.pdf#ta_flush_error

cov-build

• No warning is given if no source files are emitted.

• Log data is written to <intermediate_directory>/capture-log.txt.

• --no-generate-build-id is implied.

• Does not save build-cwd.txt for use by cov-analyze --strip-path.

• Does not attempt to automatically compile any ASP.NET Web applications.

Note

We recommend using the --test-capture option when using --java-da to do Dynamic
Analysis.

--test-capture-run-tag <string>
[Test Advisor option] Specifies a custom tag to allow for easy selection of this test capture run. For
example:

linux-build

--test-capture-run-timestamp <timestamp>
[Test Advisor option] Specifies the timestamp to use for the test capture run for this invocation. If it is
not specified, the current time will be used, which is the typical use case. This option is only provided
as a way for multiple test runs to use the same test capture run.

See Appendix A, Accepted date/time formats for proper formatting of the <timestamp> argument.

--test-capture-status-file <file containing status>
[Test Advisor option] Specifies a filename that, at the end of the test run, will contain the status that
should be used for this test capture run. The file should contain one of:

• success

• failure

• unknown

Anything other than the above will be interpreted as unknown.

--testduration <test duration in milliseconds>
[Test Advisor option] Test duration for the test when using --merge-raw-coverage-file.

--testname <testname>
[Test Advisor option] Test name to attribute coverage to when using --merge-raw-coverage-
file.

--teststart <test_start_date/time>
[Test Advisor option] Test start date/time when using --merge-raw-coverage-file. Must be in
the format: yyyy-MM-dd HH:mm:ss.

86

cov-build

--teststatus [pass | fail | unknown]
[Test Advisor option] Test status when using --merge-raw-coverage-file.

--treat-as-64bit <exe-name>
[Deprecated as of version 8.7] This option is deprecated and will be removed from a future release.
The underlying issue it addressed has been fixed, so the option is no longer needed and no longer
has any effect.

Shared options

--config <coverity_config.xml> , -c <coverity_config.xml>
Uses the specified configuration file instead of the default configuration file located at
<install_dir_sa>/config/coverity_config.xml.

--debug, -g
Turn on basic debugging output.

--debug-flags <flag> [, <flag>, ...]
Controls the amount of debugging output produced during a build. These flags can be combined on
the command line using a comma as a delimiter.

Valid flags are build, capture, translate, translate-phases. For example, --debug-
flags build, translate.

--ident
Displays the version of Coverity Analysis and build number.

--redirect stdout|stderr,<filename>, -rd stdout|stderr,<filename>
Redirect either stdout or stderr to <filename>..

--tmpdir <tmp>, -t <tmp>
Specifies the temporary directory to use. On UNIX, the default is $TMPDIR, or /tmp if that variable
does not exist. On Windows, the default is to use the temporary directory specified by the operating
system.

--verbose <0, 1, 2, 3, 4>, -V <0, 1, 2, 3, 4>
Set the detail level of command messages. Higher is more verbose (more messages). Defaults to 1.

Exit codes

By default, cov-build returns the exit code from the native build. For example, if native build command
returns 57, cov-build will return 57. However, in the case of invalid arguments, cov-build can return
16, which can also occur if the native build returns 16.

If you pass --return-emit-failures to cov-build, the return codes change to match the specified emit
failure responses.

See Also

cov-configure

87

cov-build

cov-emit

cov-translate

cov-security-da

88

Name
cov-capture Capture source files for analysis from the file system or from an SCM repository, without a
build.

Synopsis

The cov-capture command has several modes of operation, depending on the use of some key
options. The following syntax diagrams illustrate each mode, which are then discussed in detail in the
"Description" section.

Project Checkout Mode

cov-capture --project-dir <project_dir> --dir <idir>
[--language <language>]...
[--exclude-project-file <file>]...

SCM Mode

cov-capture --scm-url <scm_url> --dir <idir>
[--exclude-project-file <file>]...
[--language <language>]...
[--scm-type <scm_type>]
[--scm-checkout-dir <scm_dir>]
[--scm-branch <scm_branch>]
[--scm-revision <scm_revision>]

Source Files Mode

cov-capture --source-dir <source_dir>|--source-list <source_list>...
 --dir <idir>
[--case-sensitive <type>]...
[--delete-stale-tus]
[--file-glob <lang>=<glob>]...
[--file-regex <lang>=<glob>]...
[--exclude-regex <lang>=<regex>]...
[--exclude-glob <lang>=<glob>]...
[--just-print-matches]
[--language <language>]...
[--library-dir <lang>=<lib_dir>]...
[--library-file <lang>=<lib_file>]...
[--max-batch-size <size>]
[--no-friend-language <lang>]...
[--parse-error-threshold <percent>]
[--python-version <version>]
[--return-emit-failures]

Config Files Mode

cov-capture --config-dir <config_dir>|--config-list <config_list>...
 --dir <idir>
[--delete-stale-tus]
[--just-print-matches]
[--max-batch-size <size>]

89

cov-capture

Description

Captures files for analysis from the file system or from an SCM repository, without a build. The cov-
capture command operates in one of four modes: “Project”, “Project with SCM Checkout”, “Source
Files”, or “Config Files”.

As a final step, this command invokes cov-security-da, which runs a dynamic analysis in order to
perform a security assessment.

Note

Coverity Security Dynamic Analysis for C# and Visual Basic requires requires a Windows 64-bit or
Linux 64-bit system that supports .NET Core 3.1.

Project mode (activated by --project-dir)

Searches for known supported project files and parses these project files to obtain information about how
to capture the source files contained in the project directory.

Supported project files:

• JavaScript

• npm, yarn: package.json

• bower: bower.json

• Java

• Maven: pom.xml

• Gradle: build.gradle

• .NET Core

• C#: solution and project files

• All other languages

• No project files are used.

Use this mode when the project directory with source files already exists on disk and contains supported
project files.

Project with SCM Checkout mode (activated by --scm-url)

Automatically checks out the source code for the project to a new directory prior to entering Project mode,
treating the new directory as the project directory.

cov-capture supports the Git SCM system, version 1.7.5 and greater, including Git sub-modules.

90

cov-capture

Use this mode when the project directory with source files does not exist on disk but can be checked out
from a supported SCM system.

Source Files mode (activated by --source-dir or --source-list)

Searches for known source files where the language is determined by filename extension.

Use this mode when your build tool is not supported, or if you need greater control over what gets
captured.

Config Files mode (activated by --config-dir or --config-list)

Searches for known configuration files.

Primarily used for languages such as Swift, which require their configuration files to be captured along
with code. In this case, cov-capture in Config Files mode is typically invoked after a build capture.

Supported languages and specifying a language

A number of the options described in the following section require you to specify a particular language.
The --file-glob option is one of these. To specify a custom filename extension for Java source, for
example, you would enter the following:

--file-glob java="*.java"

The table that follows shows the languages supported by cov-capture, and the identifiers used to
specify them.

Table 3. Supported Languages

Language Language Identifier

C# cs

Java java

JavaScript javascript

TypeScript typescript

PHP php

Python python

Ruby ruby

Options

--case-sensitive <type>
By default, the options --exclude-regex, --exclude-glob, --file-regex, and --file-
glob treat their regular expression or glob pattern in a case-insensitive way. This option tells the
other options to treat their regex or glob in a case-sensitive way.

The valid values for <type> are regex or glob.

91

cov-capture

--config-dir <config_dir>
Specifies the directory in which to look for configuration files. The directory must already exist.

--config-list <config_list>
Specifies the list of config files that should be captured. This file must already exist.

--coverity-response-file=<response_file_name>
Specifies a response file that contains a list of additional command-line arguments; for example, a list
of source directories.

Each line in the file is treated as a single argument. The option ignores quotes and spaces or other
white space. cov-capture reads the file using the default character encoding of the platform on
which Coverity Analysis is being run; that is, of Linux, macOS, or Windows.

--delete-stale-tus
Automatically deletes translation units that are created from source files that were renamed or
removed. This capability is off by default. Use this command when you perform an incremental build
after deleting or renaming source files.

--dir <idir>
This required value specifies the intermediate directory to emit to.

--exclude-glob <lang>=<glob>
Specifies a glob pattern, <glob>, used to exclude source files of the specified language from being
captured. The glob pattern is matched against the entire file path, relative to the source directory
where the file was found.

For example, given the following directory structure:

/path/to/cwd
/path/to/cwd/src
/path/to/cwd/src/catchMe.java

... and the following basic command invocation:

% cov-capture --source-dir src

... then adding the option --exclude-glob java="*catchMe.java" would exclude the
file catchMe.java from the capture, but adding the option --exclude-glob java="src/
*catchMe.java" would not exclude it.

--exclude-project-file <file>
Indicates that the project file should be excluded from capture. If this path is absolute, it is used as-is;
otherwise, it is understood as relative to the project directory.

--exclude-regex <lang>=<regex>
Specifies a regular expression that is used to exclude source files of the specified language from
being captured.

92

cov-capture

The regular expression is matched against the entire file path, relative to the source directory where
the file was found.

For example, given the following directory structure:

/path/to/cwd
/path/to/cwd/src
/path/to/cwd/src/catchMe.java

... and the following basic command invocation:

% cov-capture --source-dir src

... then adding the option --exclude-regex java=".*catchMe.java$" would exclude the
file catchMe.java from the capture, but adding the option --exclude-regex java=".*src/
catchMe.java" would not exclude it.

--file-glob <lang>=<glob>
Specicfies a glob pattern used for matching the names of files belonging to the specified language.

You can include this option multiple times for a single invocation of cov-capture

--file-regex <lang>=<regex>
Specicfies a regular expression used for matching the names of files belonging to the specified
language.

You can include this option multiple times for a single invocation of cov-capture

--just-print-matches
Tells cov-capture to simply print out the names of the files it would have captured. When this
option is present, the command does not actually capture those files.

--language <language>
Explicitly enables a language for capture. Only those languages specified by this option will
be enabled. If this option is absent, the tool captures all supported languages. See “Supported
languages and specifying a language”, above.

--library-dir <lang>=<lib_dir>
Specifies a library directory in which to look for library dependencies for the specified language. The
specified directory will be searched recursively.

--no-friend-language <lang>
By default, cov-capture captures files for both the specified language and related languages. For
example, --language java also captures JSP and configuration files. This option prevents such
“friend” language files from being captured.

The value of <lang> can be one of the following: android, config-files, html, jsp, jsx, or
vue.

93

cov-capture

--no-security-da
Disables the dynamic analysis—that is, the execution of cov-security-da—that is typically run at
the end of the capture. The results of the dynamic analysis are used for a security analysis.

--library-file <lang>=<lib_file>
Specifies an additional library file for the specified language.

--parse-error-threshold <percentage>
The percentage of translation units that must successfully compile. If this percentage is not achieved,
cov-capture generates a warning when it completes. The default value is 95.

This option has no effect unless --return-emit-failures is provided as well.

--project-dir <project_dir>
Specifies the directory in which to look for project files. These project files will be used to obtain the
list of source files to capture, along with their dependencies. The directory must already exist.

--python-version <versionNumber>
Specifies the major version of the Python language being used: either 2 or 3.

If this option is not present, cov-capture first attempts to compile a Python script using version 2
of the Python language. If a syntax error occurs, cov-capture attempts to compile the script as
Python 3.

--return-emit-failures
Causes the cov-capture command to return with an error code if an emit failure occurs. The return
value is a combination (a bitwise OR) of the following flags:

Table 4. Codes for Emit Failures

Code Meaning

4 No files were emitted.

8 Some files failed to compile.

By default, this error code is returned if fewer
than 95% of the compilation units compiled.
You can change this threshold percentage by
specifying --parse-error-threshold.

--scm-branch <scm-branch>
Specifies the SCM branch to check out. Do not use with --scm-revision. Examples for git:

• master

• next

--scm-checkout-dir <scm_dir>
Specifies the directory where the source code will be checked out. If not specified, this defaults to the
name of the repository in the current working directory. The directory must not exist before invoking
cov-capture.

94

cov-capture

--scm-revision <scm-revision>
Specifies the SCM revision to check out. Must not be used with --scm-branch. Examples for git:

• tag: v1.9, STABLE

• commit: abcd094354

--scm-type <type>
Specifies the type of SCM to use when checking out the code. If this option is absent, cov-capture
will detect the type of SCM from the URL. Supported SCM systems: git

--scm-url <scm_url>
Specifies a URL for a source repository that contains the code to capture. The format of the URL
is specific to each SCM system and must be accepted by the SCM system in use. Supported SCM
systems: git

Examples of git URLs:

• /srv/git/project.git

• git://example.com/group/project.git

• https://github.com/example/project.git

• git@github.com:example/project.git

• ssh://git@github.com:example/project.git

--source-dir <source_dir>
Specifies the directory in which to look for source files. The directory must already exist.

--source-list <source_list>
Specifies the list of source files that should be captured. This file must already exist.

Shared options

--debug, -g
Turn on basic debugging output.

--ident
Displays the version of Coverity Analysis and the build number.

--redirect stdout|stderr,<file_name>, -rd stdout|stderr,<file_name>
Redirects either the stdout or the stderr stream to the specified file.

Exit codes

• 0: The command successfully completed the requested task.

• 2: The command was unable to complete the requested task. This error typically includes an error
message and some remediation advice.

95

cov-capture

• 4: An unexpected error occurred. This error should not occur when the product is used in a supported
way. Very likely, the requested task was not completed. This error typically provides some diagnostic or
debugging output, such as a stack trace.

See Also

cov-build

cov-security-da

96

Name
cov-collect-models Gather all C/C++ function models from an analyzed intermediate directory into a
single model file.

Synopsis

cov-collect-models [--input <file> | -if <file>] [--output <file.xmldb> | -of
<file.xmldb>] [--make-dc-config] [--text]

Description

The cov-collect-models command gathers all of the function models from a C/C++ intermediate
directory previously analyzed with cov-analyze and collects them into a single output model file. This
model file can be subsequently passed to cov-analyze with the --model-file option.

The primary purpose of cov-collect-models is to allow interprocedural information from a full
analysis run to be used when analyzing only a small portion of the code base. This usually results in
finding some interprocedural errors even when only a small portion of the code base is analyzed, and it
also usually helps lower the false positive rate.

Note

To use the derived model file on a Windows SMB network shared drive (for example, when running
Coverity Desktop local analyses that use derived models), it is necessary to generate the file on a
physical disk, then copy it to the shared drive for read-only access by other processes.

Options

--dir <intermediate_directory>
Path name to an intermediate directory that is used to store the results of the build and analysis.

--input <file.xmldb>, -if <file.xmldb>
Instead of reading models from an intermediate directory, use this input file. This option can be used
more than once. If you specify multiple input files, the models in them are merged together and
placed into the output file. Models from input files that are specified first have precedence over those
in files that are specified later.

--make-dc-config
[C/C++ only] For a description, see the --make-dc-config option to cov-make-library.

--output-file <file.xmldb>, -of <file.xmldb>
The path name for the file to store the collected models.

By default, using this option will append to the output file if the output file already exists. For example,
the following command appends a new model-1l.xmdb file to the all-models collection

$ cov-collect-models --input model-1.xmldb --output-file all-models.xmldb

--output-tag <name>
Use this option if you used it when generating analysis results. See the --output-tag option to cov-
analyze.

97

cov-collect-models

--text
Output the models as text. This format is far less efficient than the standard .xmldb format, but is
easier to debug.

Shared options

--debug, -g
Turn on basic debugging output.

--ident
Displays the version of Coverity Analysis and build number.

--info
Displays certain internal information (useful for debugging), including the temporary directory, user
name and host name, and process ID.

--tmpdir <tmp>, -t <tmp>
Specifies the temporary directory to use. On UNIX, the default is $TMPDIR, or /tmp if that variable
does not exist. On Windows, the default is to use the temporary directory specified by the operating
system.

Exit codes

Most Coverity Analysis commands can return the following exit codes:

• 0: The command successfully completed the requested task.

• 1: The requested task is complete, but it did not return (or find) any results. Note that some Coverity
Analysis commands do not return this error code.

• 2: The command was unable to complete the requested task. This error typically includes an error
message and some remediation advice.

• 4: An unexpected error occurred. This error should not occur when the product is used in a supported
way. Very likely, the requested task was not completed. This error typically provides some diagnostic
and/or debugging output, such as a stack trace.

For exceptions, see cov-commit-defects(Coverity 2020.12 Command Reference), cov-analyze, and cov-
build.

See Also

cov-analyze

cov-make-library

98

Name
cov-commit-defects Commit Coverity Analysis defect reports to a Coverity Connect database.

Synopsis

cov-commit-defects

 --dataport <port_number> | --port <port_number> | --https-port <port_number>
 --dir <intermediate_directory>
 --host <host_server_name>
 --stream <stream_name>
 [--authenticate-ssl]
 [--auth-key-file <keyfile>]
 [--cva]
 [--description "description"]
 [--encryption <requirement_level>]
 [--extra-output <path>]
 [--output-tag <name>]
 [--on-new-cert <trust | distrust>]
 [--password <password>]
 [--preview-report <filename> | --preview-report-v2 <filename>]
 [--scm <scm_type>]
 [--scm-tool <scm_tool_path>]
 [--scm-project-root <scm_root_path>]
 [--scm-tool-arg <scm_tool_arg>]
 [--scm-command-arg <scm_command_arg>]
 [--snapshot-id-file <filename>]
 [--strip-path <path>]
 [--target <platform>]
 [--ticker-mode <mode>]
 [--url <path>]
 [--user <user_name>]
 [--version <version>]
 [OPTIONS]

Description

The cov-commit-defects command reads analysis output and source data stored in an intermediate
directory and writes the data to a Coverity Connect instance in a stream that you specify. The data are
written as a unit; this unit is a snapshot.

The command passes the data to the Coverity Connect server either through the server's HTTPS port or
its Commit port, depending on the command-line options you choose. You should use the HTTPS port
because the Commit port is deprecated and will be removed in a future release.

To use the HTTPS port, both Coverity Connect and Coverity Analysis must be release 2020.12 or later
and you must use one of the following command options:

• The --url option with a scheme of https, for example:

--url https://my_domain.com:8443

99

cov-commit-defects

• The --https-port option. (This option is not recommended because it is deprecated and will be
removed in a future release.)

See the --url option section for more information about sending data to the HTTPS port.

The Commit port is used if any of the following are true:

• Coverity Connect is older than release 2020.12.

• Coverity Analysis is older than release 2020.12.

• You use the --dataport command option. (This option is deprecated and will be removed in a future
release.)

• You use the --url command option with a commit scheme, for example:

--url commit://my_domain.com:9999

(This scheme is deprecated and will be removed in a future release.)

Note

Although you can use the HTTP port instead of the HTTPS port, HTTP is not secure and is
therefore suitable only for demonstration purposes. For information on how to use the HTTP port,
see the --url option section.

Commits conducted over the HTTPS port are always secure.

Commits conducted over the Commit port are secure by default but can be conducted without
security if the Coverity administrator configures the server to not enforce security.

After you perform a commit, you can view the defects in Coverity Connect alongside the source code
that generated them. The issues in the intermediate directory are discovered through the cov-analyze
command.

Note

It is possible to use the cov-build command to capture builds for many different languages to
the same intermediate directory. The target stream's "Language" configuration setting must match
the source code language in the intermediate directory. The recommended "Any" setting accepts
everything, including mixed-language intermediate directories.

After a successful commit, cov-commit-defects checks for any new Coverity Analysis updates. If
there are updates, a message appears with the number of updates that you can download. Use the cov-
install-updates command to manage and install the updates.

Note

SCM-related command line options (--scm*) are used to collect SCM (source code management)
data solely for the purposes of automatic ownership assignment (see cov-blame and Coverity
Platform 2020.12 User and Administrator Guide). To display SCM data in the Coverity Connect
source browser, use cov-import-scm prior to running cov-analyze.

100

cov_platform_use_and_admin_guide.html#cim_config_autoassign
cov_platform_use_and_admin_guide.html#cim_config_autoassign

cov-commit-defects

This command requires that source files remain in their usual locations in the checked-out source
tree. If the files are copied to a new location after checkout, the SCM query will not work.

Options

--authenticate-ssl
Reject self-signed certificates when doing the SSL/TLS handshake. You cannot use this option
together with the --on-new-cert distrust option.

--auth-key-file <keyfile>
Specify the location of a previously created authentication key file, used for connecting to the
Coverity Connect server.

--certs <filename>
In addition to CA certificates obtained from other trust stores, use the CA certificates in the given
filename. This file is in PEM format.

--cid-assignment-timeout <timeout-seconds>
When committing with --preview-report or --preview-report-v2 to an instance of Coverity
Connect in a clustered environment, assignments of CIDs to issues can delay the completion of the
preview report. This option specifies the number of seconds to wait for this phase of preview report
processing to complete. If assigning CIDs takes longer than <timeout-seconds>, Coverity Connect
will leave some of the CIDs unassigned. They will have null values in the preview report. The default
CID assignment timeout is 60 seconds.

--comparison-snapshot-id <snapshot-id>
This option is used in conjunction with the --preview-report-v2 option to specify the snapshot
with which the preview report will compare the commit's defect instances. A boolean flag, called
presentInComparisonSnapshot, is included in the preview report indicating whether each of this
commit's defect occurrences is present in the given snapshot. The default value is the most recent
snapshot ID in the specified stream.

--cva
Generate architectural information for a C/C++ snapshot. After using this option, Coverity Connect
users can download this snapshot's .cva file. This option is not valid for any other languages.

For information about downloading the .cva file, see the Architecture Analysis appendix in the
Coverity Platform 2020.12 User and Administrator Guide .

Note

This option has been deprecated. Use the cov-export-cva command instead.

--dataport <port_number>
You should use the --url option instead of this option. This option is deprecated and will be
removed in a future release.

Used with the --host option to specify the Commit port on Coverity Connect. You can use only one
of --port, --dataport, or --https-port to specify the Commit port.

101

cov_platform_use_and_admin_guide.pdf

cov-commit-defects

--description <description>
Specify a description for the committed snapshot.

--dir <intermediate_directory>
Path name to an intermediate directory that is used to store the results of the build and analysis.

--encryption <requirement_level>
This option is deprecated and will be removed in a future release. You should use the --url option
and send analysis data to the HTTPS port instead.

cov-commit-defects uses this option to communicate with Coverity Connect to determine
if the dataport connection will be encrypted. By default, the value for --encryption
<requirement_level> is "preferred".

The available values for <requirement_level> are:

required
The commit will proceed only if the server requires or prefers encryption. The connection will be
encrypted.

preferred
The connection will be encrypted if the server requires or prefers encryption. Otherwise, the
connection will be unencrypted

none
The commit will proceed only if the server prefers encryption or has an encryption setting of none
(meaning it requires no encryption). The connection will be unencrypted.

--extra-output <path>, -xo <path>
[Deprecated] This option is deprecated as of version 5.5 and subject to removal or change in a future
release.

Specify additional output directories from parallel analysis snapshots. Use this option for each output
directory, in addition to the default <intermediate_directory>/output directory, that you want
to commit into a single snapshot ID in the Coverity Connect.

--host <server_hostname>
You should the --url option instead of this option. This option is deprecated and will be removed in
a future release.

Specify the server hostname to which to send the results. The server must have a running instance of
Coverity Connect.

If unspecified, the default is the host element from the XML configuration file.

Note

• If you're running cov-commit-defects on a Linux OS, or using --ssl, you must enter the
full host and domain name for the --host parameter:

102

cov-commit-defects

--host <server_hostname.domain.com>

• The --host switch, while still supported, now produces a deprecation warning that it may be
removed in a later release. The --url syntax is the preferred replacement.

--https-port <port_number>
You should use the --url option instead of this option. This option is deprecated and will be
removed in a future release.

If both Coverity Connect and Coverity Analysis are at release 2020.12 or later, this option directs
commit data to the Coverity Connect server's HTTPS port.

If either Coverity Connect or Coverity Analysis are older than release 2020.12, this option first
retrieves the Coverity Connect server's Commit port number from the server's HTTPS port and then
directs commit data to the Commit port.

This option requires the --host option.

--misra-only
[Deprecated in 8.0] Using this option will result in an error.

--noxrefs
Tells cov-commit-defects to skip the phase of transferring xrefs (cross-reference data) to Coverity
Connect. It is useful for debugging and doing commits where the user doesn't mind that, when
viewed in the Coverity Connect, their code lacks cross-reference information. A user might prefer that
if they were sensitive to the amount of time taken by commit to execute.

--on-new-cert <trust | distrust>
Indicates whether to trust (with trust-first-time) self-signed certificates, presented by the server, that
the application has not seen before. Default is distrust. For information on the new SSL certificate
management functionality, please see Coverity Platform 2020.12 User and Administrator Guide

--output-tag <name>
Use this option if you used it when generating analysis results. See the --output-tag option to cov-
analyze.

--password <password>, -pa <password>
You should use the --url option instead of this option. This option is deprecated and will be
removed in a future release.

Specify the password for either the current user name, or the user specified with the --user option.
For security reasons, the password transmitted to the Coverity Connect is encrypted. If unspecified,
the default is (in order of precedence):

1. The password from the --url option.

2. The password element from the XML configuration file.

3. The environment variable COVERITY_PASSPHRASE.

103

cov_platform_use_and_admin_guide.html#cim_ssl_client_cert_mgmt

cov-commit-defects

4. The password in the file pointed to by the environment variable COVERITY_PASSPHRASE_FILE.

Note

The passphrase can be stored in a file without any other text, such as a newline character.

Warning

On multi-user systems, such as Linux, users can see the full command line of all commands
that all users execute. For example, if a user uses the ps -Awf command, identifying
information such as usernames, process identities, dates and times, and full command lines
display.

This attribute supports the commit process.

--port <port_number>
You should use the --url option instead of this option. This option is deprecated and will be
removed in a future release.

If both Coverity Connect and Coverity Analysis are at release 2020.12 or later, this option directs
commit data to the Coverity Connect server's HTTP port.

If either Coverity Connect or Coverity Analysis are older than release 2020.12, this option first
retrieves the Coverity Connect server's Commit port number from the server's HTTP port and then
directs commit data to the Commit port.

This option requires the --host option.

--ssl
Specifies that SSL is to be used for both HTTPS port and dataport connections. For the negotiation
with the server on whether to use SSL on the dataport, this is the equivalent of --encryption
required.

--preview-report <filename>
Instead of sending files, cross-references, and other assets to the server, this option sends only the
defect occurrences. The server returns a commit preview report, which is written in JSON format, to
<filename>.

The commit preview report uses the structure defined in the following table. Note that the order of
items contained within objects or arrays is arbitrary.

There is a second version of the preview report, used by Coverity Desktop Analysis, which contains
additional details for each CID. See --preview-report-v2 <filename> for more information.

Table 5. Report v1 element syntax

Report element Comments

report <- {
 "header" : header,

104

cov-commit-defects

Report element Comments
 "analysisInfo" : analysisInfo,
 "issueInfo" : issueInfo,
}

header <- {
 "format" : "commit preview report",
 "version" : 1,
}

analysisInfo <- {
 "command" : string,
 "reportTimestamp" : string,
 "user" : string,
}

ReportTimestamp has format yyyy-mm-
ddThh:mm:ss.mmmZ. The T separates the date
from the time. The Z indicates that the timestamp
is in UTC.

issueInfo <- [
 {
 "cid" : number or null,
 "mergeKey" : string,
 "occurrences" : occurrences,
 "triage" : triage,
 }, ...
]

Each distinct issue has a unique identifier, the
mergeKey. The CID may sometimes be null in
clustered installations.

occurrences <- [
 {
 "checker" : string,
 "file" : string,
 "function" : string,
 "extra" : string,
 "subcategory" : string,
 "mainEvenLineNumber" : integer,
 "mainEventDescription" : string,
 }, ...
]

Each issueInfo has one or more occurrences,
all with the same mergeKey.

triage <- {
 "classification" : string,
 "action" : string,
 "fixTarget" : string,
 "severity" : string,
 "owner" : string,
}

(one additional item for each custom attribute.
Value is string or null.)

--preview-report-v2 <filename>
Similar to --preview-report, this option sends only defect occurrences to the server, which then
returns a commit preview report, written in JSON format, to <filename>. Version two of the preview
report contains all of the information present in version one, with several additional fields.

The commit preview report (v2) uses the structure defined in the following table. Note that the order
of items contained within objects or arrays is arbitrary.

105

cov-commit-defects

Table 6. Report v2 element syntax

Report element Comments

report <- {
 "header" : header,
 "analysisInfo" : analysisInfo,
 "issueInfo" : issueInfo,
}

header <- {
 "format" : "commit preview report",
 "version" : 2,
}

analysisInfo <- {
 "command" : string,
 "reportTimestamp" : string,
 "user" : string,
 "comparisonSnapshotId" : string,
 "ownerAssignmentRule" : string

 "ownerLdapServerName" : string,

}

ReportTimestamp has format yyyy-mm-
ddThh:mm:ss.mmmZ. The T separates the date
from the time. The Z indicates that the timestamp
is in UTC.

The comparisonSnapshotId is the snapshot
identifier given by the --comparison-
snapshot-id command line parameter. If not
specified by --comparison-snapshot-id,
this will be the ID of the most recent snapshot.

issueInfo <- [
 {
 "cid" : number or null,
 "mergeKey" : string,
 "occurrences" : occurrences,
 "triage" : triage,
 "customTriage" : customTriage,

 "presentInComparisonSnapshot" : boolean,
 "firstDetectedDateTime" : string,
 "ownerLdapServerName" : string,

 }, ...
]

Each distinct issue has a unique identifier, the
mergeKey. The CID may sometimes be null in
clustered installations.

The presentInComparisonSnapshot
flag is true if this issue occurs in the
comparison snapshot identified by the
comparisonSnapshotId (listed in the
analysisInfo element).

occurrences <- [
 {
 "checker" : string,
 "file" : string,
 "function" : string,
 "extra" : string,
 "subcategory" : string,
 "mainEvenLineNumber" : integer,
 "mainEventDescription" : string,
 "componentName" : string,
 "componentDefaultOwner" : string,
 "componentDefaultOwner " string

 }, ...

Each issueInfo has one or more occurrences,
all with the same mergeKey.

106

cov-commit-defects

Report element Comments
]

triage <- {
 "classification" : string,
 "action" : string,
 "fixTarget" : string,
 "severity" : string,
 "owner" : string,
 "legacy" : string,
 "externalReference" : string,
}

customTriage <- {
 "quotedString" : string
}

The custom triage attributes, if any, are listed
here.

--product <product_name>
Deprecated. See --stream.

--scm <scm_type>
Specifies the name of the source control management system. For this option to function correctly,
your source files must remain in their usual locations in the checked-out source tree. If the files are
copied to a different location after checkout, the SCM query will not work.

Possible scm_type values:

• Accurev: accurev

• Azure DevOps Server (ADS): ads

Windows only.

• ClearCase: clearcase

• CVS: cvs

• GIT: git

• Mercurial: hg

• Perforce: perforce

• Plastic: plastic|plastic-distributed.

Use plastic when working in a non- or partially-distributed Plastic configuration. Use plastic-
distributed when working in a fully-distributed Plastic configuration.

• SVN: svn

• Team Foundation Server (TFS): tfs

Windows only.

107

cov-commit-defects

For usage information for the --scm option, see cov-extract-scm.

Note

The following commands or setup utilities must be run before cov-commit-defects in order
to successfully communicate with the SCM server:

• accurev:

Login command

• perforce

The environment variable P4PORT should be set to the value expected by the p4 tool.

• tfs or ads:

Windows credentials in Credential Manager to access the TFS or ADS server

--scm-command-arg <scm_command_arg>
This option has been deprecated. Instead of using --scm-command-arg arg1, use --scm-
param annotate_arg=arg1. Specifies additional arguments that are passed to the command that
retrieves the last modified dates. This option can be specified multiple times.

For usage information for the --scm option, see cov-extract-scm .

---scm-param
Specify extra arguments to be passed to the SCM tool in a context-aware manner. For usage
information of the --scm option, see cov-extract-scm.

--scm-project-root <scm_root_path>
Specifies a path that represents the root of the source control repository. This option is only used
when specifying accurev as the value to --scm. When this is used, all file paths that are used to
gather information are interpreted as relative to this project-root path.

For usage information for the --scm option, see cov-extract-scm .

--snapshot-id-file <filename>
If the commit succeeds, write the snapshot ID for this commit to the specified file, and make this file
writable.

--scm-tool <scm_tool_path>
Specifies the path to an executable that interacts with the source control repository. If the executable
name is given, it is assumed that it can be found in the path environment variable. If it is not provided,
the command uses the default tool for the specified --scm system.

For usage information for the --scm option, see cov-extract-scm .

--scm-tool-arg <scm_tool_arg>
This option has been deprecated. Instead of using --scm-tool-arg arg1, use --scm-param
tool_arg=arg1. Specifies additional arguments that are passed to the SCM tool, specified in the

108

cov-commit-defects

--scm-tool option, that gathers the last modified dates. The arguments are placed before the
command and after the tool. This option can be specified multiple times.

For usage information for the --scm option, see cov-extract-scm .

--security-file <license file>, -sf <license file>
Path to a Coverity Analysis license file. If not specified, this path is given by the security_file
element in the XML configuration file, or license.dat in the same directory as
<install_dir_sa>/bin.

--stream <stream_name>
Specifies a stream name to which to commit these defects.

If the stream option is not specified, the stream element from the XML configuration file is used.

If the stream is associated with a specific language and you attempt to commit results from other
languages to that stream, the commit will fail. However, in Coverity Connect, it is possible to
associate a stream with multiple languages even if the stream was previously associated with a
single programming language.

--strip-path <path>, -s <path>
Strips the prefix of a file name path in error messages and references to your source files. If you
specify the --strip-path option multiple times, you strip all of the prefixes from the file names, in
the order in which you specify the --strip-path argument values.

Note that instead of using this option when committing issues to Coverity Connect through cov-
commit-defects, you can enhance end-to-end performance by using this option with cov-
analyze when analyzing code, or with cov-import-results when importing third party issues.

--target <target_name>
Target platform for this project (for example, i386).

--ticker-mode <mode>
Set the mode of the progress bar ticker. The available modes are:

none
No progress bar is displayed.

no-spin
Only the print stars are displayed; the spinning bar is not.

spin
This is the default mode. Stars with a spinning bar at the end are displayed. Each file, function, or
defect committed corresponds to steps of spin.

--url <path>
Use this option to specify the information needed to connect to a Coverity Connect server. You
should use this option instead of the --dataport, --host, --https-port, --port, and --user
options (these options are deprecated and will be removed in a future release).

109

cov-commit-defects

• The --url switch now allows a username and password to be supplied, as an alternative to --
user and --password. The syntax used to supply those credentials in the URL is https://
[<USERNAME>[:<PASSWORD>]@]<HOSTNAME>[:<PORT>][/<CONTEXT_ROOT>], where the
brackets show which parts are optional.

• The parallel construct also exists for http:// and commit://.

• The --host switch, while still supported, now produces a deprecation warning that it may be
removed in a later release. The --url syntax is the preferred replacement.

The value you specify for this option can have one of two forms: one used with HTTPS or HTTP, or
one used with the commit scheme. Examples are provided in the following table:

Scheme Meaning Example

https or http Use HTTPS or HTTP to connect to the
Coverity Connect HTTPS or HTTP port.
HTTPS is the preferred scheme.

For http, the default port is 80; for https,
the default port is 443.

https://example.com/coverity

https://cimpop:8008

http://cim.example.com:8080

commit Connect to the data port specified by the
URL. This scheme is deprecated and will be
removed in a future release.

commit://cim.example.com:9999

commit://cim.example.com

Refer to the following table as an aid in updating existing command lines that use the --host, --
port, --https-port, and --dataport options:

Existing command form New command form

cov-commit-defects --host <hostname> --
port <http-port> --encryption <level> …

cov-commit-defects --url http://
<hostname>:<http-port> --encryption
 <level> …

cov-commit-defects --url commit://
<hostname>:<commit-port> --encryption
 <level> …

cov-commit-defects --url https://
<hostname>:<https-port> …

For example:

cov-commit-defects --url https://
admin:1256@coverity_server1 --stream
 xalan --dir xalan_int_dir

--user <user_name>
You should use the --url option instead of this option. This option is deprecated and will be
removed in a future release.

Specifies the user name that is shown in Coverity Connect as having committed this snapshot. If
unspecified, the default is:

1. The username specified by the --url option, if any.

2. The user element from the XML configuration file.

110

cov-commit-defects

3. The environment variable COV_USER.

4. The environment variable USER.

5. The name of the operating system user invoking the command (where supported).

6. The UID of the operating system user invoking the command (where supported).

7. admin.

--version <version>
This snapshot's project version.

Shared options

--config <coverity_config.xml> , -c <coverity_config.xml>
Uses the specified configuration file instead of the default configuration file located at
<install_dir_sa>/config/coverity_config.xml.

--debug, -g
Turn on basic debugging output.

--ident
Displays the version of Coverity Analysis and build number.

--info
Displays certain internal information (useful for debugging), including the temporary directory, user
name and host name, and process ID.

--tmpdir <tmp>, -t <tmp>
Specifies the temporary directory to use. On UNIX, the default is $TMPDIR, or /tmp if that variable
does not exist. On Windows, the default is to use the temporary directory specified by the operating
system.

--verbose <0, 1, 2, 3, 4>, -V <0, 1, 2, 3, 4>
Set the detail level of command messages. Higher is more verbose (more messages). Defaults to 1.

Exit codes

This command returns the following exit codes:

• 0: Success.

• 3: Non-fatal error.

• Other: Internal error.

Any errors during a commit are recorded in Coverity Connect in the <install_dir_cc>/logs/
cim.log file. Errors and warnings are also recorded to the <intermediate-dir>/output/commit-
error-log.txt file.

111

cov-commit-defects

Examples

Commit data to host coverity_server1 for the xalan stream:

> cov-commit-defects --url https://admin:1256@coverity_server1:8443 --stream xalan --
dir xalan_int_dir

Commit data to host coverity_server1 for the and xalan stream, using an XML configuration file for all
settings except the intermediate directory:

> cov-commit-defects --dir xalan_int_dir --config test_cim_commit.xml

The test_cim_commit.xml XML configuration file contents are shown next:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE coverity SYSTEM "coverity_config.dtd">
<coverity>
 <config>
 <cim>
 <host>coverity_server1</host>
 <client_security>
 <user>admin</user>
 <password>1256</password>
 </client_security>
 <commit>
 <port>9090</port>
 <source-stream>xalanSource</source-stream>
 </commit>
 </cim>
 </config>
</coverity>

The port element in this example refers to the commit port (equivalent to the --dataport option).

112

Name
cov-configure Create a configuration for a native compiler or scripting language, and generate a
coverity_config.xml file.

Synopsis

CUDA (nvcc):

 cov-configure [--config <cov_config_file>] --cuda

Clang:

 cov-configure [--config <cov_config_file>] --clang

Go:

 cov-configure [--config <cov_config_file>] --go

GNU C/C++ compiler (gcc/g++):

 cov-configure [--config <cov_config_file>] --gcc

Java filesystem capture:

 cov-configure [--config <cov_config_file>] --javafs [--no-capture-config-files]
 [--no-android] [--no-jsp]

JavaScript:

 cov-configure [--config <cov_config_file>] --javascript [--no-html] [--no-jsx]
 [--no-typescript] [--no-vue] [--no-capture-config-files] [--fs-library-path path1 [--
fs-library-path path2 ...]]

Kotlin:

 cov-configure [--config <cov_config_file>] --kotlin [--no-capture-config-files]

Microsoft C/C++ compiler (cl):

 cov-configure [--config <cov_config_file>] --msvc

Microsoft C# compiler (csc):

 cov-configure [--config <cov_config_file>] --cs

Note

If your system uses .NET to compile C#, cov-configure correctly sets up that environment.

Microsoft Visual Basic compiler (vbc):

 cov-configure [--config <cov_config_file>] --vb

113

cov-configure

Note

If your system uses .NET to compile Visual Basic, cov-configure correctly sets up that
environment.

Oracle Java compiler (javac):

 cov-configure [--config <cov_config_file>] --java [--no-capture-config-files] [--
no-android] [--no-jsp]

PHP:

 cov-configure [--config <cov_config_file>] --php [--no-capture-config-files]

Python:

 cov-configure [--config <cov_config_file>] --python [--no-capture-config-files]
 [--version 2|3]

Ruby:

 cov-configure [--config <cov_config_file>] --ruby

Scala:

 cov-configure [--config <cov_config_file>] --scala [--no-capture-config-files]

Swift:

 cov-configure [--config <cov_config_file>]
 (--swift [--no-capture-config-files] | --swiftc [--no-capture-config-files])

TypeScript:

 cov-configure [--config <cov_config_file>] --typescript [--no-html] [--no-jsx]
 [--no-javascript] [--no-vue] [--no-capture-config-files] [--fs-library-path path1 [--
fs-library-path path2 ...]]

Other compiler:

 cov-configure [--config <cov_config_file>] [--template]
 --compiler <name> --comptype <type> [--version <comp_version>]
 [--cygpath <path>] [--cygwin] [--force]
 [--xml-option=[tag][@<language>]]

Filesystem capture with custom file pattern:

 cov-configure [--config <cov_config_file>] --comptype <type>
 (--file-glob <glob>|--file-regex <regex>)
 [--xml-option=[tag][@<language>]]

Description

The cov-configure command creates a configuration for a compiler (or compiler family) and/or a
scripting language, such as JavaScript. Choices in this configuration file impact filesystem capture.

114

cov-configure

The --config option specifies the name of the configuration file. By default, if no other
configuration file or directory is specified, the configuration is created at <install_dir>/config/
coverity_config.xml. Each invocation of the cov-configure command adds a given compiler's
configuration in its own subdirectory under the directory that contains the output configuration file. Within
each compiler's configuration subdirectory the coverity_config.xml contains an include directive for
that compiler-specific configuration.

Note

On some Windows platforms, you might need to use Windows administrative privileges when you
run cov-configure.

Typically, you can set the administrative permission through an option in the right-click menu of the
executable for the command interpreter (for example, Cmd.exe or Cygwin) or Windows Explorer.

Friend compilers (Android, HTML, JSP, JSX, TypeScript, Vue.js SFC, and configuration
files)

The configuration templates for certain languages automatically configure "friend compilers", which
tell cov-build to capture additional files for related applications in the configured language. For
example, cov-configure --javascript automatically configures the capture of HTML files with
the file-include pattern *.(htm|html). Likewise, cov-configure --java automatically configures
the capture of Android configuration files (with a file-include pattern of *.xml) and JSP configuration
files (with a file-include pattern of *.(jsp|jspx)). See "Table 3. Default Files for Coverity Analysis
Compilers" for additional file patterns configured by cov-configure --javascript.

Java, JavaScript, and many other language configurations include the capture of miscellaneous files
used for understanding the application and framework configuration, and in TEXT.CUSTOM_CHECKER
checkers support. For more information about the TEXT.CUSTOM_CHECKER checker, see the
TEXT.CUSTOM_CHECKER .

Filesystem capture configurations

A filesystem capture configuration (for languages like Java, JavaScript, PHP, Python, or Ruby) can be
generated using template files that are provided. For example, the following command uses the default
template to generate a configuration for Python:

cov-configure --python --config my-python-config.xml

The generated configuration specifies a set of file-include and -exclude patterns. These file-include
patterns define which files will be captured (or excluded) when the code is captured for analysis. The
configuration also associatess the include patterns with their corresponding Coverity analysis compiler.
The cov-build command then uses the configuration file to determine the set of files it will emit during
filesystem capture.

The include and exclude patterns are matched with case-insensitive matching.

The sample command above, using the default Python template, generates a configuration with a file-
include pattern of *.py, and associates these files with the Python compiler. When you invoke cov-

115

cov_checker_ref.pdf#static_checker_TEXT.CUSTOM_CHECKER

cov-configure

build --fs-capture-search <search directory>, cov-build recursively searches the
specified directory for files that match the *.py filename pattern and emits those files so they will be
analyzed.

The following table shows these default file-include patterns and their associated compilers for
JavaScript. For other languages (Java, Python, PhP, Ruby) you can refer to the default configuration
templates.

Table 7. Default Files for JavaScript Coverity Analysis Compilers

Language File Types

*.js, *.xsjs, *.xsjlib, *.map —> JavaScript compiler

*.html, *.htm —> HTML compiler (unless --no-html)

*.vue —> Vue.js Single File Component compiler (unless --
no-vue)

*.ts, *.tsx, tsconfig.json —> Typescript compiler
(unless --no-typescript)

--javascript

*.jsx —> JSX compiler (unless --no-jsx)

--typescript Alias for --javascript, with support for a --no-
javascript option to suppress capture of *.js, *.xsjs,
*.xsjlib, and *.map files.

You can further customize the default capture configurations by using the --file-glob or --file-
regex options to extend the list of file-include patterns.

To add a new filename extension for HTML files—for example, .ihtm—you could execute the following
command lines:

cov-configure --javascript -config my-js-config.xml
cov-configure --comptype html --file-glob "*.ihtm" --config my-fs-config.xml

You can also create a custom configuration from scratch, without using or altering the default templates.
To do so, use --file-glob or --file-regex in conjunction with -comptype. For example, you
might go through the following steps:

1. cov-configure --comptype php --file-glob "*.php(5|7)" -c new-php-config.xml

2. cov-configure --comptype php --file-glob "*.phtml" -c new-php-config.xml

For more details, see the descriptions of the --file-regex, --file-glob, and --comptype options.

Language-specific Configurations

The following sections explain build-capture and filesystem-capture configurations for each supported
language.

116

cov-configure

C/C++ compiler and build capture configuration

In general, for C/C++ cov-configure tries to make an intelligent guess as to the native compiler's
built-in macro definitions and system include directories. For some compilers, such as gcc, there are
command line arguments that reveal this information, and cov-configure invokes the native compiler
to discover this information. For some compilers, there is no standard way of getting this information,
so cov-configure tries several methods to gather this information. However, these methods are not
perfect and sometimes a configuration is generated that is incomplete or incorrect, with the result that
some obscure parsing error occurs during the parsing of some source file or header file. Some manual
configuration could be necessary. See the compiler information in the Coverity Analysis 2020.12 User
and Administrator Guide.

Because the cov-configure command invokes the native compiler to determine its built-in macro
definitions and the system include directories, you must run it in an environment that is identical to the
one in which your native compiler runs. Otherwise, the emulation will be inaccurate.

CUDA build capture configuration

Use the cov-configure --cuda command to configure build capture for CUDA.

C# build capture configuration

Use the template configuration, cov-configure --cs, unless you have a clear understanding of the
alternative C# configuration option, as described in the paragraph that follows.

If you do not use the template configuration, you must specify the location of the C# compiler, csc,
to the --compiler option. If you do not use the template configuration, the cov-build command
will capture only those C# compile commands that have the same absolute pathname as a compiler
that was identified by a preceding cov-configure command. Any symbolic links in the pathnames
of the configured and executed compile commands will be replaced by real directory names before
comparison. For example, on a Unix system, the inode of the compile commands must match. Because
the pathnames to the C# compile command can vary, you need to configure all of the pathnames in use,
or to define a custom template configuration to handle all of them.

Clang build capture configuration

Use the configuration, cov-configure --clang.

Go build capture configuration

Use the cov-configure --go command to configure build capture for Go source code.

Java build capture configuration

Use the template configuration, cov-configure --java, unless you have a clear understanding of the
alternative Java configuration option.

If you do not use the template configuration, you must specify the location of the Java compiler, javac,
to the --compiler option. This specification configures both the compiler and the virtual machine

117

cov-configure

(java, java.exe, or javaw.exe). If you do not use the template configuration, the cov-build
command will capture only those Java compile commands that have the same absolute pathname
as a compiler that was identified by a preceding cov-configure command. Any symbolic links in
the pathnames of the configured and executed compile commands will be replaced by real directory
names before comparison. For example, in a Unix system, the inode of the compile commands must
match. Because the pathnames to the Java compile command can vary, you need to configure all of the
pathnames in use or to define a template configuration to handle all of them.

The Java template configuration also enables filesystem capture for the following file types:

• You can limit which specific configuration files are captured by using the --fs-capture-list option
with the cov-build command.

• JavaServer Pages (JSPs) for files with the .jsp and .jspx extensions. The filesystem capture of
JSPs can be disabled by using the --no-jsp option with the cov-configure command.

• Java Android files that are needed by Coverity Analysis, including the manifest
(AndroidManifest.xml) and the layout resource files. The filesystem capture of Java Android files
can be disabled by using the --no-android option along with the cov-configure command.

For information about other compilers, see the section called “Friend compilers (Android, HTML, JSP,
JSX, TypeScript, Vue.js SFC, and configuration files)”.

Java filesystem capture configuration

Use the template configuration, cov-configure --javafs command syntax to enable Java filesystem
capture.

The generated configuration matches Java source files (such as *.java). When using the cov-
build --fs-capture-search command, Coverity Analysis will recursively search the specified
<search_directory> for matching Java source files. You can customize the match pattern by using
the --file-glob option and --file-regex options along with the specified pattern.

The Java filesystem template configuration also enables filesystem capture for the following file types:

• You can limit which specific configuration files are captured by using the --fs-capture-list option
with the cov-build command.

• JavaServer Pages (JSPs) for files with the .jsp and .jspx extensions. The filesystem capture of
JSPs can be disabled by using the --no-jsp option with the cov-configure command.

• Java Android files that are needed by Coverity Analysis, including the manifest
(AndroidManifest.xml) and the layout resource files. The filesystem capture of Java Android files
can be disabled by using the --no-android option along with the cov-configure command.

Note

It is an error to enable Java filesystem capture and also Java build capture (using the --java
option). Any pre-existing Java build configuration must be deleted before filesystem capture is
configured. For further details, see Section 1.4.2.3. "Filesystem capture (for Java)" in the Coverity

118

cov_analysis_administration_guide.pdf#build_source_code

cov-configure

Analysis 2020.12 User and Administrator Guide . See also the section called “Friend compilers
(Android, HTML, JSP, JSX, TypeScript, Vue.js SFC, and configuration files)”.

JavaScript-related filesystem capture configuration

Use the template configuration cov-configure --javascript command syntax to enable JavaScript
filesystem capture.

By default, cov-configure --javascript configures filesystem capture to search for files ending
in *.js, *.jsx, *.htm, *.html, *.map, *.ts, tsconfig.json, *.tsx, *.vue, *.xsjs, and
*.xsjslib and to emit their code for later analysis.

The optional --no-html option excludes *.html and *.htm files from the emit. Similarly, --no-jsx
excludes *.jsx files; --no-typescript excludes *.ts, *.tsx, and tsconfig.json files; and --
no-vue excludes *.vue files.

You can limit which specific configuration files are captured by using the --fs-capture-list option
with the cov-build command.

See also, the section called “Friend compilers (Android, HTML, JSP, JSX, TypeScript, Vue.js SFC, and
configuration files)”.

Kotlin build capture configuration

Use the cov-configure --kotlin command to configure build capture (to capture Kotlin source
files from your build) and filesystem capture (to capture configuration files). The Kotlin configuration also
enables filesystem capture of configuration files by default. You can limit which specific configuration files
are captured by using the --fs-capture-list option with the cov-build command.

PHP filesystem capture configuration

Use the template configuration cov-configure --php syntax to enable PHP filesystem capture.

By default, cov-configure --php configures filesystem capture for files with the *.php, *.phtml,
*.php3, *.php5,, and *.php7 filename extensions.

You can limit which specific configuration files are captured by using the --fs-capture-list option
with the cov-build command.

Python filesystem capture configuration

Use the template configuration cov-configure --python syntax to enable Python filesystem capture.

By default, the cov-configure -python configures filesystem capture for files with the *.py filename
extension.

Caution

This command does not detect Python scripts that don't have this filename extension.

You can limit which specific configuration files are captured by using the --fs-capture-list option
with the cov-build command.

119

cov_analysis_administration_guide.pdf#build_source_code

cov-configure

Ruby filesystem capture configuration

Use the cov-configure --ruby command to configure filesystem capture for Ruby source code.

By default, the cov-configure -ruby configures filesystem capture for files with the *.rb filename
extension.

Caution

This command does not detect Ruby scripts that don't have this file name extension.

Scala build capture configuration

Use the cov-configure --scala command to configure build capture (to capture Scala source files
from your build) and filesystem capture (to capture configuration files). The Scala configuration also
enables filesystem capture of configuration files by default.

You can limit which specific configuration files are captured by using the --fs-capture-list option
with the cov-build command.

Swift build configuration

If you use the legacy build system in Xcode, use cov-configure --swiftc to configure build capture
so that cov-build will capture Swift source files. If you use the new build system, use cov-configure
--swift to configure build capture so that cov-build will capture Swift source files. By default, Xcode
uses the new build system; in Xcode, you can check the current preference by choosing File > Project/
Workspace Settings > Build System.

Both the --swiftc and --swift options configure filesystem capture to capture configuration files such
as .plist files for iOS apps. (For Swift projects, filesystem capture does not capture source files.)

Visual Basic build capture configuration

Use the template configuration, cov-configure --vb, unless you have a clear understanding of the
alternative Visual Basic configuration option, as described in the paragraph that follows.

If you do not use the template configuration, you must specify the location of the Visual Basic compiler,
vb, to the --compiler option. If you do not use the template configuration, the cov-build command
will capture only those Visual Basic compile commands that have the same absolute pathname as
a compiler that was identified by a preceding cov-configure command. Any symbolic links in the
pathnames of the configured and executed compile commands will be replaced by real directory names
before comparison. For example, on a Unix system, the inode of the compile commands must match.
Because the pathnames to the Visual Basic compile command can vary, you need to configure all of the
pathnames in use, or to define a custom template configuration to handle all of them.

Options

--
Indicate the end of cov-configure options. Following this option, you can specify additional
compiler options. For example, GNU compiler installations that use a non-standard path to the cpp0
preprocessor require the additional GNU -B option to specify its path:

120

cov-configure

> cov-configure --compiler gcc -- -B/home/coverity/gcc-cpp0-location/bin

If your build explicitly uses the GNU compiler on the command line with either the -m32 or -64
option, also supply the option to the cov-configure command. For example:

> cov-configure --compiler gcc -- -m32

--compiler <name>, -co <name>
Specify the compiler to configure. If the compiler <name> is not in the PATH, specify the full
pathname to the compiler. To specify additional compiler options, use -- followed by the options, for
example:

> cov-configure --comptype gcc --compiler C:\Mingw\bin\gcc.exe -- -D__STDC__

--comptype <type>, -p <type>
Specify the type of compiler to configure. In many cases, cov-configure guesses the compiler
type based on the --compiler argument, but if the name of your compiler is non-standard, specify
--comptype.

As a general rule, never configure a compiler as a C++ compiler. Do so only in the case of a
particular problem that you are trying to work around. If you configure a compiler as a C compiler,
cov-configure will automatically take care of the C++ case.

To see a full list of supported compiler types, run the cov-configure --list-compiler-types
option.

For information about configuring compilers, see the Coverity Analysis 2020.12 User and
Administrator Guide .

--coverity-response-file=<response_file>
Specify a "response file" that contains a list of additional command line arguments, such as a list of
input files. Each line in the file is treated as one argument, regardless of spaces, quotes, etc. The file
is read using the platform default character encoding.

--delete-compiler-config
This option accepts a compiler configuration by an absolute path or a path relative to the top-level
configuration file. Only configurations specified in the top-level configuration will be deleted, otherwise
this command has no effect.

Example: Top-level configuration file, conf/config.xml contains three configurations:

1. template-gcc-config-0

2. template-msvc-config-0

3. template-javac-config-0

The following example will remove the configuration template-gcc-config-0, leaving the remaining
two configurations untouched.

cov-configure --delete-compiler-config template-gcc-config-0 -c conf/conf.xml

121

cov_analysis_administration_guide.pdf
cov_analysis_administration_guide.pdf

cov-configure

--file-glob <pattern>
[Filesystem capture only] Used in conjunction with --comptype to specify a glob pattern to match
for source files of the specified type. This option allows you to customize the predefined file-include
patterns (including also those for friend compilers) that are used when you specify one of the
language-specific options (such as --java or --javascript).

For example, the following command creates a configuration for JavaScript that captures only files
with a .js extension:

> cov-configure --comptype javascript --file-glob '*.js'

Note that the glob pattern will only match on filenames, not on directories or path information.

The glob expression is matched against the filename using case insensitive matching.

Do not use the --file-regex with this option.

You will receive a warning if you specify a pattern that is identical to one that in a previously
generated configuration file for an interpreted language or friend compiler.

--file-regex <pattern>
[Filesystem capture only] Used in conjunction with --comptype to specify a regex pattern to
match for source files of the specified type. This option allows you to customize the predefined file-
include patterns (including also those for friend compilers) that are used when you specify one of the
language-specific options (such as --java or --javascript).

For example, the following command creates a configuration for JavaScript that captures only files
with a .js extension:

> cov-configure --comptype javascript --file-regex '^.*\.js$'

Note that the regular expression will only match on filenames, not on directories or path information.

The regular expression is matched against the filename using case insensitive matching.

Do not use the --file-glob with this option.

You will receive a warning if you specify a pattern that is identical to one that in a previously
generated configuration file for an interpreted language or friend compiler.

--force
Generate the configuration even if the compiler specified does not behave as expected for a compiler
of the specified type.

--fs-library-path <path/to/the/library>
[Java filesystem capture option] For Java filesystem capture, the --fs-library-path option is
added to the class and source paths of the Java compiler. Specifying this option is the equivalent to
passing the --classpath <path/to/lib> argument and --sourcepath <path/to/lib> as
command line options to the Java compiler.

For example, the following command adds classes, some.jar, and extrasrc to the Java
compiler's class and source paths (in this order):

122

cov-configure

cov-configure --config config.xml \
--javafs \
--fs-library-path path/to/classes \
--fs-library-path path/to/some.jar \
--fs-library-path path/to/extrasrc

[If you need to modify the class and source paths for different cov-build invocations, use the cov-
build variant for --fs-library-path instead.] [You can also avoid modifying the paths with each
build by using the cov-configure variant. This extends them only once in your configuration or
installation.]

[JavaScript, PHP, and Python filesystem capture only] Specifies third-party library locations
for JavaScript Node.js require modules, ECMAScript 6 module imports, JavaScript
HTML script src= includes, and HANA XSC libraries imported with $.import. PHP
include/include_once/require/require_once and Python imports. By default, the cov-
build command resolves these inclusions and imports relative to the source file doing the inclusion/
import (according to language specific rules). Thecov-build command also attempts to resolve
them relative to directories passed to the --fs-library-path option.

Passing directories to the cov-configure --fs-library-path option stores them in the
configuration (for use with any cov-build command that uses that configuration). If you need to
specify different libraries for different cov-build invocations, use the cov-build variant of --fs-
library-path instead.

For example, the following command adds lib3 and lib4 as additional library paths (searched in
that order):

cov-configure --config config.xml \
--javascript \
--fs-library-path lib3 \
--fs-library-path lib4

The search for the library file is permissive: If the search does not find the library at a relative path
specified by this option, a second search for the filename alone (excluding the specified path) will run.

--javascript
[Filesystem capture only] Configures filesystem capture for JavaScript source code. Also associates
files ending in .htm, .html, .js, .jsx, .ts, .tsx, and .vue with a configuration for JavaScript so
they can be saved in the intermediate directory.

This configuration automatically excludes files that match the following regular expressions:

• //node_modules//

• //jquery[^//]*[.]js$

• //[^//]*-vsdoc[.]js$

See also, --fs-library-path, --no-html, --no-jsp, --no-jsx, --no-typescript, and --no-vue.

--list-compiler-types <output>, -lsct <output>
Lists the supported compiler types described in the --comptype option.

123

cov-configure

--list-compiler-types , -lsct
Generates a list of the supported compiler types. Usage:

cov-configure --list-compiler-types

--list-configured-compilers <output>, -lscc <output>
Lists the configured compilers defined in your <install_dir_ca>/config/
coverity_config.xml file. The output option defines which output format you want the compiler
configuration information displayed. It must one of:

• csv

• json

• text

Each format displays the following categories for each configured compiler:

• Configuration name

• Configuration path ("json" format only)

• Compiler type

• Compiler

• Template configuration

• Enabled options/required arguments

Template configurations have "Config Args" while instantiated configurations have "Required Args".
"Config Args" are used to probe the compiler along with any "Required Args" when instantiating a
template configuration.

If the value for any field cannot be determined (for example, if an option is not defined in the
configuration file), "null" is printed in that field instead.

The "json" format displays the configuration name AND the full path to the configuration in the
"Config Name" and "Config Path elements. The following example shows the "json" format:

 {
 "Config Name" : "template-gcc-config-0",
 "Config Path" : "C:\\cygwin\\tmp\\template-gcc-config-0",
 "Compiler Type" : "gcc",
 "Compiler" : "gcc",
 "Is Template?" : "yes",
 "Config Args" : "-DBAR"
 },

The "text" and "csv" formats show only the directory and configuration names (not the full path).

124

cov-configure

The following example shows the "text" and "csv" formats (they are identical):

 Config Name, CompType, Compiler, Template?, Config/Required Args
 -----------, --------, --------, ---------, --------------------
 template-gcc-config-0,gcc,gcc,yes,null
 template-gcc-config-1,gcc,g++,yes,null
 template-javac-config-0,javac,javac,yes,null
 template-java-config-0,java,java,yes,null
 template-apt-config-0,apt,apt,yes,null

Note that in real usage, $prevent$ and $REAL_CC$ are actual paths.

--list-required-arguments, -lsra
Outputs a list of all the potential required arguments for a given compiler. Pass the --compiler
or --comptype arguments to specify the compiler type on which you want list-required-
arguments to operate.

--no-android
[Filesystem capture option] Disables the filesystem capture of Java Android files. The default
behavior for the Java template configuration is to enable the filesystem capture of Java Android files
that are needed by the analysis, including the manifest (AndroidManifest.xml) and the layout
resource files.

This option is valid only when either the --java option or --javafs option is also specified.

--no-capture-config-files
This option disables the filesystem capture of miscellaneous configuration files. By default, when the
Java, JavaScript, PHP, Python, Scala, or Swift templates are configured for filesystem capture, they
will also capture any smaller files that aren't media file types. The --no-capture-config-files
option overrides this default behavior. Typical files that are captured this way include XML files, .plist
files, framework configuration files, and other kinds of textual configuration files. Capturing these
files aids Coverity Analysis in understanding application and framework configuration. It also enables
various checkers (including user-defined TEXT.CUSTOM_CHECKER checkers) to run on them and to
report any potential defects. You can limit which specific configuration files are captured using the --
fs-capture-list option with the cov-build command.

Note

We do not recommend using this option for anything outside of troubleshooting scenarios, or
unless advanced tuning is required for your deployment.

--no-header-scan
Disables performing a header scan for macro candidates during probing of a compiler.

--no-html
[Filesystem capture option] Disables the filesystem capture of HTML files. The default behavior for
the JavaScript template configuration is to enable the filesystem capture and HTML compilation of
files with the *.htm and *.html filename extensions.

This option is valid only when the --javascript or --typescript option is also specified.

125

cov-configure

--no-javascript
[Filesystem capture option] Disables the filesystem capture of JavaScript files. The default behavior
for the TypeScript template configuration is to enable the filesystem capture and JavaScript
compilation of files with the *.js, *.xsjs, *.xsjlib, and *.map filename extensions.

This option is valid only when the --typescript option is also specified.

--no-jsp
[Filesystem capture option] Disables the filesystem capture of JavaServer Pages (JSPs). The default
behavior for the Java template configuration is to enable the filesystem capture and JSP compilation
of files with the .jsp and .jspx filename extensions.

This option is only valid when either the --java option or --javafs option is also specified.

--no-jsx
[Filesystem capture option] Disables the filesystem capture of JSX files. The default behavior for the
JavaScript template configuration is to enable the filesystem capture and JSX compilation of files with
the *.jsx filename extension.

This option is valid only when the --javascript or --typescript option is also specified.

--no-typescript
[Filesystem capture option] Disables the filesystem capture of TypeScript files. The default behavior
for the JavaScript template configuration is to enable the filesystem capture and TypeScript
compilation of files with the *.ts, *.tsx, and tsconfig.json filename extensions.

This option is valid only when the --javascript option is also specified.

--no-vue
[Filesystem capture option] Disables the filesystem capture of Vue.js Single File Component files.
The default behavior for the JavaScript template configuration is to enable the filesystem capture and
compilation of files with the *.vue filename extension.

This option is valid only when the --javascript or --typescript option is also specified.

--php
[Filesystem capture option] Configures filesystem capture for PHP source code. For supported
versions of the PHP language, see "Language Support" in Coverity Analysis 2020.12 User and
Administrator Guide , and for the complete PHP analysis workflow, see "Getting started with
Coverity analyses" in the same guide.

--python
[Filesystem capture option] Configures filesystem capture for Python source code. For supported
versions of the Python language, see "Language Support" in Coverity Analysis User and
Administrator Guide.

--ruby
[Filesystem capture option] Configures filesystem capture for Ruby source code. For supported
versions of the Ruby language, see "Language Support" in Coverity Analysis User and Administrator
Guide.

126

cov_analysis_administration_guide.pdf
cov_analysis_administration_guide.pdf

cov-configure

--set-instrument-var <[platform=platform_name,] var_name=var_value>
Sets or overrides an instrumentation variable in the coverity_config.xml file. On Windows only,
the optional "platform=platform_name" allows platform-specific arguments to be specified for
building a combination of 32-bit and 64-bit binaries within one project. If the platform is not specified,
the platform_name defaults to "all", and the value is shared across all platforms.

The platforms supported on Windows are "x86" for 32-bit binaries, and "x64" for 64-bit binaries.

Example 1:

The user wishes to deploy the libraries to a location outside of the default Coverity directory. The
libraries will be colocated, since they can be distinguished by name. When not designated, the
platform name defaults to "all" and will be used for both platforms:

cov-configure --config config/coverity_config.xml ^
 --set-instrument-var cov_lib_deployment_path=c:\common-lib-path ^
 --msvc

The above command will generate the following xml code in the appropriate section of the compiler
configuration file:

<instrument_variable>
 <var_name>cov_lib_deployment_path</var_name>
 <cond_platform_value>
 <platform_name>all</platform_name>
 <var_value>c:\common-lib-path</var_value>
 </cond_platform_value>
</instrument_variable>

Example 2:

The user wishes to locate the 32-bit and 64-bit versions of the Instrumentation Runtime Library in
different locations on the deployment test machine:

cov-configure --config config/coverity_config.xml ^
 --set-instrument-var platform=x86,cov_lib_deployment_path=c:\x86-lib-path ^
 --set-instrument-var platform=x64,cov_lib_deployment_path=c:\x64-lib-path ^
 --msvc

The above command will generate the following xml code in the appropriate section of the compiler
configuration file:

<instrument_variable>
 <var_name>cov_lib_deployment_path</var_name>
 <cond_platform_value>
 <platform_name>x86</platform_name>
 <var_value>c:\x86-lib-path</var_value>
 </cond_platform_value>
</instrument_variable>
<instrument_variable>
 <var_name>cov_lib_deployment_path</var_name>
 <cond_platform_value>

127

cov-configure

 <platform_name>x64</platform_name>
 <var_value>c:\x64-lib-path</var_value>
 </cond_platform_value>
</instrument_variable>

Instrument variables that are supported by default are described in the following table:

Table 8. Instrument variables

Name Default Value Comments

cov_lib_name ci-runtime-platform The name of the Source Code Instrumentation
Library, where "platform" designates the target
platform for the library. By default, either x86 or
x64.

cov_lib_path PREVENT\lib The location of the runtime's import libraries. By
default these are in the "lib" subdirectory of the
Coverity installation.

cov_lib_deployment_path PREVENT\lib The location of the runtime's DLL libraries. By
default, these are in the "lib" subdirectory of
the Coverity installation, but a different location
can be specified when the program runs on a
machine without a Coverity installation.

cov_lib_header_path PREVENT\sdk\runtime
\ta-runtime

Location of the header files needed for source
code instrumentation.

cov_lib_extra PREVENT\sdk\runtime
\ta-runtime

No default value on Windows. References the
thread libraries on Linux. Can pass additional
arguments to the compiler and linker.

--template, -tm
Provides a template configuration for building with a related set of compilers. The necessary compiler
configurations are generated with the required arguments as needed during the build process. For
example, if a g++ command that specified -m64 was encountered, a g++ configuration would be
generated specifying the -m64 argument.

If you specify this flag, the argument to --compiler is a name of the compiler without a path. Do not
use the --version option with this option.

Note

For the following compilers, you can generate a template configuration without using the --
template option:

• For Clang:

> cov-configure --clang

• For GNU GCC and G++ (gcc and g++):

128

cov-configure

> cov-configure --gcc

• For Java (java, javac, javaw, and apt):

> cov-configure --java

• For Microsoft C/C++ (cl.exe):

> cov-configure --msvc

• For Microsoft C# (csc.exe):

> cov-configure --cs

• For Microsoft Visual Basic (vbc.exe):

> cov-configure -vb

--template-dir <directory_path>, -td <directory_path>
[Compiler Integration Toolkit (CIT) option] Specifies a template directory for custom Compiler
Integration Toolkit (CIT) templates that override templates found in the default location. This option
makes it possible to use custom templates without the need to modify anything in the default
template directory. Multiple --template-dir options are allowed with directories specified in order
of decreasing priority.

--version <version>, -v <version>
For C/C++, specify the compiler version. In many cases, cov-configure will guess the compiler
version for you. For Microsoft Visual C/C++, the version is of the form "1310".

For Java, values match valid source levels to the javac compiler: '1.4', '1.5', '5', '1.6', '6', '1.7', '7'.

For Python, specify the major version of the Python language being used: '2' or '3'. By default, a
Python script is compiled assuming version 2 of the Python language, and if a syntax error occurs, an
attempt is made to recompile the script as Python 3.

--xml-option <option>
Adds user-specified XML to coverity_config.xml. This option is useful for adding items to the
file without using an editor.

Usage

--xml-option=[tag][@<language>]:value

• [tag] is the basic XML tag to be added, for example, add_arg.

• [@language] specifies that the switch is only to be added for compiler variants with the given
language. Valid values are: C, C++, Java, Scala, CS, ObjC, ObjC++, or NC (where NC
stands for "Not Compiled" and applies to JavaScript, PHP, Python, and Ruby). If this specifier is
omitted, then the tag will be added for all compiler types being configured.

• value is the value contained within the tag. This can be any value, including arbitrary XML.

129

cov-configure

Simple example:

--xml-option=append_arg:-Ihello

Simple example in C config only:

--xml-option=append_arg@C:-Ihello

Arbitrary XML: --xml-option allows any number of XML elements. See example below, quoted as
required for Windows:

--xml-option=:"<append_arg>-Ihello</append_arg><append_arg>--ppp_translator</
append_arg>"

Arbitrary XML in C++:

--xml-option=@C++:"<append_arg>-Ihello</append_arg>"

C/C++ options

--cygpath <path>
Specify the path to the directory, which contains the bin directory of the Cygwin installation, if it is not
in the PATH environment variable.

--cygwin
On Windows, indicates that Cygwin is necessary for a GCC compiler. The cov-configure
command can detect if Cygwin is necessary without this, but you can use this option to force Cygwin
if needed.

Shared options

--config <coverity_config.xml> , -c <coverity_config.xml>
Uses the specified configuration file instead of the default configuration file located at
<install_dir_sa>/config/coverity_config.xml.

--debug, -g
Turn on basic debugging output.

--ident
Displays the version of Coverity Analysis and build number.

--info
Displays certain internal information (useful for debugging), including the temporary directory, user
name and host name, and process ID.

--redirect stdout|stderr,<filename> -rd stdout|stderr,<filename>
Redirect either stdout or stderr to <filename>.

--tmpdir <tmp>, -t <tmp>
Specifies the temporary directory to use. On UNIX, the default is $TMPDIR, or /tmp if that variable
does not exist. On Windows, the default is to use the temporary directory specified by the operating
system.

130

cov-configure

--verbose <0, 1, 2, 3, 4>, -V <0, 1, 2, 3, 4>
Set the detail level of command messages. Higher is more verbose (more messages). Defaults to 1.

Exit codes

Most Coverity Analysis commands can return the following exit codes:

• 0: The command successfully completed the requested task.

• 1: The requested task is complete, but it did not return (or find) any results. Note that some Coverity
Analysis commands do not return this error code.

• 2: The command was unable to complete the requested task. This error typically includes an error
message and some remediation advice.

• 4: An unexpected error occurred. This error should not occur when the product is used in a supported
way. Very likely, the requested task was not completed. This error typically provides some diagnostic
and/or debugging output, such as a stack trace.

For exceptions, see cov-commit-defects(Coverity 2020.12 Command Reference), cov-analyze, and cov-
build.

131

Name
cov-copy-overrun-triage (Deprecated) Migrate triage data from OVERRUN_STATIC and
OVERRUN_DYNAMIC defects to OVERRUN.

Synopsis

cov-copy-overrun-triage --host <host> --port <port> --user <user> [--password <password>]
[--triageStoreFilter <glob>] [--dryrun]

Description

This command is deprecated as of version 7.0. The cov-copy-overrun-triage command copies
triage data in a Coverity Connect instance from OVERRUN_STATIC and OVERRUN_DYNAMIC defects
to their corresponding OVERRUN defects. OVERRUN defects that already have triage data will not be
modified.

All actions performed by this command are recorded in cov-copy-overrun-triage.log.

Note that Coverity Connect automatically performs the primary functionality of this command.

Options

--dryrun
Do not make any modifications on the server. CIDs of interest are listed in cov-copy-overrun-
triage.log.

--host <host>
The server hostname on which to copy triage data. The server must have a running instance of
Coverity Connect.

--password <password>
The password for the user specified by the --user parameter. If unspecified, defaults to the value of
the environment variable COVERITY_PASSPHRASE.

Warning

On multi-user systems, such as Linux, users can see the full command line of all commands
that all users execute. For example, if a user uses the ps -Awf command, identifying
information such as usernames, process identities, dates and times, and full command lines are
displayed.

--port <port>
The HTTP port on the Coverity Connect host.

--triageStoreFilter <glob>
Pattern specifying a set of triage stores. For each triage store that matches, triage data will be copied
to and from software issues (defects) that are in the same stream.

--user <user>
The user name that is shown in Coverity Connect as having triaged new OVERRUN defects.

132

cov-copy-overrun-triage (Deprecated)

Exit codes

Most Coverity Analysis commands can return the following exit codes:

• 0: The command successfully completed the requested task.

• 1: The requested task is complete, but it did not return (or find) any results. Note that some Coverity
Analysis commands do not return this error code.

• 2: The command was unable to complete the requested task. This error typically includes an error
message and some remediation advice.

• 4: An unexpected error occurred. This error should not occur when the product is used in a supported
way. Very likely, the requested task was not completed. This error typically provides some diagnostic
and/or debugging output, such as a stack trace.

For exceptions, see cov-commit-defects(Coverity 2020.12 Command Reference), cov-analyze, and cov-
build.

Examples

Copy triage data on host coverity_server1 for the Default Triage Store:

> cov-copy-overrun-triage \
 --host coverity_server1 \
 --port 8080 \
 --user admin \
 --password 1256 \
 --triageStoreFilter "Default Triage Store"

Copy triage data on host coverity_server1 for all streams:

> COVERITY_PASSPHRASE=1256 \
 cov-copy-overrun-triage \
 --host coverity_server1 \
 --port 8080 \
 --user admin

133

Name
cov-count-lines Perform a line count of source code.

Synopsis

cov-count-lines [--code-identity-file <filename>] [--file <filename>] [--list
<file-list>] [--search <path>] [--search-extensions <list of extensions>] [--
third-party-regex <regex>]

Description

Count the number of source code lines in the file(s) specified that are available for Coverity pricing.

Coverity analyzes the number of lines based on the code collected. This may include some third-party
code, which is included by default in the line count because it is part of the full code that gets compiled.
However, you can exclude third-party code and other files (specifically, test code and generated code)
from the line count and the analysis with the --third-party-regex option.

When counting lines, Coverity strips away blank lines and comments, but does not strip away single
braces or parentheses (comments and blank lines are not counted as lines). The command uses the
name and contents of the file to identify its language and how it should be parsed.

Options

--code-identity-file <filename>
Creates a filename for a code base identity, stored as a .cbi file. The content of the .cbi file
specifies the source files which are to be included and excluded from the analysis. When this option
is specified, the cov-count-lines command line console output will also end with a hash of this
file.

For example:

 $ cov-count-lines --search . --third-party-regex files_to_exclude \
 --third-party-regex dir --code-identity-file my-example.cbi
 File: /path/to/source/example1.java; Analyzable lines: 8
 File: /path/to/source/example2.cc; Analyzable lines: 12
 File: /path/to/source/example3.cc; Analyzable lines: 14
 File: /path/to/source/example4.h; Analyzable lines: 4
 Total Analyzable Lines for Coverity Pricing: 38
 Code Base Identity Hash:
 910b8f9b8699597dc0334ac3dc5af6fc0b61c7a95aa38edb553d63062088c2b9

If you do not provide the full path to the --search option, a stack trace is produced as shown below

cov-count-lines --search .
filename-class.cpp:1866: assertion failed: getWithFilesystemStripped expects an
 absolute path name
call stack backtrace:
cov-count-lines linux64 2020.03
0x448760
0x4488c1

134

cov-count-lines

0x44b84e
0x44b94c
0x465b88
0x4222ed
0x425614
0x455295
0x414745
libc.so.6 linux64 2020.03
0x21b97

Once the identity hash has been generated, you can use it to create a license file. The .cbi file that
has been created and saved will then be used to run cov-analyze.

Note

Coverity recommends that you store the code identity file in your source control management
(SCM) system. This prevents anyone else from changing the content of the code base after a
license has been issued. The code identity file should only be updated when a Coverity license
needs to be re-issued.

See also, the cov-analyze version of --code-identity-file.

--file <filename>
Counts the lines in <filename>. You can use absolute or relative file/path names.

--list <file-list>
Specifies a text file (<file-list>), which contains one filename per line. The filenames can be absolute
or relative, but relative filenames must be relative to the current working directory.

--search <path>
Searches for all source files in the specified path and its subdirectories, recursively. This option
may be specified more than once. The absolute filenames found by --search are added to those
specified with --file and --list.

See also, --search-extensions.

--search-extensions <list of extensions>
Overrides the classification of what source files should or should not be counted. By default, all files
that are recognized as an analyzable source will be counted. This option takes a comma-separated
list of case-sensitive filename extensions. When specified, only files with these extensions will be
counted.

For example:

c,c++,cc,cp,cpp,cs,cxx,h,h+
+,hh,hpp,htm,html,hxx,java,js,jsp,m,mm,php,php3,phtml,py,pyt,rb,rpy

--third-party-regex <regex>
Specifies a case-insensitive regular expression (regex) of absolute filenames to exclude from --
search and to add (as exclusions) to the code identity file (see --code-identity-file). This option may
be specified more than once. The regex uses Perl syntax and matches if it matches a substring.

135

cov-count-lines

Note that these regexes can be used to exclude any files that should not be counted or reported for
defects. These may include third-party files, test code, and generated code.

Shared options

--debug, -g
Turn on basic debugging output.

--ident
Displays the version of Coverity Analysis and build number.

--info
Displays certain internal information (useful for debugging), including the temporary directory, user
name and host name, and process ID.

--tmpdir <tmp>, -t <tmp>
Specifies the temporary directory to use. On UNIX, the default is $TMPDIR, or /tmp if that variable
does not exist. On Windows, the default is to use the temporary directory specified by the operating
system.

--verbose <0, 1, 2, 3, 4>, -V <0, 1, 2, 3, 4>
Set the detail level of command messages. Higher is more verbose (more messages). Defaults to 1.

Exit codes

Most Coverity Analysis commands can return the following exit codes:

• 0: The command successfully completed the requested task.

• 1: The requested task is complete, but it did not return (or find) any results. Note that some Coverity
Analysis commands do not return this error code.

• 2: The command was unable to complete the requested task. This error typically includes an error
message and some remediation advice.

• 4: An unexpected error occurred. This error should not occur when the product is used in a supported
way. Very likely, the requested task was not completed. This error typically provides some diagnostic
and/or debugging output, such as a stack trace.

For exceptions, see cov-commit-defects(Coverity 2020.12 Command Reference), cov-analyze, and cov-
build.

Examples

Flag files with a line count greater than 1000:

> cov-count-lines --list l | awk '{if ($5 > 1000) print $0;}'

Report the line count for the Apache regcomp.c file:

> cov-count-lines --file /home/user/apache_1.3.33/src/regex/regcomp.c

136

Name
cov-emit Parse and emit a C/C++ source file.

Synopsis

cov-emit [OPTIONS] <file.c>

Description

The cov-emit command parses a source file and outputs it into a directory (emit repository) that can
later be analyzed with cov-analyze. The cov-emit command is typically called by cov-translate,
which is in turn typically called by cov-build (cov-emit is a low-level command and is not normally
called directly). The cov-emit command defines the __COVERITY__ preprocessor symbol.

Options

--add_builtin_stdarg_macro
Enables macros to be defined when a builtin include of <stdarg.h> is processed.

--add_type_modifier=[<modifier>]
Enables cov-emit to recognize and parse previously unknown type modifiers such as
__data16,__code32,__huge etc.

Consider the following code:

void foo(int *x) {
 /* Do something */
}

void foo(int __data16 * x) {
 /* Do something else */
}

Utilizing the --add_type_modifier=__data16 will tell cov-emit that __data16 is a type
modifier, and it will treat the two functions as distinct. Implicit conversions between types is done
with reliance on the native compiler to enforce the conversion rules - that is, it is assumed that all
conversions are valid.

Note

You can specify one type modifier to be the default. The default setting is used when
instantiating templates to mimic the native compiler's usage of default type modifiers as shown
in the following example:

--add_type_modifier=__data8,__data16:default

--allow-incompat-return-types
Allows a prototype of a function to specify different return types than those in the actual function
definition.

137

cov-emit

--allow_incompat_throw
Indicates to cov-emit that it should not report an error if there are multiple prototypes of the same
function with incompatible C++ exception specifications.

--angle_include_search_first={default|user|system}
Controls the order that directories are searched when trying to find an included file. This option
applies to files added by #include <...>.

• default - Indicates that there is no change from previous behavior.

• user - Indicates that user include directories (added with -I) will be searched first.

• system - system include directories (added with --sys_include) will be searched first.

The --sys_include_first option, which is now depreciated, is equivalent to --
angle_include_search_first=system.

--arg_file <file>
Read arguments from the response file <file>. This is typically done by cov-translate to avoid
command-line length limitations.

The response file format is as follows:

<compiler_args>
 <cov_emit_cmd_args>
 <arg>[cov-emit arg]</arg>
 <arg>[another cov-emit arg]</arg>
 </cov_emit_cmd_args>
</compiler_args>

Note

Note that spaces within the <arg> tags are interpreted literally. This means that <arg>-
DFOO=bar</arg> will work, while <arg> -DFOO=bar</arg> will cause an error, as the
argument is interpreted as a source file name.

--c
Compile standard C code (C89).

--c++11
Enable c++11 language features.

--c++14
Enable c++14 language features.

--c++17
Enable c++17 language features.

--c++
Compile standard C++ code. This is the default.

--c99
Enable C 99 extensions to the C programming language.

138

cov-emit

--cache_include_search
If you use large numbers of #include search directories with the -I option, specify this option to
speed up compilation.

--calling_convention_group
Specifies the comma-delimited calling conventions that should be considered equivalent. For
example, --calling_convention_group default,stdcall,vectorcall causes stdcall
and vectorcall calling conventions to be treated the same as the default, or unspecified, calling
convention in cov-emit. The list of valid calling conventions are: default, cdecl, fastcall,
stdcall, thiscall, vectorcall, clrcall.

--char_bit_size <integer>
Used to specify the size (in bits) of the char type. If this option is not specified, the default is 8-bit
chars.

--cygwin
This switch tells cov-emit to attempt to convert Unix-based (Cygwin) paths into their corresponding
Windows (real) paths.

-D <identifier>[=<value>]
Add a macro definition of <identifier> with optional <value> .

--dir
Specifies the emit repository (an intermediate directory) into which the cov-emit command outputs
its results.

-E
Only preprocess the source file.

--emit_complementary_info
Enables emitting of complementary information for compliance checkers such as MISRA checkers.
Selecting this option results in a slower build capture but a faster analysis, and it should be applied
when using compliance checkers. The default value is --no_emit_complementary_info

Note

Enabling the --emit_complementary_info option prior to running an analysis is likely to
turn up additional defects.

.

Any analysis involving --coding-standard-config requires the information generated during
cov-build when including the --emit-complementary-info option. The cov-build command
will take longer, so this option should only be used when cov-analyze is used with --coding-
standard-config.

If cov-build did not include the --emit-complementary-info option and cov-analyze does
include --coding-standard-config, cov-analyze automatically re-runs every cov-emit
command (for the Translation Units to be analyzed). This excludes the native build and the cov-
translate overhead, but it will add significant overhead to cov-analyze. Note that analysis will
fail if the emit database does not include source; that is re-emit is not possible.

139

cov-emit

--enable_80bit_float
The following switches provide the ability to turn on/off 80-bit float intrinsic types. This overrides
implicit enablement or disablement implied by other cov-emit switches.

• --enable_80bit_float

• --no_enable_80bit_float

--enable_128bit_float
The following switches provide the ability to turn on/off 128-bit float intrinsic types. This overrides
implicit enablement or disablement implied by other cov-emit switches.

• --enable_128bit_float

• --no_enable_128bit_float

--enable_128bit_int
The following switches provide the ability to turn on/off 128-bit integer types, independent of
gnu_version:

• --enable_128bit_int

• --no_enable_128bit_int

• --enable_128bit_int_extensions

• --no_enable_128bit_int_extensions

--enable_128bit_int implies --enable_128bit_int_extensions, however the same does
not apply to the no_* variants.

--enable_128bit_int enables type __int128, while --enable_128bit_int_extensions
enables types __int128_t and __uint128_t.

--enable_user_sections
Enables the user sections compiler extension allowing variable placement at specific addresses in
memory. Compilers that support this extension include the IAR ARM compiler which uses the "@"
operator for this purpose, and the CodeWarrior compiler which uses ":". Please consult your compiler
manual for more information.

This option supersedes cov-emit's deprecated --allow_declare_at_address option.

--encoding <enc>
Specifies the encoding of source files. Use this option when the source code contains non-ASCII
characters so that Coverity Connect can display the code correctly. The default value is US-ASCII.
Valid values are the ICU-supported encoding names:

US-ASCII

UTF-8

UTF-16

140

cov-emit

UTF-16BE
UTF-16 Big-Endian

UTF-16LE
UTF-16 Little-Endian

UTF-32

UTF-32BE
UTF-32 Big-Endian

UTF-32LE
UTF-32 Little-Endian

ISO-8859-1
Western European (Latin-1)

ISO-8859-2
Central European

ISO-8859-3
Maltese, Esperanto

ISO-8859-4
North European

ISO-8859-5
Cyrillic

ISO-8859-6
Arabic

ISO-8859-7
Greek

ISO-8859-8
Hebrew

ISO-8859-9
Turkish

ISO-8859-10
Nordic

ISO-8859-13
Baltic Rim

ISO-8859-15
Latin-9

Shift_JIS
Japanese

141

cov-emit

EUC-JP
Japanese

Note

EUC-JP is now a valid output object encoding. See --output_object_encoding.

ISO-2022-JP
Japanese

GB2312
Chinese (EUC-CN)

ISO-2022-CN
Simplified Chinese

Big5
Traditional Chinese

EUC-TW
Taiwanese

EUC-KR
Korean

ISO-2022-KR
Korean

KOI8-R
Russian

windows-1251
Windows Cyrillic

windows-1252
Windows Latin-1

windows-1256
Windows Arabic

Note

If your code is in SHIFT-JIS or EUC-JP, you must specify the --output_object_encoding
SHIFT-JIS or --output_object_encoding EUC-JP option (respectively) in order to avoid
receiving STRING_OVERFLOW false positives.

For more information, see --output_object_encoding.

--encoding_selector <encoding-or-regularexpression>
Treats all files with file names that match the given, case-sensitive regular expression as though
they have the specified encoding. For a list of valid encodings, see the --encoding option to

142

cov-emit

this command. The regular expression syntax is a Perl regular expression, as described in http://
perldoc.perl.org/perlre.html .

Encoding selectors also apply to files that are included in source files, not just to the files specified on
the cov-emit command line. This behavior allows for a finer granularity in selecting encodings.

Note that encoding selectors have a higher priority than the --encoding option. If the cov-
emit command line contains both --encoding <encoding> and --encoding_selector
<encoding>/<regular expression>, and the regular expression is a match for the file that is
currently getting opened, the encoding specified through the encoding selector will take precedence.

--encoding_selector_icase <encoding>/<regular expression>
Identical to --encoding_selector, except that the regular expression is case insensitive.

--error_limit <number>
For a file that fails to compile, specifies the number of errors that are output to build-log.txt
before moving to the next file. Default is 5.

--float_bit_patterns
Enables parsing the ARM Development Studio C/C++ language extension that allows floating-point
bit pattern literals, for example:

float f = 0f_00000000;
double d = 0d_0000000000000000;

--force
Disables incremental compilation by forcing cov-emit to compile and generate output for a file,
even if a copy of that file has already been compiled and is present in the Intermediate Directory.

--gcc
Allow parsing of C code with gcc (GNU) extensions.

--g++
Allow parsing of C++ code with g++ (GNU) extensions.

--gnu_version=<version>
Specifies the version of the GNU compiler to emulate. Only required when the code you are
compiling exploits version-dependent features or bugs in the gcc or g++ compilers. If the version of
gcc you are using is 3.4.2, for example, then specify the version as 30402.

--ignore_std
Specifies that the namespace "std" should be ignored entirely. g++ versions prior to 3.0 ignored the
"std" namespace.

--include_recursion_limit <value>
Specifies the maximum number of times a source file is allowed to include itself (directly or indirectly)
before the recursion is assumed to be infinite and compilation is terminated. The default limit is 10
levels of recursion.

--incompat_proto
Allows a prototype of a function to specify a different set of arguments than those in the actual
function definition.

143

http://perldoc.perl.org/perlre.html
http://perldoc.perl.org/perlre.html

cov-emit

--inline_keyword
Explicitly enables support for the ISO C99 inline keyword, overriding any language dialect
or compiler emulation mode setting. By default, inline is treated as a keyword if the selected
language dialect or compiler emulation mode requires it.

-I <dir>
Add a directory to search for #include files. Directories added with this switch are considered 'user'
include directories.

The default behaviour is to search for headers in the order that both the -I and --sys_include
were specified on the command line, regardless of #include type. This can be adjusted using --
angle_include_search_first and --quote_include_search_first.

--lazy_hex_pp_number
This option affects grammar in which a statement such as '0x1e-1' can be parsed as either a single
pp-number (C++11 2.10 [lex.ppnumber]) or as a subtraction expression.

When using the Compiler Integration Toolkit (CIT), you will only need to use this option if the compiler
correctly parses the example above, but cov-emit does not.

In order to determine if you need to use this option, you will receive an error message from cov-
emit that looks like the following:

"test.cpp", line 3: error: extra text after expected end of number
int foo = (0xD8E-0xD64);
 ^

--list_macros
Print all macros defined in the translation unit to standard out.

Note that this option prints all macros in the translation unit, while --print_predefined_macros
prints only predefined macros.

--lowercase_header_filenames
In the cov-emit preprocessor, when the source refers to a header filename, turn it into all-lowercase
before asking the operating system for the file. This can be useful when transitioning to a case-
sensitive filesystem. Also translates backslash to slash, and removes a leading drive letter and
(back)slash, as these are needed in the same situations.

--macro_stack_pragmas
Enables parsing of GNU macro stack manipulation pragmas (#pragma push_macro and #pragma
pop_macro). This option is enabled by default in most cases, but may be automatically disabled in
certain compatibility modes.

To manually disable this option, use --no_macro_stack_pragmas.

--microsoft
Allow parsing of Microsoft extensions.

--ms_asm
When specified, enable support for parsing Microsoft-style inline assembly. By default, inline
assembly is assumed to follow the format specified by the C standard, e.g.:

144

cov-emit

asm("int $3");

When enabled, inline assembly is parsed following Microsoft's style, e.g.:

asm int 3;
asm { int 3; };

When enabled, Microsoft-style inline assembly may be specified using the asm, _asm or __asm
keywords interchangeably.

--multiline_string
Allow the Coverity compiler to accept multi-line strings. Multi-line strings are supported by compilers
such as gcc 3.4.

--nested_comments
Allow the Coverity compiler to accept nested block comments. Nested comments are supported by
compilers such as Renesas RX 2.03.

--new_array_args
Enables parsing for options to array element constructors invoked by the new[] variant of the C++
memory allocation operator.

--no_atomic_commit
This option is deprecated as of the 5.0 release.

--no_caa_info
Do not collect the information required for Architecture Analysis in the intermediate directory.

--no_emit_complementary_info
Disables emitting of complementary information for compliance checkers such as MISRA checkers.

--no_enable_user_sections
Disables the user sections compiler extension. To enable the use of user sections, see --
enable_user_sections.

--no_exceptions
Disable parsing for exception handling in C++.

--no-headers
This option is deprecated as of the 5.0 release.

--no_inline_keyword
Explicitly disables support for the ISO C99 inline keyword, overriding any language dialect
or compiler emulation mode setting. By default, inline is treated as a keyword if the selected
language dialect or compiler emulation mode requires it.

--no_macro_stack_pragmas
Disables parsing of GNU macro stack manipulation pragmas (#pragma push_macro and #pragma
pop_macro). This option is enabled by default in most cases, but may be automatically disabled in
certain compatibility modes.

To enable parsing of these pragmas, use --macro_stack_pragmas.

145

cov-emit

--no_ms_asm
Disable parsing of Microsoft-style inline assembly. This disables the keywords asm, _asm and
__asm.

--no_predefined_feature_test_macros
Do not predefine the testing macros described in --predefined_feature_test_macros.

This is the default behavior of cov-emit.

--no_predefined_stdc
Do not predefine __STDC__.

--no_predefines
Do not predefine any macros internally. All macro definitions must be in the source code or explicitly
on the command line.

This is the default behavior for cov-emit. Use the --predefines option to predefine specific
macros.

Note that --no_predefines has no effect on the following macros, which may still be predefined
even if this option is specified:

• Certain C/C++ standard macros (e.g., __FILE__, __LINE__)

• Macros that begin with "__COVERITY"

• Macros that are controlled by another switch (e.g., __STDC__ and --no_predefined_stdc)

--old_g++
For GNU versions prior to 3.x, specifies a more permissive version of g++ compatibility.

--output_object_encoding
Specifies the output character encoding. This option accepts an encoding as a required argument.
The accepted encodings are Shift-JIS and EUC-JP. For example:

--output_object_encoding EUC-JP

Using --shiftjis_encode_obj is effectively the same as specifying --
output_object_encoding Shift-JIS.

If --output_object_encoding is not specified, then the object encoding is UTF-8.

--pending_instantiations <integer>
Specifies the maximum number of instantiations of a given template that can be in progress at any
given time. Use 0 (zero) to specify an unlimited number. You might need to increase this limit when
using recursive templates.

--ppp_translator <translator>
Add --ppp_translator <translator> to the cov-emit command line to translate files before they
are preprocessed. Possible <translator> values are:

• cmd:<command>– Pipes file through <command> .

146

cov-emit

• replace/<from>/<to>– Replaces regular expression <from> with <to> . The regular
expression syntax is a Perl regular expression, as described in http://perldoc.perl.org/perlre.html

. The '/' character can be replaced with any other character; and this separator character can be
quoted with a backslash '\'.

--pp_sizeof
Allows the use of sizeof() in preprocessing directives. When compiling, the argument to sizeof
can be anything permitted in an expression. However, when preprocessing, it is only possible to
use built-in types like int. This means that preprocessing output might be different than what the
compiler encounters during compilation. This feature is nonstandard and only supported by a few
compilers.

--pre_preinclude <file.h>
Specify header file that should be processed prior all other source and header files.

--predefined_feature_test_macros
Compatible with C++ only. The WG21 working paper N3694 provides guidelines for predefined
feature testing macros. When this option is specified, cov-emit will predefine the appropriate
macros as suggested by these guidelines.

--predefines
When specified, cov-emit will predefine additional macros based on the current emulation mode.

For example:

> cov-emit --microsoft --predefines test.c

The above command will predefine _MSC_VER, while the following command predefines __GNUC__.

> cov-emit --gcc --predefines test.c

Note that --predefines has no effect on the following macros:

• Certain C/C++ standard macros (e.g., __FILE__, __LINE__)

• Macros that begin with "__COVERITY"

• Macros that are controlled by another switch (e.g., __STDC__ and --no_predefined_stdc)

--preinclude_macros <file.h>
Specify macros-only header file that should be processed immediately after the files specified with --
pre_preinclude option (see above) and prior to all other source and header files.

--preinclude <file.h>
Specify header file that should be processed immediately after the files specified with --
pre_preinclude and --preinclude_macros options (see above) and prior to all other source
and header files.

--print_predefined_macros
Print all predefined macros (and their values) to stdout.

147

http://perldoc.perl.org/perlre.html
http://perldoc.perl.org/perlre.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3694.htm

cov-emit

Note that this option prints only predefined macros, while --list_macros prints all macros in the
translation unit.

--ptrdiff_t_type <builtin-type>
Specify the type of ptrdiff_t. This is stored in the __COVERITY_PTR_DIFF_TYPE__ macro (as the
type, not the character code). If unspecified, __COVERITY_PTR_DIFF_TYPE__ is set to the same
type as ptrdiff_t (for example, "signed int"). The character code for <builtin-type> is typically one
of the signed types shown in --size_t_type. For example, --ptrdiff_t_type i sets the type of
ptrdiff_t to "signed int".

--quote_include_search_first={default|user|system}
Controls the order that directories are searched when trying to find an included file. This option
applies to files added by #include "...".

• default - Indicates that there is no change from previous behavior.

• user - Indicates that user include directories (added with -I) will be searched first.

• system - system include directories (added with --sys_include) will be searched first.

--short_enums
Enables optimization of enumeration sizes. The size of each enumeration will be set based on the
largest values present when this option is specified.

--size_t_type <builtin-type>
Specify type of size_t. This is stored in the __COVERITY_SIZE_TYPE__ macro (as the type, not
the character code). If unspecified, __COVERITY_SIZE_TYPE__ is set to the same type as size_t
(generally, the default is "unsigned int"). Use an unsigned integral type from the single-character
codes for <builtin-type> as follows:

 a # signed char
 h # unsigned char
 s # short
 t # unsigned short
 i # int
 j # unsigned int
 l # long
 m # unsigned long
 x # long long, __int64
 y # unsigned long long, __int64

For example, --size_t_type j sets the type of size_t to "unsigned int".

--source_chroot <chroot-path>
This option ensures that cov-emit only searches for source files under the listed chroot path.
Source files outside of the chroot path will not be found. Note that for the –-source_chroot option
to work properly, the current working directory must be a child of the chroot path.

--sys_include <dir>
Add a directory to search for #include files. Directories added with this switch are considered
'system' include directories.

148

cov-emit

The default behaviour is to search for headers in the order that both -I and --sys_include
were specified on the command line, regardless of #include type. This can be adjusted using --
angle_include_search_first and --quote_include_search_first.

--system_encoding <enc>
Specifies the encoding to use when interpreting command line arguments and file names. If not
specified, a default system encoding is determined based on host OS configuration.

See --encoding for a list of accepted encoding names.

--type_alignments <builtin-type>
Specify type of type_alignments. The <builtin-type> string consists of the ABI chars shown in --
size_t_type, plus the following:

 f # float
 d # double
 e # long double, __float80
 P # Coverity extension: pointer

and lengths. For example, --type_alignments x8li4s2P4 sets type_alignments to long long
8, long & int 4, short 2, ptr 4.

--type_sizes <builtin-type>
Specify type of type_sizes. The <builtin-type> string consists of the ABI chars shown in --size_t_type,
plus the following:

 w # wchar_t
 f # float
 d # double
 e # long double, __float80
 n # __init128
 o # unsigned __init128
 g # __float128
 P # Coverity extension: pointer

and lengths. For example, --type_sizes w4x8li4s2P4, sets type_sizes to "wide char 4 bytes,
long long 8, long & int 4, short 2, ptr 4".

If unspecified, cov-emit uses the machine's native type sizes.

The C standard mandates that sizeof(char) == 1 and sizeof(<any other type>) ==
<multiple of sizeof(char)>. Therefore, all type sizes should be specified as multiples
of a char size (and char should always be size 1). To set the bit size of a char, see --
char_bit_size.

For example, assume you have a compiler that has the following:

• 16-bit chars

• 16-bit shorts

• 32-bit ints

149

cov-emit

• 32-bit longs

The correct arguments for this compiler are:

cov-emit --char_bit_size 16 --type_sizes st1ijlm2

Note

Note that if this option specifies contradictory sizes for signed and unsigned versions of the
same type, the last value specified will be used. For example, --type_sizes i4j6 will set
the length of "int" and "unsigned int" to 6, and the 4 will be ignored.

--wchar_t_keyword
Indicates that cov-emit should treat the type wchar_t as a keyword built into the language.

--wchar_t_name <identifier>
Uses the specified identifier for the wchar_t intrinsic type. This option does not imply --
wchar_t_keyword.

--wchar_t_type <builtin-type>
Specifies the type --wchar_t, where <builtin-type> is one of the unsigned integral types
shown in --size_t_type. For example, --wchar_t_type j sets the type of wchar_t to "unsigned
int".

-U <identifier>
Undefine the macro <identifier>.

Exit codes

Most Coverity Analysis commands can return the following exit codes:

• 0: The command successfully completed the requested task.

• 1: The requested task is complete, but it did not return (or find) any results. Note that some Coverity
Analysis commands do not return this error code.

• 2: The command was unable to complete the requested task. This error typically includes an error
message and some remediation advice.

• 4: An unexpected error occurred. This error should not occur when the product is used in a supported
way. Very likely, the requested task was not completed. This error typically provides some diagnostic
and/or debugging output, such as a stack trace.

For exceptions, see cov-commit-defects(Coverity 2020.12 Command Reference), cov-analyze, and cov-
build.

See Also

cov-build

cov-translate

150

Name
cov-emit-cs Parse C# source code and emit output to the intermediate directory.

Synopsis

cov-emit-cs --dir <intermediate_directory> [OPTIONS] [sourcefiles]

Description

This command parses source code, decompiles referenced assemblies, and saves CSC compiler output
to the emit repository in the intermediate directory.

Options

--addmodule <file>
Identifies a module that is referenced by the compilation but not added to the emit repository.
The location of the module can be absolute or relative. For rules on specifying the location, see --
reference.

It is an error if the referenced module is not found. To change this behavior, see --allow-
missing-refs.

You must specify this option separately for each module.

--allow-missing-refs
Issues a warning if any referenced assemblies are missing. If you do not set this option, missing
assemblies result in an error that stops the process. This error applies to explicitly referenced
assemblies (see --reference and --addmodule) that are absolute or not found in the Common
Language Runtime (CLR) system directory. The error also applies to mscorlib.dll (see --
nostdlib). Note that missing csc.rsp assemblies (see --noconfig) always result in a warning.

--codepage <codepage>
Identifies the numeric codepage corresponding to codepages that are supported by CSC with the /
codepage option. Source file encodings are determined in the following manner:

If a byte order mark (BOM) is present in the source file, the command uses the BOM-related
encoding. If a BOM is not present, encoding is determined in the following manner:

• The character encoding of the specified codepage is used. If a codepage is not specified, the
command attempts to detect and use UTF-8. If neither of the preceding alternatives is possible, the
command uses the system default codepage.

--compiler-dir <directory>
Identifies the CLR system directory. It is an error to specify a directory that does not exist. The CLR
system directory is used as a search path for referenced assemblies (see --reference) and to
locate the csc.rsp file (see --noconfig). If --compiler-dir is not specified, the command
defaults to $SYSTEM_ROOT/Microsoft.NET/Framework/<version>, where <version> is the
latest supported framework version (for details, see the Coverity 2020.12 Installation and Deployment
Guide). It is an error if no suitable CLR system directory is found.

151

cov_deploy_install_guide.pdf
cov_deploy_install_guide.pdf

cov-emit-cs

--define <define>
Corresponds to the CSC preprocessor directive and /define option. Note that it is necessary to
specify a separate --define option for each directive.

--dir <intermediate_dir>
Identifies the intermediate directory into which this command emits source files and referenced
assemblies. An error occurs if the specified intermediate directory exists but is not valid, or if the
directory does not exist and cannot be created.

This option is required.

--disable-ref-assembly-replacement
By default, the cov-emit-cs command attempts to replace each reference assembly it encounters
with a version of the assembly that includes an implementation. Use this switch to disable this default
behaviour. The recommended use of this switch is as an xml-option option to a cov-configure
command.

Example of adding this switch to a C# configuration:

cov-configure --cs -c config/config.xml --xml-option=:"<append_arg>--disable-ref-
assembly-replacement</append_arg>"

--enable-cs-parse-error-recovery
Makes cov-emit-cs fall back to error recovery mode when compilation errors are encountered
during the processing of source files.

This option is disabled by default.

--force
By default, if all the specified source files exist in the emit repository with the same timestamp as the
file on disk, the command skips the files and exits with a successful return code. Specifying the --
force option makes the command process the source files, even if they exist unchanged in the emit
repository.

--langversion <C# language version>
Specifies the C# Language version to use. Corresponds to the CSC option /langversion.

--lib <directory>, -L <directory>
Identifies a library directory to use when searching for referenced assemblies (see --reference). A
warning (not an error) occurs if you specify a directory that does not exist. This option corresponds to
the CSC /lib option.

You must specify this option separately for each library directory.

--link <[alias=]filename> | -l <[alias=]filename>
Supercedes --use-link-semantics. Effectively the same as --reference, but changes how
the compiler treats certain COM interop types. Corresponds to the CSC option /link.

--noconfig
Ignores the csc.rsp file under the CLR system directory (see --compiler-dir). If this option
is not set, the references /r or /reference within csc.rsp are added to the list of referenced

152

cov-emit-cs

assemblies. Any csc.rsp references that are not absolute filenames are subject to the search
directory rules (for details, see --reference). Corresponds to the CSC option /noconfig.

--nostdlib
Disables the default behavior of searching for mscorlib.dll in the CLR system directory and
adding the file to the list of referenced assemblies. If that file is not found, the next search in this
directory is for a csc.exe.config file that specifies a requiredRuntime version. If a version is
found, the search continues to the corresponding directory (the parent directory of the CLR system
directory).

This option corresponds to the CSC /nostdlib option.

--no-friends
Prevents the compilation from accessing internal types or members. This option works by disabling
the processing of compiler output retrieved through the --out option. This behavior corresponds to
CSC behavior in the case where /out is not specified and a default name is used.

--no-banner
Suppresses the cov-emit-cs application name and version banner.

--out <file>
Specifies the compiler output file, which is then used by the command to access internal types or
members in referenced assemblies.

Subsequent calls to cov-emit-cs will not re-emit the output file if a referenced assembly is found.

It is necessary to specify --out or --no-out (or the alternative, -n), else an error will occur.

--no-out, -n
Indicates that there is no compiler output.

It is necessary to specify --out or --no-out (or the alternative, -n), else an error will occur.

--ref-assembly-replacement-search-path <path>
Adds a search path to assist cov-emit-cs in finding implementation versions of reference
assemblies. You can specify this option multiple times. This option is useful for pointing cov-
emit-cs at the correct .NET Core framework directory in cases where cov-emit-cs fails to find
the correct version. The recommended use of this switch is as an xml-option option to a cov-
configure command.

Example of adding this switch to a C# configuration:

cov-configure --cs -c config/config.xml --xml-option=:"<append_arg>--ref-assembly-
replacement-search-path=D:\utilities\dotnet-core\dotnet-sdk-2.1.403-win-x64\shared
\Microsoft.NETCore.App\2.1.5\</append_arg>"

--reference <[alias=]filename> | -r <[alias=]filename>
Identifies an assembly to provide for compilation and addition to the emit repository, unless this
setting is overridden by other options. The location of the assembly can be absolute or relative. If
relative, the command searches the following paths in the following order:

153

cov-emit-cs

1. Current working directory.

2. CLR system directory.

3. Each directory specified by the --lib option, in the order specified.

By default, it is an error if a referenced file cannot be found on disk. See --allow-missing-refs
for complete rules.

Note that [alias=] identifies an extern alias directive, just as it does for CSC.

Example with an alias:

--reference v1=my.dll

--target
Specifies the type of assembly that was created. Corresponds to the CSC option /target.

--unsafe
Allows analysis C# constructs that are declared with the unsafe modifier. This option corresponds to
the /unsafe option to CSC.

--use-link-semantics
Corresponds to the /link option to CSC, which changes how the compiler treats certain COM
interop types.

Any unrecognized options result in an error, which causes an immediate exit with an appropriate error
message.

Exit codes

Most Coverity Analysis commands can return the following exit codes:

• 0: The command successfully completed the requested task.

• 1: The requested task is complete, but it did not return (or find) any results. Note that some Coverity
Analysis commands do not return this error code.

• 2: The command was unable to complete the requested task. This error typically includes an error
message and some remediation advice.

• 4: An unexpected error occurred. This error should not occur when the product is used in a supported
way. Very likely, the requested task was not completed. This error typically provides some diagnostic
and/or debugging output, such as a stack trace.

For exceptions, see cov-commit-defects(Coverity 2020.12 Command Reference), cov-analyze, and cov-
build.

154

Name
cov-emit-go Parses one or more source files and packages and outputs it into an intermediate directory.

Synopsis

cov-emit-go --dir <intermediate_directory> [OPTIONS] [sourcefiles] [packages]

Description

The cov-emit-go command parses source files and packages and saves go build output to the emit
repository in the intermediate directory.

For code bases that contain CGo dependencies (in other words, Go code that imports the pseudo-
package "C"): Your environment must be configured to successfully compile such code using the native
Go compiler before you execute cov-emit-go or cov-build on your code base. This requirement is
necessitated because the cov-emit-go command, the Go compiler, and the CGo tool, must access
additional tools to process such code (they execute a C compiler and generate bindings for the compiled
C functions). These same tools execute underneath the cov-build command.

C code that is compiled as part of processing CGo dependencies will not be captured for analysis by
either cov-build or cov-emit-go.

Options

--dir <intermediate_directory>
Path name to an intermediate directory that is used to store the results of the build and analysis.

Error codes

0
Success.

2
Most likely a user-generated error, such as code that will not compile.

4
Irrecoverable error. Please contact software-integrity-support@synopsys.com if you
receive this error code.

155

Name
cov-emit-java Parses one or more source files and outputs it into an intermediate directory.

Synopsis

cov-emit-java [OPTIONS] [SOURCE FILES]

Description

The cov-emit-java command parses Java source code and bytecode, and saves javac outputs. It
stores these outputs to an emit repository for subsequent static analysis and outputs it into a directory
(emit repository) that can later be analyzed with cov-analyze. The cov-emit-java command is
typically called by cov-build.

You need to invoke this command when you are running Java Web application security analysis and in
the rare case that you cannot compile your Java code with cov-build. For details about the latter case,
see the discussion of the alternative build process in the Coverity Analysis.

When specifying multiple source files, you need to separate each source file by a space, for example:

src/pkg/SomeClass.java src/pkg/OtherClass.java

Note that you can specify the options to cov-emit-java in any order, but the list of source files must
appear last.

Error codes

0
Success. Also applies to errors from which it is possible to recover.

The cov-emit-java command is less strict than javac in that it recovers from some invalid or
inconsistent inputs by discarding problematic code, printing a message, and continuing to function.

2
Most likely, a user-generated error, such as code that will not compile.

4
Irrecoverable error. Please contact software-integrity-support@synopsys.com if you
receive this error code.

Options

--add-modules <modules>
[Java9+ only] Allows you to specify the name of one or more modules in a comma-delimited list.
These modules are added to the set of observable root modules. The default root modules may vary
by JDK, and are defined by the module declaration in the java.se JDK module.

--add-exports <module-name/package-name=target-module>
[Java 9+ only] Allows you to specify that the <package-name> in <module-name> is exported
explicitly to the <target-module>. The effect of this option is the same as declaring an exports
clause in the module declaration for the <module-name>.

156

cov-emit-java

This option can be specified more than once if multiple add-exports options are required.

--add-reads <module-name=target-modules>
[Java 9+ only] Allows you to to specify additional read edges between <module-name> and one or
more target module names in a comma-delimited list. Note that in the context of the Java module
system, reads is synonymous with requires, so the effect of this option is the same as declaring
requires clauses in the module declaration.

This option can be specified more than once if multiple add-reads options are required.

--android-apk <Android_APK_file>
[Used for Coverity Extend SDK checkers that analyze Android applications] Identifies an Android
APK file that is associated with a specified input file and read by custom Extend SDK checkers that
are built for Android analysis.

Requirement: When using this option, you must also specify an --input-file option to this
command. For information about custom Android checker development, see the section, "Reporting
events and defects on input files" in Coverity Extend SDK 2020.12 Checker Development Guide.

--auto <project_directory>
[Not supported for module-based code in Java 9+] Allows you to specify a directory where source
(*.java), input Jar files (*.jar), and compiler outputs (*.class) can be found. If you set this
option, cov-emit-java will recursively search for these items.

Note that --auto <project_directory> is functionally equivalent to the following:

--findsource <project_directory>
--findjars <project_directory>
--compiler-outputs <project_directory>

If necessary, you can specify --findsource, --findjars, or --compiler-outputs options
along with the --auto option. This sort of specification might be useful if you have a simple project
that requires specific Ant or JDK dependencies.

Example:

cov-emit-java --dir <intermediate_directory> --auto $PROJECT_ROOT --
findjars $ANT_HOME:$JAVA_HOME

--bootclasspath <directories_or_jar_files>
Allows you to specify a list of directories or Jar files, which must be separated by a semi-colon (;)
on the Windows platform, and by a colon (:) on other platforms. Classes specified through the --
bootclasspath are emitted, but the bodies of their methods are not, because cov-emit-java
expects to have models for them. Coverity Analysis for Java comes with models for the entire Java
Runtime Environment (JRE) and Android SDK, which should address all cases.

Like javac, cov-emit-java searches these entries for bytecode with the referenced classes
when attempting to resolve names in source files. The directories/jar files are searched in the order
specified in <directories_or_jar_files>.

Generally, you do not need to specify this option because cov-emit-java selects the
bootclasspath of the JRE that comes with Coverity Analysis for Java. However, if you are compiling

157

cov-emit-java

code against a non-standard JRE, one that is not API-compatible with the standard JRE, then you
might need to use this option.

--classpath <directories_or_jar_files>
Allows you to specify a list of directories or Jar files, which must be separated by a semi-colon (;) on
the Windows platform, and by a colon (:) on other platforms. Wildcard (*) in classpath is supported.
The wildcard will find all Jar files in the given directory (ie: foo/* finds all jars in foo/). Like javac,
cov-emit-java searches these entries for bytecode with the referenced classes when attempting
to resolve names in source files. The directories/jar files are searched in the order specified in
<directories_or_jar_files>. Since Coverity Analysis analyzes these class files, it is better,
when possible, to specify the implementations that are loaded at runtime rather than the stubs that
are used for compilation.

Note

Note that directories specified with --classpath will only be searched for Jar files if the
wildcard is used. Otherwise, directories will be searched only for bytecode.

If a directory (foo/) may contain bytecode as well as Jar files, you should include both "foo/"
AND "foo/*" in your arguments to --classpath.

The cov-emit-java command captures the same bytecode in Jar files referenced on the classpath
that java or javac find (that is, bytecode where the package name matches the directory within the
Jar file).

The cov-emit-java command respects the Class-Path entry in Jar manifests.

If the --classpath option is not specified, the current directory will be used as the default
classpath.

The cov-emit-java command is not affected by the CLASSPATH environment variable.

Note

When loading certain jar files, in particular the Scala runtime library, cov-emit-java can
consume more than 10GB of memory. This can cause out-of-memory failures on low-memory
systems, including 32-bit systems in general.

--compiler-outputs <class_files_or_directories>
Captures a list of class files that have debug symbols for subsequent analysis by SpotBugs. For
proper display of defects detected by the SpotBugs analysis, such class files should have been
compiled with all debugging information (for example, with javac -g).

The list contains class files separated by the classpath separator (colon or semi-colon). Any
directories in the list will be recursively searched for class files. Compiler outputs should be specified
on the same command line as the source code from which they were compiled. Subsequent
invocations of cov-emit-java on the same source files will replace the compiler outputs from the
previous invocation with those of the new invocation.

Jar files passed to --compiler-outputs will have their contained class files included. Directories
passed to --compiler-outputs will not have their contained Jar files included.

158

cov-emit-java

Note

Do not pass obfuscated bytecode to this option.

--dir <intermediate_directory>
Specifies the emit repository (an intermediate directory) into which the cov-emit-java command
outputs its results.

This option is required.

The command fails with an error if either of the following are true:

• The specified directory exists but is not a valid intermediate directory.

• The intermediate directory does not exist and cannot be created.

--enable-java-parse-error-recovery
Enables the error recovery algorithm that produces the highest emit percentage in most cases.
Currently, this option enables per-class error recovery with automatic fallback to per-file recovery in
case of non-recoverable errors such as cov-emit-java crashes, but its behavior might change in
future.

Explicitly enabling an error recovery algorithm on the command line will automatically disable any
incompatible error recovery algorithms.

--enable-java-per-class-error-recovery
This option can help to increase the percentage of source files that can be emitted by attempting to
use the class files of the source files that cause parse errors. It could potentially increase the time
to emit files, but is usually faster than --enable-java-per-file-error-recovery because it
does not try to emit each file one at a time.

Per-class error recovery is unlikely to correct cov-emit-java crashes. It also requires the presence
of output class files. To address such issues, see --enable-java-parse-error-recovery.

This option cannot be used with --enable-java-per-file-error-recovery.

--enable-java-per-file-error-recovery
Use this option if your native Java compiler is able to compile your source code successfully, but
cov-emit-java crashes. This option might also help when cov-emit-java has parse errors and
there are no class files available for per-class error recovery.

--encoding <character_encoding>
Applies the specified character encoding to all source files processed by this invocation of cov-
emit-java. Defaults to UTF-8. This default might not be the same one that javac uses.

Supports the following encodings (note that these differ from what javac supports):

US-ASCII

UTF-8

159

cov-emit-java

UTF-16

UTF-16BE
UTF-16 Big-Endian

UTF-16LE
UTF-16 Little-Endian

UTF-32

UTF-32BE
UTF-32 Big-Endian

UTF-32LE
UTF-32 Little-Endian

ISO-8859-1
Western European (Latin-1)

ISO-8859-2
Central European

ISO-8859-3
Maltese, Esperanto

ISO-8859-4
North European

ISO-8859-5
Cyrillic

ISO-8859-6
Arabic

ISO-8859-7
Greek

ISO-8859-8
Hebrew

ISO-8859-9
Turkish

ISO-8859-10
Nordic

ISO-8859-13
Baltic Rim

ISO-8859-15
Latin-9

160

cov-emit-java

Shift_JIS
Japanese

EUC-JP
Japanese

Note

EUC-JP is now a valid output object encoding. See --output_object_encoding.

ISO-2022-JP
Japanese

GB2312
Chinese (EUC-CN)

ISO-2022-CN
Simplified Chinese

Big5
Traditional Chinese

EUC-TW
Taiwanese

EUC-KR
Korean

ISO-2022-KR
Korean

KOI8-R
Russian

windows-1251
Windows Cyrillic

windows-1252
Windows Latin-1

windows-1256
Windows Arabic

MacRoman
The cov-emit-java treats MacRoman as Macintosh.

Note

Some other unsupported encoding names might be supported if a known alias is supported.
For example, the Java canonical x-EUC-TW is mapped to EUC-TW.

161

cov-emit-java

The cov-emit-java command attempts to tolerate encoding errors and logs a warning when
it finds bytes that cannot be decoded.

--findears <directory_list>
[Java Web application option] Searches the specified directories recursively for EAR (Enterprise
Archive) files and adds the ones that it finds to the emit in the intermediate directory. The directory
list must be separated by a semi-colon (;) on the Windows platform, and by a colon (:) on other
platforms.

In most cases, Coverity recommends that you use only one of these related options (--findwars,
--findwars-unpacked, --findears, or --findears-unpacked). The option should match the
final packaged web-app format. Otherwise, the search might find and emit unwanted temporary build
artifacts.

Note

The Web application archives should not contain obfuscated classes.

--findears-unpacked <directory_list>
[Java Web application option] Searches the specified directories recursively for unpacked web-app
root directories and add the ones that it finds to the emit in the intermediate directory. The web-
app root directories are identified by the presence of a META-INF/application.xml file. The
directory list must be separated by a semi-colon (;) on the Windows platform, and by a colon (:) on
other platforms.

In most cases, Coverity recommends that you use only one of these related options (--findwars,
--findwars-unpacked, --findears, or --findears-unpacked). The option should match the
final packaged web-app format. Otherwise, the search might find and emit unwanted temporary build
artifacts.

Note

The Web application directories should not contain obfuscated classes.

--findjars <Jar_containing_directories>
[Java Web application option] Allows you to specify a list of directories, which must be separated
by a semi-colon (;) on the Windows platform, and by a colon (:) on other platforms. The
cov-emit-java command searches these directories recursively for Jar files and adds
the ones that it finds to the classpath. The directories are searched in the order specified in
<Jar_containing_directories>.

Note that this option can result in an error if the number of Jar files exceeds the limit on the number of
open files that is allowed by your operating system.

--findsource <source_directories>
Lists directories, which must be separated by a semi-colon (;) on the Windows platform, and by a
colon (:) on other platforms. The cov-emit-java command searches these directories recursively
for source files. It process the source files that it finds as if they were specified directly on the cov-
emit-java command line.

162

cov-emit-java

--findwars <directory_list>
[Java Web application option] Searches the specified directories recursively for WAR (Web
application archive) files and adds the ones that it finds to the emit in the intermediate directory. The
directory list must be separated by a semi-colon (;) on the Windows platform, and by a colon (:) on
other platforms.

In most cases, Coverity recommends that you use only one of these related options (--findwars,
--findwars-unpacked, --findears, or --findears-unpacked). The option should match the
final packaged web-app format. Otherwise, the search might find and emit unwanted temporary build
artifacts.

Note

The Web application archives should not contain obfuscated classes.

See also --webapp-archive and --findwars-unpacked.

--findwars-unpacked <directory_list>
[Java Web application option] Searches the specified directories recursively for unpacked web-app
root directories and adds the ones that it finds to the emit. The web-app root directories are identified
by the presence of a WEB-INF/web.xml file. The directory list must be separated by a semi-colon (;)
on the Windows platform, and by a colon (:) on other platforms.

In most cases, Coverity recommends that you use only one of these related options (--findwars,
--findwars-unpacked, --findears, or --findears-unpacked). The option should match the
final packaged web-app format. Otherwise, the search might find and emit unwanted temporary build
artifacts.

Note

The Web application directories should not contain obfuscated classes.

See also --webapp-archive and --findwars.

--force
Disables incremental compilation by forcing cov-emit-java to compile and generate output for a
file, even if a copy of that file has already been compiled and is present in the Intermediate Directory.

--help
Prints a usage message to the command console and exits.

--ignore-sccs
Ignores all directories named SCCS. This is useful for version control systems that store metadata
with .java, .jar, and .class extensions in directories named SCCS.

--input-file <resource_file>
[Used for Coverity Extend SDK checkers that analyze Android applications] Identifies a resource file,
typically a AndroidManifest.xml file, that can be read by custom Extend SDK checkers built for
Android analysis. This option can be specified multiple times on the command line.

163

cov-emit-java

Requirement: When using this option, you must also specify the --android-apk option. For
information about custom Android checker development, see the section, "Reporting events and
defects on input files" in Coverity Extend SDK 2020.12 Checker Development Guide.

--javac-version
Identifies which implementation's bugs to emulate. Oracle Javac is the standard, but there are places
where Oracle Javac does not conform to the specification and Eclipse does. To accommodate this,
Eclipse attempts to implement Oracle bugs and ties it to the --javac-version switch. If the --
source option is explicitly defined, then the --javac-version option is set to the same value.
If the --javac-version option is explicitly defined, then the --source option is set to the same
value. If both options are defined, then they work with the values that they are explicitly set to. The
default value is 1.8.

--jvm-max-mem
[Java Web application security option] Sets the value of the JVM that is used for invoking the Jasper
engine for JSP compilation. The option accepts an integer that specifies a number of megabytes
(MB). The default value is 1024.

--kotlin-jvm
Enables the compilation of Kotlin source code instead of Java source code. The cov-emit-java
command can be used to capture bytecode written in either Java or Kotlin.

--limit-modules <module-names>
[Java 9+ only] Allows you to specify the name of one or more modules in a comma-delimited list. The
observable modules will then be restricted to the transitive closure of those those specified in the
limit-modules option, in addition to any modules specified by the --add-modules option.

--lombok-jar
Set this option to the location of the lombok jar file when running cov-emit-java on files that use
Lombok.

--minimal-classpath-emit
Limits the group of emitted JAR files to those needed for compilation of the Java files. The default
behavior without this option is to emit all the JAR files in the classpath regardless of whether they are
referenced by a Java file in the compilation. This option can improve performance of Java builds with
large numbers of unused JAR files on the classpath at the risk of not capturing all the dependencies
of the those JAR files. For example if A.java references A.jar, which has dependencies on
B.jar, this option will prevent B.jar from getting emitted even if B.jar is on the classpath.

--module-path <directories_or_jar_or_jmod_files>
[Java 9+ only] This option allows you to specify a list of directories, JAR files, or JMOD files,
which must be separated by a semi-colon (;) on the Windows platform, and by a colon (:) on other
platforms.

--module-source-path <directory>
[Java 9+ only] This option allows you to specify where to find source files for multiple modules.

--no-compiler-outputs
Indicates that the --compiler-outputs option is intentionally unspecified. Use of this option is
not recommended because both the dynamic analysis for Java Web application security and the

164

cov-emit-java

SpotBugs analysis rely on a compiler output specification. Without emitting compiler outputs, you can
expect to see false positive XSS reports and missing SpotBugs reports.

It is an error to run cov-emit-java without exactly one of the following options: --no-compiler-
outputs or --compiler-outputs.

@@<response_file>
Specify a response file that contains a list of additional command line arguments, such as a list of
input files. Each line in the file is treated as one argument, regardless of spaces, quotes, etc. The file
is read using the platform default character encoding. Using a response file is recommended when
the list of input XML files is long or automatically generated.

Optionally, you can choose a different encoding, by specifying it after the first "@". For example:

cov-emit-java [OPTIONS] @UTF-16@my_response_file.txt

You must use a supported Coverity encoding, listed under the cov-build --encoding option.

--skip-emit-war-javascript-source
[Java Web application option] Skip capture of JavaScript source code embedded in a Web
application archive (.WAR file, .EAR file, or equivalent unpacked directory).

--skip-war-sanity-check
[Java Web application option] Suppresses a failure in the case that the emit process determines that
expected contents of the Web application (web-app) archives are missing.

This option overrides the following sanity check on each WAR file or Web application directory on the
command line:

• The check that each contains a /WEB-INF directory and /WEB-INF/web.xml file.

This option overrides the following sanity check on the set of all Web application archives or
directories on the same command line:

• The check that the Web applications do not contain enough (>20%) of the classes captured during
build capture or manual cov-emit-java invocations.

These checks are designed to catch cases where someone passes the wrong items to --webapp-
archive. Turn off this check only if you are certain that you are passing the correct Web application
files or directories to cov-emit-java, despite the warnings.

For additional details, see --webapp-archive and --skip-webapp-sanity-check.

--scala
Enables the compilation of Scala source code instead of Java source code. The cov-emit-java
command can be used to capture bytecode written in either Java or Scala.

Note

The Scala compiler will automatically add default libraries like scala-library.jar to the
classpath, unlike the typical cov-emit-java behavior (where libraries do not need to be

165

cov-emit-java

added explicitly). The cov-build command will do this automatically and is the recommended
approach for capturing Scala source code.

--source <Java_version>
Identifies which version of the Java language to emulate. For example, --source=1.7 will allow
cov-emit-java to handle binary literals and other features that appeared in Java 7. If --source
is explicitly defined, then the --javac-version is implicitly set to the same value. If --javac-
version is explicitly defined, then the --source option is implicitly set to the same value. If both
are explicitly defined, then both have the value they are explicitly set to. The default value is 1.8.

--sourcepath <source_directories>
Lists directories, which must be separated by a semi-colon (;) on the Windows platform, and by a
colon (:) on other platforms. Like javac, the cov-emit-java command searches these directories
for source files that contain referenced classes. If no --sourcepath is provided, the sourcepath will
default to the expanded classpath.

--system <directory> | none
[Java 9+ only] Allows you to specify the location of the JRE or JDK to pull system libraries from. This
is the replacement for the bootclasspath in Java 9+. For more information on how system libraries are
used during analysis, see the --bootclasspath <directories_or_jar_files> option.

--use-fe
The --use-fe option specifies either edg or ecj as a frontend. edg specifies the EDG-based
frontend, and ecj specifies the Eclipse-based frontend.

For example, to configure capture to use the EDG frontend for java:

cov-configure --xml-option 'append_arg:--use-fe=edg' --java

Note that it is not recommended to use this command sequence unless encountering significant
issues with the default frontend. The default frontend as of Napa (2018.01) is Eclipse.

--webapp-archive <archive_file_or_dir>, --war <archive_file_or_dir>, --ear
<archive_file_or_dir>

[Java Web application option] The --webapp-archive and --war options store the contents of
the specified Web Archive (WAR, .war) file, Enterprise Archive (EAR, .ear), or directory with the
unpacked contents of either to the intermediate directory (emit repository) and prepares them for
analysis. For these two options, the cov-emit-java command inspects the file or directory that
is provided as argument and it guesses its type, based on the presence of WEB-INF (for WAR) or
META-INF (for EAR), falling back to WAR by default. The --ear is similar, but it only interprets its
argument as an EAR.

These options can be passed multiple times to store and analyze multiple archives.

Note

You need to emit any JSP files so that the analysis can find and report defects in them,
particularly XSS issues. The build capture does not emit JSP files (which are typically compiled
at runtime).

166

cov-emit-java

The preferred method to emit JSPs is to use this option to capture the Web application
archive(s) that contain them. The advantage of this approach is that the archives also include
compilation dependencies and important configuration files.

Another method to emit JSPs is with filesystem capture. See the section called “Filesystem
capture for interpreted languages” in the cov-build documentation. This method is
appropriate if the JSPs are not packaged into a Web application archive file. This includes
Spring Boot "Fat JARs" and other deployment systems that do not include JSP source for
runtime compilation.

Because these two methods are complementary, care should be taken to avoid emitting
redundant copies of the same JSP files. To exclude specific filesystem paths, see cov-build --
fs-capture-search-exclude-regex. To disable the filesystem capture of JSPs, see cov-configure
--no-jsp.

In addition to JSP files, JavaScript files embedded inside Web application archives are emitted.

Example:

cov-emit-java --dir my/intermediate/dir
 --webapp-archive path/to/webapp.war
 --webapp-archive path/to/webapp2.war

You can also specify a list of directories to search for WAR or EAR files (or unpacked directories)
using one of the following options to this command: --findwars, --findwars-unpacked, --
findears, or --findears-unpacked.

After using this option, you can run an analysis with the --webapp-security option to cov-
analyze. See "Running a security analysis on a Java Web application" .

See also --findwars and --findwars-unpacked.

--verbose
Outputs extra information about inputs. Valid values: 0, 1, 2, 3, 4. Defaults to 1.

Exit codes

Most Coverity Analysis commands can return the following exit codes:

• 0: The command successfully completed the requested task.

• 1: The requested task is complete, but it did not return (or find) any results. Note that some Coverity
Analysis commands do not return this error code.

• 2: The command was unable to complete the requested task. This error typically includes an error
message and some remediation advice.

• 4: An unexpected error occurred. This error should not occur when the product is used in a supported
way. Very likely, the requested task was not completed. This error typically provides some diagnostic
and/or debugging output, such as a stack trace.

167

cov_analysis_administration_guide.pdf#analysis_java_security

cov-emit-java

For exceptions, see cov-commit-defects(Coverity 2020.12 Command Reference), cov-analyze, and cov-
build.

Examples

> cov-emit-java --findsource src --findjars lib:build-lib/ --dir
 my/intermediate/dir --compiler-outputs build/classes/:build/junitclasses/

See Also

cov-build

cov-analyze

168

Name
cov-emit-swift Parses one or more source files and outputs it into an intermediate directory.

Synopsis

cov-emit-swift --dir <intermediate_directory> [OPTIONS] [sourcefiles]

Description

The cov-emit-swift command parses source code and saves swiftc compiler output to the emit
repository in the intermediate directory.

Options

-D <value>
Mark a conditional compilation flag as true.

-F <value>
Add directory to framework search path.

-I <value>
Add directory to the import search path.

--import-objc-header <value>
Name of the Objective-C header file to import.

--import-underlying-module
Implicitly imports an Objective-C half of a module.

--module-name <value>
Name of the module to build.

--no-module-emit-observing
Disables the default cov-emit-swift behavior, where dependencies are required to be built from
the source files in order to be imported correctly.

--sdk <sdk>
Compile against <sdk>.

--target <value>
Emit code for the given target.

--Xcc <value>
Pass <arg> to the C/C++/Objective-C compiler.

Error codes

0
Success.

169

cov-emit-swift

2
Most likely, a user-generated error, such as code that will not compile.

4
Irrecoverable error. Please contact software-integrity-support@synopsys.com if you
receive this error code.

170

Name
cov-emit-vb Parse Visual Basic source code and emit output to the intermediate directory.

Synopsis

cov-emit-vb --dir <intermediate_directory> [OPTIONS] [sourcefiles]

Description

This command parses source code, decompiles referenced assemblies, and saves VBC compiler output
to the emit repository in the intermediate directory.

Options

--addmodule <file>
Identifies a module that is referenced by the compilation but not added to the emit repository.
The location of the module can be absolute or relative. For rules on specifying the location, see --
reference.

It is an error if the referenced module is not found. To change this behavior, see --allow-
missing-refs.

You must specify this option separately for each module.

--allow-missing-refs
Issues a warning if any referenced assemblies are missing. If you do not set this option, missing
assemblies result in an error that stops the process. This error applies to explicitly referenced
assemblies (see --reference and --addmodule) that are absolute or not found in the Common
Language Runtime (CLR) system directory. The error also applies to mscorlib.dll (see --
nostdlib). Note that missing vbc.rsp assemblies (see --noconfig) always result in a warning.

--codepage <codepage>
Identifies the numeric codepage corresponding to codepages that are supported by VBC with the /
codepage option. Source file encodings are determined in the following manner:

If a byte order mark (BOM) is present in the source file, the command uses the BOM-related
encoding. If a BOM is not present, encoding is determined in the following manner:

• The character encoding of the specified codepage is used. If a codepage is not specified, the
command attempts to detect and use UTF-8. If neither of the preceding alternatives is possible, the
command uses the system default codepage.

--compiler-dir <directory>
Identifies the CLR system directory. It is an error to specify a directory that does not exist. The CLR
system directory is used as a search path for referenced assemblies (see --reference) and to
locate the vbc.rsp file (see --noconfig). If --compiler-dir is not specified, the command
defaults to $SYSTEM_ROOT/Microsoft.NET/Framework/<version>, where <version> is the
latest supported framework version (for details, see the Coverity 2020.12 Installation and Deployment
Guide). It is an error if no suitable CLR system directory is found.

171

cov_deploy_install_guide.pdf
cov_deploy_install_guide.pdf

cov-emit-vb

--define <define>
Corresponds to the VBC preprocessor directive and /define option. Note that it is necessary to
specify a separate --define option for each directive.

--dir <intermediate_dir>
Identifies the intermediate directory into which this command emits source files and referenced
assemblies. An error occurs if the specified intermediate directory exists but is not valid, or if the
directory does not exist and cannot be created.

This option is required.

--disable-ref-assembly-replacement
By default, the cov-emit-vb command attempts to replace each reference assembly it encounters
with a version of the assembly that includes an implementation. Use this switch to disable this default
behaviour. The recommended use of this switch is as an xml-option option to a cov-configure
command.

Example of adding this switch to a Visual Basic configuration:

cov-configure --cs -c config/config.xml --xml-option=:"<append_arg>--disable-ref-
assembly-replacement</append_arg>"

--enable-cs-parse-error-recovery
Makes cov-emit-vb fall back to error recovery mode when compilation errors are encountered
during the processing of source files.

This option is disabled by default.

--force
By default, if all the specified source files exist in the emit repository with the same timestamp as the
file on disk, the command skips the files and exits with a successful return code. Specifying the --
force option makes the command process the source files, even if they exist unchanged in the emit
repository.

--imports <namespace name>
Imports a namespace from an assembly. Corresponds to the VBC option /imports.

--langversion <Visual Basic language version>
Specifies the Visual Basic Language version to use. Corresponds to the VBC option /langversion.

--lib <directory>, -L <directory>
Identifies a library directory to use when searching for referenced assemblies (see --reference). A
warning (not an error) occurs if you specify a directory that does not exist. This option corresponds to
the VBC /lib option.

You must specify this option separately for each library directory.

--link <[alias=]filename> | -l <[alias=]filename>
Supercedes --use-link-semantics. Effectively the same as --reference, but changes how
the compiler treats certain COM interop types. Corresponds to the VBC option /link.

172

cov-emit-vb

--no-banner
Suppresses the cov-emit-vb application name and version banner.

--noconfig
Ignores the vbc.rsp file under the CLR system directory (see --compiler-dir). If this option
is not set, the references /r or /reference within vbc.rsp are added to the list of referenced
assemblies. Any vbc.rsp references that are not absolute filenames are subject to the search
directory rules (for details, see --reference). Corresponds to the VBC option /noconfig.

--no-friends
Prevents the compilation from accessing internal types or members. This option works by disabling
the processing of compiler output retrieved through the --out option. This behavior corresponds to
VBC behavior in the case where /out is not specified and a default name is used.

--no-out, -n
Indicates that there is no compiler output.

It is necessary to specify --out or --no-out (or the alternative, -n), else an error will occur.

--nostdlib
Disables the default behavior of searching for mscorlib.dll in the CLR system directory and
adding the file to the list of referenced assemblies. If that file is not found, the next search in this
directory is for a vbc.exe.config file that specifies a requiredRuntime version. If a version is
found, the search continues to the corresponding directory (the parent directory of the CLR system
directory).

This option corresponds to the VBC /nostdlib option.

--optioncompare
Controls whether string comparisons should be binary or use locale-specific text semantics.
Corresponds to the VBC option /optioncompare.

--optionexplicit
Controls whether the compiler enforces explicit declaration of variables. Corresponds to the VBC
option /optionexplicit.

--optioninfer
Controls whether the compiler allows use of local type inference in variable declarations.
Corresponds to the VBC option /optioninfer.

--optionstrict
Controls whether the compiler uses strict language semantics. Corresponds to the VBC option /
optionstrict.

--out <file>
Specifies the compiler output file, which is then used by the command to access internal types or
members in referenced assemblies.

Subsequent calls to cov-emit-vb will not re-emit the output file if a referenced assembly is found.

It is necessary to specify --out or --no-out (or the alternative, -n), else an error will occur.

173

cov-emit-vb

--ref-assembly-replacement-search-path <path>
Adds a search path to assist cov-emit-vb in finding implementation versions of reference
assemblies. You can specify this option multiple times. This option is useful for pointing cov-
emit-vb at the correct .NET Core framework directory in cases where cov-emit-vb fails to find
the correct version. The recommended use of this switch is as an xml-option option to a cov-
configure command.

Example of adding this switch to a Visual Basic configuration:

cov-configure --vb -c config/config.xml --xml-option=:"<append_arg>--ref-assembly-
replacement-search-path=D:\utilities\dotnet-core\dotnet-sdk-2.1.403-win-x64\shared
\Microsoft.NETCore.App\2.1.5\</append_arg>"

--reference <[alias=]filename> | -r <[alias=]filename>
Identifies an assembly to provide for compilation and addition to the emit repository, unless this
setting is overridden by other options. The location of the assembly can be absolute or relative. If
relative, the command searches the following paths in the following order:

1. Current working directory.

2. CLR system directory.

3. Each directory specified by the --lib option, in the order specified.

By default, it is an error if a referenced file cannot be found on disk. See --allow-missing-refs
for complete rules.

Note that [alias=] identifies an extern alias directive, just as it does for VBC.

Example with an alias:

--reference v1=my.dll

--removeintchecks
Disables integer overflow checking by the compiler. Corresponds to the VBC option /
removeintchecks.

--rootnamespace <namespace name>
Specifies a namespace for all type declarations. Corresponds to the VBC option /rootnamespace.

--sdkpath <directory>
Specifies where to search for mscorlib.dll and Microsoft.VisualBasic.dll. Corresponds
to the VBC option /sdkpath.

--target
Specifies the type of assembly that was created. Corresponds to the VBC option /target.

--vbruntime -|+|*
Specifies whether the compiler should compile with a reference to Microsoft.VisualBasic.dll
(+), without a reference to it (-), or to embed it within the assembly (*). Corresponds to the VBC
option /vbruntime[+|-|*].

174

cov-emit-vb

--vbruntime-path <filename>
Specifies the exact file the compiler should use for Microsoft.VisualBasic.dll. Corresponds
to the VBC option /vbruntime:<filename>.

Any unrecognized options result in an error, which causes an immediate exit with an appropriate error
message.

Exit codes

Most Coverity Analysis commands can return the following exit codes:

• 0: The command successfully completed the requested task.

• 1: The requested task is complete, but it did not return (or find) any results. Note that some Coverity
Analysis commands do not return this error code.

• 2: The command was unable to complete the requested task. This error typically includes an error
message and some remediation advice.

• 4: An unexpected error occurred. This error should not occur when the product is used in a supported
way. Very likely, the requested task was not completed. This error typically provides some diagnostic
and/or debugging output, such as a stack trace.

For exceptions, see cov-commit-defects(Coverity 2020.12 Command Reference), cov-analyze, and cov-
build.

175

Name
cov-export-cva Produce a Coverity CVA file to be used by Architecture Analysis.

Synopsis

cov-export-cva --output-file <filename>

Description

The cov-export-cva command produces a CVA file to be used by Architecture Analysis. This allows
you to create and retrieve the CVA file from your intermediate directory instead of having to run a commit
and then log in to Coverity Connect.

A cov-analyze command with at least one --strip-path option must be run at some point prior to
running this command. After this command is executed, the filename you specified in --output-file
<filename> is created.

The file is compressed in gzip format and is ready to be read by Architecture Analysis.

Options

--dir <intermediate_directory>
Path name to an intermediate directory that is used to store the results of the build and analysis.

--output-file <filename>
The name of the file CVA file to be created.

--output-tag <name>
Use this option if you used it when generating analysis results. See the --output-tag option to cov-
analyze.

Shared options

--debug, -g
Turn on basic debugging output.

--ident
Displays the version of Coverity Analysis and build number.

--info
Displays certain internal information (useful for debugging), including the temporary directory, user
name and host name, and process ID.

--tmpdir <tmp>, -t <tmp>
Specifies the temporary directory to use. On UNIX, the default is $TMPDIR, or /tmp if that variable
does not exist. On Windows, the default is to use the temporary directory specified by the operating
system.

Exit codes

Most Coverity Analysis commands can return the following exit codes:

176

cov-export-cva

• 0: The command successfully completed the requested task.

• 1: The requested task is complete, but it did not return (or find) any results. Note that some Coverity
Analysis commands do not return this error code.

• 2: The command was unable to complete the requested task. This error typically includes an error
message and some remediation advice.

• 4: An unexpected error occurred. This error should not occur when the product is used in a supported
way. Very likely, the requested task was not completed. This error typically provides some diagnostic
and/or debugging output, such as a stack trace.

For exceptions, see cov-commit-defects(Coverity 2020.12 Command Reference), cov-analyze, and cov-
build.

See Also

cov-analyze

177

Name
cov-extract-scm Extracts the change data for each line from files in the SCM system.

Synopsis

cov-extract-scm --scm <scm_type> --output <output_file> --input <input_file>
[--scm-tool <tool_path>] [--scm-project-root <root_path>] [--scm-tool-arg
<tool_args>] [--scm-command-arg <command_arg>] [--log <log_path>] [--ms-delay
<int>] [--get-baseline-code-version][--get-modified-files][--OPTIONS]

Description

Queries an SCM system for information of use to Coverity, Automatic Owner Assignment and Fast
Desktop. cov-extract-scm operates in one of two modes: "Annotate" (the default mode) or "Code
version".

Annotate mode
Retrieves the change data for each line of a file from the SCM system. This is the default mode.

Code version mode
Retrieves information regarding the code version the user has most recently checked out, updated
from, or pulled. The information is either about the code version itself or the unpublished changes
since the code version. (See cov-run-desktop.)

This mode is activated by the --get-baseline-code-version or --get-modified-files
options.

Using SCM argument tags

cov-extract-scm issues a call to the SCM system to get information about last modified dates for
each line in a source file. On most systems, this command is either "blame" or "annotate". For example:

accurev annotate foo.c

In some cases, SCM systems have additional items that need to be specified in the command to allow
Coverity to get the appropriate information from the system. The --scm-param option (as well as
the deprecated --scm-tool-arg and --scm-command-arg options) allow for this functionality.
Furthermore, the --scm-tool allows you to specify an SCM tool that is non-standard or provides
command output in a format that is not easily parsed by Coverity. For example:

<tool> <tool-args> <command> <command-args> <coverity-mandated-flags> <target-file>

• <tool> is from the --scm-tool argument. If it is not specified, an appropriate default is used for the
specified SCM type.

• <tool-args> and <command-args> are , respectively, lists of values associated with the tool_arg
and annotate_arg keys passed to --scm-param.

• <command> is specific to each source control management system and can not be modified; typically
a variation of blame or annotate. If the command is not specified, Coverity uses the appropriate
command for the specified SCM type.

178

cov-extract-scm

• <coverity-mandated-flags> are also specific to each source control management system and
can not be modified.

• <target-file> is generated from the data passed in the --input option.

The <command> and <coverity-mandated-flags> syntax for each supported SCM is as follows:

• accurev:

<tool-args> annotate <command-args> -fudtv <file>

• clearcase:

<tool-args> annotate <command-args> -out - -nheader -f -fmt "revision %X
\nauthor %u\nusername %Lu\ndate %d\n\t" <file>

• cvs:

log <file>

<tool-args> annotate -F <command-args> <file>

Note

For CVS, <command-args> and <tool-args> are NOT passed to both commands, they are
only applied to the annotate command.

• git:

<tool-args> blame <command-args> -p <file>

• hg:

1. <tool-args> log <command-args> -f --template \

'author {author|person}\nusername {author|user}\ndate \

{date|hgdate}\nchangeset_long {node}\nchangeset_short {node|short}\n---
\n'<file>

2. <tool-args> annotate <command-args> -c <file>

Any tool-args/command-args are passed to both commands.

• perforce:

1. <tool-args> changes <command-args> -t -i <file>

2. <tool-args> annotate <command-args> -q -I <file>#have

Any tool-args/command-args are passed to both commands.

• plastic:

179

cov-extract-scm

<tool-args> annotate <command-args> <file> --format={owner}|{date}|{rev}

• plastic-distributed:

<tool-args> annotate <command-args> <file> --format={owner}|{date}|{rev}

• svn:

<tool-args> blame <command-args> -xml <file>

• tfs and ads:

Coverity uses a custom application (cov-internal-tfs) to gather information from the Team
Foundation Server (TFS) or Azure DevOps Server (ADS) tools. Because of this, the <tool-args>
and <command-args> arguments are rejected, and the underlying commands to TFS/ADS can not
be modified.

Note

The value for <file> is almost always the file name and not a file path given in --input. Coverity
changes to the directory where the file resides and issues the command. The exception to this
is with accurev using the --scm-project-root option. In this case, Coverity changes to the
directory where the file resides but <file> is a filepath that is relative to the project root. This is
because a valid deployment model for accurev is a detached workspace, in which file information
must be called with a relative path to the root of where it was checked out.

Additionally, when TFS/ADS named items (such as directories, files, and branches) are renamed,
some of the historical information (in particular changeset history) is potentially not retrievable
for modifications that occurred before the rename. Because of this, cov-import-scm/cov-
extract-scm is unable to properly associate SCM data on a per line basis.

When modifications are performed on a branch and then later merged to a second branch, running
cov-import-scm/cov-extract-scm on the second branch will indicate that all modifications
occurred at the date of the merge, rather than the date they actually occurred.

A note on Git superprojects

Git superprojects are unsupported by cov-extract-scm's code version mode (activated by the --get-
baseline-code-version and --get-modified-files options).

You may be able to workaround this issue by creating a script to access Git using submodules, and
specify that script with the --scm-tool option. This is an advanced usecase, and should only be
attempted by experienced users.

Options

--error-threshold <percentage>
Sets the percentage of successful extractions required for cov-extract-scm to exit with a success
return code (0). If the extraction rate is below this threshold, cov-extract-scm will print a warning
and exit with return code 8. The default percentage is 80.

180

cov-extract-scm

--get-baseline-code-version
(Code version mode only)

This switch indicates that instead of performing its usual function of querying the SCM for "annotate"
information, the tool shall write to its --output file some information about the code version that the
user has most recently checked out, updated from, or pulled.

The output shall be a JSON file using ASCII character encoding and platform-native line endings. It
consists of a single JSON object with a single attribute called "date" using YYYY-MM-DDThh:mmZ
syntax.

Example output file:

{
 date: "2013-12-18T15:34Z"
}

--get-modified-files
(Code version mode only)

This switch also indicates to suppress normal processing and instead retrieve the set of files with
unpublished local changes. These are the files with differences relative to the version of the code
indicated by --get-baseline-code-version.

The output shall be written to the --output file as JSON using ASCII character encoding and "\u"
escapes in strings as needed to represent non-ASCII characters. The output is a single JSON object
with two attributes, "modified_files" and "untracked_files". The former are files that the
SCM knows about and have been modified from their baseline version. The latter are files that are
not checked in to the SCM and are also not excluded by SCM "ignore" filtering (like .gitignore).
Each is an array of strings representing the file names. File names have their letter case preserved
and use the platform native syntax for file names and directory separators. The file names shall be
relative to the repository root, which is assumed to be the current directory unless a different root is
specified as a command line option with --scm-project-root.

Example output file (using Windows separators):

{
 modified_files: [
 "utilities\\cov-format-errors\\cov-format-errors.cpp",
 "Makefile"
],
 untracked_files: [
 "analysis\\cov-run-desktop\\some-new-file.cpp",
 "analysis\\cov-run-desktop\\some-new-file.hpp",
 "name with \u1234 non-ASCII character"
]
}

--input <input_file>
(Annotate mode only)

181

cov-extract-scm

Specifies the path to a file that contains information about the files that gather last modified dates.
The format of this file is the same as the output of the list-scm-unknown option of cov-manage-
emit.

--log <log_path>
Specifies the path to a file to which output from the --scm-tool executable and other recoverable
errors are written.

--ms-delay <int>
Specifies a delay in milliseconds between calls to the underlying SCM. This is useful for preventing a
denial of service situation.

--output <output_path>
Specifies the path to a file to which the output data is written to. The format of this output (in Annotate
mode) is used as input to the add-scm-annotations subcommand for cov-manage-emit. See --
get-baseline-code-version and --get-modified-files for the format of this output in Code version mode.

--scm <scm_type>
Specifies the name of the source control management system. For this option to function correctly,
your source files must remain in their usual locations in the checked-out source tree. If the files are
copied to a different location after checkout, the SCM query will not work.

Possible scm_type values:

• Accurev: accurev

• Azure DevOps Server (ADS): ads

Windows only.

• ClearCase: clearcase

• CVS: cvs

• GIT: git

• Mercurial: hg

• Perforce: perforce

• Plastic: plastic|plastic-distributed.

Use plastic when working in a non- or partially-distributed Plastic configuration. Use plastic-
distributed when working in a fully-distributed Plastic configuration.

• SVN: svn

• Team Foundation Server (TFS): tfs

Windows only.

182

cov-extract-scm

For usage information for the --scm option, see cov-extract-scm.

Note

The following commands or setup utilities must be run before cov-extract-scm in order to
successfully communicate with the SCM server:

• accurev:

Login command

• perforce:

The environment variable P4PORT should be set to the value expected by the p4 tool.

• tfs or ads:

Windows credentials in Credential Manager to access the TFS server

--scm-command-arg <command_arg>
(Annotate mode only)

This option has been deprecated. Instead of using --scm-command-arg arg1, use --scm-
param annotate_arg=arg1. Specifies additional arguments that are passed to the command that
retrieves the last modified dates. The arguments are placed after the command and before the target
file. This option can be specified multiple times.

--scm-param
Specifies additional arguments that are passed to the SCM tool in a context-aware manner. The
value passed to --scm-param must have the format key=arg; the key specifies what the arg is
to be used for. For example, --scm-param tool_arg=--foo causes the argument --foo to be
added to the <tool-args> list, and --scm-param annotate_arg=--bar causes the argument
--bar to be added to the <command-args> list. Specific SCMs may accept other keys, if they
require more information.

--scm-project-root <root_path>
Specifies a path that represents the root of the source control repository.

In Annotate mode, this option is only used when specifying accurev as the value to --scm. When
this is used, all file paths that are used to gather information are interpreted as relative to this project-
root path.

In Code version mode, this option allows cov-extract-scm to run from a directory other than the
root of the source control repository. All filenames returned by --get-modified-files are relative
to this path.

--scm-tool <tool_path>
Specifies the path to an executable that interacts with the source control repository. If the executable
name is given, it is assumed that it can be found in the path environment variable. If not provided, the
command uses the default tool for the specified --scm system.

183

cov-extract-scm

--scm-tool-arg <tool_args>
This option has been deprecated. Instead of using --scm-tool-arg arg1, use --scm-param
tool_arg=arg1. Specifies additional arguments that are passed to the SCM tool, specified in the
--scm-tool option, that gathers the last modified dates. The arguments are placed before the
command and after the tool. This option can be specified multiple times.

Shared options

--debug, -g
Turn on basic debugging output.

--ident
Displays the version of Coverity Analysis and build number.

--verbose <0, 1, 2, 3, 4>, -V <0, 1, 2, 3, 4>
Set the detail level of command messages. Higher is more verbose (more messages). Defaults to 1.

Exit codes

Most Coverity Analysis commands can return the following exit codes:

• 0: The command successfully completed the requested task.

• 1: The requested task is complete, but it did not return (or find) any results. Note that some Coverity
Analysis commands do not return this error code.

• 2: The command was unable to complete the requested task. This error typically includes an error
message and some remediation advice.

• 4: An unexpected error occurred. This error should not occur when the product is used in a supported
way. Very likely, the requested task was not completed. This error typically provides some diagnostic
and/or debugging output, such as a stack trace.

• 8: This exit code is specific to cov-extract-scm. It signifies either that the command attempted to
extract a file that does not exist in the SCM, or that there may have been an unknown error.

For exceptions, see cov-commit-defects, cov-analyze, and cov-build.

See Also

cov-blame

cov-import-scm

cov-manage-emit

cov-run-desktop

184

Name
cov-find-function Find a mangled or internal function name when given part of the actual name.

Synopsis

cov-find-function [OPTIONS] <name>

Description

In the Extend SDK, it is relatively easy to match on a C function with a specific name by passing the
name to the Fun pattern constructor. Otherwise, the mangled name must be used to disambiguate
which overloaded function should be matched. The cov-find-function command looks for all of the
mangled names that contain the given <name>.

For other languages, this command finds the internal representation used by the analysis.

This command makes it easier to find the name needed for matching on a specific function or method,
even an overloaded one. The cov-find-function command can accept a regular expression to
denote a set of functions to display.

Options

--cpp
Filters the results by the C/C++ translation units on which this command operates or reports. The
command will fail with an informative error message if none of the translation units in the emit
subdirectory match any of the specified language options. See also, --cs and --java.

--cs
Filters the results by the C# programming language. The command will fail with an informative error
message if none of the translation units in the emit subdirectory match any of the specified language
options. See also, --cpp and --java.

--dir <intermediate_directory>
Path name to an intermediate directory that is used to store the results of the build and analysis.

--exact, -x
Assume that <name> is a full function prototype, not just a substring of the mangled name. Not
commonly used.

--include-builtins
Look for given functions in the built-in model library.

--java
Filters the results by the Java programming language. The command will fail with an informative error
message if none of the translation units in the emit subdirectory match any of the specified language
options. See also, --cs and --cpp.

--model-file <file.xmldb>
Look for the function in the given user model file. See also, the --model-file option to cov-analyze.

185

cov-find-function

--module <module>, -m <module>
Requires --show. Pick the model for module <module> when showing a model for a function.
Values can be all, generic, security, concurrency, stack_use, uninit, and ptr_arith.
Defaults to generic.

--output <directory>, -of <directory>
Specify the directory in which the output of --save is stored. The default is the current directory. If
the directory does not exist it is created.

--save
Save the model file in <key>.<module>.models.xml, a description of edges in
<key>.<module>.model_edges, and a .ps file of the graph (as shown by --show) in
<key>.<module>.ps. Each model is uniquely identified by an MD5 hex-key. cov-find-
function uses this key to immediately find a model. If given a function name, it does a linear search
of the model database. This search might take some time, but when it finds a function, it prints its
model key for the specified module.

Requires the dot command from the Graphviz package.

--show, -s
Show the model for the function. Requires dot (from the Graphviz package) as well as ggv
(GNOME's PS viewer).

--subdir
When used in conjunction with --use-emit, specifies a subdirectory in which to look for the given
function. Might substantially speed execution.

--use-emit, -ue
Iterate over the emit directory to find functions, instead of looking at the cache database. Useful if
the cache is not present (for example, it has been cleaned or the analysis has never been run) or
corrupted.

--user-model-file <file.xmldb>
[Deprecated] This option is deprecated as of version 7.7.0. Use --model-file instead.

Shared options

--debug, -g
Turn on basic debugging output.

--ident
Displays the version of Coverity Analysis and build number.

--info
Displays certain internal information (useful for debugging), including the temporary directory, user
name and host name, and process ID.

--tmpdir <tmp>, -t <tmp>
Specifies the temporary directory to use. On UNIX, the default is $TMPDIR, or /tmp if that variable
does not exist. On Windows, the default is to use the temporary directory specified by the operating
system.

186

cov-find-function

Exit codes

Most Coverity Analysis commands can return the following exit codes:

• 0: The command successfully completed the requested task.

• 1: The requested task is complete, but it did not return (or find) any results. Note that some Coverity
Analysis commands do not return this error code.

• 2: The command was unable to complete the requested task. This error typically includes an error
message and some remediation advice.

• 4: An unexpected error occurred. This error should not occur when the product is used in a supported
way. Very likely, the requested task was not completed. This error typically provides some diagnostic
and/or debugging output, such as a stack trace.

For exceptions, see cov-commit-defects(Coverity 2020.12 Command Reference), cov-analyze, and cov-
build.

Example

Look for a function named get and save the results in the directory get_models:

> /cov-find-function --dir /home/user/apache_intdir --info --save --output
 get_models get

187

Name
cov-format-errors Generate static HTML pages of defect reports.

Synopsis

cov-format-errors

 --dir <intermediate_dir>
 [--emacs-style]
 [--exclude-files <regex>]
 [--file <file_substring>]
 [--filesort]
 [--function <function>]
 [--functionsort]
 [--html-output <directory>]
 [--include-files <regex>]
 [--json-output-v7 <filename>]
 [--output-tag <name>]
 [--security-file <file>]
 [--title <text>]
 [-x]
 [-X | --noX]

Description

The cov-format-errors command reads defects from an intermediate directory and creates static
HTML pages in the specified directory.

Deprecated behavior: By default, this command writes HTML output into the
<intermediate_directory>/output/errors directory, but this usage is deprecated. Instead, you
should use the --html-output option to specify the HTML output directory.

To commit defects to Coverity Connect, use cov-commit-defects instead of cov-format-errors.

Note that cov-format-errors does not have access to any triage information stored in Coverity
Connect. Therefore, the output of cov-format-errors will include defects even though they have
been marked as Intentional or False Positive within Coverity Connect. In addition, the output of cov-
format-errors is only accessible to users who have access to the local file system; it is not made
available through a network service.

Options

--dir <intermediate_directory>
Path name to an intermediate directory that is used to store the results of the build and analysis.

--emacs-style
Print a short version of the defect event with line numbers to stdout, formatted as gcc compiler
warnings. This option is useful for integration into an editor such as Emacs.

188

cov-format-errors

--exclude-files <regex>
Do not output defects from files that are in paths that match the specified regular expression.
You cannot use this option multiple times in the same command line. You can use it with the --
include-files option. If you use both options together, --exclude-files takes precedence
over --include-files. For example, defects from a given file are excluded from the output in the
case that the regular expressions both include and exclude the file.

Example that excludes paths that contain both /bar/ and .c:

--exclude-files '/bar/.*\.c$'

The example excludes the following file:

/foo/bar/test.c

The example does not exclude the following files:

/foo/test.c

/foo/bar/test.cc

Note

The example above uses single quotes around the string value. However, your command
interpreter might require double quotes (for example, "/bar/.*\.c$").

--file <filename>
Only generate pages for errors in files containing <filename> as a substring of the full pathname.

--filesort
Sort rows by filename.

--function <func>
Only generate pages for errors in function <func>.

--functionsort
Sort rows by function name.

--html-output <directory>
Write the HTML results to the specified directory, and create this directory first if it does not exist.

You must either specify a directory previously written by cov-format-errors, or a directory that is
empty, or that does not yet exist.

--include-files <regex>
Output defects only from files that are in paths that match the specified regular expression. You
cannot use this option multiple times in the same command line. You can use it with the --
exclude-files option. If you use both options together, --exclude-files takes precedence
over --include-files. For example, defects from a given file are excluded from the output in the
case that the regular expressions both include and exclude the file.

189

cov-format-errors

Example that includes /foo/:

--include-files '/foo/'

The example includes the following file:

/bar/foo/test.c

The example excludes the following file:

/bar/test.c

Note

The example above uses single quotes around the string value. However, your command
interpreter might require double quotes (for example, "/foo/").

--json-output-v7 <filename>
Writes cov-format-errors output to the specified file in JSON format . You can include either
an absolute path or a path relative to the location in which you execute the command. If you want the
filename to end in .json, you must include it in the filename.

The --json-output-v7 option is the recommended JSON output option because it contains
the most complete information. The json-output-v1 through json-output-v6 options are
supported for backward compatibility.

--lang <language>
Write event messages in the specified language. Currently, the supported values are en (for English),
ja (for Japanese), and zh-cn (for Simplified Chinese). The default language is English (en).

--misra-only
[Deprecated in 8.0] Using this option will result in an error.

--noX
Do not build cross-reference information. Normally, cross-reference information is built if the -x
option is specified.

--output-tag <name>
Use this option if you used it when generating analysis results. See the --output-tag option to cov-
analyze.

--security-file <license file>, -sf <license file>
Path to a Coverity Analysis license file. If not specified, this path is given by the security_file
element in the XML configuration file, or license.dat in the same directory as
<install_dir_sa>/bin.

--strip-path <directory>
Strips the prefix of a file name path in error messages and references to your source files. If you
specify the --strip-path option multiple times, you strip all of the prefixes from the file names, in
the order in which you specify the --strip-path argument values.

190

desktop_analysis_user_guide.pdf#FD_json_syntax

cov-format-errors

The leading portion of the path is omitted if it matches a value specified by this option. For example, if
the actual full pathname of a file is /foo/bar/baz.c, and --strip-path /foo is specified, then
the name attribute for the file becomes /bar/baz.c.

--title <title>
Specify a title for the generated index pages.

-X
Run the cov-internal-build-xrefs command first. Without this option, the identifiers in the
source code will not be hyperlinked. When this has been done once on an intermediate directory,
it does not need to be done again until the intermediate data changes. -x automatically implies -X
unless --noX is also specified.

-x
Use cross-reference information when building static pages. Without this flag, the identifiers in the
source code will not be hyperlinked. This option needs to be specified every time you want the
generated pages to have cross-reference information.

Shared options

--debug, -g
Turn on basic debugging output.

--ident
Displays the version of Coverity Analysis and build number.

--info
Displays certain internal information (useful for debugging), including the temporary directory, user
name and host name, and process ID.

--tmpdir <tmp>, -t <tmp>
Specifies the temporary directory to use. On UNIX, the default is $TMPDIR, or /tmp if that variable
does not exist. On Windows, the default is to use the temporary directory specified by the operating
system.

--verbose <0, 1, 2, 3, 4>, -V <0, 1, 2, 3, 4>
Set the detail level of command messages. Higher is more verbose (more messages). Defaults to 1.

Exit codes

Most Coverity Analysis commands can return the following exit codes:

• 0: The command successfully completed the requested task.

• 1: The requested task is complete, but it did not return (or find) any results. Note that some Coverity
Analysis commands do not return this error code.

• 2: The command was unable to complete the requested task. This error typically includes an error
message and some remediation advice.

191

cov-format-errors

• 4: An unexpected error occurred. This error should not occur when the product is used in a supported
way. Very likely, the requested task was not completed. This error typically provides some diagnostic
and/or debugging output, such as a stack trace.

For exceptions, see cov-commit-defects(Coverity 2020.12 Command Reference), cov-analyze, and cov-
build.

See Also

cov-commit-defects

192

Name
cov-generate-hostid Return host id information for node-locked licensing.

Synopsis

cov-generate-hostid [-of <filename>]

Description

The cov-generate-hostid command outputs the host id information needed for node-lock licensing.
Email this information to software-integrity-license@synopsys.com.

Options

--output-file <filename>, -of <filename>
The file to create with this information. By default, the information is sent only to standard out.

Exit codes

Most Coverity Analysis commands can return the following exit codes:

• 0: The command successfully completed the requested task.

• 1: The requested task is complete, but it did not return (or find) any results. Note that some Coverity
Analysis commands do not return this error code.

• 2: The command was unable to complete the requested task. This error typically includes an error
message and some remediation advice.

• 4: An unexpected error occurred. This error should not occur when the product is used in a supported
way. Very likely, the requested task was not completed. This error typically provides some diagnostic
and/or debugging output, such as a stack trace.

For exceptions, see cov-commit-defects(Coverity 2020.12 Command Reference), cov-analyze, and cov-
build.

Example

Create the host id information in the named file:

 > cov-generate-hostid -of /user/foo/cov_host.txt

193

Name
cov-help Display help for a command.

Synopsis

cov-help <command>

Description

The cov-help command displays help for a specified command.

You can also read each command's help page by specifying the --help option on the command line.
For example:

> cov-analyze --help

Environment Variables

$PAGER
The program through which to pipe output. The $PAGER variable is ignored if the output is not a
terminal. If $PAGER is not set, the cov-help command looks for the less or more commands in
paths set by the $PATH environment variable.

Exit codes

Most Coverity Analysis commands can return the following exit codes:

• 0: The command successfully completed the requested task.

• 1: The requested task is complete, but it did not return (or find) any results. Note that some Coverity
Analysis commands do not return this error code.

• 2: The command was unable to complete the requested task. This error typically includes an error
message and some remediation advice.

• 4: An unexpected error occurred. This error should not occur when the product is used in a supported
way. Very likely, the requested task was not completed. This error typically provides some diagnostic
and/or debugging output, such as a stack trace.

For exceptions, see cov-commit-defects(Coverity 2020.12 Command Reference), cov-analyze, and cov-
build.

194

Name
cov-import-msvsca Import Microsoft Visual Studio Code Analysis issues

Synopsis

cov-import-msvsca <MSVSCA_xml_files> [--append] [--skip-unrecognized] [--no-
threshold-check]

Description

cov-import-msvsca allows you to import Microsoft Visual Studio Code Analysis (MSVSCA) issues on
C# code into your Coverity Analysis intermediate directory by specifying XML files generated by Microsoft
Visual Studio Code analysis (MSVSCA). The results can then be committed to and viewed in Coverity
Connect. MSVSCA is integrated into many versions of Microsoft Visual Studio, including Professional,
Premium, and Ultimate editions of Visual Studio 2012.

Also known as FxCop, Code Analysis for Managed Code reports issues in programs compiled for
the .NET Framework, including languages other than C#. Although cov-import-msvsca can import
most issues from non-C# managed code, cov-import-msvsca works best for C# code. cov-import-
msvsca does not currently support importing results from Code Analysis for C/C++ or Code Analysis for
Drivers. cov-import-msvsca requires a valid license for Coverity Analysis for C#.

Event descriptions imported by cov-import-msvsca are not localized in Coverity Connect. However,
you can import localized results (including localized event descriptions). If you configure Visual Studio
for a particular localization, the Microsoft Visual Studio Code analysis (MSVCA) results will use that
localization. You can then import the localized results to Coverity Connect. Users will see the localized
even descriptions in Coverity Connect regardless of their Coverity Connect language configuration.

The cov-import-msvsca command is only available on the Windows platform.

For Microsoft's complete list of Code Analysis warnings for Managed Code, see http://
msdn.microsoft.com/en-us/library/dd380629 .

Importing MSVSCA results and viewing them in Coverity Connect

1. Run the MSVSCA analysis to generate one or more XML files of MSVSCA results.

When the Code Analysis is run from Visual Studio or as part of a build, an XML file with the results for
each project is saved in the same directory as the compiler output. For example:

<path_to_compiler_output>.CodeAnalysisLog.xml

The FxCopCmd.exe program that is included with MSVSCA can also generate results in the expected
XML format.

2. Run cov-import-msvsca, referencing the XML file(s) with MSVSCA results.

For example:

cov-import-msvsca --dir idir <xml_files> ...

195

http://msdn.microsoft.com/en-us/library/dd380629
http://msdn.microsoft.com/en-us/library/dd380629

cov-import-msvsca

The cov-import-msvsca command expects that the assemblies analyzed to generate the MSVSCA
XML files were compiled with debug information, and that the assembly, its debug symbol (pdb) file,
and original source code have not moved on the filesystem.

Imported MSVSCA results and Coverity Analysis results can be combined in the same intermediate
directory using --append. All C# results in an intermediate directory will be committed to a single
stream in Coverity Connect. If the intermediate directory only contains imported results, source files
in the relevant project that do not contain defects might not be stored and committed. (It is possible to
correct this with a supplementary cov-import-results --append with just source files.)

cov-import-msvsca tracks how many MSVSCA issues are in the XML input files and what
proportion of those are dropped because it is unable to associate them with a source code line. This
can occur if there is missing debug information and/or missing source files. If that proportion is greater
than 10%, it is reported as a user error (see --no-threshold-check below) and no issues are imported.

Only results that are generated by the Code Analysis with Visual Studio 2012 are officially supported,
but other versions are compatible. A warning is printed if an unsupported input file is specified, but the
tool attempts to import anyway.

Note

When cov-import-msvsca runs on high-density files (files with more than 100 issues that
also average more than 1 issue for every 10 lines of code), the console will print a warning that
names all the files that exceed the threshold, and the import process will exclude all issues
associated with the affected files from the intermediate directory. This change prevents the
Coverity Connect source browser from becoming too crowded with issues.

To suppress this density check (allowing all issues to be imported) in version
7.0, define the environment variable COVERITY_ALLOW_DENSE_ISSUES
(COVERITY_ALLOW_DENSE_ISSUES=1) when running the commands.

3. Commit the results to Coverity Connect.

Commit the results with cov-commit-defects, specifying the intermediate directory to which you
imported the MSVSCA results.

When you (or another user) log into Coverity Connect the MSVSCA issues are similar to other Coverity
Analysis issues, but the checker name has a prefix of MS.. The rest of the checker name uses the
Code Analysis ID. For example, MS.CA1303.

Options

--dir <intermediate_directory>
Path name to an intermediate directory that is used to store the results of the build and analysis.

--append
Specify that issues should be appended to the intermediate directory. Without --append, existing C#
issues are deleted before storing the imported issues.

196

cov-import-msvsca

See also, --output-tag.

--codepage <identifier>
Specifies Microsoft code page source encoding. <identifier> is an integer represents the code
page identifier, for example --codepage 1201. For the list of code page identifiers, see http://
msdn.microsoft.com/en-us/library/windows/desktop/dd317756%28v=vs.85%29.aspx .

Source with a BOM will have the encoding auto-detected, even if --codepage or --encoding
is specified. However, if you specify --encoding, cov-import-msvsca will log a warning
recommending that you use --codepage instead. --codepage results in using the .NET
mechanisms for decoding, which more closely mimic the Microsoft tools.

You cannot use --codepage and --encoding together.

--encoding <encoding_name>
Specify that source files are read using the named character encoding, such as UTF-8. The default
is based on detection of byte-order marks and falling back on the operating environment default
character encoding. For a list of encoding options, see --encoding <enc> from cov-emit.

--no-threshold-check
By default, if more than 10% of reported issues do not have file and line information because their
referenced assemblies, their associated pdbs, or referenced source files (either from the MSVSCA
XML file(s) or assembly pdb) are missing, then cov-import-msvsca will fail without importing any
issues and print an informative error message that mentions --no-threshold-check. However,
if --no-threshold-check is specified, these messages are just informative and are not treated
as an error. The defects that depend on the missing information are omitted from the results and the
remaining issues are imported normally.

--output-tag <name>
Specifies a non-default location within the intermediate directory for the results of one or more
imports. The name can be anything you choose, using characters allowed in file names. When
specified without the --append option, prior results found in this location are replaced. When specified
with --append, new results are added to the result set.

@@<response_file>
Specify a response file that contains a list of additional command line arguments, such as a list of
input files. Each line in the file is treated as one argument, regardless of spaces, quotes, etc. The file
is read using the platform default character encoding. Using a response file is recommended when
the list of input XML files is long or automatically generated.

Optionally, you can choose a different encoding, by specifying it after the first "@". For example:

cov-import-msvsca [OPTIONS] @UTF-16@my_response_file.txt

You must use a supported Coverity encoding, listed under the cov-build --encoding option.

--skip-unrecognized
By default, cov-import-msvsca fails if a specified input file is not in a recognized format or if the
list of input files is empty. If --skip-unrecognized is specified, files in an unrecognized format are

197

http://msdn.microsoft.com/en-us/library/windows/desktop/dd317756%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd317756%28v=vs.85%29.aspx

cov-import-msvsca

simply skipped with a warning, and the list of files can be empty. Thus, the translation of any input
files in the recognized format proceeds normally, even if there are none.

Exit codes

Most Coverity Analysis commands can return the following exit codes:

• 0: The command successfully completed the requested task.

• 1: The requested task is complete, but it did not return (or find) any results. Note that some Coverity
Analysis commands do not return this error code.

• 2: The command was unable to complete the requested task. This error typically includes an error
message and some remediation advice.

• 4: An unexpected error occurred. This error should not occur when the product is used in a supported
way. Very likely, the requested task was not completed. This error typically provides some diagnostic
and/or debugging output, such as a stack trace.

For exceptions, see cov-commit-defects(Coverity 2020.12 Command Reference), cov-analyze, and cov-
build.

See Also

cov-commit-defects

198

Name
cov-import-results Import third-party issues into Coverity Connect

Synopsis

cov-import-results dir [--append] <filename>

Description

cov-import-results is the command tool for the Coverity Connect Third Party Integration Toolkit.
It imports to the intermediate directory source code files of any type and any issues pertaining to those
source files generated by third-party analysis tools.

This command imports third party issue information through a specified JSON import file (<filename> in
the above syntax).

Note

When cov-import-results runs on high-density files (files with more than 100 issues that also
average more than 1 issue for every 10 lines of code), the console will print a warning that names
all the files that exceed the threshold, and the import process will exclude all issues associated
with the affected files from the intermediate directory. This change prevents the Coverity Connect
source browser from becoming too crowded with issues.

To suppress this density check (allowing all issues to be imported) in version
7.0, define the environment variable COVERITY_ALLOW_DENSE_ISSUES
(COVERITY_ALLOW_DENSE_ISSUES=1) when running the commands.

See Using the Third Party Integration Toolkit for information about using the Third Party Integration
Toolkit and creating the JSON import file.

Options

--append
Append issues to any issues that exist in the intermediate directory. If --append is absent, all of the
issues in the intermediate directory are deleted before importing and analysis summaries will not be
captured.

If --append is present, they are not deleted.

See also, --output-tag.

--dir <intermediate_directory>
Path name to an intermediate directory that is used to store the results of the build and analysis.

–<lang>
The value for lang may be cpp, cs, java, javascript, objc, php, python2, python3, ruby,
scala, swift, text-files, or vb.

This option sets the source language and analysis domain in the output error.xml file.

199

cov_analysis_administration_guide.pdf#save_tpit

cov-import-results

• For cpp, cs, and java, the corresponding domain is STATIC_C, STATIC_CS, STATIC_JAVA, or
DYNAMIC_JAVA.

• For all other source languages, the domain is OTHER.

You can only import results for one source language per invocation of cov-import-results.
However, you can use the --append option to add results attributed to other source languages
before committing the results to Coverity Connect.

See also, --output-tag.

--no-banner
Hide the version of Coverity Analysis and build number.

--output-tag <name>
Specifies a non-default location within the intermediate directory for the results of one or more
imports. The name can be anything you choose, using characters allowed in file names. When
specified without the --append option, prior results found in this location are replaced. When
specified with --append, new results are added to the result set.

--strip-path <path>, -s <path>
Strips the prefix of a file name path in error messages and references to your source files. If you
specify the --strip-path option multiple times, you strip all of the prefixes from the file names, in
the order in which you specify the --strip-path argument values.

This option is also available with cov-commit-defects and cov-analyze.

The leading portion of the path is omitted if it matches a value specified by this option. For example, if
the actual full pathname of a file is /foo/bar/baz.c, and --strip-path /foo is specified, then
the name attribute for the file becomes /bar/baz.c.

Note

Coverity recommends using this option for a number of reasons:

You can enhance end-to-end performance of the path stripping process by using this option
during the analysis of your source code, rather than when committing the analysis results to
Coverity Connect.

It shortens paths that Coverity Connect displays. It also allows your deployment to be more
portable if you need to move it to a new machine in the future.

Shared options

--debug, -g
Turn on basic debugging output.

--ident
Displays the version of Coverity Analysis and build number.

200

cov-import-results

--info
Displays certain internal information (useful for debugging), including the temporary directory, user
name and host name, and process ID.

--tmpdir <tmp>, -t <tmp>
Specifies the temporary directory to use. On UNIX, the default is $TMPDIR, or /tmp if that variable
does not exist. On Windows, the default is to use the temporary directory specified by the operating
system.

Exit codes

Most Coverity Analysis commands can return the following exit codes:

• 0: The command successfully completed the requested task.

• 1: The requested task is complete, but it did not return (or find) any results. Note that some Coverity
Analysis commands do not return this error code.

• 2: The command was unable to complete the requested task. This error typically includes an error
message and some remediation advice.

• 4: An unexpected error occurred. This error should not occur when the product is used in a supported
way. Very likely, the requested task was not completed. This error typically provides some diagnostic
and/or debugging output, such as a stack trace.

For exceptions, see cov-commit-defects(Coverity 2020.12 Command Reference), cov-analyze, and cov-
build.

201

Name
cov-import-scm Collects change data for source files from the SCM.

Synopsis

cov-import-scm --scm <scm_type> --dir <intermediate_directory> [--filename-
regex <regex>] [--scm-tool <tool_path>] [--scm-project-root <root_path>] [--
scm-tool-arg <tool_arg>] [--scm-command-arg <command_arg>] [--log <log_path>]
[--ms-delay <int>] [--OPTIONS]

Description

The cov-import-scm command simplifies the process of retrieving the SCM change data for source
files and adding them to the emit directory. This command automates the following command line flow:

1. cov-manage-emit list-scm-unknown

2. cov-extract-scm

3. cov-manage-emit add-scm-annotations

Options

--dir <intermediate_directory>
Specifies the intermediate directory that is used to store the emit repository.

--error-threshold <percentage>
Sets a threshold for the percentage of successful extractions (from cov-extract-scm) below
which this import command (cov-import-scm) will display a warning, indicating the need to check
for a potential problem. Note, however, that cov-import-scm will attempt to add all successful
extractions to the emit. The default percentage is 80.

--filename-regex <regex>
Allows finer control over SCM information gathering. Information is gathered only for filenames that
match the regex. Any files that do not match are skipped. This is beneficial when there are specific
locations where code is known to exist under SCM control and other locations where it is not (such as
system headers).

--log <log_path>
Specifies the path to a file to which executable and other recoverable errors encountered in cov-
extract-scm are written.

--ms-delay <int>
Specifies a delay in milliseconds between calls to the underlying SCM. This is useful for preventing a
denial of service situation.

--scm <scm_type>
Specifies the name of the source control management system. For this option to function correctly,
your source files must remain in their usual locations in the checked-out source tree. If the files are
copied to a different location after checkout, the SCM query will not work.

202

cov-import-scm

Possible scm_type values:

• Accurev: accurev

• Azure DevOps Server (ADS): ads

Windows only.

• ClearCase: clearcase

• CVS: cvs

• GIT: git

• Mercurial: hg

• Perforce: perforce

• Plastic: plastic|plastic-distributed.

Use plastic when working in a non- or partially-distributed Plastic configuration. Use plastic-
distributed when working in a fully-distributed Plastic configuration.

• SVN: svn

• Team Foundation Server (TFS): tfs

Windows only.

For usage information for the --scm option, see cov-extract-scm.

Note

The following commands or setup utilities must be run before cov-import-scm in order to
successfully communicate with the SCM server:

• accurev:

Login command

• perforce

The environment variable P4PORT should be set to the value expected by the p4 tool.

• tfs or ads:

Windows credentials in Credential Manager to access the TFS or ADS server

--scm-command-arg <command_arg>
This option has been deprecated. Instead of using --scm-command-arg arg1, use --scm-param
annotate_arg=arg1. Specifies additional arguments that are passed to the command that gathers
the last modified dates. The arguments are placed after the command and before the target file. For
usage information, see cov-extract-scm .

203

cov_command_ref.pdfta_uisng_arg_tags

cov-import-scm

---scm-param
Specify extra arguments to be passed to the SCM tool in a context-aware manner. For usage
information of the --scm option, see cov-extract-scm.

--scm-project-root <root_path>
Specifies a path that represents the root of the source control repository. This option is only used
when specifying accurev as the value to --scm. When this used, all file paths that are used to
gather information are interpreted as relative to this project-root path. For usage information, see
cov-extract-scm .

--scm-tool <tool_path>
Specifies the path to an executable that interacts with the source control repository. If the executable
name is given it is assumed that it can be found in the path environment variable. if not provided uses
the default tool for the specified --scm system. For usage information, see cov-extract-scm .

--scm-tool-arg <tool_arg>
This option has been deprecated. Instead of using --scm-tool-arg arg1, use --scm-param
tool_arg=arg1. Specifies additional arguments that are passed to the SCM tool specified in the
--scm-tool option that gathers the last modified dates. The arguments are placed before the
command and after the tool. This option can be specified multiple times. For usage information, see
cov-extract-scm .

Shared options

--debug, -g
Turn on basic debugging output.

--ident
Displays the version of Coverity Analysis and build number.

--verbose <0, 1, 2, 3, 4>, -V <0, 1, 2, 3, 4>
Set the detail level of command messages. Higher is more verbose (more messages). Defaults to 1.

Exit codes

Most Coverity Analysis commands can return the following exit codes:

• 0: The command successfully completed the requested task.

• 1: The requested task is complete, but it did not return (or find) any results. Note that some Coverity
Analysis commands do not return this error code.

• 2: The command was unable to complete the requested task. This error typically includes an error
message and some remediation advice.

• 4: An unexpected error occurred. This error should not occur when the product is used in a supported
way. Very likely, the requested task was not completed. This error typically provides some diagnostic
and/or debugging output, such as a stack trace.

204

cov_command_ref.pdfta_uisng_arg_tags
cov_command_ref.pdfta_uisng_arg_tags
cov_command_ref.pdfta_uisng_arg_tags

cov-import-scm

For exceptions, see cov-commit-defects(Coverity 2020.12 Command Reference), cov-analyze, and cov-
build.

See Also

cov-extract-scm

cov-manage-emit

205

Name
cov-install-updates Manage and install updates.

Synopsis

cov-install-updates <SUB-COMMAND> <COMMAND_OPTIONS>

Description

The cov-install-updates command manages the installation of incremental, minor, or major
Coverity Analysis updates. Use it with its sub-commands to query and list the available updates, install
the updates in order, and if required, roll back an undesired update. The cov-install-updates
command requires one of the five sub-commands listed below. See each sub-command section to see
the options that apply to that sub-command.

Note

To list major version updates (upgrades), specify the --show=upgrades option.

To install a major version update, you must use the --end-version sub-command.

Sub-Commands

check
Communicates with the Coverity Connect server and checks if there are any Coverity Analysis
updates available newer than the installed Coverity Analysis version, as it appears in the
VERSION.xml file. If there are updates available, it displays on the console the number of updates
available to download and install. If there are updates available, the exit code is 0. If there are no
updates available, the exit code is 1.

This sub-command requires connection options sufficient to access update information from a
connected CIM server. For details, see the Connection Options section.

This sub-command also accepts the following options as described in the Sub-Command Options
section.

--installer-dir

--installation-dir

install
Determines the upgrade path, downloads the available Coverity Analysis update files, creates a
backup of the current Coverity Analysis installation, lists the updates and any warnings, and then
installs each Coverity Analysis update in order. Some updates can impact your normal workflow:
therefore, they contain a warning message that prints to the console. If any warnings are present,
the install sub-command will wait for confirmation before proceeding with the installation. If not
confirmed, the installation will abort. See the --continue sub-command option for more information
about installation confirmation.

The install command selects from available updates to create an update path from the currently-
installed version to the selected end-version. See the --end-version option for more details.

206

cov-install-updates

This sub-command requires connection options sufficient to access update information from a
connected CIM server. For details, see the Connection Options section.

This sub-command also accepts the following options as described in the Sub-Command Options
section.

--continue

--end-version

--force

--installer-dir

--installation-dir

The install sub-command returns with an exit code of 0 if updates were successfully installed. The
exit code is 1 if the command completed successfully but no updates were installed.

list
Displays a list of the available Coverity Analysis updates with a brief description for each update.

This sub-command requires connection options sufficient to access update information from a
connected CIM server. For details, see the Connection Options section.

This sub-command also accepts the following options as described in the Sub-Command Options
section.

--installer-dir

--installation-dir

--show

rollback
Rolls back the Coverity Analysis installation to the state it was in before you last ran the cov-
install-updates install command. Since it is possible for the install sub-command to
install several updates within the same session, the effect of the rollback sub-command is to roll
back all the updates.

Note

Occasionally, an update package may contain a post-installation script. When this occurs, the
installer will discontinue installing packages in the selected sequence and transfer control to the
script. The script performs special actions and then normally continues the installation by re-
invoking cov-install-updates. When this occurs, rolling back an installation can only return to the
installation state that existed following execution of the script.

This sub-command accepts the following options as described in the Sub-Command Options section.

--force

207

cov-install-updates

--installer-dir

--installation-dir

version
Displays the version number for the installed Coverity Analysis, as it appears in the VERSION.xml
file.

This sub-command accepts the following options as described in the Sub-Command Options section.

--installation-dir

Sub-Command Options

--continue <answer>
By default, the install sub-command waits for confirmation if there are any warnings that impact
your current installation. You can use the --continue option to automate this confirmation. You
must use the --continue option with great care, otherwise you could inadvertantly impact your
installation and workflow.

For use in scripts, the --continue=yes option can be used to provide confirmation, allowing the
installation to proceed.

--end-version <version>
Specifies the last version, in the update path, to install. If there are newer available updates they will
not be installed. The --end-version value is a string that represents a specific release version, for
example, 2018.03-1. (You cannot specify a version older than the currently installed version.)

If you do not specify a specfic --end-version, then the default value is the newest update that has
the same base version (major release version) as the current installation.

Important

To install an upgrade (that is to upgrade to a newer major release) you must specify the --
end-version for the newer release.

--force
When used with the install sub-command, the installer applies the updates only to those files that are
in their original install state (were not altered). It skips updates for any altered files. When used with
the rollback sub-command, --force is a required option, which means the roll back cannot be
undone.

--installation-dir <path>
Provides a path to an alternate installation to be updated. If omitted, the installation containing this
cov-install-updates command is used.

--installer-dir <path>
Chooses a directory where the update list and downloaded installers are stored temporarily.
If omitted, a temporary directory is used.The temporary directory is removed after successful
completion of the cov-install-updates command.

208

cov-install-updates

--show upgrades | raw
When upgrades is specified, the list subcommand will list installer packages in an update path
that includes one or more upgrades (to a newer major release version). When raw is specified, all
available update packages will be listed — not just those that lie along a valid update path. Both
options can be specified using multiple --show options.

Note

An upgrade (as opposed to an update) installs the next major release, which usually requires a
re-emit and may include changes that cause churn.

Connection Options

The check, list and install sub-commands accept the options in this list. These sub-commands
must connect to a Coverity Connect instance. The options in this list provide the information needed to
establish that connection.

Minimally, the --host, --port (or -https-port) and --auth-key-file (or --user and --
password) options are required.

--auth-key-file <filename>
This option specifies the location of an authentication key file that was previously created. It is used
to connect to the Coverity Connect server. Authentication keys can be registered with a Coverity
Connect instance and used for authentication in place of the --user and --password options.
For information about Working with authentication keys, see Coverity Platform 2020.12 User and
Administrator Guide

--authenticate-ssl
This is equivalent to --on-new-cert distrust.

--certs <filename>
In addition to CA certificates obtained from other trust stores, use the CA certificates in the given
<filename>. For information on the new SSL certificate management functionality, see Coverity
Platform 2020.12 User and Administrator Guide

--connect-timeout <n>
Sets the timeout for establishing connections to <n> seconds. If a connection to Coverity Connect
cannot be established within this time, the transaction is aborted. This timeout cannot be disabled.
The default value is 60 seconds.

--host <coverityconnect_host> --port <coverityconnect_port>
The hostname and port of the Coverity Connect instance to download Coverity Analysis updates
from. --port is an optional property. If --port is not specified on the command line, the default is
8080 without --ssl and 8443 with --ssl. For commands that accept Coverity Connect options, the
--host option is required.

--https-port <coverityconnect_port>
Using --https-port <coverityconnect_port> is equivalent to specifying --port
<coverityconnect_port> --ssl.

209

cov_platform_use_and_admin_guide.html#cim_using_auth_keys
cov_platform_use_and_admin_guide.html#cim_using_auth_keys
cov_platform_use_and_admin_guide.html#cim_ssl_client_cert_mgmt
cov_platform_use_and_admin_guide.html#cim_ssl_client_cert_mgmt

cov-install-updates

--max-retries <n>
Sets the number of times to retry failed or aborted requests with Coverity Connect to <n>. Note that
this does not include the initial attempt, so a setting of 1 results in at most 2 request attempts. A
setting of 0 means to never retry failed requests. The default value is 1.

--on-new-cert <trust | distrust>
Indicates with --ssl whether to trust (with trust-first-time) self-signed certificates, presented by the
server, that the application has not seen before.

--response-timeout <n>
Sets the response timeout to <n> seconds. For every request for data sent to Coverity Connect, if a
response is not received within this time, the request is aborted. A setting of 0 disables this timeout.
The default value is 300 seconds.

--sleep-before-retry <n>
Sets the time to sleep before retrying a failed or aborted request with Coverity Connect to <n>
seconds. A setting of 0 disables this sleep. The default value is 1 second.

--ssl
Enables SSL encryption for communication with Coverity Connect.

--user <username>, --password <password>
The username and password used to log into the Coverity Connect instance. These will be encrypted
if --ssl is used. These options are required if the --auth-key-file option is not present.

Shared Options

--debug, -g
Turn on basic debugging output.

--ident
Displays the version of Coverity Analysis and build number.

--verbose <0, 1, 2, 3, 4>, -V <0, 1, 2, 3, 4>
Set the detail level of command messages. Higher is more verbose (more messages). Defaults to 1.

Exit codes

Most Coverity Analysis commands can return the following exit codes:

• 0: The command successfully completed the requested task.

• 1: The requested task is complete, but it did not return (or find) any results. Note that some Coverity
Analysis commands do not return this error code.

• 2: The command was unable to complete the requested task. This error typically includes an error
message and some remediation advice.

• 4: An unexpected error occurred. This error should not occur when the product is used in a supported
way. Very likely, the requested task was not completed. This error typically provides some diagnostic
and/or debugging output, such as a stack trace.

210

cov-install-updates

For exceptions, see cov-commit-defects(Coverity 2020.12 Command Reference), cov-analyze, and cov-
build.

Examples

The following examples illustrate the use of the cov-install-updates command.

This command checks the number of updates available:

C:\Users\thildeb>cov-install-updates check --host=emmett --port=14111 --user=userName
 --password=aPassword

5 updates are available.

This command checks the content of available updates:

C:\Users\thildeb>cov-install-updates check --host=emmett --port=14111 --user=userName
 --password=aPassword

5 updates are available.

Updates available for product: Coverity Static Analysis

**> 2018.03-1
User documentation errata and updates.

**> 2018.03-2
Add a script to simplify model extraction from JavaScript frameworks.

**> 2018.03-3
Expanded Japanese documentation.

**> 2018.03-4
Improvement and expansion of selected security checkers.

**> 2018.03-5
Selected new QA checkers are now enabled for the Swift language.

This command displays the version number:

C:\Users\thildeb>cov-install-updates version
2018.03

This example shows the installation of updates up to the specified version number:

C:\Users\thildeb>cov-install-updates install --host=emmett --port=14111 --
user=userName --password=aPassword
 --end-version=2018.03-1
[STATUS] Downloading updates list
[INFORMATION] 1 update to install.
[STATUS] Downloading cov-analysis-win64-2018.03-1-update.zip
[STATUS] Unpacking cov-analysis-win64-2018.03-1-update.zip

211

cov-install-updates

[INFORMATION] Selected installers:
------- 2018.03 ==> 2018.03-1
[STATUS] Validating installers
[STATUS] Listing backup files from cov-analysis-win64-2018.03-1-update.zip
[STATUS] Installing cov-analysis-win64-2018.03-1-update.zip
[STATUS] Verifying current installation.
[STATUS] Done.

This example illustrates the use of the rollback subcommand:

C:\Users\thildeb>cov-install-updates rollback --force
[STATUS] Rolling back from C:\Program Files\Coverity\Coverity Static Analysis
\.coverity\rollback
[STATUS] Done.

See Also

cov-commit-defects

212

Name
cov-link Create an intermediate directory with resolved duplicate function calls for C/C++.

Synopsis

cov-link {--collect | <link_file>...} [--compile-arg <arg> | --compile-arg-
regex <regex> | --no-compile-arg <arg> | --no-compile-arg-regex <regex> | --
source-file-regex <source_file_regex>]... {{--output-dir <output_dir> | --
output-file <output_file>} --dir <intermediate_dir>} [OPTIONS]

Description

Sometimes the same file is compiled several times with different command-line options. To avoid errors
in function-call resolution (especially in C code, which does not have name mangling), you can use the
cov-link command to create a new intermediate directory that contains a subset of the files that are
in your original intermediate directory. This new intermediate directory can then be analyzed without
function-call resolution issues.

The input consists of an intermediate directory (with an emit repository), plus a set of translation units.
The translation units are either collected dynamically from the emit repository with the --collect option,
or they are specified inside one or more of the link files that were previously created with cov-link.

Typically, cov-link is first called with the --collect option to produce a link file. You can look at this
file for clues on which filters to apply to generate an intermediate directory with just the subset of files that
you are interested in. Once you have an idea of which filters you need to apply, you can call cov-link
again with your filters to produce a new intermediate directory. This new intermediate directory can then
be analyzed.

To use the cov-link command:

1. Run cov-link with the --collect and --output-file options. This operation collects linkage
information on all files compiled in an emit directory.

2. Create one or more additional link files by filtering information using either an argument or a portion of
the pathname that was used during command-line compilation. Compiled files are identified based on:

• A portion of the pathname to the file when it was compiled. Use the --source-file-regex option
to specify a Perl regular expression to use when looking at the pathname.

• The options given on the command line when it was compiled. Use the --compile-arg, --
compile-arg-regex, --no-compile-arg, and --no-compile-arg-regex options to group
by command-line options.

3. Use the link files created in the previous steps, and the emit repository in the original intermediate
directory, to create a new intermediate directory with an emit repository with resolved function calls.

4. Use cov-analyze on the new intermediate directory.

For more information, including detailed examples, see the Coverity Analysis 2020.12 User and
Administrator Guide.

213

cov-link

Options

Input options:
You must specify one of the following options. You must not use both together.

--collect, -co
Collects linkage information from all of the entries in an emit repository.

<link_file>
Specifies which source files are linked together. You can specify multiple link files.

Filter options:
These options are not required but can be specified multiple times.

--compile-arg <arg>, -a <arg>
Specify an argument that was given when compiling the files on the command line.

--compile-arg-regex <regex>, -r <regex>
Specify an argument that was given when compiling the specified files, as a Perl regular
expression.

--no-compile-arg <arg>, -na <arg>
Specify an argument that was NOT given when compiling the files on the command line.

--no-compile-arg-regex <regex>, -nr <regex>
Specify an argument that does NOT match any argument given when compiling the files on the
command line, as a Perl regular expression.

--source-file-regex <source_file_regex>, -s <source_file_regex>
Specify a portion of the source file pathname that was used during compilation, as a Perl regular
expression. You can use a forward slash (/) as a directory separator in this string, for example
/proj1/ matches if proj1 is a directory that is in the pathname. Note that on Windows, the
matching is case-insensitive, and (/) is used as the directory separator (not \). You can specify
this option more than once (as in -s <source_file_regex> -s <source_file_regex>).
If there are several -s options, the source file's name only needs to match one of the specified
expressions.

Output options:
You must specify one of the following options. You must not use both together.

--output-dir <output_dir>, -odir <output-dir>
Specifies an intermediate directory for the cov-link command to create. If you use this option,
you must also use the --dir option to this command.

Note that the --dir option to the cov-analyze command will use the specified
<output_dir> as its value.

--output-file <output-file>, -of <output-file>
Specifies the pathname to the link file that is created. If you use --collect, any existing file
with this name is replaced. If you specify --source-file-regex, any existing file with this
name is appended to.

214

cov-link

If you use this option, you must also use the --dir option to this command.

Shared options

--dir <intermediate_directory>
Path name to an intermediate directory that is used to store the results of the build and analysis.

--ident
Displays the version of Coverity Analysis and build number.

--verbose <0, 1, 2, 3, 4>, -V <0, 1, 2, 3, 4>
Set the detail level of command messages. Higher is more verbose (more messages). Defaults to 1.

Exit codes

Most Coverity Analysis commands can return the following exit codes:

• 0: The command successfully completed the requested task.

• 1: The requested task is complete, but it did not return (or find) any results. Note that some Coverity
Analysis commands do not return this error code.

• 2: The command was unable to complete the requested task. This error typically includes an error
message and some remediation advice.

• 4: An unexpected error occurred. This error should not occur when the product is used in a supported
way. Very likely, the requested task was not completed. This error typically provides some diagnostic
and/or debugging output, such as a stack trace.

For exceptions, see cov-commit-defects(Coverity 2020.12 Command Reference), cov-analyze, and cov-
build.

Examples

Create a link file based on an existing emit repository:

> cov-link --dir . --collect -of /usr/foo/all.link

Create a link file based source files with apache in the pathname:

> cov-link --dir . -s /apache/ -of /usr/foo/link_reports/apache.link \
 all.link

Create a link file based on the source files with apache_1.3.33 in the pathname, include only the files
that were compiled with the DEBUG macro defined on the command line, and then create an intermediate
directory with an emit repository:

> cov-link --dir . -a -DDEBUG -s /apache_1.3.33/ \
 -of /usr/foo/link_reports/apache1333_DEBUG.link all.link
> cov-link --dir . --output-dir emit_apache1333_DEBUG \
 /usr/foo/link_reports/apache1333_DEBUG.link

215

cov-link

Create a new emit repository based on the source files with apache_1.3.33 in the pathname, and
include only the files that were compiled with the DEBUG macro defined on the command line (same as
previous example, but without creating the intermediary link file):

> cov-link --dir . --collect -a -DDEBUG -s /apache_1.3.33/ \
 --output-dir emit_apache1333_DEBUG

See Also

cov-analyze

216

Name
cov-make-library Create a user model file from C/C++, Objective-C, Objective-C++, C#, Go, Java, Swift,
and Visual Basic source code.

Synopsis

cov-make-library [-of <modelfile>] [--security] [--checker-option <option-
setting>] [--classpath <directories_or_jar_files>] [-co <compiler>] [--
compiler-opt <compiler_option>] [--concurrency] [--enable CHECKER] [--disable
CHECKER] [--disable-default] [--disable-webapp-security] [--framework] [--
make-dc-config] [--quality] [--reference <referenced_assembly>] [--security]
[--security-file <license file>, -sf<license file>] [--sdk] [--enable-cgo-
for-go-models] [--webapp-security] [--target] <sources>

Description

The cov-make-library command creates user model files from source files. User model files contain
information that overrides what cov-analyze can derive for itself. See the Coverity 2020.12 Checker
Reference for more information about how to model source files. There are also examples in the
<install_dir>/library directory.

Note

The files in the <install_dir>/library directory should not be provided as arguments to cov-
make-library. You should instead create your own new files for models. Using the existing files
creates duplicate, identical user models and Coverity default models.

The file is appended if it already exists, and created if it does not exist. The search order used
to determine where to create the model file is the filename specified by -of or a default value of
<install_dir>/config/user_models.xmldb.

The cov-make-library command works by calling cov-emit to parse and emit the source files,
followed by cov-analyze, and then cov-collect-models to collect the analyzed models.

Default behavior
For C/C++, Objective-C, Objective-C++, Go, and Swift, the default behavior of this command is to
generate models for checkers that are enabled by default.

For Java, C#, and Visual Basic, the default behavior of this command is to generate a model for
use by all checkers, quality and security. Some of the command line options allow you to limit the
generation of models to those used by groups of checkers.

Source files are compiled as C, C++, Objective-C, Objective-C++, C#, Go, Java, Swift, or Visual Basic,
depending on their file extension:

• Compiled as C code: .c extension

• Compiled as Objective-C code: .m extension

• Compiled as C++ code: .cc, .CC, .cp, .cpp, .cxx, .c++, and with the exception of Windows, .C
extensions

217

cov-make-library

• Compiled as Objective-C++ code: .mm extension

• Compiled as C# code: .cs extension

• Compiled as Go code: .go extension

• Compiled as Java code: .java extension

• Compiled as Swift code: .swift extension

• Compiled as Visual Basic code: .vb extension

Options

C options and related standards
The following options indicate that c files may be compiled with the corresponding standard. The
default is --c11.

• --c11

• --c90

• --c99

C++ options and related standards
The following options indicate that c++ files may be compiled with the corresponding standard. The
default is --c++17.

• --c++11

• --c++14

• --c++17

• --c++98

--checker-option <checker_name>:<option>[:<option_value>]
Passes the specified checker option to cov-analyze when invoking cov-analyze after the library
has been built.

Example:

UNINIT:enable_deep_read_models:true

Checker options and their default values are documented in the Coverity 2020.12 Checker Reference
 .

Caution

The cov-analyze command allows -co as a shorthand form of this option, but cov-make-
library already uses -co to designate the compiler, so don't confuse these option names.

218

cov_checker_ref.pdf
cov_checker_ref.pdf

cov-make-library

--classpath <directories_or_jar_files>
[Java option] Lists directories or Jar files, which must be separated by a semi-colon (;) on the
Windows platform, and by a colon (:) on other platforms. Like javac, cov-make-library
searches these entries for bytecode with the referenced classes when attempting to resolve names in
source files. See also the --classpath option to cov-emit-java. For cov-make-library, it is
possible to use stubs.

--compiler <compiler>, -co <compiler>
[C/C++ option] Specifies a previously configured compiler (configured with cov-configure --
compiler) that is used to determine how to compile the files (using cov-translate). This is useful
if you need to include standard headers. For example:

> cov-configure --compiler ABC
> cov-make-library --compiler ABC foo.c

--compiler-opt <opt>
[C/C++ option] Specify an option to the compiler specified by --compiler (or cov-emit is no
compiler was specified). For instance, you can specify an include directory with --compiler-opt -
I --compiler-opt include_dir

--concurrency
[C/C++ option] Use this option if you write a custom model using concurrency primitives.

--disable <CHECKER>
[C/C++ option. Deprecated for C# and Java.] Disables the creation of function models used by the
specified checker.

Note that this option disables a checker only if it is enabled by default and not enabled in any other
way, for example, through a group enablement option such as --all.

--disable-default
[C/C++, C#, Java, Visual Basic option] Disables the creation of function models for all checkers. Use
options such as --concurrency, --security, --quality, and --webapp-security to choose
a set of checkers for which to generate models.

When using this option, you must also use an enablement option, such as --quality or --
security. It is an error to use --disable-default without such an option.

--disable-webapp-security
[Java, C#, Visual Basic option] Disables the creation of models for Web application security checkers
(for example, XSS and SQLI). You typically use this option when you only want to generate models
for Java quality checkers. For a complete list of Web application security checkers, see the "Coverity
Checkers" table in the Coverity 2020.12 Checker Reference.

See also, --webapp-security and --quality.

--enable <CHECKER>
[C/C++ option. Deprecated for C# and Java.] Enables the creation of function models used by the
specified checkers. If you want the specified checkers to check the source that uses your custom
models, you must enable those checkers with this option.

219

cov-make-library

--enable-cgo-for-go-models
[Go option] Enables building Go models for code that contain C dependencies. These models are
disabled by default.

C code that is compiled as part of processing CGo dependencies will not be captured for analysis by
cov-make-library.

For code bases that contain CGo dependencies (in other words, Go code that imports the pseudo-
package "C"): Your environment must be configured to successfully compile such code using the
native Go compiler before you execute cov-make-library on your modeling code. This is required
because the cov-emit-go command, the Go compiler, and the CGo tool, must access additional
tools to process such code (they execute a C compiler and generate bindings for the compiled C
functions).

For more information about CGo support, see “Table 8.4. Supported compilers: Coverity Analysis for
Go” in the Coverity 2020.12 Installation and Deployment Guide.

--framework
[Swift only] Use this option to specify the directory containing third-party frameworks that are used in
the model.

--java
[Deprecated] Deprecated in version 7.0 because the command automatically detemines the language
based on the Java file extension.

--make-dc-config
[C/C++ only] Upgrades models for the deprecated SECURE_CODING checker to
DC.CUSTOM_CHECKER checker configurations. Specifically, the option searches for
__coverity_secure_coding_function__ models in the source code and generates a JSON
configuration file for a custom checker called DC.CUSTOM_CHECKER. The configuration file
specifies function names and information found in the custom models.

Example:

> cov-make-library -of config.json --make-dc-config my_models.c

To use the resulting configuration file in the analysis, you simply pass it through the --dc-config
option.

Example:

> cov-analyze --dir <intermediate_dir> --dc-config config.json -en
 DC.CUSTOM_CHECKER

The --make-dc-config option is also available to cov-collect-models.

--output-file <modelfile>, -of <modelfile>
Specify the name of the output model file. The default file name is user_models.xmldb, at
<install_dir_sa>/config/.

220

cov-make-library

--quality
[C/C++, C#, Java, Visual Basic option] Generates models for quality checkers, including concurrency
checkers. Use this option with --disable-default to generate models for only the quality
checkers. For a list of quality checkers, see the "Coverity Checkers" table in the Coverity 2020.12
Checker Reference.

See also, --disable-default, --disable-webapp-security, and --webapp-security.

--reference <referenced_assembly>
[C#, Visual Basic option] Specify a referenced assembly.

--sdk
[Swift only] Use this option to specify the iOS SDK location. It is useful when any aspects of the
model refer to iOS APIs located in the SDK.

--security
[C/C++ option] Use this option if you write a custom model using security-related checkers such as
TAINTED_DATA, TAINTED_STRING, STRING_SIZE, and STRING_NULL.

--security-file <license file>, -sf <license file>
Path to a valid Coverity Analysis license file. If not specified, this path is given by the security_file tag
in the Coverity configuration, or .security in the same directory as cov-analyze. A valid license
file is required to run the analysis.

--target
[Swift only] Use this option to specify the iOS target.

--webapp-security
[Web application security option] Generates models for Web application security checkers (for
example, XSS and SQLI). Use this option with --disable-default to generate models for only
the Web application security checkers. For a complete list of Web application security checkers, see
the "Coverity Checkers" table in the Coverity 2020.12 Checker Reference.

See also, --disable-default, --disable-webapp-security, and --quality.

Shared options

--config <coverity_config.xml> , -c <coverity_config.xml>
Uses the specified configuration file instead of the default configuration file located at
<install_dir_sa>/config/coverity_config.xml.

--debug, -g
Turn on basic debugging output.

--ident
Displays the version of Coverity Analysis and build number.

--info
Displays certain internal information (useful for debugging), including the temporary directory, user
name and host name, and process ID.

221

cov-make-library

--tmpdir <tmp>, -t <tmp>
Specifies the temporary directory to use. On UNIX, the default is $TMPDIR, or /tmp if that variable
does not exist. On Windows, the default is to use the temporary directory specified by the operating
system.

--verbose <0, 1, 2, 3, 4>, -V <0, 1, 2, 3, 4>
Set the detail level of command messages. Higher is more verbose (more messages). Defaults to 1.

Exit codes

Most Coverity Analysis commands can return the following exit codes:

• 0: The command successfully completed the requested task.

• 1: The requested task is complete, but it did not return (or find) any results. Note that some Coverity
Analysis commands do not return this error code.

• 2: The command was unable to complete the requested task. This error typically includes an error
message and some remediation advice.

• 4: An unexpected error occurred. This error should not occur when the product is used in a supported
way. Very likely, the requested task was not completed. This error typically provides some diagnostic
and/or debugging output, such as a stack trace.

For exceptions, see cov-commit-defects(Coverity 2020.12 Command Reference), cov-analyze, and cov-
build.

See Also

cov-analyze

cov-emit

cov-emit-go

cov-collect-models

222

Name
cov-manage-emit Manage an intermediate directory.

Synopsis

cov-manage-emit <GENERAL OPTIONS> <COMMANDS> <COMMAND OPTIONS>

GENERAL OPTIONS:

[--cpp | --cs | --java]

{--dir <intermediate_directory>|--idir-library
<intermediate_directory_library>}

[--tu <tu_ids> | --tu-pattern <pattern>]

[--tus-per-psf <value>]

COMMANDS and COMMAND OPTIONS:

[add-other-hosts | check-integrity | delete-source | list-builds | repair |
reset-host-name]

[add <int_dir> | list | list-json | preprocess | link-file <out_file>]

[decompile-binary-tus-from-dir <decompile_options>]

extract-files --output-dir <dir> [--strip-path <path>]... {--regex <regex> |
<filename>...}

[{recompile | retranslate | retranslate-or-emit} <recompile_options>]

[find [OPTIONS]

[add-coverage [OPTIONS] | compute-coverability { --verbose } | delete-
coverage | delete-test-coverage [OPTIONS] | [list-coverage-known | list-
coverage-unknown] --output <out_file> {--filename-regex <regex>} {--count} |
remove-coverability {--verbose} | list-tests {--suitename <name>} {--count}]

[list-compiled-classes]

[add-to-library --dir <intermediate_directory>]

[remove-from-library --dir <directory_name>]

[export-json-build [OPTIONS]]

[import-json-build [OPTIONS]]

[list-json-schema-versions]

[Shared options]

223

cov-manage-emit

Description

The cov-manage-emit command is used to query and manipulate an emit repository. Each
intermediate directory contains a single emit repository that contains data for languages emitted via cov-
build, cov-emit, and other similar commands.

The cov-manage-emit command requires the --dir option, plus at least one sub-command. the cov-
manage-emit command line typically follows this pattern:

cov-manage-emit <general_options> <sub-command> <sub-command_options>

The sub-commands can be used for various operations, including:

• Repairing database integrity (repair).

• Recompiling (recompile).

• Decompiling (decompile).

• Copying information from one intermediate directory into another (add).

• Aggregating the results of a distributed build into a single intermediate directory (add-other-hosts).

• Listing source files (print-source-files).

• Listing AST definitions (find --print-definitions).

• Adding test coverage data for Test Advisor (add-coverage).

• Inputing and outputting SCM data (add-scm-annotations, dump-scm-annotations).

• Starting, stopping, and querying the emit server.

• Export C/C++ coverage data suitable for use with Test Advisor QA Edition.

The cov-manage-emit options are grouped by basic, options that cannot be filtered by translation units,
options that require translation unit filtering, options for listing emit database information, and options for
recompiling.

The cov-manage-emit command returns the following success or failure values:

• 0 – Success

• 2 – Error

• 4+ – Internal error, contact software-integrity-support@synopsys.com

Options

Basic options

Either the --dir option or --idir-library option is required. If you use a sub-command that uses
translation units, you can filter this information with the --tu or --tu-pattern option, or both.

224

cov-manage-emit

--dir <intermediate_directory>
Specifies an existing intermediate directory that was created with the cov-build command. While
certain other sub-commands (for example, add) allow you to specify intermediate directories, the one
specified with --dir is the directory modified by cov-manage-emit.

--idir-library <intermediate_directory_library>
Specifies the location of an intermediate directory library, which may contain multiple intermediate
directories created with the cov-build command. Certain sub-commands, such as start-
server, will optionally accept an intermediate directory library instead of a single intermediate
directory.

--cpp
Filters by C/C++ translation units on which this command operates or reports. The command will
fail with an informative error message if none of the translation units in the emit match any of the
specified language options.

--case-normalized-filename
By default, cov-manage-emit displays case-preserved file names in the output. Specifying this
option allows cov-manage-emit to display normalized file names (that is, names that are entirely
lower case).

For example (assuming you are on Windows and have a file in your emit named MyFile.c):

cov-manage-emit.exe --dir intdir --case-normalized-filename list

The output will include the following:

c:/cygwin/space/int_dir/myfile.c

Note

In previous releases, case-preserved file names were always printed for Java and C#
(regardless of --case-preserved-filename. As of the 7.5.0 release, Java and C# file
names will be case-preserved or case-normalized according to specification of this option (--
case-normalized-filename), like C/C++ file names. As a result, it is impossible to get the
old output of cov-manage-emit (which would case-normalize C/C++ but case-preserve Java/
C#) in a multi-language scenario.

--case-preserved-filename
Allows cov-manage-emit to display case-preserved file names. This option is enabled by default,
so you do not need to specify it with cov-manage-emit list. To switch to normalized file names,
use --case-normalized-filename.

--cs
Filters by C# translation units on which this command operates or reports. The command will fail with
an informative error message if none of the translation units in the emit subdirectory match any of
the specified language options.

--java
Filters by Java translation units on which this command operates or reports. The command will
fail with an informative error message if none of the translation units in the emit match any of the
specified language options.

225

cov-manage-emit

--preprocess-native
Invokes the native compiler to generate preprocessed output. The emit database is not modified by
this operation. The preprocessed output file is stored in the c/output/preprocessed subdirectory
of the intermediate directory. This option works only for C/C++ source code.

--tmpdir <tmp> or -t <tmp>
Specifies the temporary directory to use.

• On UNIX, the default is $TMPDIR, or /tmp if that variable does not exist.

• On Windows, the default is to use the temporary directory specified by the operating system.

--tu <translation_unit_id(s)>, -tu <translation_unit_id(s)>
Identifies a set of translation units (TUs), named by their numeric ID attribute(s). A translation unit
approximately maps to the output from a single run of a compiler. This option requires a comma-
separated list of id(s), and --tu can be specified multiple times. The union of all these identifier sets
is the set of TUs to operate on subsequently, for operations that work on TUs. It is an error if any
of the specified IDs do not correspond to any existing translation unit. To get the IDs for translation
units, use the list sub-command.

You can use the --tu and --tu-pattern options together.

--tu-pattern <translation_unit_pattern>, -tp <translation_unit_pattern>
Identifies a set of translation units specified with a translation unit pattern. The --tu-pattern option
can be specified multiple times. Matching TU sets are unioned together across all patterns.

Both --tu and --tu-pattern can be specified on a single command line. The final set of TUs
operated upon includes a given TU if it matches any specified translation unit pattern or its ID is listed
explicitly as an argument to --tu.

It is an error if at least one --tu-pattern argument is specified but no translation unit matches any
of the specified patterns.

You can get useful information on TUs with the list sub-command.

For more information, see Translation unit pattern matching.

--tu-sort <sort_spec>
Specifies the sort order for TU output. The <sort_spec> accepts the values listed below. To sort
on more than one attribute, you can use a non-empty, comma-separated list of values. Additionally,
to specify ascending or descending sort order for any attribute, you can add :a or :d (respectively)
directly after the attribute name. All attributes are ordered in ascending order by default.

The available sort attributes are:

• emittime: the time spent emitting TUs.

--tus-per-psf <value>
Indicates how the set of primary source files affects the set of selected TUs. The possible values are
as follows:

226

cov-manage-emit

• all: Select all TUs, possibly as specified by other TU filters. This is the default.

• latest: Select only the latest TU with a given primary source file according to the time of
compilation. If there are multiple TUs with the same primary source file within a single build,
a deterministic TU is chosen within that build, regardless of time of compilation, which allows
determinism in the case of parallel builds. This corresponds to the default set of TUs that cov-
analyze analyzes. That is, cov-analyze with --one-tu-per-psf corresponds to --tus-
per-psf=latest without any other filtering options (see the --one-tu-per-psf option to cov-
analyze).

With at least one -tu option and without a search pattern, the option has no effect. In this case,
the system includes only the TUs specified with -tu.

• non-latest: Select any but the latest TU with a given primary source file. This is applied after
search pattern filtering. The result is undefined if -tu is also used. For instance, to keep only one
TU per primary source file, run the following command:

cov-manage-emit --tus-per-psf=non-latest delete

Examples:

To list all the TUs that cov-analyze will operate on:

> cov-manage-emit --dir <intermediate_directory> \
 --tus-per-psf=latest list

To delete TUs and leave only the ones that cov-analyze would operate on:

> cov-manage-emit --dir <intermediate_directory> \
 --tus-per-psf=non-latest delete

Non-filtered sub-commands

These sub-commands cannot be filtered with translation unit options.

add-coverage <command_options>
Adds the coverage data contained in the specified file to the intermediate directory. Valid command
line options:

• --batch <filename>

Parses the specified file as batch commands to run. If this command option appears on the
command line, all other add-coverage command options on the command line are ignored.

add-coverage batch file format:

To efficiently add data from many separate coverage files, add-coverage supports batch files.
Each line in a batch file specifies a single batch command to be executed by add-coverage, and
batch commands are executed in the order of appearance in the batch file. The grammar for batch
commands is:

227

cov-manage-emit

BatchCommand ::= 'run' | BatchOption
 BatchOption ::= <option_name> ':' <length> ':' <value> <option_name>

A BatchOption batch command sets the specified option to the specified value for all subsequent
run batch commands. This value overrides any previous setting of the specified option. Valid
option names are any command line option available to the add-coverage command except for
the --batch command line option. If the command line option accepts a value, the option is
followed by a colon, then the string length of the value, then another colon, then the value itself.
If the command line option does not accept a value, only the option name is specified in the
corresponding BatchOption. When used in a BatchOption batch command, the leading '--' is
omitted from the option name.

The run batch command causes a single coverage file to be read and its data added to the
intermediate directory. The name of the coverage file to read from and other relevant settings are
set by the BatchOption batch commands prior to the run batch command.

The following is an example batch file:

suitename:8:FooSuite
testname:7:FooTest
teststart:19:2012-03-19 07:12:11
verbose
gcda:9:test.gcda
run
gcda:10:test2.gcda
run

The above example batch file is equivalent to the following commands:

> cov-manage-emit --dir apache_2111 \
add-coverage --suitename FooSuite --testname FooTest \
--teststart "2012-03-26" --verbose --gcda test.gcda

> cov-manage-emit --dir apache_2111 \
 add-coverage --suitename FooSuite --testname FooTest \
--teststart "2014-03-26" --verbose --gcda test2.gcda

Note

Note that any test-specific options in the batch file will be replaced with their default values
if they precede testname in the batch file. To avoid this, make sure the testsource,
teststart, teststatus, and testduration options are specified after the testname
option.

• --bb <filename>

Reads the specified file as a file containing coverage data in gcov bb format. If this option is
specified but the --bbg or --da option is not, the missing options will be inferred based on the
filename specified in this option.

• --bbg <filename>

228

cov-manage-emit

Reads the specified file as a file containing coverage data in gcov bbg format. If this option is
specified but the --bb or --da option is not, the missing options will be inferred based on the
filename specified in this option.

• --bullseye-csv

Specify the Bullseye CSV file from which to add coverage. This file can be generated from a
Bullseye .cov file using the Bullseye covbr tool. This can be generated with the command:

covbr --no-banner --quiet --csv --file <file.cov> --output <output.csv>

• --bullseye-verbose

Enables verbose diagnostic messages in the Bullseye CSV parser.

• --compilation-directory <dirname>

Uses the specified directory as the compilation directory. This is used to determine absolute paths
of files referenced in the coverage data.

• --coverage-file=<filename>

Where <filename> is the name of data captured using Function Coverage Instrumentation. See the
Test Advisor 2020.12 User and Administrator Guide for more information.

• The --coverage-file option cannot be used in combination with the --batch option.

• The --testname, --suitename, --testsource, --testsource-encoding, --
teststatus, --teststart, and --testduration options are ignored when used with the
--coverage-file option.

• --coverage-selection <coverage-selection>

Describes what coverage is to be selected when merging coverage. For example:

--coverage-selection "latest from all"

see Test Advisor 2020.12 User and Administrator Guide .

• --da <filename>

Reads the specified file as a file containing coverage data in gcov bbg format. If this option is
specified but the --bb or --bbg option is not, the missing options will be inferred based on the
filename specified in this option.

• --dry-run-list-tests

Indicates that execution will not actually merge coverage, but instead lists the tests which would be
included in the target intermediate directory. This can be used to validate that a given coverage-
selection option performs as intended.

229

test_advisor_use_and_admin_guide.pdf
test_advisor_use_and_admin_guide.pdf#ta_coverage_selection

cov-manage-emit

• --from-dir <source-idir>

This option indicates that add-coverage should use the specified intermediate directory as
the source of coverage data to be merged. It is an error to use this option with --from-idir-
library.

• --from-idir-library <mdir>

This option indicates that add-coverage should use the intermediate directory library in <mdir>
as the source of coverage data to be merged. It is an error to use this option with --from-dir.

• --gcov <filename>

Reads the specified file as a file containing coverage data in gcov text format.

• --gcov-version <version>

Parses gcno/gcda files that are derived from the specified version of gcc. This can be used
to override the version declared in the file header in case this is incorrect. Valid values for
<version> are of the form x.y, where x is the gcc major version number and y is the gcc minor
version number. The patch level is ignored. For example, gcc-4.6.3 would be specified with a
version of 4.6.

• --gcov-verbose

Enables verbose diagnostic messages in the gcov binary parser.

• --gcno <filename>

Reads the specified file as a file containing coverage data in gcov gcno format. If this option is
specified but the --gcda option is not, that option will be inferred based on the filename specified
in this option.

• --gcda <filename>

Reads the specified file as a file containing coverage data in gcov gcda format. If this option is
specified but the --gcno option is not, that option will be inferred based on the filename specified
in this option.

• --purecov-text <filename>

Reads the specified file as a file containing coverage data in PureCoverage text format.

By default, PureCoverage produces binary coverage files, however the tool has options to create
text files instead, for example:

For Linux:

purecov -export=results.txt foo.pcv

This command occurs after the instrumented binary execution as a post processing step.

230

cov-manage-emit

For Windows:

purecov /SaveTextData=results.txt <executable>

This occurs during the execution of the instrumented binary.

For official instructions about how to produce a text file, see the PureCoverage documentation .

The compute-coverability command line option must be run after the build and before
the analysis. This can be placed on the command line before or after the add-coverage
subcommand.

• --purecov-verbose

Enables verbose diagnostic messages in the Purecov parser.

• --strip-path <strip-path>

Specifies an additional strip-path to use when merging coverage. This option can be specified
multiple times.

see Test Advisor 2020.12 User and Administrator Guide .

• --suitename <suitename>

Identifies the coverage data as belonging to the named suite.

• --testduration

The duration (in ms) of the test.

• --testname <testname>

Identifies the coverage data as belonging to the named test.

• --testsource

The path to the 'sourcefile' for the test. This could be a test script, a Makefile, or a source file of a
unit test.

If the argument ends with a colon (:) followed by one or more digits, then the digits shall be taken
as the test source line number for the test, and only the portion of the argument before the colon
shall be used for the test source filename. A default line number of 1 is used if no line number is
provided.

• --testsource-encoding

The encoding of the file provided to --testsource.

• --teststatus [pass | fail | unknown]

231

http://www.ibm.com/developerworks/rational/products/purifyplus/
test_advisor_use_and_admin_guide.pdf#ta_how_cov_is_merged

cov-manage-emit

Identifies the status of the test identified by suitename and testname. Must be one of pass, fail
or unknown.

• --teststart <teststart>

Identifies start time of the test identified by suitename and testname.

See Appendix A, Accepted date/time formats for proper formatting of the <teststart> argument.

• --windriver-run

Reads the specified file as a file containing coverage data in Wind River Coverage Run format. For
implementation details, see Wind River VxWorks with Bullseye .

• --verbose

Enables verbose diagnostic messages.

add-other-hosts
Adds all translation units from emit repositories in the current intermediate directory but associated
with host names other than the current one. In general, an intermediate directory can contain several
emits, each associated with a specific host name. This option copies all of the TUs from emits
associated with other hosts into the emit associated with the current host. This sub-command can be
used to aggregate the results of a distributed build into a single intermediate directory.

add-scm-annotations --input <input_file>
Adds the SCM annotations for the source files in the specified input file to the source files in the
intermediate directory. The input file can be the output file of the cov-manage-emit dump-scm-
annotations option or the cov-extract-scm .

This option reads input from standard input when <input_file> is "-". Otherwise, it reads from the
specified file.

Note

If you pipe the output of cov-extract-scmdirectly to cov-manage-emit, for example:

cov-extract-scm --input input.txt --output - |
cov-manage-emit --dir idir add-scm-annotations --input -

This will always generate at least one error and the first line of output will read Extracting
SCM data for ### files.

add-test-capture-run [OPTIONS]
Adds a new test capture run to your intermediate directory. Note that in most use cases this is not
required. The valid command line options are as follows:

• --build-id <build ID>

Specifies the build ID of the test capture run.

232

test_advisor_use_and_admin_guide.pdf#ta_vxworks
cov_command_ref.pdfcov-extract-scm

cov-manage-emit

For more information about --build-id usage, see the description for the cov-build --build-id
option.

• --set-as-current

Sets the test capture run as the "current" run in the intermediate directory. Any addition of coverage
that does not specify a test capture run will use this test capture run.

• --success <value>

Specify if this test capture run was successful. Valid values are:

• true

• false

• unknown

• unset

• --test-capture-run-tag <tag>

Specifies a custom tag to allow for each selection of this test capture run. For example:

"linux-build"

• --test-capture-run-timestamp <timestamp>

Specifies the timestamp to use for the test capture run for this invocation. If it is not specified, the
current time will be used, which is the typical use case. This option is only provided as a way for
multiple test runs to use the same test capture run.

See Appendix A, Accepted date/time formats for proper formatting of the <timestamp> argument.

add-to-library --dir <intermediate_directory>
Adds an existing intermediate directory created by a cov-build command to the intermediate
directory library specified with the --idir-library option. The intermediate directory library will be
created if it does not exist.

The added intermediate directory is uniquely identified within the library by directory name, which is
the last non-empty component of the path to the intermediate directory.

For example:

> cov-manage-emit --idir-library libdir add-to-library --dir /home/user/my-idir

The added intermediate directory is uniquely identified by "my-idir". This directory can then be
referenced within the library using "my-idir".

check-compatible
Checks if an emit version is compatible with the current Coverity Analysis tools. For example:

233

cov-manage-emit

cov-manage-emit --dir idir check-compatible

This option returns 0 if it is compatible, 1 if it is not compatible, and 2+ if there is an error.

check-integrity
Checks database integrity. If this check fails, print errors to stdout and exits with a non-zero code.
Otherwise, exits with 0.

compute-coverability <command_options>
Computes coverability of lines in files that are missing coverage data in the intermediate directory.
The computed coverability is stored in the intermediate directory. Valid command line options:

• --trace-log <filename>

Writes trace log messages to the specified file. Given a filename of - (a hyphen), the messages will
be written to stderr. Any other value is interpreted as a file to open and write the log messages
to.

• --verbose

Enables verbose diagnostic messages.

delete-bytecode
Removes all file contents from the database. This is useful if you need to provide an intermediate
directory to Coverity technical support and want to make sure that source code is excluded.

delete-coverage
Removes all coverage data from the database. This is useful if you need to provide an intermediate
directory to Coverity technical support and want to make sure that coverage data is excluded.

To delete an individual test, see delete-test-coverage.

delete-scm-annotations
Removes all SCM annotations from the database. This is useful if you need to provide an
intermediate directory to Coverity technical support and want to make sure that SCM data is
excluded.

delete-source
Removes only source contents, including all webapp archive files (JSP, XML, and so forth). This
option does not remove Java class, JAR files, or .NET bytecode. This is useful if you need to provide
an intermediate directory to Coverity technical support and want to make sure that the source content
is excluded.

delete-test-coverage [OPTIONS]
Deletes coverage for a specific test across all TUs affected by the test. The test to be deleted is
uniquely identified by the following command options:

• --suitename <suitename>

Specifies the suite name belonging to the test. Suite names are available through the list-tests sub-
command.

234

cov-manage-emit

• --testname <testname>

Specifies the test name belonging to the test. Test names are available through the list-tests
sub-command.

• The test capture run, which you can specify with the -test-capture-run-id command line
option or by the combination of the following command line options:

• --build-id <build ID>

Specifies the build ID of the test capture run.

For more information about --build-id usage, see the description for the cov-build --build-id
option.

• --test-capture-run-tag <tag>

Specifies the tag used to identify the test capture run.

• test-capture-run-timestamp <timestamp>

Specifies the time when the test capture run occurred.

Information about test capture runs is available through the list-test-capture-runs sub-command.
For more details on these options, including valid <timestamp> formats, see the update-test-
capture-run sub-command.

Examples:

> cov-manage-emit --dir idir delete-test-coverage --suitename SuiteAlpha \
 --testname TestAlpha --test-capture-run-id 5

> cov-manage-emit --dir idir delete-test-coverage --suitename SuiteBeta \
 --testname TestBeta --test-capture-run-timestamp "2010-01-04T13:53:08" \
 --build-id 100 --test-capture-run-tag "CaptureTag"

To delete coverage for all tests, delete-coverage.

dump-scm-annotations --output <output_file>
Output all SCM annotations stored in the intermediate directory. This command creates a cache of
the SCM annotations that is intended to be reapplied in the future using add-scm-annotations.

This option places output on a standard output when <output_file> is "-". Otherwise, it outputs to the
specified file.

export-json-build <options>
Exports a captured build to a JSON file for later use with import-json-build.

Required options for export-json-build:

• --output-file <filename>, -of <filename>

Specify the path to and file name for the JSON file to be exported.

235

cov-manage-emit

Optional options for export-json-build:

• --schema-version <value>

Specifies the schema version to use for the JSON file. See the output of cov-manage-emit
list-json-schema-versions for a listing of valid values, as well as details about version
differences. If not specified, the latest schema version will be used.

• --strip-path <path>

Strips the prefix for the exported file names and paths in the exported JSON file. This may be
specified multiple times, but only the first matching strip path for any given path will be stripped.
Accordingly, specify multiple strip paths from most specific to least for best results.

import-json-build <options>
Imports a JSON build file, which can be generated via the export-json-build sub-command, to
the intermediate directory specified to cov-manage-emit. Note that the imported directory will not
be useful for analysis results until at least a partial capture has been performed after the import. This
option is primarily used in combination with cov-run-desktop to enable cov-run-desktop to
work without requiring a full native build capture.

Required options for import-json-build:

• --input-file <filename>, -if <filename>

Specify the path to and file name for the exported JSON file to import.

Optional options for import-json-build:

• --compilation-log <log file>

Specify a log file to dump diagnostic output from this command to. If this is not specified, then the
output from the import-json-build command goes to stdout.

• --parallel <number of processes>, -j <number of processes>

Specify the number of cov-translate processes to use simultaneously for the import. Note
that 'auto' can be specified to allow cov-manage-emit to automatically determine the number of
processes to use based on the detected hardware.

list-builds
Reports total number of successful and failed builds.

list-compiled-classes
Lists the classes contained in the emit that have been compiled. Use with --java or --cs to limit
the results to one of the languages. The output is CSV-formatted and written to standard output and
is designed to be specified into the cov-build --java-instrument-classes <filename>
command.

The CSV file format has two columns:

236

cov-manage-emit

• Column 1 - The name of the class.

• Column 2 - The full path to the source file for the class.

This sub-command applies only to Java and .NET, not to C/C++.

list-coverage-known <command_options>
Lists the files contained in the emit which have corresponding coverage data included in the emit.
The valid command line options are:

• --output <output_file>

The list is written to standard output when <output_file> is "-". Otherwise, the list is written to
the specified file.

• --filename-regex <regex>

Includes a file for consideration if the regular expression (regex) matches the name of the file; this
is not case-sensitive. For the purpose of turning a file name into a string that can then be matched
against a regex, the following normalizations are applied:

• The name is made absolute, including the drive letter on Windows systems.

• The forward-slash character ("/") separates name components.

• When no drive letter is present, the name begins with a forward-slash character ("/"); otherwise,
a forward-slash character ("/") follows the drive letter.

• --count

Reports the number of files that would have been reported. If used with --filename-regex, it
reports the number of matching files only.

list-coverage-unknown <command_options>
Lists the source files contained in the intermediate directory which do not have corresponding
coverage data included in the intermediate directory. The valid command line options are:

• --output <output_file>

The list is written to standard output when <output_file> is the dash character ("-"). Otherwise,
the list is written to the specified file.

• --filename-regex <regex>

Includes a file for consideration if the regular expression (regex) matches the name of the file; this
is not case-sensitive.

For the purpose of turning a file name into a string that can then be matched against a regex, the
following normalizations are applied:

• The name is made absolute, including the drive letter on Windows systems.

237

cov-manage-emit

• The forward-slash character ("/") separates name components.

• When no drive letter is present, the name begins with a forward-slash character ("/"); otherwise,
a forward-slash character ("/") follows the drive letter.

• --count

Reports the number of files that would have been reported. If used with --filename-regex, it
reports the number of matching files only.

list-functions-v1
Lists the functions in the intermediate directory. The valid command line options are:

• --function-pattern <pattern>

Restrict output to only those functions which match <pattern>. <pattern> follows the syntax
described in the Translation unit pattern matching section, however the following predicates are
used instead of the predicates described in that section:

• mangled_name(<regex>): The function is included if its mangled name matches the given
regex.

• unmangled_name(<regex>): The function is included if its unmangled name matches the
given regex.

• filename(<regex>): The function is included if it is in a file whose stripped name matches the
given regex.

• impacted_since(<date>): The function is included if it was impacted on or after the given
date. [FM]

• impacted(): Like impacted_since(<date>), but uses the code-version-date in the
emit as the given date. [FM]

• directly_impacted_since(<date>): The function is included if it was directly impacted on
or after the given date. [FM]

• directly_impacted(): Like directly_impacted_since(<date>), but uses the code-
version-date in the emit as the given date. [FM]

• indirectly_impacted_since(<date>): The function is included if it was indirectly
impacted on or after the given date. Functions without indirect impact dates are not included.
[FM]

• indirectly_impacted(): Like indirectly_impacted_since(<date>), but uses the
code-version-date in the emit as the given date. [FM]

• scm_modified_since(<date>): The function is included if it was modified on or after the
given date. SCM data is used to determine modification. Functions without SCM data are
included. [FM]

238

cov-manage-emit

• has_scm_data(): The function is included if it has SCM data. [FM]

• covered_by_suitename(<regex>): The function is included if it was executed by a test
whose suitename matches the given regex. [TM]

• covered_by_testname(<regex>): The function is included if it was executed by a test
whose testname matches the given regex. [TM]

• covered_by_test(<suite_regex>, <test_regex>): The function is included if it was
executed by a test whose suitename matches <suite_regex> and whose testname matches
<test_regex>. [TM]

Predicates marked with [FM] use function metrics generated by Test Advisor analysis, and require
that such analysis be run prior to querying. Typically this is done by running cov-analyze with
either the --test-advisor or --enable-test-metrics option.

Predicates marked with [TM] use test metrics information, and require that such analysis be run
prior to querying. Typically this is done by running cov-analyze with the --enable-test-
metrics option.

Function metrics and test metrics which have been generated in an intermediate directory using
cov-analyze can be re-used within that directory for the purpose of this query. The import
command of cov-manage-history should be run on the intermediate directory to allow this
reuse.

• --output-fields <fields>

Specifies the fields for each function to include in the output. <fields> is a comma-separated list
of keywords from among the following:

• mangled_name: The mangled name of the function.

• unmangled_name: The unmangled name of the function.

• filename: The name of the file containing the function.

• impact_date: The impact date of the function. [FM]

• direct_impact_date: The direct impact date of the function. [FM]

• indirect_impact_date: The indirect impact date of the function. [FM]

• scm_modified_date: The SCM modified date of the function. [FM]

• covering_tests: The tests that cover the function. Requires the --json option be specified,
see below. [TM]

• default: The default output fields. This is equivalent to
"mangled_name,unmangled_name,filename", and is the default if the --output-fields
option is not specified.

239

cov-manage-emit

[FM] and [TM] indicate output fields which use function metrics and test metrics, respectively, from
the results of Test Advisor analysis. See --function-pattern above for details.

Output is in CSV format by default, unless the --json option is given. Each line except the first
corresponds to a function, and contains the output fields in the order specified. The first line is a
header indicating the field names.

• --json

Output in JSON format. The output is a JSON array, where each element corresponds to a
function. Each element of this array is an object whose name/value pairs correspond to the
specified --output-fields.

This option is required when covering_tests is included in the --output-fields option.
Specifying the covering_tests output field will add an element named covering_tests to
each function object, whose value is an array representing the tests that cover the function. Each
element of this array is an object with the following name/value pairs:

• suitename: The suitename of the test.

• testname: The testname of the test.

• --strip-path <path>

The strip-path to use when evaluating filenames. Normally this is not required, but can be used to
override the default.

All dates must match a format described in Appendix A, Accepted date/time formats.

list-json-schema-versions
List valid schema-version values for use with export-json-build. A brief description of version
differences will accompany each value.

list-scm-known <command_options>
Lists the files contained in the emit that have corresponding SCM data included in the emit. The valid
command line options are:

• --output <output_file>

The list is written to standard output when <output_file> is the dash character ("-"). Otherwise,
the list is written to the specified file.

• --filename-regex <regex>

Includes a file for consideration if the regular expression (regex) matches the name of the file; this
is not case-sensitive.

For the purpose of turning a file name into a string that can then be matched against a regex, the
following normalizations are applied:

• The name is made absolute, including the drive letter on Windows systems.

240

cov-manage-emit

• The forward-slash character ("/") separates name components.

• When no drive letter is present, the name begins with a forward-slash character ("/"); otherwise,
a forward-slash character ("/") follows the drive letter.

• --count

Reports the number of files that would have been reported. If used with --filename-regex, it
reports the number of matching files only.

list-scm-unknown <command_options>
Lists the source files contained in the intermediate directory that do not have corresponding SCM
annotations included in the intermediate directory. The valid command line options are:

• --output <output_file>

The list is written to standard output when <output_file> is the dash character ("-"). Otherwise,
the list is written to the specified file.

• --filename-regex <regex>

Includes a file for consideration if the regular expression (regex) matches the name of the file; this
is not case-sensitive.

For the purpose of turning a file name into a string that can then be matched against a regex, the
following normalizations are applied:

• The name is made absolute, including the drive letter on Windows systems.

• The forward-slash character ("/") separates name components.

• When no drive letter is present, the name begins with a forward-slash character ("/"); otherwise,
a forward-slash character ("/") follows the drive letter.

• --count

Reports the number of files that would have been reported. If used with --filename-regex, it
reports the number of matching files only.

list-test-capture-runs
Lists the test capture runs currently stored in the intermediate directory or intermediate directory
library.

list-tests <command_options>
Lists all tests which have been stored in the intermediate directory. The valid command line options
are:

• --count

Reports the number of tests that would have been reported. If used with --suitename, it reports
the number of tests for suite only.

241

cov-manage-emit

• --suitename <name>

Restricts the tests that are listed or counted to those that belong to the given named suite.

list-tests-v2
Lists the tests in the intermediate directory. The valid command line options are:

• --test-pattern <pattern>

Restrict output to only those tests which match <pattern>. <pattern> follows the syntax
described in the Translation unit pattern matching section, however the following predicates are
used instead of the predicates described in that section:

• suitename(<regex>): The test is included if its suitename matches the given regex.

• testname(<regex>): The test is included if its testname matches the given regex.

• covers_function_mangled_name(<regex>): The test is included if it covers at least one
line of a function whose mangled name matches the given regex. [TM]

• covers_function_unmangled_name(<regex>): The test is included if it covers at least one
line of a function whose unmangled name matches the given regex. [TM]

• covers_filename(<regex>): The test is included if it covers at least one line of a file whose
stripped filename matches the given regex. [TM]

Predicates marked with [TM] use test metrics information, and require that such analysis be run
prior to querying. Typically this is done by running cov-analyze with the --enable-test-
metrics option.

Test metrics which have been generated in an intermediate directory using cov-analyze can be
re-used within that directory for the purpose of this query. The import command of cov-manage-
history should be run on the intermediate directory to allow this reuse.

• --output-fields <fields>

Specifies the fields for each test to include in the output. <fields> is a comma-separated list of
keywords from among the following:

• suitename: The suitename of the test.

• testname: The testname of the test.

• run_date: The date of the latest run of the test.

• status: The status of the latest run of the test. This is a string from the set {"pass", "fail",
"unknown"}.

• duration_ms: The (integer) duration of the latest run of the test in milliseconds.

• source_filename: The stripped filename of the source of the test.

242

cov-manage-emit

• source_line: The 1-based line number of the source of the test.

• test_capture_run_id: The (integer) id of the TestCaptureRun for the test.

• covered_functions: The tests that cover the function. Requires the --json option be
specified, see below. [TM]

• default: The default output fields. See below.
[TM] indicates output fields which use test metrics from the results of Test Advisor analysis. See --
test-pattern above for details.

Output is in CSV format by default, unless the --json option is given. Each line except the first
corresponds to a test, and contains the output fields in the order specified. The first line is a header
indicating the field names.

• --json

Output in JSON format. The output is a JSON array, where each element corresponds to a test.
Each element of this array is an object whose name/value pairs correspond to the specified --
output-fields.

This option is required when covered_functions is included in the --output-fields
option. Specifying the covered_functions output field will add an element named
covered_functions to each test object, whose value is an array representing the functions
covered by the test. Each element of this array is an object with the following name/value pairs:

• mangled_name: The mangled function name.

• unmangled_name: The unmangled function name.

• filename: The name of the file containing the function.

• --strip-path <path>

The strip-path to use when evaluating filenames. Normally this is not required, but can be used to
override the default.

All dates must match a format described in Appendix A, Accepted date/time formats.

query-build-id
Outputs the current build ID for this intermediate directory.

remove-coverability <command_options>
This option is deprecated as of the 2020.12 release. Use delete-coverage instead.

Removes computed coverability of lines in files in the intermediate directory. This is effectively the
inverse of compute-coverability. Valid command options:

• --verbose

Enables verbose diagnostic messages.

243

cov-manage-emit

remove-from-library --dir <directory_name>
Removes an intermediate directory from the intermediate directory library specified with the --idir-
library option.

For example, the following command will remove the intermediate directory "my-idir" from the library
"libdir".

> cov-manage-emit --idir-library libdir remove-from-library --dir my-idir

repair
Repairs database integrity. This operation might cause data loss, such as discarding translation units
that are damaged.

reset-host-name
If the specified intermediate directory has data associated with a single host name other than the
current host name, changes the host name associated with the emit database to the current host
name.

set-build-id
Sets the build ID of the specified intermediate directory. The valid command line options are:

--build-id <build-id>
Set the build ID of the specified intermediate directory to <build-id>.

--build-id-file <build-id-file>
<build-id-file> is a file containing a build ID. Set the build ID of the specified intermediate directory
to the value contained by this file.

update-test [OPTIONS]
Updates an existing test in your intermediate directory.

The required options are '--testname' and '--status'. By default, the test capture run marked
current will be used unless options are given to select a specific test capture run of the test to
update. If no test capture run has been marked current, this command will display a message and
exit. The valid command line options are:

--build-id <build ID>
Specifies the build ID of the test capture run for the test.

For more information about --build-id usage, see the description for the cov-build --
build-id option.

--status <value>
Specify if this test was successful. Valid values are:

• pass

• fail

• unknown

--suitename <SUITENAME>
Specifies the suite name of the test to update.

244

cov-manage-emit

--test-capture-run-id <TCR ID>
Specifies the test capture run ID of the test capture run for the test to use. You can determine the
test capture run ID for a specific run by using the list-test-capture-runs sub-command.

--test-capture-run-tag <tag>
Specifies the custom tag of the test capture run for the test to update. For example:

"linux-build"

--test-capture-run-timestamp <timestamp>
Specifies the timestamp to use for the test capture run of the test for this invocation.

See Appendix A, Accepted date/time formats for proper formatting of the <timestamp> argument.

--testname <TESTNAME>
Specifies the test name of the test to update.

update-test-capture-run
Updates an existing test capture run in your intermediate directory. The valid command line options
are:

• --build-id <build ID>

Specifies the build ID of the test capture run.

For more information about --build-id usage, see the description for the cov-build --build-id
option.

• --success <value>

Specify if this test capture run was successful. Valid values are:

• true

• false

• unknown

• unset

• --set-as-current

Sets the test capture run as the "current" run in the intermediate directory. Any addition of coverage
that does not specify a test capture run will use this test capture run.

• --test-capture-run-id <TCR ID>

Specifies the test capture run ID of the test capture run to use. You can determine the test capture
run ID for a specific run by using the list-test-capture-runs sub-command.

• --test-capture-run-tag <tag>

245

cov-manage-emit

Specifies a custom tag to allow for each selection of this test capture run. For example:

"linux-build"

• --test-capture-run-timestamp <timestamp>

Specifies the timestamp to use for the test capture run for this invocation. If it is not specified, the
current time will be used, which is the typical use case. This option is only provided as a way for
multiple test runs to use the same test capture run.

See Appendix A, Accepted date/time formats for proper formatting of the <timestamp> argument.

Translation unit sub-commands with optional filtering

The following filtering sub-commands work on translation units. By default, all translation units are
included in the results. You can optionally restrict the translation units used in these operations with the
--tu and/or --tu-pattern options.

The options for listing emit database information and recompiling also support restricting the translation
units with the --tu and/or --tu-pattern options.

add <int_dir>
Add (copy) all translation units from a specified intermediate directory (<int_dir>) into the current
one (the one specified with the --dir option). If --tu and/or --tu-pattern are specified, then
those filters are interpreted as applying to the source emit, and only the matching subset is copied.

link-file <out_file>
Create a file (<out_file>) with a description of the specified translation units as a link file, which
can be used as input to cov-link.

list
List all translation units in the intermediate directory. Each translation unit is identified by its numeric
ID, which is listed along with its primary source file name.

list-json
List all translation units in the intermediate directory as a standards-compliant JSON array. The
translation units are identified by a numeric ID, which is listed along with the following fields:

• id: The unique numeric translation unit ID.

• primaryFilename: The primary source file name.

• primaryFileSizeInBytes: The size of the primary source file in bytes.

• primaryFileHash: MD5 hash of the contents of the primary source file.

• language: String describing the translation unit language.

• userLanguage: The user-specified translation unit language.

• hasASTs: Boolean. 'true' if the intermediate directory contains an AST for this translation unit,
otherwise 'false'.

246

cov-manage-emit

• mspchTuFilename (optional): The Microsoft precompiled header file which was created
when this translation unit was built. This field is only displayed when a Microsoft precompiled
header was created.

• mspchId (optional): The translation unit ID for the included Microsoft precompiled header.
This field is only displayed when a precompiled header was used.

Example output:

[
 {
 "id" : 1,
 "primaryFilename" : "/home/build/project/tu1.cpp”,
 "primaryFileSizeInBytes" : 92,
 "primaryFileHash" : "6f700a28a47e79cddff8fba60cac7098",
 "language" : "C++”,
 "userLanguage" : "C++”,
 "hasASTs" : true
 },
 {
 "id" : 2,
 "primaryFilename" : "c:/project/stdafx.cpp",
 "primaryFileSizeInBytes" : 122,
 "primaryFileHash" : "3827e3e7426ce0bdebb7e51c94d2a680",
 "language" : "C++",
 "userLanguage" : "C++",
 "hasASTs" : false,
 "mspchTuFilename" : "c:/project/stdafx.pch"
 }
]

Note

The output of this command may contain additional attributes that are not documented here.
For maximum interoperability, please ignore any attribute that is not documented.

extract-files --output-dir <dir> [--strip-path <path>]... {--regex <regex> | <filename>...}
Extracts files present in the emit directory to the specified output directory.

The original directory, optionally stripped by any --strip-path arguments will be made relative
to the specified output directory (on Windows, the drive letter if any, is always removed). Specify
the files to extract by including either a regular expression or a list of filenames. If you include the
--regex option, all files whose name matches the given regular expression are extracted: for this
purpose, the file names are represented using a '/' separator. If a tu filter (--tu, --tu-pattern) is
provided, only files referenced by the filtered TUs are included.

Translation unit sub-commands with required filtering

The following filtering sub-commands work on translation units. You must supply the translation units
used in these operations with the --tu and/or --tu-pattern options. The TU list sub-command
identifies the TUs available for your required filter.

247

cov-manage-emit

delete
Delete all TUs that satisfy the specified translation unit filter.

preprocess
Similar to recompile, except that when cov-emit is invoked, it is passed the -E (preprocess) and
--output_defs options, which results in preprocessing only. The emit database is not modified by
this operation.

The preprocessed output file (which is the stdout of cov-emit) is stored in the preprocessed
subdirectory of the c/output subdirectory of the intermediate directory. The name of the file is the
name of the primary source file for the TU, minus any path information, minus any file extension, plus
either .i or .ii.

This option works only for C/C++ source code, not Java.

print-compilation-info [<options>]
For the specified translation units, print the command lines for cov-emit, cov-translate (if it was
run), and cov-build (if it was run).

The options are:

• --detailed - provides all process details except environment variables.

• --print-env - provides the environment variable definitions for the process.

print-compilation-time
Prints the invocation time of any cov-build, cov-emit, cov-emit-cs, cov-emit-java, cov-
emit-vb, cov-translate, or for a given translation unit (TU) to be easily accessible.

Usage examples

cov-manage-emit --dir dir -tu <TU#> print-compilation-time

cov-manage-emit --dir dir -tp <pattern> print-compilation-time

Output example:

cov-manage-emit --dir idir -tp "success()" print-compilation-time

Looking for translation units
|0----------25-----------50----------75---------100|
**
Translation unit:
1 -> /Users/emoriarty/Testing/BZ55606/test.cpp
cov-emit invocation time (seconds): 1
cov-translate invocation time (seconds): 1
cov-build invocation time (seconds): 2
Translation unit:
2 -> /Users/emoriarty/Testing/BZ55606/test.cpp
cov-emit invocation time (seconds): 2
cov-translate invocation time (seconds): 2

248

cov-manage-emit

cov-build invocation time (seconds): 2
Translation unit:
3 -> /Users/emoriarty/Testing/BZ55606/test.cpp
cov-emit invocation time (seconds): 2
cov-translate invocation time (seconds): 2
cov-build invocation time (seconds): 2
Translation unit:
4 -> /Users/emoriarty/Testing/BZ55606/test.cpp
cov-emit invocation time (seconds): 2
cov-translate invocation time (seconds): 2
cov-build invocation time (seconds): 2

print-source
For the specified translation units, list the name and the contents of the primary source file associated
with the TU. This option also reports, in parentheses, the internal row ID of the source file. It accepts
the same command options as print-source-files-contents.

print-source-files
For the specified translation units, list the names of all the source files associated with the TU. Also
reports, in parentheses, the internal row ID of the source file.

print-source-files-contents
For the specified translation units, list the names and contents of all the source files associated with
the TU. Also reports, in parentheses, the internal row ID of the source file.

print-source-files-contents has the following options:

• --scm-annotations - Prefixes each source line with the change record (or commit record) that
contributed most recently to the line. The change record data that is as follows:

Date and time that the change record was applied according to the SCM system.

The author (username) attributed to the change record.

The revision of the change, which is an identifier for the change record provided by the SCM
system.

• --coverage - Outputs and prefixes each line of the TU being changed. Each line is printed with a
marker identifying whether or not that line has been covered by a test (as seen by the Test Advisor
cov-build command). The notations is as follows:

"+" - The line has been covered by one or more tests.

"-" - The line has not been covered by any tests.

" " - The line is not eligible for coverage (that is, the line does not represent executable code).

"?" - The line does not have coverage data available.

For example:

Translation unit:

249

cov-manage-emit

1 -> ./sample.cpp
 Primary SF : ./sample.cpp (row ID 1)
#/* Sample that generates interesting coverage lines */
#/* (c) 2015 Synopsys, Inc. All rights reserved worldwide. */
#
+#void call_seven_times()
#{
+#}
#
+#void call_three_times()
#{
+#}
#
+#void call_ten_times()
#{
+#}
#
-#void call_zero()
#{
-#}
#
+#int main()
#{
+# int x = 0;
+# for (int i = 0; i < 10; ++i) {
x += i
+# * 3; /* multi-line statement, may be wrong */
+# if (i < 7) {
+# call_seven_times();
} else {
+# call_three_times();
}
+# call_ten_times();
+# if (x > 300) {
-# call_zero();
}
}
+# return 0;
#}

• --build-id <build ID>

Specifies the build ID of the test capture run.

For more information about --build-id usage, see the description for the cov-build --build-id
option.

• --test-capture-run-id <TCR ID>

Specifies the test capture run ID of the test capture run to use. You can determine the test capture
run ID for a specific run by using the list-test-capture-runs sub-command.

• --test-capture-run-tag <tag>

250

cov-manage-emit

Specifies a custom tag to allow for each selection of this test capture run. For example:

"linux-build"

• --test-capture-run-timestamp <timestamp>

Specifies the timestamp to use for the test capture run for this invocation. If it is not specified, the
current time will be used, which is the typical use case. This option is only provided as a way for
multiple test runs to use the same test capture run.

See Appendix A, Accepted date/time formats for proper formatting of the <timestamp> argument.

• --suitename <suitename>

Identifies the coverage data as belonging to the named suite. This option is an accepted option
when --coverage is used.

• --testname <testname>

Identifies the coverage data as belonging to the named test. This option is an accepted option
when --coverage is used.

print-source-files-stats
For the specified translation units, list the names of all of the source files associated with the TU. Also
reports the internal row ID of the source file (in parentheses) followed by statistics for that source file.
The statistics listed include:

• The file contents time stamp, size, and MD5 sum

• The count of blank lines

• The count of comment lines

• The count of code lines

• The count of code lines with inline comments

Example output is as follows:

1 -> /example_dir/a.cpp
 Primary SF : /example_dir/a.cpp (row ID 1)
 Timestamp: 2013-07-19 11:37:35
 Size: 25
 MD5 sum: 7edc175dc475923c51c579924b724a8c
 Blank lines: 1
 Comment lines: 0
 Code lines: 2 (1 with inline comments)

print-tuid
Prints the TU ids for the TU requested using either -tu or --tu-pattern. Unlike most commands
that will error if an invalid tu is specified, print-tuid will silently ignore it. For example:

251

cov-manage-emit

$ cov-manage-emit --dir foo --tu-pattern 'success()' print-tuid
Looking for translation units
|0----------25-----------50----------75---------100|
 **
 1
 3
 4

$ cov-manage-emit --dir foo --tu-pattern 'success()' print-tuid -of tuids.txt
Looking for translation units
|0----------25-----------50----------75---------100|
 **
 $ cat tuids.txt
 1
 3
 4

Listing emit database information

The find sub-command lists information stored in the emit DB such as symbol names, locations, and
definitions. By default, all translation units are included in the results. You can optionally restrict the
translation units used in these operations with the --tu and/or --tu-pattern options.

What is being matched by the regular expression (regex) is, in C++, the mangled name of
the symbol (according to the IA64 C++ ABI, see http://mentorembedded.github.io/cxx-abi/abi-
examples.html#mangling), of which the actual identifier is always a substring. In C, what is matched is
just the identifier.

find <regular expression> [OPTIONS]
There are four kinds of symbols: functions, classes, global variables, and enumerations. If you
specify

find <regular expression>

then the listing for the matching regex command is the symbol name, the kind of entity, the
declaration location, and the definition TU.

You can control the information that is returned by using the following options:

--kind {f | c | e | g}
Restricts the search to certain types of entities. The choices are f, c, e and g, for function, class,
enum, and global, respectively.

--print-callees
For a function, lists the set of functions it calls. Does not list information on other entities.

--print-codexm
Lists the entity's abstract syntax tree (AST) definition as CodeXM patterns.

CodeXM is a specialized language used to write customized checkers that run using the Coverity
engine.

252

http://mentorembedded.github.io/cxx-abi/abi-examples.html#mangling
http://mentorembedded.github.io/cxx-abi/abi-examples.html#mangling

cov-manage-emit

--print-definitions
Lists the entity's definition syntax by pretty-printing the AST definition.

--print-debug
Lists the entity's AST definition in debug (indented tree) mode.

The find sub-command accepts multiple operands and applies each of them as an inclusive filter when
searching for symbols. In the following example, the first invocation of cov-manage-emit displays all
symbols (global_1 and global_2). .

$ cat t.c
int global_1 = 1;
int global_2 = 2;

$ cov-emit --dir covint t.c
Emit for file '/tmp/t.c' complete.

$ cov-manage-emit --dir covint find .
Matching global: global_1
 declared at:
 /tmp/t.c:1:5-/tmp/t.c:1:12
 defined in TU 1 with row 1
Matching global: global_2
 declared at:
 /tmp/t.c:2:5-/tmp/t.c:2:12
 defined in TU 1 with row 2

The following two examples supply a regex command that selects exactly one of those symbols.

$ cov-manage-emit --dir covint find global_1
Matching global: global_1
 declared at:
 /tmp/t.c:1:5-/tmp/t.c:1:12
 defined in TU 1 with row 1

$ cov-manage-emit --dir covint find global_2
Matching global: global_2
 declared at:
 /tmp/t.c:2:5-/tmp/t.c:2:12
 defined in TU 1 with row 2

The following invocation specifies multiple regex commands that select both symbols.

$ cov-manage-emit --dir covint find global_1 global_2
Matching global: global_1
 declared at:
 /tmp/t.c:1:5-/tmp/t.c:1:12
 defined in TU 1 with row 1
Matching global: global_2
 declared at:
 /tmp/t.c:2:5-/tmp/t.c:2:12
 defined in TU 1 with row 2

253

cov-manage-emit

Emit Server sub-commands

These commands allow for starting and stopping an emit server on the specified intermediate directory/
intermediate directory library. These commands all take an intermediate directory or an intermediate
directory library.

You may only specify one of --dir or --idir-library, but not both.

start-server [OPTIONS]
Starts an emit server for the specified intermediate directory or intermediate directory library. Valid
options are:

• --port <port-number>

Specifies the port number to bind the server. The default is 15772.

• --interface <ip-address-to-run-on>

Specifies the IP address to which you want the server to bind.

• --gcov-cache-size <size-in-mb>

Specifies the size of the cache in MB to use for gcov data. The default is 500MB.

• --force-start

Forces the start of the server. This is useful if the previous emit server was not cleanly shut down
and the PID file remains from the previous run.

Examples:

To start an emit server on a single intermediate directory:

cov-manage-emit --dir idir start-server [--port 15772] [--interface host_or_ip]

To start an emit server on an intermediate directory library:

cov-manage-emit --idir-library idir-lib start-server [--port 15772] [--interface
 host_or_ip]

stop-server
Stops a running emit server for the specified intermediate directory or intermediate directory library.

Examples:

To stop a running emit server on a single intermediate directory:

cov-manage-emit --dir idir stop-server

To stop an emit server on an intermediate directory library:

cov-manage-emit --idir-library idir-lib stop-server

254

cov-manage-emit

query-server
Query an intermediate directory or intermediate directory library to verify that an emit server is
already running. The output will be in a JSON format, for example:

[
 {
 "host" : "localhost",
 "pid" : 654321,
 "port" : 33445
 }
]

If no server is running, the JSON file will be empty.

Examples:

To check if an emit server is running for a given single intermediate directory:

cov-manage-emit --dir dir query-server

To check if an emit server is running for a given intermediate directory library:

cov-manage-emit --idir-library idir-lib query-server

Recompiling

The recompile sub-commands repeat a cov-emit compilation. You can use this option, for example,
with updated cov-emit binary or compiler configuration settings to attempt to compile inputs that have
previously failed. This is similar to cov-build --replay.

You can modify the translation units that are recompiled with the --tu and/or --tu-pattern options.

The recompile sub-commands are:

parse-source-only-tus [OPTIONS]
Recompiles source-only TUs from the intermediate directory (those that were added through cov-
build --record-with-source and that have not been recompiled already).

This subcommand works only for C/C++ source code.

recompile [OPTIONS]
Recompile the set of TUs specified by the filter. For each TU to be recompiled, invoke cov-emit
with the command line, environment settings, and current directory recorded in the emit repository.
Source files are re-read from the file system.

Note

Note that this subcommand will not correctly recompile your selected TUs if the intermediate
directory has been moved since running cov-emit. If you have moved your intermediate
directory to a new location or separate machine, use recompile-from-dir and specify the
new --dir location.

255

cov-manage-emit

recompile-from-dir [OPTIONS]
Recompiles translation units from source contained within the emit directory. Replaying from the emit
will have the same results, regardless of changes to the files in the filesystem (including deletion).

This option is similar to cov-build --replay-from-emit, but it allows you to perform finer-
grained filtering of the TUs being replayed. For example:

cov-manage-emit --dir idir --tu 10 recompile-from-dir

This subcommand works only for C/C++ source code.

replay-from-script -if <json_file> [OPTIONS]
Reads a JSON script produced by Incredibuild, builds a list of compile commands, and executes
each of the compile commands against cov-translate for accelerating Windows code builds using
Incredibuild.

The -if <json_file> option points to the json script file that is described in the
replay_from_script command.

For more information, see "Using IncrediBuild" in the Coverity Analysis 2020.12 User and
Administrator Guide. .

Note

--record-only works the same as "cov-build --record-only," recording the build to
be replayed later.

retranslate [OPTIONS]
Run cov-translate on the set of TUs specified by the filter.

For each TU to be recompiled, invoke cov-translate using the command line, environment
settings, and current directory recorded in the emit repository. Does not work with a TU complied
directly by cov-emit.

Invocation of cov-translate requires a Coverity configuration. By default, the configuration
that was used during the initial compilation will be used, but this can be overridden by specifying a
configuration on the cov-manage-emit command line.

This subcommand works only for C/C++ source code.

Note

Note that this subcommand will not correctly retranslate your selected TUs if the intermediate
directory has been moved since running cov-emit.

retranslate-or-emit [OPTIONS]
Run cov-translate on the set of TUs specified by the filter.

Similar to the retranslate option, except that in the case of a TU where cov-emit was invoked
directly without cov-translate, invokes cov-emit instead of using cov-translate.

This subcommand works only for C/C++ source code.

256

cov_analysis_administration_guide.pdf#capture_specific_build_systems
cov_analysis_administration_guide.pdf#capture_specific_build_systems

cov-manage-emit

Note

Note that this subcommand will not work correctly if the intermediate directory has been moved
since running cov-emit.

The recompile sub-command [OPTIONS] are as follows:

--compilation-log <log_file>
Saves diagnostic messages from cov-translate and cov-emit to <log_file> (instead of the
default of standard output and standard error). Also displays a progress ticker bar.

--desktop
Used in conjunction with Desktop Analysis to perform recompilation faster by disabling bytecode
decompilation in Java, C#, and Visual Basic builds.

--do-decomp
Used in conjunction with Desktop Analysis to perform recompilation in Java builds where bytecode
decompilation is enabled.

--emit-complementary-info
Enables emitting of complementary information for compliance checkers such as MISRA checkers.
Selecting this option results in a slower build capture but a faster analysis, and it should be applied
when using compliance checkers. The default value is --no-emit-complementary-info

Note

Enabling the --emit-complementary-info option prior to running an analysis is likely to
turn up additional defects.

.

Any analysis involving --coding-standard-config requires the information generated during
cov-build when including the --emit-complementary-info option. The cov-build command
will take longer, so this option should only be used when cov-analyze is used with --coding-
standard-config.

If cov-build did not include the --emit-complementary-info option and cov-analyze does
include --coding-standard-config, cov-analyze automatically re-runs every cov-emit
command (for the Translation Units to be analyzed). This excludes the native build and the cov-
translate overhead, but it will add significant overhead to cov-analyze. Note that analysis will
fail if the emit database does not include source; that is re-emit is not possible.

--name <name>
Associates any new TUs created with a build named <name>. New TUs are not created by parse-
source-only-tus or recompile-from-dir. These commands will reuse the existing TUs, so
this option will have no effect. TUs will also not be created if the TUs are already up to date.

--parallel <number_of_processes> , -j <number_of_processes>
Spawn up to <number_of_processes> processes to run the recompilations. This option accepts
the number of processes, or auto which sets the number of replay processes to the number of
logical processors in the machine (-j 0 is also accepted and is the same as auto).

257

cov-manage-emit

Decompiling

The decompile-binary-tus-from-dir subcommands repeat a decompilation recorded in the emit.

decompile-binary-tus-from-dir [OPTIONS]
Decompiles translation units from byte code source contained within the emit directory. Replaying
from the emit will have the same results, regardless of changes to the files in the filesystem (including
deletion)..

This option is similar to cov-build --replay-decomp, but it allows you to perform finer-grained
filtering of the TUs that are being replayed. For example:

cov-manage-emit --dir idir --tu 10 decompile-binary-tus-from-dir

The decompile sub-commands are:

--compilation-log <log_file>
Saves diagnostic messages to <log_file> (instead of the default of standard output and standard
error). Also displays a progress ticker bar.

--disable-decomp-bodies
Disable decompiling method bodies of the byte code.

Translation unit pattern matching

The argument to --tu-pattern is a string that acts as a filter on translation units. Alternatively, to use a
file name for a pattern, specify @<filename>. Each pattern in this file must be on a separate line.

To get useful information about the translation units in an emit repository, use the list sub-command.

A pattern has the following syntax:

[!] <function>("<regex>"|'<regex>') [|| <function>("<regex>")]
 [&& <function>("<regex>")]

When combining patterns, the precedence from lowest to highest, is OR (||), AND (&&), and NEG (!).
OR and AND are left-associative. You can use parentheses to group expressions to override precedence
or associativity. The regex is a Perl regular expression. A backslash in a quoted string is interpreted
as a regular expression metacharacter, and not as a string literal metacharacter. You can use single or
double quotes to pass the string properly from the shell to the command. The Perl regex is used for
partial matches; for full matches use the beginning of line (^) and end of line ($) symbols.

The values for <function> for where to apply the regular expression are:

all
No argument. Matches all compilations. Used when all TUs desired and tu-pattern required.

arg
Matches if the regex matches any of the native compiler command line elements, including the
native compiler executable itself.

258

cov-manage-emit

build_arg:
Matches if the regex matches any argument to cov-build, including the cov-build executable
name.

build_name("<regex>")
Matches if cov-build --name <name> compiled the translation unit and <name> is matched by
<regex>.

cov_emit_arg
Matches if the regex matches any argument to the Coverity compiler front end, such as cov-emit,
including the executable name.

file
Matches if the regex matches the name of the primary source file. For the purpose of turning a
file name into a string that can then be matched against a regex, the following normalizations are
applied:
• The name is converted to an absolute pathname. On Windows, this includes the drive letter.
• On Windows, all letters are lower-cased, including the drive letter (this applies to all names in

translation units created on Windows).
• The forward-slash character (/) separates name components.
• When no drive letter is present, the name begins with /; otherwise, a / follows the drive letter.

For example:

--tu-pattern "file('test\.c$')"

failure
No argument. Matches if the compilation was unsuccessful (exit code != 0). Used by cov-build --
replay-failures.

header
Matches if the regex matches the name of any header file, which is defined to be a source file
included in the TU other than the primary source file.

lang("<lang>")
The lang pattern matches TUs with one of the following specified language patterns:

• C

• C++

• C#

• CUDA

• .NET bytecode

• Fortran

• Go

259

cov-manage-emit

• HTML

• Java

• JavaScript

• JSX

• JVM bytecode

• Kotlin

• Objective-C

• Objective-C++

• PHP

• Python 2

• Python 3

• Ruby

• Scala

• Swift

• Text

• TypeScript

• Visual Basic

• Vue.js SFC

link_file
The regex is not interpreted as a regular expression, but rather as the name of a file, which should
be the output of cov-link (or cov-manage-emit link_file).

success
No argument. Matches if the compilation was successful (exit code = 0).

Shared options

--debug, -g
Turn on basic debugging output.

--info
Displays certain internal information (useful for debugging), including the temporary directory, user
name and host name, and process ID.

260

cov-manage-emit

--verbose <0, 1, 2, 3, 4>, -V <0, 1, 2, 3, 4>
Set the detail level of command messages. Higher is more verbose (more messages). The default is
1. Use --verbose 0 to disable progress bars.

Exit codes

Most Coverity Analysis commands can return the following exit codes:

• 0: The command successfully completed the requested task.

• 1: The requested task is complete, but it did not return (or find) any results. Note that some Coverity
Analysis commands do not return this error code.

• 2: The command was unable to complete the requested task. This error typically includes an error
message and some remediation advice.

• 4: An unexpected error occurred. This error should not occur when the product is used in a supported
way. Very likely, the requested task was not completed. This error typically provides some diagnostic
and/or debugging output, such as a stack trace.

For exceptions, see cov-commit-defects(Coverity 2020.12 Command Reference), cov-analyze, and cov-
build.

Examples

List build information from an intermediate directory:

> cov-manage-emit --dir apache_2111 \
 list-builds

List all translation unit information from an intermediate directory:

> cov-manage-emit --dir apache_2111 \
 list

List information from an intermediate directory for the translation unit with the ID 6:

> cov-manage-emit --dir apache_2111 --tu 6 \
 list

List all information on all entities:

> cov-manage-emit --dir apache_2111 \
 find '.*'

List only callee information for all entities:

> cov-manage-emit --dir apache_2111 \
 find --print-callees '.*'

List all information for entity uninit:

> cov-manage-emit --dir apache_2111 \

261

cov-manage-emit

 find '^uninit$'

List the definition of entity uninit:

> cov-manage-emit --dir apache_2111 \
 find '^uninit$' --print-definitions

List the source files of TU 1:

> cov-manage-emit --dir apache_2111 \
 --tu 1 print-source-files

List TUs where bar.cc or foo.cc is the primary source file:

> cov-manage-emit --dir apache_2111 \
 --tu-pattern "file('bar.\cc$') || file('foo.\cc$')" list

List TUs using patterns specified in the file files:

> cov-manage-emit --dir apache_2111 \
 --tu-pattern @files list

Recompile the TUs in the emit database:

> cov-manage-emit --dir apache_2111 recompile

Recompile and put diagnostic information in the 211_log.txt file:

> cov-manage-emit --dir apache_2111 \
 recompile --compilation-log 211_log.txt

Recompile only TU 1:

> cov-manage-emit --dir apache_2111 \
 --tu 1 recompile --compilation-log 211_log.txt

Recompile translation units where test.c is the primary source file:

> cov-manage-emit --dir apache_2111 \
 --tu-pattern "file('test\.c$')" recompile

List source files missing SCM annotations from the intermediate directory:

> cov-manage-emit --dir apache_2111 \
 list-scm-unknown --output files-without-scm-age-data.txt

List source files under /builds missing SCM annotations from the intermediate directory:

cov-manage-emit --dir apache_2111 list-scm-unknown \
 --output files-without-scm-annotation-data.txt \
 --filename-regex '^/builds/'

List source files with existing SCM annotations in the intermediate directory:

> cov-manage-emit --dir apache_2111 \

262

cov-manage-emit

 list-scm-known --output files-with-scm-age-data.txt

List source files under /builds with existing SCM annotations from the intermediate directory:

 cov-manage-emit --dir apache_2111 \
 list-scm-known --output files-with-scm-annotations.txt \
 --filename-regex '^/builds/'

Count the source files under /builds with existing SCM annotations from the intermediate directory:

cov-manage-emit --dir apache_2111 \
 list-scm-known --output count-files-with-scm-annotations.txt \
 --filename-regex '^/builds/' --count

Add SCM annotations for source files in the intermediate directory:

> cov-manage-emit --dir apache_2111 \
 add-scm-annotations --input scm-age-data.txt

Dump SCM annotations for source files in the intermediate directory:

> cov-manage-emit --dir apache_2111 \
 dump-scm-annotations --output scm-age-data.txt

Remove all SCM annotations from the intermediate directory:

cov-manage-emit --dir apache_2111 delete-scm-annotations

Add test coverage data from a single gcda file to the intermediate directory:

> cov-manage-emit --dir apache_2111 \
 add-coverage --suitename FooSuite --testname FooTest \
 --teststart "2012-03-19 07:12:11" --verbose \
 --gcda test.gcda

Add test coverage data in batch mode using the batch script coverage-batch.txt:

> cov-manage-emit --dir apache_2111 \
 add-coverage --batch coverage-batch.txt

Compute the missing coverage and add it to the intermediate directory:

> cov-manage-emit --dir apache_2111 compute-coverability

Remove all coverage from the intermediate directory:

cov-manage-emit --dir apache_2111 delete-coverage

Remove the coverage that was added by compute-coverability from the intermediate directory:

> cov-manage-emit --dir apache_2111 remove-coverability

List all tests that have results stored in the intermediate directory:

> cov-manage-emit --dir apache_2111 list-tests

263

cov-manage-emit

List all tests for suite MyModuleTests that have results stored in the intermediate directory:

cov-manage-emit --dir apache_2111 list-tests --suitename MyModuleTests

Count all tests that have results stored in the intermediate directory:

cov-manage-emit --dir apache_2111 list-tests --count

List source files missing coverage data from the intermediate directory:

cov-manage-emit --dir apache_2111 \
 list-coverage-unknown --output files-without-coverage-data.txt

List source files under /builds missing coverage data from the intermediate directory:

cov-manage-emit --dir apache_2111 \
 list-coverage-unknown --output files-without-coverage-data.txt \
 --filename-regex '^/builds/'

List source files with existing coverage data in the intermediate directory:

cov-manage-emit --dir apache_2111 \
 list-coverage-known --output files-with-coverage-data.txt

List source files under /builds with existing coverage data from the intermediate directory:

cov-manage-emit --dir apache_2111 \
 list-coverage-known --output files-with-coverage-data.txt \
 --filename-regex '^/builds/'

Count the source files under /builds with existing coverage data from the intermediate directory:

cov-manage-emit --dir apache_2111 \
 list-coverage-known --output count-files-with-coverage-data.txt \
 --filename-regex '^/builds/' --count

See Also

cov-build

cov-extract-scm

cov-import-scm

264

cov_command_ref.pdfcov-extract-scm
cov_command_ref.pdfcov-import-scm

Name
cov-preprocess Preprocess a C/C++ source file.

Synopsis

cov-preprocess [OPTIONS] <files>

Description

The cov-preprocess command preprocesses a source file. This command reads the command-line
argument from <intermediate_directory>/emit and outputs the preprocessed source file or files
into the <intermediate_directory>/output/preprocessed directory. Coverity recommends
that you use the --output-file option to change the default output behavior whenever you need for
the combined output path and filename to be an invariant (for example, in scripts) because the internal
structure of the intermediate directory might change in future releases. However, note that using this
option necessitates that only one file is preprocessed per invocation of cov-preprocess.

If you do not use an absolute path name to specify a file name, cov-preprocess searches for the
specified file name in <intermediate_directory>/emit. To speed up the search time, use full path
names to files that you want to preprocess.

Preprocessing expands all preprocessor directives such as #include, and expands macro definitions. A
preprocessed source file is self-contained and can be compiled by itself with no additional files.

Note

cov-preprocess doesn't read source files from the emit or re-create source folders. Therefore
the source files, directory structure, and working environment of the original build captured in the
emit must exist and be used when cov-preprocess runs.

Options

--config <coverity_config.xml> , -c <coverity_config.xml>
Uses the specified configuration file instead of the default configuration file located at
<install_dir_sa>/config/coverity_config.xml.

--diff, -d
Preprocess the file with both the native compiler and with cov-emit, and then attempt to find
relevant differences between the preprocessed files using some heuristics.

--diff-only
Determine the relevant differences between two files that are already preprocessed using some
heuristics.

--dir <intermediate_directory>
Path name to an intermediate directory that is used to store the results of the build and analysis.

-if <source_file>
Specify an input file that is preprocessed as if it were the file that was compiled.

265

cov-preprocess

--native
Preprocess with the native compiler instead of with cov-emit.

--no-lines, -n
Do not put #line directives in the preprocessed output file.

--no-retranslate, -nr
Do not re-translate the command line from the original compiler when attempting to preprocess with
cov-emit. This can be faster, but it will not work with template compiler configurations.

--output-file <output-file>, -of <output_file>
Specify the path to and file name for the output file. Coverity recommends that you use this option
instead of relying on the default output behavior.

--tu <translation_unit_id(s)>, -tu <translation_unit_id(s)>
A set of translation units (TUs), named by their numeric id attribute(s). A translation unit
approximately maps to the output from a single run of a compiler. This option requires a comma-
separated list of id(s), and --tu may be specified multiple times. The union of all these identifier sets
is the set of TUs to operate on subsequently, for operations that work on TUs. It is an error if any of
the specified IDs do not correspond to any existing translation unit.

Shared options

--debug, -g
Turn on basic debugging output.

--info
Displays certain internal information (useful for debugging), including the temporary directory, user
name and host name, and process ID.

--ident
Displays the version of Coverity Analysis and build number.

--tmpdir <tmp>, -t <tmp>
Specifies the temporary directory to use. On UNIX, the default is $TMPDIR, or /tmp if that variable
does not exist. On Windows, the default is to use the temporary directory specified by the operating
system.

--verbose <0, 1, 2, 3, 4>, -V <0, 1, 2, 3, 4>
Set the detail level of command messages. Higher is more verbose (more messages). Defaults to 1.

Exit codes

Most Coverity Analysis commands can return the following exit codes:

• 0: The command successfully completed the requested task.

• 1: The requested task is complete, but it did not return (or find) any results. Note that some Coverity
Analysis commands do not return this error code.

266

cov-preprocess

• 2: The command was unable to complete the requested task. This error typically includes an error
message and some remediation advice.

• 4: An unexpected error occurred. This error should not occur when the product is used in a supported
way. Very likely, the requested task was not completed. This error typically provides some diagnostic
and/or debugging output, such as a stack trace.

For exceptions, see cov-commit-defects(Coverity 2020.12 Command Reference), cov-analyze, and cov-
build.

See Also

cov-translate

267

Name
cov-record-source Record Java Web applications and output them to an intermediate directory.

Synopsis

cov-record-source --dir <intermediate_dir> [OPTIONS]

Description

The cov-record-source command records Java Web application files and outputs them to an
intermediate directory (this command does not attempt to parse or emit the files).

The Java Web applications can be in the following forms:

• Web Archive (.war file)

• Enterprise Archive (.ear file)

• A directory with the unpacked contents of either

• Any combination of the above

When recording a build that contains a Java Web application that you want to analyze, you must run the
cov-record-source command in addition to the cov-build --record-with-source command to properly
record the Java Web application.

Options

--findears <directory_list>
See the cov-emit-java --findears option.

--findears-unpacked <directory_list>
See the cov-emit-java --findears-unpacked option.

--findjars <jar_containing_directories>
See the cov-emit-java --findjars option.

--findwars <directory_list>
See the cov-emit-java --findwars option.

--findwars-unpacked <directory_list>
See the cov-emit-java --findwars-unpacked option.

--webapp-archive <archive_file_or_dir>, --war <archive_file_or_dir>, --ear
<archive_file_or_dir>

See the cov-emit-java --webapp-archive option.

Exit codes

This command returns the following exit codes:

268

cov-record-source

• 0: The command successfully completed the requested task.

• 2: The command was unable to complete the requested task. This error typically includes an error
message and some remediation advice.

• 4: An unexpected error occurred. This error should not occur when the product is used in a supported
way. Very likely, the requested task was not completed. This error typically provides some diagnostic
and/or debugging output, such as a stack trace.

See Also

cov-emit-java

cov-build

269

Name
cov-run-desktop Analyze locally changed files on a developer's desktop.

Synopsis

cov-run-desktop [OPTIONS] [FILES]

Description

The cov-run-desktop command performs an expedited local analysis by considering only the files
or translation units specified by the user, subject to various command line options. When running cov-
run-desktop, you must either include the specific file name(s) at the end of the command, pass the --
analyze-scm-modified option to let your Source Code Management system (SCM) specify which
files to analyze, or analyze previously captured source, by using the --analyze-captured-source
option. Translation unit selection has additional information on this process.

You can create a coverity.conf file to share compiler configurations and other desktop analysis
settings to multiple users of the same code base. This configuration file can also be used by individual
users to maintain these settings locally (see the Coverity Desktop Analysis 2020.12: User Guide for
details).

The analysis performed is the same as when using cov-analyze, so cov-run-desktop accepts most
of the same options as those two commands.

Because cov-run-desktop normally does not analyze an entire code base, it relies on summaries
stored in Coverity Connect to get information about the code that is not analyzed locally. This requires
that a periodic (perhaps nightly) full analysis be run in order to populate the summary information.
Additionally, after the main analysis phase is complete, cov-run-desktop normally contacts the
Coverity Connect server to determine which defects were newly introduced, and to retrieve triage data
(Classification, Severity, Owner, etc.) for existing issues. cov-run-desktop can also operate in
"disconnected" mode, relying on previously downloaded summary and issue data, if any.

By default, cov-run-desktop produces issue output in a text format that is intended to imitate the
typical output syntax of compiler error messages. Most editors and IDEs will then automatically allow you
to navigate to the corresponding locations in the source code. cov-run-desktop can also write the
issues in JSON format so that a user-provided tool can consume and present them in a user-defined way.

The exit code of cov-run-desktop is 0 when the analysis completes successfully and 2 or greater if
there is an error. The --exit1-if-defects option causes cov-run-desktop to exit with code 1
when defects are present.

Translation unit selection

In order to improve the speed of the analysis, cov-run-desktop limits the number of files or translation
units considered. In this context, a translation unit refers to any primary source file from the intermediate
directory, along with any files included by that primary source file. The selection process is defined using
various options that affect what code will be analyzed.

270

desktop_analysis_user_guide.pdf#fast_desktop_admin

cov-run-desktop

There are two methods to select which translation units will be analyzed, and it is required that the user
specify one. The first method is to explicitly pass a list of source files to be analyzed at the end of the
command line:

cov-run-desktop [OPTIONS] FILE1 [FILE2 [...]]

For C and C++, the files will typically be .c or .cpp source files. If you want to analyze a header file, see
Coverity Desktop Analysis 2020.12: User Guide .

This can also be accomplished by listing your chosen source files in a response file, and then specifying it
on the command line with the @@<response_file> syntax.

The second method of translation unit selection is to query your source code management (SCM) system
for the set of files that have been modified locally and analyze those. This method is designated with the
--analyze-scm-modified option. See --analyze-scm-modified and A note on Git superprojects
for more information on this method.

Note

You will receive an error if you attempt to pass more than one of these methods in the same
command.

A note on Git superprojects

Git superprojects are unsupported by Desktop Analysis, and will cause errors when used with --
analyze-scm-modified.

You may be able to workaround this issue by creating a script to access Git using submodules, and
specify that script with the --scm-tool option. This is an advanced usecase, and should only be
attempted by experienced users.

Regular expressions

All cov-run-desktop options that call for a regular expression (regex) follow Perl syntax. The regular
expression is case sensitive, and is considered a match if it matches a substring (i.e. full string match
requires explicit anchors).

Options categories

The options accepted by cov-run-desktop fall into several categories:

Note

Each of the items below are linked to other sections in this document. Many link to the relevant
definition in the cov-run-desktop section, while the analysis options link to cov-analyze.

Options that affect what code will be analyzed

• --analyze-captured-source

271

desktop_analysis_user_guide.pdf#fast_desktop_non_psf

cov-run-desktop

• --analyze-scm-modified

• --analyze-untracked-files

• --ignore-modified-file-regex

• --ignore-modified-non-psf

• --ignore-untracked-file-regex

• --modification-date-threshold

• --restrict-modified-file-regex

• --restrict-untracked-file-regex

• --tu-pattern

Options for using your Source Code Management (SCM) system

• --analyze-untracked-files

• --ignore-untracked-file-regex

• --restrict-untracked-file-regex

• --scm

• --scm-project-root

• --scm-tool

• --scm-tool-arg

Options that control the analysis

• --aggressiveness-level

• --all

• --android-security

• --checker-option

• --concurrency (C/C++)

• --debug

• --debug-flags (C/C++)

• --disable

272

cov-run-desktop

• --disable-android-security

• --disable-default

• --disable-fb (Java)

• --disable-fnptr (C/C++)

• --disable-misra (C/C++)

• --disable-parse-warnings (C/C++/Swift)

• --distrust-all

• --distrust-mobile-other-app

• --distrust-mobile-other-privileged-app

• --distrust-mobile-same-app

• --distrust-mobile-user-input

• --distrust-console

• --distrust-database

• --distrust-environment

• --distrust-filesystem

• --distrust-http

• --distrust-http-header

• --distrust-js-client-cookie

• --distrust-js-client-external

• --distrust-js-client-html-element

• --distrust-js-client-http-referer

• --distrust-js-client-http-header

• --distrust-js-client-other-origin

• --distrust-js-client-url-query-or-fragment

• --distrust-network

• --distrust-rpc

273

cov-run-desktop

• --distrust-servlet

• --distrust-system-properties

• --enable

• --enable-audit-mode

• --enable-callgraph-metrics

• --enable-constraint-fpp

• --enable-fb (Java)

• --enable-fnptr (C/C++)

• --enable-parse-warnings (C/C++/Swift)

• --enable-single-virtual (C/C++)

• --enable-virtual (C/C++)

• --extend-checker

• --extend-checker-option

• --fb-exclude (Java)

• --fb-include (Java)

• --fb-max-mem (Java)

• --fnptr-models (C/C++)

• --hfa (C/C++)

• --ident

• --ignore-deviated-findings

• --info

• --inherit-taint-from-unions (C/C++)

• --jobs

• --max-loop (C/C++)

• --max-mem

• --misra-config (C/C++)

274

cov-run-desktop

• --model-file

• --no-field-offset-escape (C/C++)

• --not-tainted-field (C#, Java, Visual Basic)

• --override-worker-limit (C/C++)

• --parse-warnings-config (C/C++/Swift)

• --paths (C/C++)

• --redirect

• --rule (C/C++)

• --security (C/C++)

• --security-file

• --skip-android-app-sanity-check (Java Android)

• --strip-path

• --tainted-field (Java)

• --tmpdir

• --trust-all

• --trust-mobile-other-app

• --trust-mobile-other-privileged-app

• --trust-mobile-same-app

• --trust-mobile-user-input

• --trust-console

• --trust-database

• --trust-environment

• --trust-filesystem

• --trust-http

• --trust-http-header

• --trust-js-client-cookie)

275

cov-run-desktop

• --trust-js-client-external

• --trust-js-client-html-element

• --trust-js-client-http-referer

• --trust-js-client-http-header

• --trust-js-client-other-origin

• --trust-js-client-url-query-or-fragment

• --trust-network

• --trust-rpc

• --trust-servlet

• --trust-system-properties

• --tu-pattern (C/C++)

• --use-reference-settings

• [Deprecated] --user-model-file: Use --model-file instead.

• --verbose

• --wait-for-license

• --webapp-security-aggressiveness-level (C#, Java, Visual Basic)

• --webapp-security (C#, Java, JavaScript, Visual Basic)

• --whole-program

Options to specify connection and triage information for the Coverity Connect server

• --auth-key-file

• --certs

• --connect-timeout

• --disconnected

• --host

• --mark-fp

• --mark-int

276

cov-run-desktop

• --on-new-cert

• --password

• --port

• --reference-snapshot

• --set-new-defect-owner

• --set-new-defect-owner-limit

• --set-new-defect-owner-to

• --ssl

• --stream

• --user

Output and filtering options

• --add-ignore-modified-file-regex

• --add-restrict-modified-file-regex

• --category-regex

• --checker-regex

• --cid

• --component-not-regex

• --component-regex

• --confine-to-scope

• --custom-triage-attribute-not-regex

• --custom-triage-attribute-regex

• --exit1-if-defects

• --file-regex

• --first-detected-after

• --first-detected-before

• --function-regex

277

cov-run-desktop

• --ignore-modified-file-regex

• --impact-regex

• --include-missing-locally

• --json-output-v7 <filename>

• --kind-regex

• --lang

• --language-regex

• --local-status-not-regex

• --local-status-regex

• --merge-key-regex

• --MISRA-category-regex

• --no-default-triage-filters

• --no-text-output

• --occurrences

• --ownerLdapServerName-regex

• --print-path-events

• --present-in-reference

• --relative-paths

• --relative-to

• --restrict-modified-file-regex

• --sort

• --subcategory-regex

• --text-output

• --text-output-style

• --triage-attribute-not-regex

• --triage-attribute-regex

278

cov-run-desktop

Options

--add-ignore-modified-file-regex <regex>
Specify a <regex> to ignore in addition to what is specified by --ignore-modified-file-regex
and the coverity.conf file.

--add-restrict-modified-file-regex <regex>
Specify a <regex> to add to those specified by --restrict-modified-file-regex and the
coverity.conf file. This means that filtered translation units must match both regular expressions
specified by --add-restrict-modified-file-regex and --restrict-modified-file-
regex.

--allow-suffix-match
Restores backward compatibility (pre-8.7) in specifying files to analyze on the command line.
Specifically, this option allows specifying files for analysis using any unique path suffix already
captured in the emit. Normally (without this option), the specified path must exist relative to the
current working directory or as an absolute path, as one would expect from a command line
command, so this option is only recommended for backward compatibility.

This functionality can be made more permanent through a coverity.conf setting. See Coverity
Desktop Analysis 2020.12: User Guide for details.

--analyze-captured-source
Selects for analysis all files previously captured. This option is an alternative to listing files for
analysis on the cov-run-desktop command line.

--analyze-scm-modified
Specifies the translation units to be analyzed as those that have been modified locally, as referenced
against your Source Code Management (SCM) system. When --analyze-scm-modified
is passed, you must also pass the --scm option, or, preferably, set "settings.scm.scm" in
coverity.conf. This option is an alternative to listing files for analysis on the cov-run-desktop
command line.

--analyze-untracked-files <boolean>
When true, files reported as untracked by the SCM will be analyzed. This option is false by default.

--auth-key-file <token>
Specifies the file name of an authentication key that has previously been retrieved. This option has
no effect in disconnected mode.

--build
Runs the build command specified in the coverity.conf file under cov-build. This is necessary
so the Coverity tools know how to compile all of the source files in your project. If you add new
source files or change how they are compiled, you need to re-run cov-run-desktop --build.
This command will automatically configure compilers (cov-run-desktop --configure) if they
have not been configured yet.

--category-regex <regex>
Filters the list of returned issues to include only those whose checkerProperties is not null,
and where checkerProperties.category matches the specified regular expression.

279

desktop_analysis_user_guide.pdf
desktop_analysis_user_guide.pdf
desktop_analysis_user_guide.pdf#FD_json_syntax

cov-run-desktop

--certs <filename>
In addition to CA certificates obtained from other trust stores, use the CA certificates in the given
<filename>. For information on the new SSL certificate management functionality, please see
Coverity Platform 2020.12 User and Administrator Guide

--checker-regex <regex>
Filters the list of returned issues to include only those whose checkerName matches the specified
regular expression.

--cid <rangeFilter>
Filters the list of returned issues to include only those whose stateOnServer is not null, and
whose stateOnServer.cid is not null and matches the range filter. The range filter should match
one of the following formats:

<int>
A single CID matching the value in <int>.

<int> "-"
A range of CIDs including <int> and all greater values.

"-" <int>
A range of CIDs including <int> and all lower values.

<int1> "-" <int2>
A range of CIDs including <int1>, <int2>, and all CID values in between.

--clean
Runs the clean command specified in the coverity.conf file.

--code-base-dir <code_base_dir>
Specifies the value of the "code_base_dir" variable. This is the directory that contains the
coverity.conf file, and will generally be your SCM project root directory.

By default, cov-run-desktop searches upward in the file tree from where it is invoked to find a
coverity.conf file. If one is found, then the directory containing that file is the code_base_dir.
Otherwise, the invocation directory is the code_base_dir.

--component-not-regex <regex>
Filters the list of returned issues to include only those whose stateOnServer is null or for
those which have no component names that match the specified regular expression.

--component-regex <regex>
Filters the list of returned issues to include only those whose stateOnServer is null or for
which at least one component name matches the specified regular expression.

--config <cov_config_file>
The name of the file where the compiler configuration information will be stored. By default, this is the
value of the compiler_config_file in coverity.conf.

280

cov_platform_use_and_admin_guide.html#cim_ssl_client_cert_mgmt
desktop_analysis_user_guide.pdf#FD_json_syntax
desktop_analysis_user_guide.pdf#FD_json_syntax
desktop_analysis_user_guide.pdf#FD_json_syntax
desktop_analysis_user_guide.pdf#FD_json_syntax

cov-run-desktop

--configure
When this option is specified, cov-run-desktop invokes cov-configure on each of the
CompilerConfiguration elements in the coverity.conf file.

--confine-to-scope <boolean>
Filters the list of returned issues to include only those whose mainEventFilePathname is one of
the "analysis scope" files. This means that any defects found in files outside of the analysis scope will
not be returned. When false, no such filtering is done.

This option is true by default.

Note

For information on how analysis scope is defined, see the Coverity Desktop Analysis 2020.12:
User Guide .

--connect-timeout <timeout>
Allows users to change (in seconds) the connection timeout to the given duration. The default
connection timeout is set to 60 seconds.

--cov-user-dir <cov_user_dir>
Specifies the value of the "cov_user_dir" variable. This corresponds to a directory where user-
specific and application-specific settings are stored. By default, this is "%APPDATA%/Coverity" on
Windows and "$HOME/.coverity" on unix.

--create-auth-key
Creates an authentication key file and writes it to the auth_key_file location specified in
coverity.conf.

--custom-triage-attribute-not-regex <attrName> <regex>
Filters the list of returned issues to include only those whose stateOnServer is null, or whose
CustomTriage does not contain a key equal to the specified attribute name, or that does contain
such a key but with a corresponding value that does not match the specified regular expression.

For example, --custom-triage-attribute-not-regex "customAttr" "customVal"
will return only those issues that do not have a custom attribute named "customAttr" with a value
containing "customVal" as a substring.

--custom-triage-attribute-regex <attrName> <regex>
Filters the list of returned issues to include only those whose stateOnServer is null, or whose
CustomTriage contains a key exactly equal to the specified attribute name and for which the
corresponding value matches the specified regular expression.

For example, --custom-triage-attribute-regex "customAttr" "customVal" will
return only those issues that have a custom attribute named "customAttr" with a value containing
"customVal" as a substring.

--data-dir
Specifies the directory in which cov-run-desktop stores its data. The default value is
$(code_base_dir)/data-coverity. The value is stored in a variable, $(data_dir).

281

desktop_analysis_user_guide.pdf#FD_json_syntax
desktop_analysis_user_guide.pdf#fast_desktop_analysis_scope
desktop_analysis_user_guide.pdf#fast_desktop_analysis_scope
desktop_analysis_user_guide.pdf#FD_json_syntax
desktop_analysis_user_guide.pdf#FD_json_syntax
desktop_analysis_user_guide.pdf#FD_json_syntax
desktop_analysis_user_guide.pdf#FD_json_syntax

cov-run-desktop

NOTE: You must use coverity.conf 6 or above to use the data_dir option.

--dir
Specifies the intermediate directory. Required if no coverity.conf file is present.

Note

Note that Desktop Analysis can only be run on an intermediate directory created on the same
machine, and in the same source code directory, as the analysis will take place (i.e. the
build and analysis processes must take place on the same machine and directory, and the
intermediate directory must not be moved).

--disable-misra
Ignores any MISRA analysis configuration when cov-run-desktop uses analysis settings from
the chosen reference snapshot. This is useful when the reference snapshot includes unwanted or
unnecessary MISRA analysis results, but you still want to use the same settings for local analysis.

--disconnected
When specified, cov-run-desktop operates in "disconnected" mode. Related options will be
accepted but ignored while disconnected.

--enable-audit-mode
Enables audit-mode analysis, which is intended to expose more potential security vulnerabilities by
considering additional potential data sources that could be used in an exploit.

Using this option usually reports more defects that are less likely to represent true vulnerabilities.
Audit mode analysis will take noticeably longer to complete: It analyzes all functions that are present
in the source, not just those that are present in the call tree. This level of testing can be useful for
auditors and for any users who want to see the maximum number of defects.

The --enable-audit-mode option has the following effects:

• It enables additional audit-mode checkers that normally are off by default: for example,
SQL_NOT_CONSTANT and INSECURE_COOKIE.

For a list of all Audit Mode checkers, refer to the “Checker Enablement and Option Defaults by
Language” chapter in the HTML version of the Coverity Checker Reference.

• It sets the --webapp-security-aggressiveness-level to high.

• It sets --distrust-all.

• For tainted dataflow security checkers, it introduces additional audit-mode sources of untrusted
(tainted) data, in order to model potential attacks. Such sources include all function parameters,
and the return value from external functions (those that are not visible in the source code or
bytecode, and for which no model exists).

--exit1-if-defects <boolean>
When true, cov-run-desktop exits with code 1 when defects are present in the analysis, as long
as there are no errors present that cause a higher exit code. This option is false by default.

282

cov-run-desktop

--extend-checker <executable>
This option will cause the specified executable to be invoked as an additional checker for Desktop
Analysis. The executable can be either an absolute or relative path.

This option can be specified more than once to enable multiple Extend checkers.

--extend-checker-option <executable> <checker_name>:<option>[:<option_value>]
Passes a checker option for an Extend checker, which must be specified with --extend-checker.
The specified executable must exactly match the executable passed to --extend-checker.

Example:

> cov-run-desktop [options] --extend-checker MY_CHECKER.exe --extend-checker-option
 MY_CHECKER.exe MY_CHECKER:option_a:true

--file-regex <regex>
Filters the list of returned issues to include only those whose mainEventFilePathname matches
the specified regular expression.

--first-detected-after <date>
Filters the list of returned issues to include only those that were first detected after the specified date.
The value of <date> must follow one of the following formats:

• YYYY-MM-DD: Specifies a year (YYYY), month (MM), and day (DD). Note that midnight in the local
time zone (that is, T00:00<local>) is implicit.

• YYYY-MM-DD[T]hh:mm(:ss): Specifies a time of day along with the date. The time format
accepts hours (hh), minutes (mm), and seconds (ss). Note that the local time zone is implicit.

• YYYY-MM-DD[T]hh:mm(:ss)Z: Specifies the Greenwich Mean Time (GMT) zone for the
specified time and date. Here, Z refers to "Zulu", which signifies GMT.

• YYYY-MM-DD[T]hh:mm(:ss)[+-]hh:mm: Specifies the date along with an offset ([+-]) to the
specified local time of day.

--first-detected-before <date>
Filters the list of returned issues to include only those that were first detected before the specified
date. For the date format, see the --first-detected-after option.

--function-regex <regex>
Filters the list of returned issues to include only those whose functionDisplayName matches
the specified regular expression.

--host <hostname>
Specifies the DNS hostname or IP address of the machine where Coverity Connect is running. This
option is required, or must be specified in coverity.conf, unless operating in disconnected mode.
If disconnected, this option has no effect.

--ignore-deviated-findings
Set this option to prevent reporting defects that are deviated with annotations.

283

desktop_analysis_user_guide.pdf#FD_json_syntax
desktop_analysis_user_guide.pdf#FD_json_syntax

cov-run-desktop

Any defects or false positives annotated using the #pragma Coverity compliance directive will be
suppressed and will not be reported by Coverity Connect. All recorded deviations in the current
project version are then written to a CSV file. For more information see the Coverity Checker
Reference.

--ignore-modified-file-regex <regex>
When specified, any file whose name matches <regex> will be treated as not modified. This option
may only be specified once, but <regex> may use the "|" operator to ignore multiple files. See
Translation unit selection for more information.

--ignore-modified-non-psf <boolean>
When specified as true, a translation unit will be considered modified only if its primary source file is
modified. This option is false by default.

--ignore-uncapturable-inputs <boolean>
When true, allows analysis to proceed even if Coverity is unable to process some input files for
analysis. Specifically, if some file has not been in a captured a compilation and no automatic way
of capturing it is configured (for example, filesystem capture), the file will be ignored if this option
is true. If false, such input files will cause an error. Although this option can be used as a crude
alternative to the "modified file" regex options, it is not recommended for that purpose. Although not
recommended, this functionality can be made more permanent through a coverity.conf setting.
See Coverity Desktop Analysis 2020.12: User Guide for details.

--ignore-untracked-file-regex <regex>
Untracked files are ignored if they match the <regex>.

--impact-regex <regex>
Filters the list of returned issues to include only those whose checkerProperties is not null,
and where checkerProperties.impact matches the specified regular expression.

--include-missing-locally <boolean>
When this option is set to true, the list of returned issues includes issues that are missing in the
local analysis but present in the reference snapshot; that is, their local status is “missing”. Defaults to
--include-missing-locally false.

--json-output-v7 <filename>
When present, cov-run-desktop's output is written to the specified file in JSON output . You can
include either an absolute path or a path relative to the location in which you execute the command. If
you want the file name to end in .json, you must include it in the <filename>.

--json-output-v7 is the recommended JSON output option, as it contains the most complete set
of information. Earlier versions, v1-v6, are supported for backward compatibility.

--kind-regex <regex>
Filters the list of returned issues to include only those whose checkerProperties is not null,
and where the issueKinds value matches the specified regular expression.

Matching is done using a single string, which is a comma-separated concatenation of all the
issueKinds, in alphabetical order. For example, "QUALITY,SECURITY".

284

desktop_analysis_user_guide.pdf
desktop_analysis_user_guide.pdf#FD_json_syntax
desktop_analysis_user_guide.pdf#FD_json_syntax
desktop_analysis_user_guide.pdf#FD_json_syntax

cov-run-desktop

--lang <language>
Write event messages in the specified language. Currently, the supported values are en (for English),
ja (for Japanese), and zh-cn (for Simplified Chinese). The default language is English (en).

--lang-regex <language>
This option specifies a regex and matches it against the defect’s language. These languages include
the following: C, C++, C#, CUDA, Fortran, Java, JavaScript, Objective-C, Objective-C++, PHP,
Python, Ruby, Scala, Swift, Text, and VisualBasic.

--local-status-not-regex <local status>
This option can be used only when --include-missing-locally is set to true. Filters the list of
returned issues to exclude those issues whose local status matches the specified regular expression.
The valid values for the local status are as follows:

local
The issue’s CID is present in a recent run, but not present on the server.

missing
The issue’s CID is present on the server, but not in a recent run.

present
The issue’s CID is present in both a recent run and on the server.

Here is an example of using --local-status-not-regex:

cov-run-desktop --include-missing-locally true --local-status-not-regex present
 <analysis options>

local-status-regex <local status>
This option can be used only when --include-missing-locally is set to true. Filters the list
of returned issues to include only those issues whose local status matches the specified regular
expression. The valid values for the local status are as follows:

local
The issue’s CID is present in a recent run, but not present on the server.

missing
The issue’s CID is present on the server, but not in a recent run.

present
The issue’s CID is present in both a recent run and on the server.

Here is an example of using --local-status-regex:

cov-run-desktop --include-missing-locally true --local-status-regex missing
 <analysis options>

285

cov-run-desktop

--mark-fp <cid> <explanation>
Sets the Classification of the specified CID to "False Positive". The value of <cid> is the defect's
CID, and <explanation> is a string which explains why this defect is a False Positive.

--mark-int <cid> <explanation>
Sets the Classification of the specified CID to "Intentional". The value of <cid> is the defect's CID,
and <explanation> is a string which explains why this defect is Intentional.

--merge-key-regex <regex>
Filters the list of returned issues to include only those whose mergeKey matches the specified
regular expression.

--MISRA-category-regex <regex>
Filters defects that have a MISRA category which matches the specified <regex>. Possible
categories are Advisory, Required, and Mandatory.

--modification-date-threshold <date_time>
Specifies the modification date threshold to use instead of the default. Only those files modified on
or after the specified date will be included in the analysis. The value of <date_time> should match
the YYYY-MM-DD[T]hh:mm(:ss) format, where date and time are separated by a space or T. The
time, specified by hh:mm:ss, is optional, and seconds (:ss) are not required. If time is not specified,
the default value is midnight (00:00) of the specified date.

--no-default-triage-filters
By default, cov-run-desktop has three active issue filters, which have the effect of suppressing
issues triaged as uninteresting, or in a component named to hold third-party code:

• --component-not-regex "[Tt]hird.*[Pp]arty"

• --triage-attribute-not-regex "classification" \
 "False Positive|Intentional|No Test Needed|Tested Elsewhere"

• --triage-attribute-not-regex "action" "Ignore"

If --no-default-triage-filters is specified, then all three of these filters are deactivated. If
--component-regex or --component-not-regex is specified, then the first filter is deactivated.
If --triage-attribute-regex or --triage-attribute-not-regex is specified for
"classification" or "action", then the respective filter for that attribute is deactivated.

--no-text-output
When present, cov-run-desktop does not print the compiler-like textual output.

--occurrences <range>
When there are multiple occurences for a given defect, each instance is given an occurrence
number, O, from 1 to N. The --occurrences <range> option, specifies the valid values for O.

Ranges are as described for the --cid option.

--on-new-cert <trust|distrust>
Indicates whether to trust (with trust-first-time) self-signed certificates, presented by the server, that
haven't been seen before. For information on the new SSL certificate management functionality,
please see Coverity Platform 2020.12 User and Administrator Guide

286

desktop_analysis_user_guide.pdf#FD_json_syntax
cov_platform_use_and_admin_guide.html#cim_ssl_client_cert_mgmt

cov-run-desktop

--ownerLdapServerName-regex <regex>
Filters the list of returned issues to include only those whose stateOnServer is null, or whose
ownerLdapServerName matches the specified regular expression.

--password <password>
Specifies the password for connecting to the Coverity Connect server.

--port <port_number>
Specifies the HTTP or HTTPS port of the Coverity Connect server. The default value is 8080. If --
ssl is present, the default value is 8443. This option has no effect in disconnected mode.

--present-in-reference <boolean>
Filters the list of returned issues to include only those whose stateOnServer is null, or whose
value for presentInReferenceSnapshot is equal to the specified boolean.

--print-path-events <boolean>
When true, path events are printed in the text output. When false, path events are not printed. This
option is true by default.

--reference-snapshot <specification>
Specifies how cov-run-desktop should select a reference snapshot from the selected stream. The
<specification> must be one of the following values:

id:<ID>
Use the snapshot with the matching <ID>. --reference-snapshot will return an error if the
ID is invalid or if it is not in the selected stream.

date:<date_time>
Use the snapshot that was created closest to, but not after, the specified <date_time>. The
value of <date_time> should match the YYYY-MM-DD[T]hh:mm(:ss) format, where date
and time are separated by a space or T. The time, specified by hh:mm:ss, is optional, and
seconds (:ss) are not required.

--reference-snapshot will return an error if there is no snapshot with summary data that was
created before the specified <date_time>.

latest
Use the snapshot with the latest code-version date (that also contains summary data) in the
specified stream.

Note

This is not necessarily the most recently committed snapshot, since it is possible to commit
a snapshot with an arbitrary code version date.

idir-date
Use the snapshot created closest to, but not after, the creation date of the intermediate directory.

This is the default option.

287

desktop_analysis_user_guide.pdf#FD_json_syntax
desktop_analysis_user_guide.pdf#FD_json_syntax

cov-run-desktop

scm
This option will query the SCM to determine the version that was most recently checked out or
updated, and then use the closest snapshot.

The --scm option, or the "settings.scm.scm" attribute in coverity.conf, is required when
using this specification.

--relative-paths <boolean>
When true, compiler-like output paths are printed as relative paths, relative to the directory specified
by --relative-to. If --relative-to is not specified, the current working directory is used.

--relative-to <path>
When --relative-paths is true, compiler-like output paths are printed relative to the specified
<path>. If not specified, the current working directory is used.

@@<response_file>
Specify a response file that contains a list of additional command line arguments, such as a list of
files for analysis. Each line in the file is treated as one argument, regardless of spaces, quotes, etc.
The file is read using the platform default character encoding. Using a response file is recommended
when the list of input XML files is long or automatically generated.

Optionally, you can choose a different encoding, by specifying it after the first "@". For example:

cov-run-desktop [OPTIONS] @UTF-16@my_response_file.txt

You must use a supported Coverity encoding, listed under the cov-build --encoding option.

--restrict-modified-file-regex <regex>
When specified, only files whose name matches <regex> (and whose timestamp satisfies the
modification date threshold) will be included in the analysis. This option may only be specified once,
but <regex> may use the "|" operator to include multiple files.

Note

--ignore-modified-file-regex takes precedence if used in tandem with --restrict-
modified-file-regex.

--restrict-untracked-file-regex <regex>
Only untracked files that match the <regex>, and do not match --ignore-untracked-file-
regex, will be analyzed.

--scm <scm_type>
Specifies the name of the source control management system. For this option to function correctly,
your source files must remain in their usual locations in the checked-out source tree. If the files are
copied to a different location after checkout, the SCM query will not work.

Possible scm_type values:

• Accurev: accurev

• Azure DevOps Server (ADS): ads

288

cov-run-desktop

Windows only.

• ClearCase: clearcase

• CVS: cvs

• GIT: git

• Mercurial: hg

• Perforce: perforce

• Plastic: plastic|plastic-distributed.

Use plastic when working in a non- or partially-distributed Plastic configuration. Use plastic-
distributed when working in a fully-distributed Plastic configuration.

• SVN: svn

• Team Foundation Server (TFS): tfs

Windows only.

For usage information for the --scm option, see cov-extract-scm.

Note

The following commands or setup utilities must be run before cov-run-desktop in order to
successfully communicate with the SCM server:

• accurev:

Login command

• perforce

The environment variable P4PORT should be set to the value expected by the p4 tool.

• tfs or ads:

Windows credentials in Credential Manager to access the TFS or ADS server

---scm-param
Specify extra arguments to be passed to the SCM tool in a context-aware manner. For usage
information of the --scm option, see cov-extract-scm.

--scm-project-root <scm_root_path>
Specifies a path that represents the root of the source control repository. Use this option when cov-
run-desktop is being run from a directory other than the root of the source control repository. All
paths returned by --get-modified-files will be relative to this path.

289

cov-run-desktop

This option behaves the same as cov-extract-scm --scm-project-root. See cov-
extract-scm for additional details.

--scm-tool <scm_tool_path>
Specifies the path to an executable that interacts with the source control repository. If the executable
name is given, it is assumed that it can be found in the path environment variable. If not provided, the
command uses the default tool for the specified --scm system.

This option behaves the same as cov-extract-scm --scm-tool. See cov-extract-scm for
additional details.

--scm-tool-arg <scm_root_path>
This option has been deprecated. Instead of using --scm-tool-arg arg1, use --scm-param
tool_arg=arg1.Specifies additional arguments that are passed to the SCM tool, specified in the
--scm-tool option, that gathers the last modified dates. The arguments are placed before the
command and after the tool. This option can be specified multiple times.

This option behaves the same as cov-extract-scm --scm-tool-arg. See cov-extract-scm
for additional details.

--set-new-defect-owner <boolean>
When true, and in connected mode, sets the owner for newly detected defects that exist locally as the
current user. True by default.

See also, --set-new-defect-owner-limit.

--set-new-defect-owner-limit <limit>
Set the limit on the number of defects to assign to the current user. If the number of discovered
defects is more than the limit, then skip the assignment. The default limit is 100.

Note

--set-new-defect-owner and --set-new-defect-owner-limit have no effect on the
following platforms:

• FreeBSD

• Itanium

• NetBSD

--set-new-defect-owner-to <user>
When used with --set-new-defect-owner, this specifies the user to whom any new defects will
be assigned. The default is the current user.

Note that the specified <user> must already exist in the Coverity Connect database.

--setup
This option is intended as a single step to get a new user ready for Desktop Analysis. It creates an
authentication key (if one has not already been created), runs the clean command, if applicable, and
then captures a full build, if applicable. No build is captured if the --skip-build option is used with

290

cov-run-desktop

--setup or if the configured build command in coverity.conf is empty. The clean command, if
configured, is only executed if a build is to be captured. Since it is common to capture a build, it is an
error to leave the build command unspecified and run --setup without --skip-build.

--skip-build
Used only with --setup to omit capturing a build, even if one is specified in coverity.conf. This can
be useful if your project contains compiled and interpreted code, but you intend only to analyze
interpreted (filesystem capture) code. This functionality can be made more permanent by specifying
an empty build command in coverity.conf. See Coverity Desktop Analysis 2020.12: User Guide for
usage.

--sort <sort_spec>
Specifies the sort order for text output. The <sort-spec> accepts the values listed below. To sort
on more than one attribute, you can use a non-empty, comma-separated list of values. Additionally,
to specify ascending or descending sort order for any attribute, you can add :a or :d (respectively)
directly after the attribute name. All attributes, except cid, are ordered in ascending order by default.

The available sort attributes are:

• cid: ID number assigned by Coverity Connect to each issue.

• occurrence: The number of the occurrence among all those in the output set that have the same
merge key.

• occurrences: The total number of issue occurrences.

• mergeKey: An internal identifier used to assign CIDs to issues. This is mainly useful when the CID
is missing, either because cov-run-desktop is in disconnected mode or because the Coverity
Connect server is a subscriber that is disconnected from its coordinator.

• checker: The name of the checker that found this issue.

• file: The complete path to the file that contains the issue.

• line: The file's line number where the issue is located.

• function: The name of the function that contains the issue.

• impact: The issue's impact, as determined by Coverity Connect: High, Medium, or Low

• category: Description of the nature of the software issue.

• subcategory: The sub-category of the defect reported by <checker>.

• present: True if the issue is present in the specified snapshot, otherwise false.

• ownerLdapServerName: The LDAP server of the defect owner.

• component: The name of the component that contains this issue.

• firstDetected: The date and time in which the issue was first detected by the analysis.

291

desktop_analysis_user_guide.pdf

cov-run-desktop

• classification: The value of the issue's classification attribute.

• action: The specified action to be taken on the issue.

• fixTarget: Target milestone for fixing an issue.

• severity: The value of the issue's severity attribute.

• legacy: True if the issue is marked as a legacy issue, otherwise false.

• MISRACategory: MISRA categories are sorted in order from least to most stringent: Advisory,
Required, Mandatory. If this option is not specified, MISRA defects are not sorted by category.

• owner: The user assigned to the issue.

• externalReference: An internal identifier used by your company to track the issue.

• customTriage[<attribute>]: The value of any custom triage attributes. Within the bracket-
enclosed <attribute> name, use two consecutive right brackets (]]) to encode a single right
bracket (]).

For example, --sort file,classification:d will order the results first by ascending file name,
then descending Classification.

--ssl
When present, use SSL encryption for all communication with Coverity Connect. This option has no
effect in disconnected mode.

--stream <stream_name>
Specifies the Coverity Connect stream which contains the relevant snapshot and triage information.
This option has no effect in disconnected mode.

--subcategory-regex <regex>
Filters the list of returned issues to include only those whose checkerProperties is not null,
and where checkerProperties.subcategoryShortDescription matches the specified
regular expression.

--text-output <filename>
Write the text output to the specified file rather than writing it to the console.

--text-output-style <style>
Specifies the style of the text output. There are two accepted styles:

• oneline - Each occurrence and event is written as a single line of output. This format works best
with vi type editors.

• multiline - Each occurrence and event is split accross multiple lines. This format works best
with Emacs editors.

• msvs - Similar to multiline, but prints locations as <file(line)> instead of <file:line>;
for use with Visual Studio.

If unspecified, the multiline style is used by default.

292

desktop_analysis_user_guide.pdf#FD_json_syntax

cov-run-desktop

--triage-attribute-not-regex <attrName> <regex>
Filters the list of returned issues to include only those whose stateOnServer is null, or whose
Triage does not contain a key equal to the specified attribute name, or that does contain such a
key but with a corresponding value that does not match the specified regular expression.

For example, --triage-attribute-not-regex "severity" "Minor" will return only those
issues that do not have a "severity" attribute with a value containing "Minor" as a substring.

--triage-attribute-regex <attrName> <regex>
Filters the list of returned issues to include only those whose stateOnServer is null, or
whose Triage contains a key exactly equal to the specified attribute name and for which the
corresponding value matches the specified regular expression.

For example, --triage-attribute-regex "classification" "Bug" will return only those
issues that have a "classification" attribute with the value, "Bug" (or containing the substring "Bug").

--tu-pattern <pattern>
When specified, only those translation units which match <pattern> will be present in the analysis.

--upgrade <version>
Launches an assisted upgrade of Coverity Analysis to the version specified. The value of <version>
should be the desired Coverity Analysis version number (2020.12 for example). This will download
the required installer from Coverity Connect, run it, and provide instructions to invoke the new
version. The existing installation with not be overwritten.

--url <path>
Allows you to connect to a CIM instance that has a context path in its HTTP(S) URL. You can
use this option instead of the --host, or --port options. The --url option is provided to
accommodate the use of a context path and to deal with setting up Coverity Connect behind a
reverse proxy.

Use HTTPS or HTTP to connect to Coverity Connect HTTPS or HTTP port. For http, the default
port is 80; for https, the default port is 443. For example:

https://example.com/coverity

https://cimpop:8008

http://cim.example.com:8080

Note

You may not use the commit:// scheme in the URL.

--use-reference-settings <boolean>
If true, cov-run-desktop will use the analysis settings downloaded from the reference snapshot.
True by default.

--user <user_name>
Specifies the Coverity Connect user name. If unspecified, the default is the value for the environment
variable, "COV_USER", "USER", or "USERNAME", if specified. If none of these is specified, and

293

desktop_analysis_user_guide.pdf#FD_json_syntax
desktop_analysis_user_guide.pdf#FD_json_syntax
desktop_analysis_user_guide.pdf#FD_json_syntax
desktop_analysis_user_guide.pdf#FD_json_syntax

cov-run-desktop

"settings.server.username" is not specified in the coverity.conf file, then the --user
option is required.

This option has no effect in disconnected mode.

--whole-program
Some checkers, such as Application Security checkers and IDENTIFIER_TYPO, are only effective
when analyzing all source files in the program. By default, these "whole-program" checkers are not
available to cov-run-desktop.

Specifying --whole-program allows cov-run-desktop to run whole-program checkers.

Example 1

> cov-run-desktop file1.c file2.c

This will analyze file1.c and file2.c, assuming a compilation of those files has previously been
captured using cov-build.

Example 2

> cov-run-desktop file1.js

This will analyze file1.js

Example 3

> cov-run-desktop --analyze-scm-modified

This will query your SCM to find out which files have been modified locally and analyze those.

Example 3

> cov-run-desktop --dir idir --host my_server --port 8080 \
 --auth-key-file keyfile --stream my_stream \
 --triage-attribute-regex Owner user1 \
 --text-output-style oneline \
 file1.c file2.c

This example analyzes both file1.c and file2.c, obtains a reference snapshot from the
"my_stream" stream on my_server:8080, authenticates using "keyfile" (which must have been
previously created using cov-run-desktop), filters the results for those assigned to user1, and writes
the defects to the console in the oneline format, which uses one line of text for each defect and event.
Notice that many of the options specified here could instead have been put into a coverity.conf file
for convenience.

Exit codes

Most Coverity Analysis commands can return the following exit codes:

• 0: The command successfully completed the requested task.

294

cov-run-desktop

• 1: The requested task is complete, but it did not return (or find) any results. Note that some Coverity
Analysis commands do not return this error code.

• 2: The command was unable to complete the requested task. This error typically includes an error
message and some remediation advice.

• 4: An unexpected error occurred. This error should not occur when the product is used in a supported
way. Very likely, the requested task was not completed. This error typically provides some diagnostic
and/or debugging output, such as a stack trace.

For exceptions, see cov-commit-defects(Coverity 2020.12 Command Reference), cov-analyze, and cov-
build.

See Also

cov-build

cov-configure

cov-manage-im

cov-manage-emit

295

Name
cov-run-fortran Run the Coverity Fortran Syntax Analysis tool on user's Fortran code.

Synopsis

cov-run-fortran --dir <intermediate_directory> [CONTROL-OPTIONS] [--] [ANALYSIS-OPTIONS-
AND-FILES]

Description

The cov-run-fortran command runs the Coverity Fortran Syntax Analysis tool on user's code and
puts the output into a form compatible with Coverity Connect. The cov-commit-defects command can
then be used to upload the results to Coverity Connect. The options described in this command reference
are of two kinds: Control and Analysis. Control options are interpreted by the cov-run-fortran
command and used to control Coverity Fortran Syntax Analysis and the subsequent translation. Analysis
options are passed through to Coverity Fortran Syntax Analysis verbatim. This command reference
provides an overview of the analysis options. Refer to the Coverity Fortran Syntax Analysis User Guide
for additional details.

Coverity Fortran Syntax Analysis is a static analysis tool designed to give detailed feedback on syntax
and usage that is not compatible with the selected compiler and language level. Coverity Fortran Syntax
Analysis supports many current and legacy configurations through pre-written compiler configuration
files. It is especially useful for porting and regularization efforts, since compiler incompatibilities can be
discovered by selecting the target compiler's configuration file.

The control options simplify the selection of a configuration file, and specify the directories where the
intermediate and output files are to be stored. The analysis options indicate which source and library files
to process and control other features of the Coverity Fortran Syntax Analysis tool.

The main output of cov-run-fortran is the file FC.errors.xml, which is written into the output
section of the intermediate directory specified by the --dir option. The emit-db is updated with
filename and error summary information.

The exit code of cov-run-fortran is 0 when the analysis completes successfully and 2 or greater if
there is an error.

Fortran Inputs

Coverity Fortran Syntax Analysis analyzes the specified Fortran source files in two phases, a local phase
and a global phase. During the local phase, it analyzes each file separately and emits defects as it finds
them. It also collects symbol information to be used during the global analysis phase. During the global
phase, it uses the stored information to report on issues that span program unit boundaries.

Coverity Fortran Syntax Analysis respects C-style preprocessor (i.e. cpp) directives and INCLUDE
statements to determine when source code is being imported. Coverity Fortran Syntax Analysis emulates
the target compiler by importing those files in the expected manner. Coverity Fortran Syntax Analysis
resolves paths relative to the current working directory; thus, the environment in which cov-run-
fortran is run should mimic the actual compilation environment as closely as possible.

296

fortran_syntax_analysis_guide.pdf

cov-run-fortran

Coverity Fortran Syntax Analysis also respects USE statements appearing in the code and uses these
to import symbols and interfaces from the modules so named. Modules must be analyzed in a bottom-
up order, so that types, symbols and interfaces imported from a given module can be checked for
consistency at their point of use. Coverity Fortran Syntax Analysis automatically calculates and uses a
bottom-up processing order. However, it is still necessary to list in the cov-run-fortran command the
source files and/or library files containing all of the modules used.

Coverity Fortran Syntax Analysis library files provide a summary of the interface information extracted
from module and non-module source files. They perform the dual purpose of fulfilling module references
and providing information about intrinsic or library functions provided by the compilation environment
(compiler and OS). Multiple library files can be referenced in one cov-run-fortran invocation. See the
Coverity Fortran Syntax Analysis User Guide for more information on creating and using libraries.

As with other Coverity analysis tools, cov-run-fortran will accept some or all of its input from
response files. Command line arguments of the form @@<response_file> cause the command
interpreter to read options from the named response file.

Fortran Outputs

In addition to the error XML file produced by cov-run-fortran, Coverity Fortran Syntax Analysis
produces a number of outputs that may be useful. These include a module dependency file, an annotated
listing with defect annotations shown in-line, and a function/procedure cross-reference (i.a. a callgraph).
See the Coverity Fortran Syntax Analysis User Guide for detailed information on these additional
outputs.

Options usage

As shown in the command synopsis, cov-run-fortran control options and analysis options separated
by a -- argument. Control options govern the operation of cov-run-fortran as a whole, while
analysis options govern only the analysis. Analysis options include the names of the source files on which
Coverity Fortran Syntax Analysis operates as well as library file names and supplementary output file
names.

Analysis options may act globally or locally. When listed before any source file name, the effect of the
option is global. It acts upon all of the listed source files unless explicitly overridden. When specified
within the source file list, the effect of an option is local. It acts only upon the immediately following source
file name. Analysis options can be negated by prefixing the option name with -n or -no- option syntax.

Options categories

The options accepted by cov-run-fortran fall into several categories as summarized below.

Note

Each of the items below is linked to other sections in this document. Many link to the relevant
definition in this section, while common analysis options link to corresponding entries in the cov-
analyze section.

Note

Analysis options must follow all control options and are separated from control options by --.

297

fortran_syntax_analysis_guide.pdf
fortran_syntax_analysis_guide.pdf

cov-run-fortran

Control options that select the compiler configuration

Configuration options are used to select the configuration file that controls compiler emulation. The --
configuration and --config-path options can be used to select a configuration file by name,
including a user-supplied configuration file. The remaining configuration options can be used to select
from the matrix of pre-written configuration files.

Configurations are filtered in the following order: --platform; --vendor; --version; --level. Very
few configuration files provide platform information, so it does not make a good selector. In most cases,
it is sufficient to select the desired compiler emulation using just the --vendor and --version options.
Where necessary, the --platform and --level options can be used to refine this initial selection.

• --configuration

• --config-path

• --level

• --list-configs

• --platform

• --vendor

• --version

Control options used in other Coverity analysis tools

• --append

• --dir

• --strip-path

• --security-file

Other control options

• --impact

Analysis options that affect the analysis of individual program units

The following analysis options affect the kinds of defects that are reported:

Note

Analysis options must be separated from control options by a double-dash (--).

• -acqintf

• -allc

298

cov-run-fortran

• -cntl

• -cond

• -cpp

• -declare

• -dp

• -externals

• -f03

• -f08

• -f18

• -f77

• -f90

• -f95

• -ff

• -i2

• -i4

• -i8

• -intent

• -intrinsic

• -obsolescent

• -r8

• -relax

• -save

• -specific

• -standard

Analysis options that affect the analysis of whole programs

The following analysis options affect the kinds of defects that are reported:

299

cov-run-fortran

Note

Analysis options must be separated from control options by a double-dash (--).

• -ancmpl

• -anprg

• -anref

Analysis options that affect additional outputs

The following analysis options do not affect any of the defects that are reported:

Note

Analysis options must be separated from control options by a double-dash (--).

• -l

• -plen

• -pwid

• -refstruct

• -moddep

• -shinc

• -shsub

• -shsrc

• -shsngl

• -shprg

• -shref

• -shcom

• -shmodtyp

• -shmodvar

• -shmoddep

Analysis options used for library usage and maintenance

The following analysis options are used when generating or maintaining libraries:

• -create

300

cov-run-fortran

• -include

• -library

• -update

Miscellaneous analysis options

The following options (except for -idep, -log and -report) affect the kinds of defects that are
reported:

• -define

• -I

• -idep

• -informative

• -log

• -report

• -rigorous

• -truncate

• -warnings

Options

-acqintf
(analysis, global and local) During the local analysis phase, use the interfaces of previously--
analyzed subprograms to validate calls and function invocations whose interfaces are not explicitly
provided. If negated, the actual argument lists of subprogram invocations will only be verified during
the global analysis phase.

This option should be specified when analyzing an unrelated set of program units, and when
interfaces have been updated but the a library file presenting these interfaces has not yet been
updated.

Default: -nacqintf

-allc
(analysis, global and local) Analyze all columns of each input record. If negated and the -ff option is
not in effect, only columns 1 to 72 (after expansion of any tabs) will be analyzed.

Default: -nallc

-ancmpl
(analysis, global only) The complete program is analyzed. Unreferenced procedures, unreferenced
and undefined common blocks, unreferenced and undefined common block objects, unreferenced

301

cov-run-fortran

modules, unreferenced and undefined public module variables, unreferenced public module
constants and unreferenced public module derived types are flagged. If the -anref and -rigorous
options are also in effect, the call tree will be traversed to detect unsaved common blocks and
modules with unsaved public data which are not saved in the root of referencing program units.

Default: -nancmpl

-anprg
(analysis, global only) Verify the consistency of the whole program.

Default: -anprg

-anref
(analysis, global only) Analyze the reference structure.

Default: -anref

--append
(control) Append defects from this analysis run to the defects from the last analysis run.

This option is intended for combining the Coverity Fortran Syntax Analysis outpus from different code
sets into a single emit. No attempt is made to cull duplicate file or defect entries.

-cntl <c>
(analysis, global and local) Allow a maximum of c continuation lines in a statement. The value of c
must be 999 or less.

Default: depends on the selected compiler emulation

-cond
(analysis, global and local) Process debug lines (lines with a D in the first column). If this option is
negated, debug lines are treated as comments.

Default: -ncond

--config-path
(control) Specifies an alternate path where Coverity Fortran Syntax Analysis should look for its
configuration files. By default, these are in fortran/share/ relative to the cov-analysis
installation directory.

--configuration
(control) The configuration option can be used to directly specify the name of the configuration file to
be used by Coverity Fortran Syntax Analysis.

For a list of the available configurations, use cov-run-fortran --list-configs. For a list of
supported compiler emulations and their corresponding configuration filenames, consult Appendix
A.1 in the Coverity Fortran Syntax Analysis User Guide .

-cpp
(analysis, global and local) Interpret C-style preprocessor directives as if the Fortran sources are first
run through the C preprocessor cpp.

302

fortran_syntax_analysis_guide.pdf

cov-run-fortran

Default: -cpp for files whose filename extension begins with .F; -ncpp otherwise.

-create
(analyis, global) Create a new library file. If more than one libary file is specified, the library file to be
created must be the first in the list.

Default: -ncreate

-declare
(analysis, global and local) Generate a warning for all variables that have not been explicitly declared
in a type statement.

Default: -ndeclare

-define <symbols>
(analyis, global) Define metasymbols for conditional compilation. The list of <symbols> must be
comma-, semicolon- or colon-separated.

Default: -ndefine

--dir <intermediate_directory>
Path name to an intermediate directory that is used to store the results of the build and analysis.

-dp
(analysis, global and local) Map all real objects to double precision and all double precision objects to
REAL(16). Map all complex objects to double complex and all double complex to COMPLEX(16).

Default: -ndp

-externals
(analysis, global and local) Flag referenced external procedures which have not been deiclared
external.

Default: -nexternals

-f77
(analysis, global and local) Validate the syntax for conformance to the FORTRAN 77 standard. All
nonstandard syntax will be flagged. Note that this option by itself does not enable FORTRAN 77
syntax validation. It is also necessary to select a configuration that supports FORTRAN 77 syntax.
Both of these steps are taken if the configuration control options include the --level option.

Default: -nf77

-f90
(analysis, global and local) Validate the syntax for conformance to the Fortran 90 standard. All
nonstandard syntax will be flagged. Note that this option by itself does not enable Fortran 90 syntax
validation. It is also necessary to select a configuration that supports Fortran syntax. Both of these
steps are taken if the configuration control options include the --level option.

Default: -nf90

303

cov-run-fortran

-f95
(analysis, global and local) Validate the syntax for conformance to the Fortran 95 standard. All
nonstandard syntax will be flagged. Note that this option by itself does not enable Fortran 95 syntax
validation. It is also necessary to select a configuration that supports Fortran syntax. Both of these
steps are taken if the configuration control options include the --level option.

Default: -nf95

-f03
(analysis, global and local) Validate the syntax for conformance to the Fortran 2003 standard. All
nonstandard syntax will be flagged. Note that this option by itself does not enable Fortran 2003
syntax validation. It is also necessary to select a configuration that supports Fortran 2003 syntax.
Both of these steps are taken if the configuration control options include the --level option.

Default: -nf03

-f08
(analysis, global and local) Validate the syntax for conformance to the Fortran 2008 standard. All
nonstandard syntax will be flagged. Note that this option by itself does not enable Fortran 2008
syntax validation. It is also necessary to select a configuration that supports Fortran 2008 syntax.
Both of these steps are taken if the configuration control options include the --level option.

Default: -nf08

-f18
(analysis, global and local) Validate the syntax for conformance to the Fortran 2018 standard. All
nonstandard syntax will be flagged. Note that this option by itself does not enable Fortran 2018
syntax validation. It is also necessary to select a configuration that supports Fortran 2018 syntax.
Both of these steps are taken if the configuration control options include the --level option.

Default: -nf18

-ff
(analysis, global and local) Specifies that source code is in the free source form. The exact
interpretation depends on the compiler configuration and language level options selected.

For files with the filename extension f90, f95, f03, f2003, f03, F2008, F90, F95, F03, F2003,
F03, or F2008 the default is -ff. For all other files, the default is -nff.

-I <paths>
(analysis, global) Set directories of include files. Path names must be separated by commas or
colons with no embedded spaces.

Default: –nI

-i2
(analysis, global and local) Default integers occupy 2 bytes.

-i4
(analysis, global and local) Default integers occupy 4 bytes.

304

cov-run-fortran

-i8
(analysis, global and local) Default integers occupy 8 bytes.

-idep <d>
(analysis, global) Generate a file listing all referenced include files.

Default: -ndep

--impact <impact>
(control) Selects the impact level of the issues formatted for input into Coverity Connect. Valid values
are Audit, Low, Medium and High. A lower impact level selects all higher impact levels as well.
Default: High

-include, -include -, -include <sub_list>
(analysis, global) From the library file, include the subroutines named in <sub_list> in the analysis.
The <sub_list> must be a comma-, semicolon- or colon-separated list that does not contain any
spaces. If <sub_list>is omitted, then all subroutines are included.

Default: -ninclude

-informative
(analysis, global) Show informative messages.

Default: -ninformative

-intent
(analysis, global and local) Flag parameters for which no INTENT attribute has been specified.

Default: -nintent

-intrinsic
(analysis, global and local) Flag referenced intrinsic procedures which have not been declared
intrinsic.

Default: -nintrinsic

-l, -l <list-file>
(analysis, global only) Specified that a merged list file is desired and optionally supplies the list file
name.

In the first form, the file name is omitted. The listing is written to a file whose base name is the same
as that of the first source file and has the filename extension .lst.

In the second form, the file name is a single hyphen. The listing file is written to the standard output.

In the third form, the listing filename is supplied. The listing is written to the specified file.

--level <level>
(control) Specifies the language level (standard) used to select a Coverity Fortran Syntax Analysis
configuation file. Available values are: f77 f90 f95 f03 f08 f18

305

cov-run-fortran

The --level option selects the minimum language level that must be supported by the selected
compiler configuration. We assume that a compiler supporting a given language level also supports
all prior levels. Thus, for example, a compiler supporting Fortran 95 will also be selected if --level
f90 is specified.

When this configuration control option is provided, the corresponding language level option (-f77, -
f90, -f95, etc.) is also supplied to Coverity Fortran Syntax Analysis.

-library <filename>
(global) The filename specificed is a \FCK\ library file.

Default: -nlibrary

-log
(global) Show defines and undefines of metavariables.

Default: -nlog

--list-configs
(control) The --list-configs option reads all of the available configurations from the Coverity
Fortran Syntax Analysis installation and prints out summary information in tabular form. Each entry
contains the name of the configuration followed by a tuple containing its platform, vendor, version and
language level. Any of these that are unspecified are omitted from the tuple.

-moddep, -moddep <file>
(analysis, global only) Generate a file containing the module dependency structure in XML format. If
no filename is specified, fckmd.xml is used.

-obsolescent
(analysis, global and local) Flag all syntax elements marked as obsolescent in the Fortran standard
that is in effect.

Default: -nobsolescent

--platform <platform>
(control) Specifies the target architecture or operating system used to select a Coverity Fortran
Syntax Analysis configuration file. This option can be used to narrow the configuration selection
when a compiler has different features that depend on the platform. Usually, the --vendor and --
version options are sufficient to select the desired compiler emulation. Platform values include:
convex cray dec fujitsu hp9000 hpvms hp ibm rs6000 unisys vax vms

-plen <lines>
(analysis, global only) Specifies the page length of the output listing. Default:62

-pwid <columns>
(analysis, global only) Specifies the page with of the output listing. Default:100

-r8
(analysis, global and local) Map all default reals to double precision. Map all default complex objects
to double complex.

306

cov-run-fortran

-refstruct, -refstruct <file>
(analysis, global only) Generate a file containing the reference structure of the program. The output is
stored in XML format. If no filename is specified, fckrs.xml is used.

-relax
(analysis, global and local) Relax type checking on integers, logicals and Holleriths. No messages
will be produced for type conflicts between logicals and integers, for the use of relational operators on
logicals, and for the use of logical operators on integers. Hollerith (character) constants can be used
in expresssions and mixed with logicals, integers and reals.

Default: -nrelax

-report <filename>
(analysis, global) Generate a report file with the given name. The default filename extension is .rpt.
If the filename is omitted, fck.rpt is used.

Default: -nrpt

-rigorous
(analysis, global) Flag less robust and less portable code at the expense of more informative
messages. This option removes the limit on the number of messages displayed per line, so should be
used with caution.

Default: -nrigorous

-save
(analysis, global and local) Assume that all variables are saved by default.

Default: -nsave

--security-file <license file>, -sf <license file>
Path to a valid Coverity Analysis license file. If not specified, this path is given by the
<security_file> tag in the Coverity configuration or by license.dat (located in the Coverity
Analysis <install_dir>/bin directory). A valid license file is required to run the analysis.

-shcom, -shcom <com_list>
(analysis, global and local) In the listing file, show cross-references of common-block objects. The
com_list names the common blocks to be displayed. If omitted, all common blocks are displayed.

Default: -nshcom

-shinc
(analysis, global and local) In the listing file, show included source as well.

Default: -shinc

-shmoddep, -shmoddep <mod_list>
(analysis, global only) Show module dependencies. If the mod_list is supplied, dependencies of the
named modules are shown. Otherwise, dependencies are shown for all modules.

307

cov-run-fortran

Default: -nshmoddep

-shmodtyp, -shmodtyp <mod_list>
(analysis, global only) Show cross-reference listings of public module derived types. If the mod_list
is supplied, cross-references for the named modules are shown. Otherwise, cross-references are
shown for all modules.

Default: -nshmodtyp

-shmodvar, -shmodvar <mod_list>
(analysis, global only) Show cross-reference listings of public module data. If the mod_list is
supplied, cross-references for the named modules are shown. Otherwise, cross-references are
shown for all modules.

Default: -nshmodvar

-shprg
(analysis, global only) Show cross-reference listings for the program.

Default: -shprg

-shref, -shref <root-list>
(analysis, global only) Show the complete reference structure of the referenced procedures. If
supplied, the root-list provides the roots for the reference structure. If omitted, the main program
is used as the root.

Default: -shref

-shsngl
(analysis, global and local) In the program unit cross-references, show unreferenced constants,
namelist groups and procedures that are declared in include files or modules. Also, show
unreferenced common-block objects and unreferenced imported module variables.

Default: -shsngl

-shsrc
(analysis, global and local) In the listing file, show the source code. To list source code, the -shsub
option must also be in effect.

Default: -shsrc

-shsub
(analysis, global and local) In the listing file, show the code and cross-references of program units
and subprograms. The listing of source code lines can be suppressed using the -nshsrc option.

Default: -shsub

-specific
(analysis, global and local) Flag all referenced procedures that are invoked using type-specific (i.e.
non-generic) names.

308

cov-run-fortran

Default: -nspecific

-standard
(analysis, global and local) Validate all syntax for conformance to the selected language level
(standard).

Default: -nstandard

--strip-path <path>, -s <path>
Strips the prefix of a file name path in error messages and references to your source files. If you
specify the --strip-path option multiple times, you strip all of the prefixes from the file names, in
the order in which you specify the --strip-path argument values.

(control) This option is also available with cov-commit-defects and cov-analyze.

The leading portion of the path is omitted if it matches a value specified by this option. For example, if
the actual full pathname of a file is /foo/bar/baz.c, and --strip-path /foo is specified, then
the name attribute for the file becomes /bar/baz.c.

Note

Coverity recommends using this option for a number of reasons:

You can enhance end-to-end performance of the path stripping process by using this option
during the analysis of your source code, rather than when committing the analysis results to
Coverity Connect;.

It shortens paths that Coverity Connect; displays. It also allows your deployment to be more
portable if you need to move it to a new machine in the future.

-truncate
(analysis, global) Truncate names to 6 significant characters.

Default: -ntruncate

-update
(analysis, global) Update the library file. If the library file does not exist, it will be created.

Default: -nupdate

--vendor
Specifies the compiler vendor to be used in selecting a Coverity Fortran Syntax Analysis
configuration file. Vendor values include: absoft cd control convex cray cv compaq
cyber dec digital equip res digres apollo domain ftn salford fujitsu
gnu hp hewlett ibm intel lahey ms microsoft nag ndp ps pathscale pdp pgi
princeton prime prospero rm ryan sgi silicon sun solaris oracle unisys
watcom

--version <ver>
Specifies the compiler version to be used in selecting a Coverity Fortran Syntax Analysis
configuration file. Valid values for the --version option are vendor-specific.

309

cov-run-fortran

This option should be specified only when emulation of a particular compiler version is desired.
Moreover, not all configuration files provide version information, so specifying a particular version
might select the empty set.

-warnings
(analysis, global) Show warnings.

Default: -warnings

Example 1

> cov-run-fortran --dir idir -- file1.f file2.f

This will use Coverity Fortran Syntax Analysis to analyze file1.f and file2.f using the default
configuration file. Coverity Fortran Syntax Analysis defects will be written into the output/ subdirectory
of the emit directory idir in a file called FC.errors.xml. This file is suitable for upload to Coverity
Connect using cov-commit-defects.

Example 2

> cov-run-fortran --dir idir --vendor intel --version 14.1 -- file1.f

This will use Coverity Fortran Syntax Analysis to analyze file1.f, selecting the configuration file that
will emulate the Intel Fortran compiler version 14.1. Coverity Fortran Syntax Analysis will accept all of
the standard langauge constructs and extensions normally accepted by the Intel Fortran compiler of that
version. It will report incompatibilities with the language recognized that compiler, including obsolescent
and deleted features and features supported by other compilers but not by that version of the Intel Fortran
compiler.

Example 3

> cov-run-fortran --dir idir --vendor intel --version 14.1 --level f95 -- file1.f

This will use Coverity Fortran Syntax Analysis to analyze file1.f, selecting the configuration file that
will emulate the Intel Fortran compiler version 14.1. Coverity Fortran Syntax Analysis will accept all of
the standard langauge constructs and extensions normally accepted by the Intel Fortran compiler of that
version. However, the --level f95 flag causes all language elements incompatible with the Fortran 95
standard (obsolescent, deleted, or supported only in a newer standard) to be flagged.

Example 4

> cov-run-fortran --dir idir -- -ff file1.f

This will use Coverity Fortran Syntax Analysis to analyze file1.f using the default compiler
configuration, but forcing the interpretation of the input according to the free-form source form.

Exit codes

Most Coverity Analysis commands can return the following exit codes:

• 0: The command successfully completed the requested task.

310

cov-run-fortran

• 1: The requested task is complete, but it did not return (or find) any results. Note that some Coverity
Analysis commands do not return this error code.

• 2: The command was unable to complete the requested task. This error typically includes an error
message and some remediation advice.

• 4: An unexpected error occurred. This error should not occur when the product is used in a supported
way. Very likely, the requested task was not completed. This error typically provides some diagnostic
and/or debugging output, such as a stack trace.

For exceptions, see cov-commit-defects(Coverity 2020.12 Command Reference), cov-analyze, and cov-
build.

See Also

Coverity Fortran Syntax Analysis User Guide

cov-import-results

cov-commit-defects

cov-manage-emit

311

fortran_syntax_analysis_guide.pdf

Name
cov-security-da Run a dynamic analysis for the security checkers.

Synopsis

cov-security-da
 [--da-max-mem <mem>]
 --dir <idir>
 [--tu <id>]
 [--tu-pattern <translation-unit-pattern>]...

Description

The cov-security-da command runs a dynamic analysis of Java and .NET bytecode and a separate
dynamic analysis of JavaScript templates. The Java/.NET analysis invokes certain string-manipulation
functions to detect whether they correctly escape or sanitize unsafe values. The JavaScript template
analysis dynamically renders observed template files to detect interpolation sites that could be vulnerable
to XSS.

Note

Coverity Security Dynamic Analysis for C# and Visual Basic requires a Windows 64-bit or Linux 64-
bit system that supports .NET Core 3.1.

The output of the bytecode analysis primarily affects the XSS checker for Java, C#, and Visual Basic, and
the output of the template-DA analysis primarily affects the XSS checker for Javascript.

By default, cov-build and cov-capture invoke cov-security-da as a final step. This command
needs to be invoked manually in the following situations:

• When cov-build or cov-capture was invoked using the --no-security-da option

• After invoking cov-emit-java—for example, to capture a Web application archive (WAR) file

• When the intermediate directory has been manually modified

Because the Java/.NET dynamic analysis requires compiled bytecode, it cannot be used with a Java file
system capture. Similarily, the JavaScript template analysis will not be invoked if a suitable JavaScript
project can't be identified.

Options

--da-max-mem
[Java Web application security option] Sets the JVM heap size of the VM that is running the dynamic
analyzer, a component of the Java Web application security analysis. The option accepts an integer
that specifies a number of megabytes (MB). The default value is 1024.

--dir <intermediate directory>
Specifies the intermediate directory to emit to. This option is required: You must specify a directory.

312

cov-security-da

--no-bytecode-da
Disables all bytecode analysis for Java, C#, and Visual Basic.

--run-template-da-on-emit
Specify to have cov-security-da attempt to re-run the template-DA on an existing intermediate
directory that contains one or more captured JavaScript projects.

--template-da-timeout
Specify the maximum amount of time to take (in ms) when analyzing a single JavaScript template file.
Defaults to 1 minute.

--tu <id>, --tu-pattern <translation_unit_pattern>
Restricts the dynamic analysis to specific translation units, identified either by numeric ID (--tu) or
by pattern (--tu-pattern).

The --tu-pattern option can be specified multiple times. Both --tu and --tu-pattern can be
specified on a single command line. The tool runs on the union of the translation units indicated by all
such options.

It is an error if at least one --tu-pattern argument is specified but no translation unit matches any
of the specified patterns.

For more information, see "Translation unit pattern matching".

See Also

cov-build

cov-capture

313

Name
cov-test-configuration Test command-line translations of a configuration by making assertions about the
translations.

Synopsis

cov-test-configuration [OPTIONS] <input_script.json>

Description

The cov-test-configuration command parses the given input script, invokes cov-translate
on the native compiler commands, and asserts that the given facts about the translated command lines
are true. The translation takes place according to the configuration generated by the cov-configure
command.

If all tests pass, it exits with 0. Otherwise, it exits with a non-zero code.

Note

The cov-translate command uses the same configuration as this command and translates
native command-line options into cov-emit options but does NOT execute cov-emit. See cov-
translate --dry-run.

Any command names referenced by the input script must be executable in the current environment.

Input script format. The input script must be a well-formed, valid JSON text file encoded in UTF-8.
See www.json.org for more information on JSON.

Sample input script format:

[
{
 "section": "My Section Label",
 "tests": [
 {
 "given_input" : "gcc -m64 -c foo.c",
 "assert_that_output": {
 "contains": ["-w", "-D__NO_INLINE__", "--incompat_proto"],
 "omits": ["-m32"]
 }
 }
 , ... // more tests here
]
}
, ... // more sections here
]

The expected structure is the following:

• A list of one or more section objects.

314

http://www.json.org/

cov-test-configuration

• Each section object is composed of:

• section: A label naming the section of tests.

• tests: A list of one or more test objects.

• Each test object is composed of:

• given_input: The native command line to translate.

• assert_that_output: An assertion object applied to translated command line.

• An assertion object is composed of one or more of the following assertion operators:

• contains: List of one or more command-line options that are required in translation.

• omits: List of one or more command-line options that are forbidden in translation.

Each test translates the given_input with cov-translate and checks that all the assertion
operators pass when applied to the translation.

Example 1:

> cov-configure --config myTest/coverity_config.xml --msvc
> cov-test-configuration --config myTest/coverity_config.xml MyTests.json

Output of the cov-test-configuration example:

Section [0] My Section Label
Tests run: 1, Failures: 0, Errors: 0

Sections run: 1, Tests run: 1, Failures: 0, Errors: 0

In this example, all tests passed.

Example 2:

> cov-test-configuration --config myTest/coverity_config.xml OtherTests.json

Output of the cov-test-configuration example:

Section [0] My Section Label
Tests run: 1, Failures: 0, Errors: 0

Section [1] Microsoft C/C++
Tests run: 5, Failures: 2, Errors: 1

315

cov-test-configuration

Section [1] Microsoft C/C++: Test [0]: Assertion [contains][2] failed
Given input: cl -c foo.c
Expected : output contains bob
Actual : cov-emit.exe ... --c --microsoft --no_alternative_tokens \
-w --ignore_calling_convention --microsoft_version 1300 \
--no_stdarg_builtin -D_USE_ATTRIBUTES_FOR_SAL=0 foo.c

Sections run: 2, Tests run: 6, Failures: 2, Errors: 0

The example shows two test failures. Failures are assertion operators that failed. Errors are
failures that were encountered when executing cov-translate.

The ellipsis (...) in the example represents other arguments that cov-translate adds to make
cov-emit imitate the cl input more precisely.

Shared options

--config <coverity_config.xml> , -c <coverity_config.xml>
Uses the specified configuration file instead of the default configuration file located at
<install_dir_sa>/config/coverity_config.xml.

--debug, -g
Turn on basic debugging output.

--ident
Displays the version of Coverity Analysis and build number.

--info
Displays certain internal information (useful for debugging), including the temporary directory, user
name and host name, and process ID.

--verbose <0, 1, 2, 3, 4>, -V <0, 1, 2, 3, 4>
Set the detail level of command messages. Higher is more verbose (more messages). Defaults to 1.

Exit codes

Most Coverity Analysis commands can return the following exit codes:

• 0: The command successfully completed the requested task.

• 1: The requested task is complete, but it did not return (or find) any results. Note that some Coverity
Analysis commands do not return this error code.

• 2: The command was unable to complete the requested task. This error typically includes an error
message and some remediation advice.

• 4: An unexpected error occurred. This error should not occur when the product is used in a supported
way. Very likely, the requested task was not completed. This error typically provides some diagnostic
and/or debugging output, such as a stack trace.

316

cov-test-configuration

For exceptions, see cov-commit-defects(Coverity 2020.12 Command Reference), cov-analyze, and cov-
build.

See Also

cov-configure

cov-emit

cov-translate

317

Name
cov-translate Translate native compiler command line into a valid command line for a Coverity compiler.

Synopsis

cov-translate [OPTIONS] <compile-command>

Description

This feature translates the native compiler command line given and invokes the Coverity compiler with
the translated command line. The translation is done according to the configuration generated by the
cov-configure command.

Note

If you change the set of compilation options used by your build process, delete the
<intermediate_directory> and capture a full build from scratch. Otherwise, the translation
units captured using the old options will remain in the emit. The new translation units will not
replace the old translation units due to the changed compilation options.

Example

Suppose you have a single file t.c that is compiled with gcc as:

> gcc -DFOO=BAR -c t.c

In this case, invoking this command with cov-translate in front will call cov-emit in the appropriate
way to compile t.c, assuming that gcc has been configured with cov-configure:

> cov-translate --dir /tmp/emit gcc -DFOO=BAR -c t.c

Output of the cov-translate example:

 cov-emit --dir /tmp/emit ... --gcc -w -DFOO=BAR t.c
 Emit for file 't.c' complete.

In the previous example, ... represents other arguments that are added to provide system include
directories, preinclude files, and other command-line arguments that cov-translate adds to make
cov-emit imitate gcc more precisely.

Options

--add-arg <arg>
Directly adds <arg> to the argument list passed to the Coverity compiler. These arguments are
passed before other arguments detected by cov-translate.

--add-arg-no-file <arg>
Adds an argument <arg> to the invocations of the Coverity compiler. This argument is not stored in
the response file, and therefore is not used by cov-build --replay or cov-preprocess.

318

cov-translate

--auto-diff
Only applies to C/C++. This option turns on automatic diagnosis of parsing problems by comparing
preprocessed files generated by the native compiler versus cov-emit. It can be useful to determine
incompatibilities (especially of include order and macro definitions), but it might interfere with the build
for some compilers that are not fully supported.

--build-id <build-id>, --build-id-file <build-id-file>
Specifies a build ID to be used by this invocation of cov-translate. The build ID is a string that
uniquely identifies a build. Every intermediate directory is associated with a build ID.

When passing --build-id, the <build-id> argument is used verbatim as the build ID. When
passing --build-id-file, the <build-id-file> argument is opened as a file and its contents
are read; those contents are then used as a build ID.

If --c-coverage is passed to cov-translate, exactly one of these switches also needs to be
passed to cov-translate.

--c-coverage <tool>
Compatible with C and C++ builds only. Enables C and C++ coverage collection using the
specified tool. The only tool currently available is "function", which enables the Function Coverage
Instrumentation

If --c-coverage is passed to cov-translate, --c-coverage-log-file must also be passed.

--c-coverage-log-file <log-file-path>
Specifies a log file for the enabled C/C++ coverage tool to log to. This argument is required if --c-
coverage has been passed to cov-translate.

--chase-symlinks
Follows symbolic links when determining file names to report.

This option is not supported for use with Clang compilers.

--clean-preprocessed
Only applies to C/C++. This option cleans up preprocessed files left behind by --preprocess-
first after each file is compiled. Usually --preprocess-first leaves preprocessed files in the
source code directory. This option only makes sense if --preprocessed-first is also specified.

--cygpath <path>
Specify the path to the directory, which contains the bin directory of the Cygwin installation, if it is not
in the PATH environment variable.

--cygwin
On Windows, indicates that the build is done with Cygwin. This option allows Cygwin-style paths to
be used in the native build command. However, you must use Windows-style paths for all Coverity
Analysis commands.

--dir <intermediate_dir>
Pathname to an intermediate directory that is used to store the emit repository and output directory.

319

cov-translate

Unless you are running cov-translate for debugging purposes, you should always use the --dir
option. Without it, the command will not emit output an intermediate directory.

Note that you can specify this pathname in coverity_config.xml. For details on using this file,
see on the <prevent> tag in the section "Using the <prevent> tag to specify directories and emit
options" in Coverity Analysis 2020.12 User and Administrator Guide.

--dryrun, -n
Prints out the Coverity compiler command line it would normally run without actually running it.
This option can help expedite your configuration process. The option is analogous to the make -n
command.

--emit-cmd-line-id
This option is deprecated as of the 4.4 release.

--emit-complementary-info
C, C++ only. Enables emitting of complementary information for compliance checkers such as
MISRA checkers. Selecting this option results in a slower build capture but a faster analysis,
and it should be applied when using compliance checkers. The default value is --no-emit-
complementary-info

Note

Enabling the --emit-complementary-info option prior to running an analysis is likely to
turn up additional defects.

.

Any analysis involving --coding-standard-config requires the information generated during
cov-build when including the --emit-complementary-info option. The cov-build command
will take longer, so this option should only be used when cov-analyze is used with --coding-
standard-config.

If cov-build did not include the --emit-complementary-info option and cov-analyze does
include --coding-standard-config, cov-analyze automatically re-runs every cov-emit
command (for the Translation Units to be analyzed). This excludes the native build and the cov-
translate overhead, but it will add significant overhead to cov-analyze. Note that analysis will
fail if the emit database does not include source; that is re-emit is not possible.

--emit-parse-errors
Deprecated. Use the --enable PARSE_ERROR option in cov-analyze instead. Specifies that
compile failures should be made visible in Coverity Connect, appearing as defects.

--emulate-string <regex>, -s <regex>
Must be used along with the --run-compile option. The --emulate-string option specifies a
regex that, if matched on the command line, causes cov-translate to only run the native compiler
command line assigned without attempting to call the Coverity compiler. This is useful for files such
as conftest.c, which are compiled by the cov-configure feature to test the native compiler's
output for certain strings. When the output for cov-translate is interspersed with these strings, it
causes cov-configure to fail.

320

cov_analysis_administration_guide.pdf
cov_analysis_administration_guide.pdf

cov-translate

--encoding <enc>
Specifies the encoding of source files. Use this option when the source code contains non-ASCII
characters so that Coverity Connect can display the code correctly. The default value is US-ASCII.
Valid values are the ICU-supported encoding names:

US-ASCII

UTF-8

UTF-16

UTF-16BE
UTF-16 Big-Endian

UTF-16LE
UTF-16 Little-Endian

UTF-32

UTF-32BE
UTF-32 Big-Endian

UTF-32LE
UTF-32 Little-Endian

ISO-8859-1
Western European (Latin-1)

ISO-8859-2
Central European

ISO-8859-3
Maltese, Esperanto

ISO-8859-4
North European

ISO-8859-5
Cyrillic

ISO-8859-6
Arabic

ISO-8859-7
Greek

ISO-8859-8
Hebrew

ISO-8859-9
Turkish

321

cov-translate

ISO-8859-10
Nordic

ISO-8859-13
Baltic Rim

ISO-8859-15
Latin-9

Shift_JIS
Japanese

EUC-JP
Japanese

ISO-2022-JP
Japanese

GB2312
Chinese (EUC-CN)

ISO-2022-CN
Simplified Chinese

Big5
Traditional Chinese

EUC-TW
Taiwanese

EUC-KR
Korean

ISO-2022-KR
Korean

KOI8-R
Russian

windows-1251
Windows Cyrillic

windows-1252
Windows Latin-1

windows-1256
Windows Arabic

-E
For C/C++ only. Only preprocess the source file.

322

cov-translate

--fail-stop, -fs
Returns an error code if the Coverity compiler fails. By default, Coverity compiler parse failures are
ignored and the return code is a success.

--force
Passes --force to the Coverity compiler, which cause emits to happen for files with timestamps that
have not changed. See --force in cov-emit for other Coverity compiler documentation.

--no-caa-info
Does not collect the information required for Coverity Architecture Analysis in the intermediate
directory.

--no-emit
Parses, but does not emit source files. This is useful primarily for debugging purposes and is not
intended for general use.

--no-emit-complementary-info
For C/C++ only. This option disables the emitting of complementary information for compliance
checkers such as MISRA checkers.

--no-headers
For C/C++ only. This option does not emit header files, only the primary source file(s). Because this
option can cause problems in C++ programs, you should use it only if directed by Coverity support.

--no-parallel-translate
Compatible with C and C++ builds only. Disables cov-translate parallelization. This will prevent
cov-translate from running in parallel, regardless of the degree of parallelization requested,
either directly to cov-build, cov-translate, through configuration files, or native command line
translation.

This can also be added as a Coverity compiler argument in a configuration file (as it is not actually
passed to the Coverity compiler). For example:

<prepend_arg>--no-parallel-translate</prepend_arg>

--no-preprocess-next
For C/C++ only. This option disables the --preprocess-next option.

--parallel-translate=<number_of_processes>
Compatible with C and C++ builds only. This option instructs cov-translate to run Coverity
compiler in parallel when multiple files are seen on a single native compiler invocation. This
is similar to Make's -j switch and to the Microsoft Visual C/C++ /MP switch. It specifies the
<<number_of_processes>> to be greater than zero to explicitly set the number of processes to
spawn in parallel, or zero to auto-detect based on the number of CPUs. When specified directly to
cov-build or cov-translate, this option will override any settings set in the configuration files or
translated through the native command line.

This can also be added as a Coverity compiler argument in a configuration file (though it is not
actually passed to the Coverity compiler). For example:

<prepend_arg>--parallel-translate=4</prepend_arg>

323

cov-translate

--preinclude <file.h>, -pi <file.h>
For C/C++ only. This option specifies that <file.h> should be preincluded before all other source
and header files when invoking cov-emit. This is equivalent to cov-emit's --preinclude
argument.

--preprocess-first
Compatible with C and C++ builds only. Not supported for Clang compilers. This option uses the
native compiler to preprocess source files and then invokes cov-emit to compile the output of the
native processor. By default, cov-emit (which is invoked by cov-translate) otherwise tries to
preprocess and parse each source file.

Using this option can address some cases in which hard-to-diagnose causes for macro predefinitions
are different, or for header files that cannot be found by cov-emit. Usually, cov-configure
attempts to intelligently guess the native compiler's predefined macros and built-in include directories,
but sometimes cov-configure guesses incorrectly. Using the --preprocess-first option
circumvents the problem, but at the cost of losing macro information during analysis. Using --
preprocess-first does not always work because it requires rewriting the native compiler
command line, which the native compiler may or may not like.

--preprocess-next
Compatible with C and C++ builds only. Not supported for Clang compilers. This option uses cov-
emit to preprocess source files. If that attempt fails, or if cov-emit encounters a parse error,
this option preprocesses the files with the native preprocessor, and invokes cov-emit to compile
the output of the native processor. This offers the benefit of using the higher-fidelity cov-emit
preprocessor, while also providing a fallback in case of errors.

This option can be disabled with --no-preprocess-next option (the latter has precedence
over the former). See --preprocess-first for information about the effects of using the native
preprocessor.

--print-native
Prints out the native compiler command line.

--record-only, -ro
This option is available for cov-emit only. It records the compilation command in the emit directory,
and does not automatically attempt to parse or emit the code. Later, cov-build can be run with the
--replay option to actually parse and emit the code.

--redirect stdout|stderr,<filename>, -rd stdout|stderr,<filename>
Redirects either stdout or stderr to <filename>.

--run-compile
In addition to calling the Coverity compiler, this option also runs the native compiler. The --run-
compile option should only be used if you are attempting to manually integrate cov-translate
into your build system. It should never be used with cov-build.

--timings
Passes -# to cov-emit, which prints out timing information for various stages of parsing and emitting
for every file compiled. This is a debugging option not intended for general use.

324

cov-translate

Shared options

--config <coverity_config.xml> , -c <coverity_config.xml>
Uses the specified configuration file instead of the default configuration file located at
<install_dir_sa>/config/coverity_config.xml.

--debug, -g
Turn on basic debugging output.

--debug-flags <flag> [, <flag>]
Controls the amount of debugging output produced during a build. These flags can be combined on
the command line using a comma as a delimiter.

Valid flags are translate and translate-phases. For example, --debug-flags translate.

--ident
Displays the version of Coverity Analysis and build number.

--info
Displays certain internal information (useful for debugging), including the temporary directory, user
name and host name, and process ID.

--tmpdir <tmp>, -t <tmp>
Specifies the temporary directory to use. On UNIX, the default is $TMPDIR, or /tmp if that variable
does not exist. On Windows, the default is to use the temporary directory specified by the operating
system.

--verbose <0, 1, 2, 3, 4>, -V <0, 1, 2, 3, 4>
Set the detail level of command messages. Higher is more verbose (more messages). Defaults to 1.

Exit codes

Most Coverity Analysis commands can return the following exit codes:

• 0: The command successfully completed the requested task.

• 1: The requested task is complete, but it did not return (or find) any results. Note that some Coverity
Analysis commands do not return this error code.

• 2: The command was unable to complete the requested task. This error typically includes an error
message and some remediation advice.

• 4: An unexpected error occurred. This error should not occur when the product is used in a supported
way. Very likely, the requested task was not completed. This error typically provides some diagnostic
and/or debugging output, such as a stack trace.

For exceptions, see cov-commit-defects(Coverity 2020.12 Command Reference), cov-analyze, and cov-
build.

See Also

cov-build

325

cov-translate

cov-configure

cov-emit

cov-emit-cs

cov-emit-vb

cov-emit-java

cov-emit-swift

326

Name
cov-upgrade-static-analysis Upgrade an old Coverity Analysis release to the latest version.

Synopsis

cov-upgrade-static-analysis { --use-existing-release | --use-new-release } --old-release <dir> [--
old-config <file>...]
[OTHER OPTIONS]

Description

The cov-upgrade-static-analysis command upgrades an old Static Analysis or Coverity Analysis
release to Coverity Analysis version 2020.12. Run this command from the <install_dir_sa>/bin
directory of the new release of Coverity Analysis. Also, the exact upgrade process differs slightly based
on file permission and web server process owner issues.

There are two modes in which you can run this command.

• In the first (and preferred) mode of operation, specified with the --use-new-release option, the
configuration and the database in the old release is moved into the new release.

• In the second mode, specified with the --use-existing-release option, the old release is
upgraded in place. When the upgrade is completed, the new release is installed in the location that was
formerly occupied by the old release.

Options

Basic options

--old-config <file>
The location of an old Coverity Analysis non-default configuration file (coverity_config.xml)
that for the old release. Specifying the path to all configuration files referenced on a typical command
line to the old release allows the upgrade to re-write any configuration files that are relevant when
invoking the programs in the new release. Repeat this option for each configuration file.

--old-release <dir>, -or <dir>
The location of the old Coverity Analysis release. This should be the full path to the directory
containing the version file, which may be the textual VERSION file, the XML VERSION.xml file, or
both.

--use-existing-release
Upgrade an existing Coverity Analysis release in-place.

Do not use this option if you are upgrading to the current version of Coverity Analysis .

--use-new-release
Copy settings and the database from the old Coverity Analysis release to the new release. Leave the
old release untouched. Note that any files in the old release that were added by the user are added to
the new release automatically when the upgrade is complete. This is the preferred mode of operation.

327

cov-upgrade-static-analysis

Other options

--help, -h
Provide help information on the command.

--log <file>
The absolute path and file name for where to save the upgrade log. The default log file is
<install_dir_sa>/bin/coverity_upgrade.log.

--pedantic
If the command returns with warnings, return a non-zero exit code. The default behavior is to return
non-zero codes only when there are errors.

Exit codes

Most Coverity Analysis commands can return the following exit codes:

• 0: The command successfully completed the requested task.

• 1: The requested task is complete, but it did not return (or find) any results. Note that some Coverity
Analysis commands do not return this error code.

• 2: The command was unable to complete the requested task. This error typically includes an error
message and some remediation advice.

• 4: An unexpected error occurred. This error should not occur when the product is used in a supported
way. Very likely, the requested task was not completed. This error typically provides some diagnostic
and/or debugging output, such as a stack trace.

For exceptions, see cov-commit-defects(Coverity 2020.12 Command Reference), cov-analyze, and cov-
build.

328

Name
cov-wizard Launches a GUI-based utility for configuring Coverity Analysis.

Synopsis

cov-wizard <command>

Description

The cov-wizard command runs a GUI-based Coverity Analysis utility for setting up compilers,
configuring and running the build process, running the analysis for quality and security issues, and
committing the results to Coverity Connect. Java code and C/C++ code. For information about Coverity
Wizard, see the Coverity Wizard 2020.12 User Guide .

Exit codes

Most Coverity Analysis commands can return the following exit codes:

• 0: The command successfully completed the requested task.

• 1: The requested task is complete, but it did not return (or find) any results. Note that some Coverity
Analysis commands do not return this error code.

• 2: The command was unable to complete the requested task. This error typically includes an error
message and some remediation advice.

• 4: An unexpected error occurred. This error should not occur when the product is used in a supported
way. Very likely, the requested task was not completed. This error typically provides some diagnostic
and/or debugging output, such as a stack trace.

For exceptions, see cov-commit-defects(Coverity 2020.12 Command Reference), cov-analyze, and cov-
build.

329

cov_wizard_usage_guide.pdf

Coverity Analysis Ant Tasks

330

Name
covanalyzeandcommit Analyze Java source code and class files, and then commit the results to Coverity
Connect.

Synopsis

<covanalyzeandcommit
 dir="int_dir"
 [OPTIONAL_ATTRIBUTES]>
 <[OPTIONAL_ELEMENTS]/>
</covanalyzeandcommit>

Description

The covanalyzeandcommit analyzes Java source code and class files that have been previously
stored in an intermediate directory by capturing a build with the cov-build command and/or by adding
them manually using the cov-emit-java command. Then it commits the results to Coverity Connect.
The commit process occurs if the analysis had either no errors or only recoverable errors. Otherwise, the
commit process is skipped.

Attributes

additionalanalysisoptions="options"
Most users are unlikely to use this attribute, which provides a string of additional, space-separated
options to pass to the analysis command. You might use it to pass options that are not available as
analysis-related attributes to this Ant task.

This attribute should not be used with any options that contain spaces, such as filenames with
spaces.

Example:

<covanalyzeandcommit additionalanalysisoptions="--append false --max-mem 8000"/>

See cov-analyze for a complete list of options.

additionalcommitoptions="options"
Most users are unlikely to use this attribute, which provides a string of additional, space-separated
options to pass to cov-commit-defects. You might use it to pass options that are not available as
commit-related attributes to this Ant task.

This attribute should not be used with any options that contain spaces, such as filenames with
spaces.

Example:

<covanalyzeandcommit additionalcommitoptions="--debug false --ticker-mode none"/>

331

covanalyzeandcommit

See cov-commit-defects for a complete list of options.

all="true"
Enables Coverity Analysis for Java checkers that are disabled by default.

Exception: Web application security checkers (such as XSS) are not affected by this option. To
enable them, see --webapp-security.

analysis="false"
Allows you to turn off the analysis process, which normally takes place prior to the commit process. In
this way, you can commit the results of a prior analysis to Coverity Connect without running another
analysis first. Defaults to true.

binpath="<install_dir>/bin"
Specifies the directory containing cov-analyze and cov-commit-defects. Use this attribute
if the Ant task fails to find these commands. Without this attribute, the Ant task searches for these
based on the PATH environment variable and/or the location of coverity-anttask.jar.

commit="false"
Allows you to turn off the commit process. In this way, you can perform an analysis without
committing results to Coverity Connect afterward. Defaults to true.

config="coverity_config.xml"
Uses the specified configuration file instead of the default configuration file located at
<install_dir>/config/coverity_config.xml. This file applies to both the analysis and the
commit processes.

dataport="cim_commit_port"
Specifies the commit port of the Coverity Connect server.

dir="int_dir"
Pathname to an intermediate directory that is used to store the emit repository and output directory.

If you specify ".", it uses the current directory as the intermediate directory.

disabledefault="true"
Disables default checkers. This option is useful if you want to disable all default checkers and then
enable only a few with the --enable option.

For a list of checkers that are disabled through this option, see the --enable option documentation
for the cov-analyze command.

failonerror="true|false"
If true, the build process will succeed only if both cov-analyze and cov-commit-defects exit
without return codes that indicate failure. Otherwise, the Ant task will always succeed. Defaults to
true.

spotbugs="true|false"
Explicitly enables (true) or disables (false) SpotBugs analysis. This attribute corresponds to
the enable-fb (when true) and disable-fb (when false) options to cov-analyze. SpotBugs

332

covanalyzeandcommit

analysis is enabled by default. Further, you can use the disable checker element to disable
individual SpotBugs bug patterns. However, enable checker will not enable them.

This attribute supports the analysis process.

host="server_hostname"
You should the --url option instead of this option. This option is deprecated and will be removed in
a future release.

Specify the server hostname to which to send the results. The server must have a running instance of
Coverity Connect.

If unspecified, the default is the host element from the XML configuration file.

Note

• If you're running cov-commit-defects on a Linux OS, or using --ssl, you must enter the
full host and domain name for the --host parameter:

--host <server_hostname.domain.com>

• The --host switch, while still supported, now produces a deprecation warning that it may be
removed in a later release. The --url syntax is the preferred replacement.

httpport="port_number"
Used with the --host option to specify the HTTP port on the Coverity Connect host. This port is
used to connect to the --dataport commit port.

The Commit port is determined using one of the following methods, listed in order of priority (the first
applicable item will be used):

1. The Commit port specified with --dataport.

2. The HTTP port specified with --port. cov-commit-defects connects to this port to retrieve
the dataport using HTTP if --ssl is absent or HTTPS if --ssl is present.

3. The HTTPS port specified with --https-port. cov-commit-defects connects to this port
using HTTPS to retrieve the dataport.

4. The Commit port, specified with the cim/commit/port element from the XML configuration file.

5. The HTTP or HTTPS port specified with the cim/port or cim/https_port element,
respectively, from the XML configuration file.

6. HTTP port 8080 without --ssl or 8443 with --ssl is used to retrieve the dataport from Coverity
Connect.

Note

If you are committing to an SSL-enabled instance of Coverity Connect, you might encounter an
error message when you define the --port option (for example, --port 8443. Use the
--https-port option instead.

333

covanalyzeandcommit

parallelthreads="N"
Allows you to control the number of analysis workers that run in parallel. This number is limited by the
terms of your license. The default value for the -j option is 1.

This attribute supports the analysis process.

password="password"
You should use the --url option instead of this option. This option is deprecated and will be
removed in a future release.

Specify the password for either the current user name, or the user specified with the --user option.
For security reasons, the password transmitted to the Coverity Connect is encrypted. If unspecified,
the default is (in order of precedence):

1. The password from the --url option.

2. The password element from the XML configuration file.

3. The environment variable COVERITY_PASSPHRASE.

4. The password in the file pointed to by the environment variable COVERITY_PASSPHRASE_FILE.

Note

The passphrase can be stored in a file without any other text, such as a newline character.

Warning

On multi-user systems, such as Linux, users can see the full command line of all commands
that all users execute. For example, if a user uses the ps -Awf command, identifying
information such as usernames, process identities, dates and times, and full command lines
display.

This attribute supports the commit process.

resultproperty="property_name"
The name of a property to store the return code of the command. It provides the maximum value of
the cov-analyze and cov-commit-defects return code. Only used if failonerror=false.

This attribute supports the analysis process.

stream="stream_name"
Specifies a stream name to which to commit these defects.

If the stream option is not specified, the stream element from the XML configuration file is used.

If the stream is associated with a specific language and you attempt to commit results from other
languages to that stream, the commit will fail. However, in Coverity Connect, it is possible to
associate a stream with multiple languages even if the stream was previously associated with a
single programming language.

334

covanalyzeandcommit

strippath
Strip the prefix from all file names in error messages and file references committed. This might make
commits from multiple users match, even if the code is located in a different location.

strippath is a nested element which expects one attribute, prefix. The value of the prefix
attribute is the prefix that will be stripped from file names. This is an example of the strippath
element: <strippath prefix="/path/to/project/root">

If specified multiple times, strips all of the prefixes from each filename, in the order the strippath
elements are supplied.

This nested element supports the analysis process.

target="target_name"
Target platform for this project (for example, i386).

user="user_name"
You should use the --url option instead of this option. This option is deprecated and will be
removed in a future release.

Specifies the user name that is shown in Coverity Connect as having committed this snapshot. If
unspecified, the default is:

1. The username specified by the --url option, if any.

2. The user element from the XML configuration file.

3. The environment variable COV_USER.

4. The environment variable USER.

5. The name of the operating system user invoking the command (where supported).

6. The UID of the operating system user invoking the command (where supported).

7. admin.

version="version"
This snapshot's project version.

Elements

The following elements must be enclosed by the covanalyzejava element.

<checkeroption checker="checker_name" option="option_name" val="value"/>
Pass option option_name (with optional value value) to a specific checker checker_name.

For example:

<checkeroption checker="NULL_RETURNS" option="check-bias" value="5"/>

335

covanalyzeandcommit

<disable checker="checker_name"/>
Disable checker_name. This can be specified multiple times. See also --list-checkers and
--disable-default. For example, to disable cross-references in defects in the code browser,
specify <disable checker="XREFS"/>.

[<disable checker="checker_name"/>

<enable checker="checker_name"/>
Enable checker_name. The checker name is case insensitive. This can be specified
multiple times. See also the <disable checker="checker_name"> element and the
disabledefault="true" attribute.

[<enable checker="checker_name"/>

Examples

Analyzing and committing results.

<target name="loadtask" description="Load the covanalyzejava task">
 <taskdef resource="com/coverity/anttask.xml" classpath="${anttask.jar}"/>
</target>

<target name="build.analyzeandcommit" description="Analyze and commit results"
 depends="loadtask">
 <covanalyzeandcommit
 dataport="${env.CIM_COMMIT_PORT}"
 dir="${env.PREVENTINTDIR}"
 host="${env.CIM_SERVER}"
 password="coverity"
 stream="${env.SA_TEST_PROJECT}"
 user="admin"
 version="1.2 rc 7"/>
</target>

Enabling all but one of the default checkers for the analysis.

<target name="analyzeandcommit.no.forwardnull" depends="loadtask">
 <property environment="env1"/>
 <echo message="Current PATH = ${env1.PATH}"/>
 <covanalyzeandcommit
 dataport="${env.CIM_COMMIT_PORT}"
 dir="${env.SA_INT_DIR}"
 disabledefault="true"
 host="${env.CIM_SERVER}"
 password="coverity"
 stream="${env.SA_TEST_PROJECT}"
 user="admin"
 version="1.2">
 <enable checker="FORWARD_NULL"/>
 </covanalyzeandcommit>
</target>

336

covanalyzeandcommit

See Also

cov-analyze

covbuild

337

Name
covbuild Intercept all calls to the compiler invoked by the build system using an Ant task.

Synopsis

<covbuild
 dir="int_dir"
 [OPTIONAL_ATTRIBUTES]>
</covbuild>

Description

The covbuild task calls Ant with a specified build file and target, and it captures any compilations under
this call.

Attributes

antargs
Passes command-line arguments to Ant.

antfile="build.xml"
Specifies the location of the build file that is called by Ant. The default is the current Ant build file.

binpath="<install_dir>/bin"
Specifies the directory containing cov-build. Use this attribute if the Ant task fails to find this
command. Without this attribute, the Ant task searches for cov-build based on the PATH
environment variable and/or the location of coverity-anttask.jar.

covbuildargs="options"
Passes space-delimited options to cov-build.

dir="dir"
Specifies the intermediate directory into which the build is captured.

inheritAll="false"
When this attribute is set to true, the properties passed to the Ant invocation that runs the
covbuild task will be passed on to the Ant invocation made by the covbuild task (similar to the
inheritAll attribute of the built-in Ant task, which ships as part of Ant). Unlike the attribute of the
built-in Ant task, the covbuild attribute defaults to false.

target="target"
Specifies a target in the build file (see antfile). Defaults to the default target of the specified Ant
build file.

Examples

Note that the following are equivalent.

338

covbuild

• Ant:

<covbuild dir="idir"
 antfile="build0.xml"
 target="build"
/>

• Command line:

> "cov-build --dir idir ant -f build0.xml build"

Additional examples:

<target name="build.default" depends="loadtask">
 <property environment="env4"/>
 <echo message="Current PATH = ${env4.PATH}"/>
 <covbuild
 dir="${env.SA_INT_DIR}"
 target="build1"/>
</target>

<target name="build.alternative" depends="loadtask">
 <property environment="env4"/>
 <echo message="Current PATH = ${env4.PATH}"/>
 <covbuild
 dir="${env.SA_INT_DIR}"
 antfile="alternative.xml"
 target="build-alternative"/>
</target>

<target name="build.executable" depends="loadtask">
 <echo message="binpath = ${build.binpath}"/>
 <covbuild
 binpath="${build.binpath}"
 dir="${env.PREVENTINTDIR}"
 target="build1"/>
</target>

See Also

cov-build

covanalyzeandcommit

339

Test Advisor Commands

340

Name
cov-emit-server Start an emit server to collect coverage.

Synopsis

cov-emit-server
 [--dir|--idir-library] <directory> [--port <port number>]
 [--interface <ip-to-bind-to>]
 [--gcov-cache-size <size in MB>]
 [--force-start]

Description

cov-emit-server allows for the collection of coverage from remote machines. cov-emit-server
can also be used to collect coverage on a single machine. For some tests, this can greatly improve the
performance of a coverage collection run. See cov-build for information on what coverage tools are
supported.

Note

In general, you should not launch cov-emit-server directly, cov-manage-emit should be used
to control the server. For more information, see "Emit Server sub-commands" for cov-manage-
emit.

cov-emit-server creates a log file in <directory>/cov-emit-server.log.

Options

--dir <int_dir>
Specifies the intermediate directory in which the emit server will start. Note that --dir and --idir-
library are mutually exclusive, you can only specify one or the other.

--idir-library <idir-library>
Specifies the intermediate directory library in which the emit server will start. Note that --dir and --
idir-library are mutually exclusive, you can only specify one or the other. If <idir-library>
does not exist, it will be created for you.

--port <port_number>
Specify the port to listen on. Default is 15772.

--interface <ip-address-to-use>
Specify the IP address to listen on. This must be an IPv4 address.

--gcov-cache-size <size-in-mb>
Specify the size of the cache to use for collecting gcov data files. The default size is 500MB.

--force-start
Force starting the server, even if the pid file exists. This is useful if the previous server did not shut
down cleanly.

341

cov-emit-server

Exit codes

Most Coverity Analysis commands can return the following exit codes:

• 0: The command successfully completed the requested task.

• 1: The requested task is complete, but it did not return (or find) any results. Note that some Coverity
Analysis commands do not return this error code.

• 2: The command was unable to complete the requested task. This error typically includes an error
message and some remediation advice.

• 4: An unexpected error occurred. This error should not occur when the product is used in a supported
way. Very likely, the requested task was not completed. This error typically provides some diagnostic
and/or debugging output, such as a stack trace.

For exceptions, see cov-commit-defects(Coverity 2020.12 Command Reference), cov-analyze, and cov-
build.

Examples

Start an emit server on an intermediate directory:

cov-emit-server --dir idir

Start an emit server, using a custom port on an external interface:

cov-emit-server --dir idir --port 12345 --interface 10.0.0.1

Start an emit server on an idir library:

cov-emit-server --idir-library my-idir-library

See Also

cov-build

cov-manage-emit

342

Name
cov-emit-server-control Control a running emit server instance

Synopsis

cov-emit-server-control
 [--dir <idir>|--idir-library <directory>|--interface <ip-address>]
 [--port <port number>]
 [--start-suite <suitename>|--start-test <testname>|--stop-test <testname>]
 [--max-wait-time <timeout-seconds>] [--status <test-status>]
 [--log <logfile>]

Description

cov-emit-server-control controls a running instance of cov-emit-server. This is used to start
and stop tests when using Remote Test Separation.

Options

--dir <idir>
Specifies the intermediate directory of the emit server to control. Exactly one of --dir, --idir-
library, or --interface must be specified.

--idir-library <directory>
Specifies the intermediate directory library of the emit server to control. Exactly one of --dir, --
idir-library, or --interface must be specified.

--interface <ip-address>
Specifies the IP address on which the emit server is listening. Exactly one of --dir, --idir-
library, or --interface must be specified.

--port <port_number>
Specifies the port number on which the emit server is listening. This must be used when --
interface is given.

--start-suite <suitename>
Start a testsuite with the given suitename. Exactly one of --start-suite, --start-test, or --
stop-test must be specified.

--start-test <testname>
Start a test with the given testname. Exactly one of --start-suite, --start-test, or --stop-
test must be specified.

--stop-test <testname>
Stop a test with the given testname. Exactly one of --start-suite, --start-test, or --stop-
test must be specified.

--max-wait-time <timeout-seconds>
Specifies the timeout to use when communicating with the emit server. If unspecified, a timeout of 30
seconds is used.

343

cov-emit-server-control

--status <test-status>
Specifies the test status to assign to the currently running test. This option should be used with the
--stop-test option. Acceptable values for test-status are "pass", "fail", or "unknown".

--log <logfile>
Specifies where diagnostic information shall be logged. When logfile is "-", logging is written to stdout.
If not specified, no logging is performed.

Exit codes

Most Coverity Analysis commands can return the following exit codes:

• 0: The command successfully completed the requested task.

• 1: The requested task is complete, but it did not return (or find) any results. Note that some Coverity
Analysis commands do not return this error code.

• 2: The command was unable to complete the requested task. This error typically includes an error
message and some remediation advice.

• 4: An unexpected error occurred. This error should not occur when the product is used in a supported
way. Very likely, the requested task was not completed. This error typically provides some diagnostic
and/or debugging output, such as a stack trace.

For exceptions, see cov-commit-defects(Coverity 2020.12 Command Reference), cov-analyze, and cov-
build.

Examples

Start a testsuite named "mysuite" on the emit server running on intermediate directory "idir":

cov-emit-server-control --dir idir --start-suite mysuite

Start a test name "mytest" on the emit server running on IP address 127.0.0.1, port 6405:

cov-emit-server-control --interface 127.0.0.1 --port 6405 --start-test mytest

See Also

cov-emit-server

344

Name
cov-manage-history Manages historical data needed by Test Advisor

Synopsis

cov-manage-history --dir <intermediate_directory> download | import
[command_options]

Description

The cov-manage-history command queries a running Coverity Connect instance for the history of
functions previously committed to a specified stream. This history is downloaded and stored in a given
intermediate directory.

Note

The cov-manage-history command now accepts authorized tokens. It also replaces the cov-
download-history command, which was deprecated as of the 7.0 release.

Options

Common options

--dir <intermediate_directory>
Pathname to the intermediate directory to store the history.

--java
Deprecated in version 7.0: Specify that the stream contains Java data. Starting in 7.0, the command
detects the source code language automatically, so this option is not needed anymore.

Individual commands

download
Replaces the functionality in cov-download-history command. This command has the following
options:

• --auth-key-file

This option specifies the location of an authentication key file that was previously created. It is used
to connect to the Coverity Connect server.

• --authenticate-ssl

This is equivalent to --on-new-cert distrust.

• --certs <filename>

In addition to CA certificates obtained from other trust stores, use the CA certificates in the given
<filename>. For information on the new SSL certificate management functionality, please see
Coverity Platform 2020.12 User and Administrator Guide

345

cov_platform_use_and_admin_guide.html#cim_ssl_client_cert_mgmt

cov-manage-history

• --connect-timeout <n>

Sets the timeout for establishing connections to <n> seconds. If a connection to Coverity Connect
cannot be established within this time, the transaction is aborted. This timeout cannot be disabled.
The default value is 60 seconds.

• --host <coverityconnect_host>

--port <coverityconnect_port>

The hostname and port of the Coverity Connect instance to download history from. --port is an
optional property. If --port is not specified on the command line, the default is 8080 without --
ssl and 8443 with --ssl.

• --max-retries <n>

Sets the number of times to retry failed or aborted requests with Coverity Connect to <n>. Note that
this does not include the initial attempt, so a setting of 1 results in at most 2 request attempts. A
setting of 0 means to never retry failed requests. The default value is 1.

• --merge

Normally, the download command overwrites any previously downloaded or imported history in
the intermediate directory with the newly-downloaded history. Specifying this option causes cov-
manage-history to instead merge the newly-downloaded history with any existing history. This
allows history from multiple streams to be combined for use in analysis.

• --on-new-cert <trust | distrust>

Indicates with --ssl whether to trust (with trust-first-time) self-signed certificates, presented by the
server, that the application has not seen before.

• --response-timeout <n>

Sets the response timeout to <n> seconds. For every request for data sent to Coverity Connect,
if a response is not received within this time, the request is aborted. A setting of 0 disables this
timeout. The default value is 300 seconds.

• --sleep-before-retry <n>

Sets the time to sleep before retrying a failed or aborted request with Coverity Connect to <n>
seconds. A setting of 0 disables this sleep. The default value is 1 second.

• --ssl

Enables SSL encryption for communication with Coverity Connect.

• --stream <stream>

The name of the stream on the Coverity Connect instance to query.

• --unstrip-path <unstrip_path>

346

cov-manage-history

This option is deprecated in 2020.12. Use the --strip-path option for cov-analyze for C/C++
or Java.

• --url <path>

Allows you to connect to a CIM instance (to download history) that has a context path in its
HTTP(S) URL. You can use this option instead of the --host, or --port options. The --url
option is provided to accommodate the use of a context path and to deal with setting up Coverity
Connect behind a reverse proxy.

Use HTTPS or HTTP to connect to Coverity Connect HTTPS or HTTP port. For http, the default
port is 80; for https, the default port is 443. For example:

https://example.com/coverity

https://cimpop:8008

http://cim.example.com:8080

Note

You may not use the commit:// scheme in the URL.

• --user <username>

--password <password>

The username and password used to log into the Coverity Connect instance. These will be
encrypted if --ssl is used.

import
Responsible for copying the analysis history data from one intermediate directory to another
intermediate directory (or the same, if the directory is to be reused). It has the following option:

• --from-dir <int_dir>

The source intermediate directory. This command will copy the analysis history data from the
source intermediate directory into the current intermediate directory.

Note

You should NOT use the --from-dir in your production environment to copy Test Advisor
history from an intermediate directory for the first time after a version upgrade (for example,
from 7.0.x to 7.5.0).

Instead, you should commit the "old" intermediate directory to Coverity Connect and then
download the Test Advisor history using the download option to cov-manage-history.
For example:

cov-manage-history download --host <host_name> --stream <stream_name> \
 --user <username> --password <password>

347

cov-manage-history

Normally, when the analysis history is generated by cov-analyze in an intermediate directory,
it can only be committed to an instance of Coverity Connect. If the history is to be re-used within
the same intermediate directory (for example, during a subsequent run of analysis on the same
intermediate directory), then the import command should be used to make that analysis history
available for re-use. To do this, the same intermediate directory should be specified for both the --
dir and --from-dir options.

Shared options

--verbose <0, 1, 2, 3, 4>, -V <0, 1, 2, 3, 4>
Set the detail level of command messages. Higher is more verbose (more messages). Defaults to 1.

Exit codes

Most Coverity Analysis commands can return the following exit codes:

• 0: The command successfully completed the requested task.

• 1: The requested task is complete, but it did not return (or find) any results. Note that some Coverity
Analysis commands do not return this error code.

• 2: The command was unable to complete the requested task. This error typically includes an error
message and some remediation advice.

• 4: An unexpected error occurred. This error should not occur when the product is used in a supported
way. Very likely, the requested task was not completed. This error typically provides some diagnostic
and/or debugging output, such as a stack trace.

For exceptions, see cov-commit-defects(Coverity 2020.12 Command Reference), cov-analyze, and cov-
build.

See Also

cov-extract-scm

cov-import-scm

cov-manage-emit

348

Name
cov-patch-bullseye Patch a Bullseye small runtime for use with Test Advisor.

Synopsis

cov-patch-bullseye --bullseye-dir <path> [--output-dir <path>]

Description

The cov-patch-bullseye allows you to patch your Bullseye small runtime for Test Advisor coverage.
You must build the Bullseye small runtime before you patch it and use it in cov-build. For usage
instructions, see Test Advisor 2020.12 User and Administrator Guide. in the Test Advisor 2020.12 User
and Administrator Guide.

Options

--bullseye-dir <path>
Path to the Bullseye installation directory.

--output-dir <path>
Path where the modified Bullseye small runtime files will be placed. If this option is not specified, it
will default to <path>/coverity, where <path> is the value from --bullseye-dir.

Exit codes

Most Coverity Analysis commands can return the following exit codes:

• 0: The command successfully completed the requested task.

• 1: The requested task is complete, but it did not return (or find) any results. Note that some Coverity
Analysis commands do not return this error code.

• 2: The command was unable to complete the requested task. This error typically includes an error
message and some remediation advice.

• 4: An unexpected error occurred. This error should not occur when the product is used in a supported
way. Very likely, the requested task was not completed. This error typically provides some diagnostic
and/or debugging output, such as a stack trace.

For exceptions, see cov-commit-defects(Coverity 2020.12 Command Reference), cov-analyze, and cov-
build.

See Also

cov-build

349

test_advisor_use_and_admin_guide.pdf#ta_bullseye_small

Dynamic Analysis Commands

350

Name
cov-start-da-broker Start the Dynamic Analysis Broker.

Synopsis

cov-start-da-broker --dir <intermediate_directory> --host
<cim_server_host_name> --user <user_name> --password <password> --stream
<dynamic_stream> { } [OPTIONS]

Description

The cov-start-da-broker command starts the Dynamic Analysis Broker, a process that receives
defect data from Dynamic Analysis Agents and forwards the data to the Coverity Connect. In addition to
the command line, some command line options can be set in environment variables, and most can be set
via configuration file. See the Dynamic Analysis 2020.12 Administration Tutorial for more information.

Options

The list below describes the command line options for cov-start-da-broker.

--broker-port <port>
Listen on this port for Agent's connections (default 4422).

--config-file <file>, -cf <file>
Specify the path and filename of the Java properties configuration file. This is where you put your
configuration file properties.

--dataport <port_number>, -dp <port_number>, --port <port_number>
Specify the Coverity Connect server port for source and defect commits (Default: 9090).

--dir <intermediate_directory>
Required option that specifies an intermediate directory that was created through the cov-build
command. The cov-build command captures your source and classes. For more information, see
cov-build in Coverity Analysis 2020.12 User and Administrator Guide .

--help, -h
Print a help message and exit.

--host <hostname>, -r <hostname>
Specify the host name or IP address of the Coverity Connect server.

--only-listen, -ol
[Deprecated] This option is deprecated as of version 7.6.0 and will be removed from a future release.

Listens for Dynamic Analysis Agents and send their defects to Coverity Connect, but do not commit
the source code to Coverity Connect (Default: False, which means the broker listens for agents and
commits source code.)

--only-source-commit, -osc
[Deprecated] This option is deprecated as of version 7.6.0 and will be removed from a future release.

351

cov_command_ref.pdf#cov-build

cov-start-da-broker

Commit source code to a source stream, but do not listen for Agents. (Default: False, which means
the broker commits source code and listens for Agents.)

--only-test-connection, -n
Validate the command line and configuration, test the connection to the Coverity Connect server,
verify that the source and dynamic streams exist, and exit regardless of other command line options.
(Default: False, which means the broker operates normally in a non-test mode.)

--output-dir <directory>
Change the output directory from the default of cda_data. This directory stores a run directory for
each invocation of the Broker.

--password <password>, -pa <password>
Provide a Coverity Connect password.

--rundir <run_directory>
Specify a location for the Dynamic Analysis Broker run directory. This is where the Broker puts
its log files and information files such as broker.started and broker.ok. If the run directory
you specify already exists, the Broker moves the old one to old_<run_dir>_<number>, where
<number> is the first number such that the name isn't taken. This option overrides the default
behavior where the Broker creates a run directory with a unique name as a new subdirectory under
the output directory.

--run-prefix <prefix>, -rp <prefix>
Change the prefix of the run directory from the default of "broker" to <prefix>. The run directory
is a sub-directory of the output directory where the Broker stores logs and other information from this
run.

--security-file <license_path>, -sf <license_path>
Select a path to a file that contains a valid Coverity Analysis license that is required to commit source
code. This option is unnecessary if the license is properly installed. Not available as an Ant attribute.
(Default: <install_dir_ca>/bin/license.dat)

--shutdown-after <seconds>
Specify the number of seconds to wait before the Broker shuts down when no Agents are connected.
This convenience option ensures that unused Broker processes terminate when they are no longer
required. Specifying never means to never shut down automatically. Default: 600 seconds.

--stream <dynamic_stream>
Specify the name of the Dynamic Analysis stream to commit defects and source code.

--user <user_name>, -u <user_name>
User name for Coverity Connect server. If no user name is specified, the Broker uses the name of the
operating system user that invokes it. (Default: Operating System user name.)

--version
Print version information.

Examples

The cov-start-da-broker command lines below are entered on a single line without returns.

352

cov-start-da-broker

Example command line (dynamic commit and source commit):

cov-start-da-broker --host cim.example.com --dataport 9090 --user jdoe
--password secret --stream my_project --dir my_intermediate_dir

Example command line (source commit, no dynamic commit):

cov-start-da-broker --host cim.example.com --dataport 9090 --user jdoe
--password secret --stream my_project --dir my_intermediate_dir --only-source-commit

Example command line (dynamic commit, no source commit):

cov-start-da-broker --host cim.example.com --dataport 9090 --user jdoe
--password secret --stream my_project --dir my_intermediate_dir --only-listen

353

Name
cov-stop-da-broker Stop the Dynamic Analysis Broker.

Synopsis

This command allows you to manually shutdown a Dynamic Analysis Broker process.

cov-stop-da-broker [clean | early | dirty] [--broker-port <port_number>] [--broker-host
<hostname_or_IP>]

Description

The cov-stop-da-broker command sends a shutdown request to the Dynamic Analysis Broker (see
the Dynamic Analysis 2020.12 Administration Tutorial for an explanation of the Broker). If this command
is not executed, the Broker automatically terminates 10 minutes after the last Dynamic Analysis Agent
disconnects, although the automatic shutdown period can be changed with the --shutdown-after
option.

Note

Running cov-start-da-broker with the --only-source-commit option causes the Broker
to exit after finishing its source commit. Running cov-stop-da-broker is not necessary in this
case.

Options

The list below describes the options for the cov-start-da-broker command.

[clean|dirty|early]
Specify how the Dynamic Analysis Broker shuts down. Can be one of three values: clean, dirty or
early.

clean
(Default) Tells the Broker to exit once all of the following are true:

• The Broker has finished committing source code to Coverity Connect

• All Dynamic Analysis Agents have disconnected from the Broker.

• The Broker has finished sending all of the defects that the Dynamic Analysis Agents reported
to Coverity Connect

dirty
Tell the Broker to exit immediately. The Broker terminates the source commit if it has not
completed, closes connections to Agents (which will themselves exit if their failfast option
is true), and drops any defects that it has not sent to Coverity Connect. If the source commit
already finished successfully before the dirty shutdown, some defects from this run of the Broker
may appear in Coverity Connect, otherwise, no defects from this run of the Broker will appear in
Coverity Connect.

354

cov-stop-da-broker

early
Tell the Broker to close its connections to Agents (which will themselves exit if their failfast
option is true) and then exit when all of the following are true:

• The Broker has finished committing source code to Coverity Connect.

• The Broker has finished sending all of the defects that the Agents reported (before having their
connections to the Broker forcibly closed) to Coverity Connect.

--broker-host <host_or_IP>
Specify the hostname or IP address on which the Broker is running. Default: localhost

--broker-port <port-number>
Specify the port on which the Broker is listening. Default: 4422

Examples

This example sends a shut down request to the Broker on localhost:4422.

cov-stop-da-broker

This example sends an early shutdown request to the Broker on host broker.example.com on port
1234.

cov-stop-da-broker early --brokerhost broker.example.com --brokerport 1234

An example using Ant:

<cov-stop-da-broker
 shutdowntype="early"
 brokerhost="broker.example.com"
 brokerport="1234"/>

355

Dynamic Analysis Ant Tasks

356

Name
cov-dynamic-analyze-java Use Ant task to run a Java program with Dynamic Analysis Agent enabled.

Description

This task runs a Java program with the Dynamic Analysis Agent enabled. It functions as a replacement
for any existing java task. You can replace <java> with this task in an existing build script.

This task sets the fork parameter to true. You cannot run Dynamic Analysis from within the same virtual
machine as the Ant build.

You can disable Dynamic Analysis's functionality by setting the enabled parameter to false. In this
mode, the task passes through all functionality to the java task, and all parameters that are specific to
Dynamic Analysis are ignored.

The Dynamic Analysis distribution includes an antlib.xml file, so you can enable this task by adding
the following line to the Ant build script:

<typedef resource="com/coverity/anttask.xml"
 classpath="<install_dir_ca>/library/coverity-anttask.jar"/>

This task extends the java ant task, so it supports all parameters that the java task supports.

Attributes

Below are the Dynamic Analysis Ant attributes for cov-dynamic-analyze-java and cov-dynamic-
analyze-junit. Default values are in parenthesis.

detect_deadlocks="<boolean>"
Detect deadlocks. (True)

agentoptions="<boolean>"
Specify a list of Dynamic Analysis Agent options as you would pass on the command line in the form
of option=value,option=value... This attribute allows you to specify Agent options for which
there is no Ant attribute. Do not specify an Agent option both in this string and via an Ant attribute
because doing so has undefined consequences. (Not specified.)

detect_races="<boolean>"
Detect race conditions. (True.)

detect_resource_leaks="<boolean>"
Detect resource leaks. (True.)

broker_host="<host_or_IP>"
Specify the hostname or IP address on which you ran the Broker. (localhost)

broker_port="<port_number>"
Specify the port on which the Broker is listening. This is set with the broker-port option to cov-
start-da-broker. If you intend to run more than one Broker instance simultaneously on the same
machine, it is a good practice to use non-default ports to avoid collisions. (4422)

357

cov-dynamic-analyze-java

enabled=<boolean>
(No agent option.) Enable Dynamic Analysis. If set to False, then a cov-dynamic-analyze-
java task behaves like a java task, and a cov-dynamic-analyze-junit task behaves like a
javaunit task. (True.)

exclude_instrumentation="<colon_separated_list_of_prefixes>"
Exclude classes from being watched by Dynamic Analysis to speed up Dynamic Analysis. However,
Dynamic Analysis does not detect defects in excluded code nor as a result of actions performed in
excluded code (such as field access or lock acquisitions).

This option consists of a colon-separated list of prefixes of the fully qualified names to exclude. For
example:

"exclude-instrumentation=A.B" excludes any class whose name starts with "A.B", such as
"A.B", "A.B.c", or "A.Bc".

"exclude-instrumentation=A.B." (with a period) excludes "A.B.c", but not "A.B" nor "A.Bc".

(The default is to exclude nothing.)

failfast="<boolean>"
If True, the Dynamic Analysis Agent exits the program it is watching if the Dynamic Analysis Agent
loses its connection to the Broker or has other problems. If False, the Dynamic Analysis Agent quietly
allows the program to continue running, even if Dynamic Analysis Agent cannot run properly. (False.)

instrument_only="<colon_separated_list_of_prefixes>"
Specify a colon-separated list of classes watched by Dynamic Analysis. Dynamic Analysis excludes
all other classes (same as if they were all specified as options to exclude-instrumentation).
As with exclude-instrumentation above, using this option might speed up Dynamic Analysis,
but at the cost of missing defects. This option consists of a colon-separated list of prefixes of fully
qualified names to include. For example:

"instrument-only=A.B" includes any class whose name starts with "A.B", such as "A.B",
"A.B.c", or "A.Bc".

"instrument-only=A.B." includes "A.B.c", but not "A.B" nor "A.Bc".

(The default is to include everything.)

instrument_arrays="<boolean>"
Watch reads and writes into arrays to report race conditions. (False.)

instrument_collections="<boolean>"
Detect race conditions on collections. For example suppose map is a java.util.Map and one
thread executes map.put("key", "value") without holding any locks. If Dynamic Analysis sees
another thread access this map, it reports a RACE_CONDITION. (True.)

override_security_manager="<boolean>"
Install a permissive security manager (java.lang.SecurityManager) that allows all operations
except the installation of other security managers. This option exists because a restrictive security

358

cov-dynamic-analyze-java

manager causes Dynamic Analysis to fail. Setting this option to true might allow Dynamic Analysis
of your program to proceed. If this option is false, running Dynamic Analysis on your application
might require adjusting your security policy or excluding classes that run within the restrictive security
manager (see the exclude-instrumentation and instrument-only options). (False.)

repeat_connect="<non-negative_number>"
If this option is set to a number greater than zero, and the initial attempt to connect to the Broker
fails, then the Agent tries to reconnect to the Broker that number of times, with a one second pause
between attempts, before giving up. For best results, set this option to something greater than zero
when starting both the Broker and Agents from a script or build file. (0 when running the Agent from
the command line and 20 when running it through the cov-dynamic-analyze-java or cov-
dynamic-analyze-junit Ant tasks.)

Nested elements

There are no additional nested elements beyond what the java or junit tasks support.

Examples

The following example runs the program test.Main with Dynamic Analyzer instrumentation enabled:

<cov-dynamic-analyze-java classname="test.Main" detect_deadlocks="false">;
 <arg value="-h">
 <classpath>
 <pathelement location="dist/test.jar"/>;
 <pathelement path="${java.class.path}"/>
 </classpath>
</cov-dynamic-analyze-java>

359

Name
cov-dynamic-analyze-junit Runs tests from the JUnit testing framework with Dynamic Analysis enabled.

Description

This task runs tests from the JUnit testing framework with Dynamic Analysis enabled. It functions as a
replacement for any existing JUnit task. You can replace <junit> with <cov-dynamic-analyze-
junit> in an existing build script.

This task sets the fork parameter to true. You cannot run Dynamic Analysis from within the same virtual
machine as the Ant build. However, all the tests can be run within a single forked VM by setting the
forkmode parameter of the junit task to once.

Disable Dynamic Analysis's functionality by setting the enabled parameter to false. In this mode, the
task passes through all functionality to the junit task and all Dynamic Analysis-specific parameters are
ignored.

The Dynamic Analysis distribution includes an antlib.xml file, you can enable this task by adding the
following line to the Ant build script:

<typedef resource="com/coverity/anttask.xml"
classpath="<install_dir_ca>/library/coverity-anttask.jar"/>

This task extends the junit ant task. It supports all parameters that by the junit task supports. For the
complete list of supported parameters, see the Ant junit task documentation.

Attributes

For the available cov-dynamic-analyze-junit attributes, see cov-dynamic-analyze-java(Coverity
2020.12 Command Reference).

Nested elements

There are no additional nested elements beyond what the java or junit tasks support.

Examples

The following example runs the test that is defined in my.test.TestCase with Dynamic Analysis
instrumentation enabled:

<cov-dynamic-analyze-junit>
 <test name="my.test.TestCase"/>
 </cov-dynamic-analyze-junit>

The following example runs the test that is defined in my.test.TestCase with Dynamic Analysis
instrumentation enabled. At the end of the test, a one-line summary prints. A detailed report of the test is
in TEST-my.test.TestCase.txt. The build process stops if the test fails.

<cov-dynamic-analyze-junit printsummary="yes" haltonfailure="yes">
 <formatter type="plain"/>
 <test name="my.test.TestCase"/>

360

cov-dynamic-analyze-junit

</cov-dynamic-analyze-junit>

The following example runs my.test.TestCase in the same VM with Dynamic Analysis instrumentation
disabled.

<cov-dynamic-analyze-junit enabled="no">
 <test name="my.test.TestCase"/>
</cov-dynamic-analyze-junit>

361

Name
cov-start-da-broker Start the Dynamic Analysis Broker using an Ant task.

Synopsis

<cov-start-da-broker ATTRIBUTES/>

Description

The cov-start-da-broker Ant task starts the Dynamic Analysis Broker, which receives defects
from Dynamic Analysis instances and sends them to Coverity Connect. See Dynamic Analysis 2020.12
Administration Tutorial for details on what the Broker does and how it works.

Attributes

The list below describes the Ant attributes for cov-start-da-broker.

brokerport="<port>"
Listen on this port for Agent's connections (default 4422).

configfile="<file>"
Specify the path and filename of the Java properties configuration file. This is where you put your
configuration file properties.

dataport="<port_number>"
Specify the Coverity Connect server port for source and defect commits (Default: 9090).

dir="<intermediate_directory>"
Required option that specifies an intermediate directory that was created through the cov-build
command. The cov-build command captures your source and classes. For more information, see
cov-build in Coverity Analysis 2020.12 User and Administrator Guide .

host="<hostname>"
Specify the host name or IP address of the Coverity Connect server.

onlylisten="<boolean>"
[Deprecated] This option is deprecated as of version 7.6.0 and will be removed from a future release.

Listens for Dynamic Analysis Agents and send their defects to Coverity Connect, but do not commit
the source code to Coverity Connect (Default: False, which means the broker listens for agents and
commits source code.)

onlysourcecommit="<boolean>"
[Deprecated] This option is deprecated as of version 7.6.0 and will be removed from a future release.

Commit source code to a source stream, but do not listen for Agents. (Default: False, which means
the broker commits source code and listens for Agents.)

onlytestconnection="<boolean>"
Validate the command line and configuration, test the connection to the Coverity Connect server,
verify that the source and dynamic streams exist, and exit regardless of other command line options.
(Default: False, which means the broker operates normally in a non-test mode.)

362

cov_command_ref.pdf#cov-build

cov-start-da-broker

outputdir="<directory>"
Change the output directory from the default of cda_data. This directory stores a run directory for
each invocation of the Broker.

password="<password>"
Provide a Coverity Connect password.

rundir="<run_directory>"
Specify a location for the Dynamic Analysis Broker run directory. This is where the Broker puts
its log files and information files such as broker.started and broker.ok. If the run directory
you specify already exists, the Broker moves the old one to old_<run_dir>_<number>, where
<number> is the first number such that the name isn't taken. This option overrides the default
behavior where the Broker creates a run directory with a unique name as a new subdirectory under
the output directory.

runprefix="<prefix>"
Change the prefix of the run directory from the default of "broker" to <prefix>. The run directory
is a sub-directory of the output directory where the Broker stores logs and other information from this
run.

shutdownafter="<seconds>"
Specify the number of seconds to wait before the Broker shuts down when no Agents are connected.
This convenience option ensures that unused Broker processes terminate when they are no longer
required. Specifying never means to never shut down automatically. Default: 600 seconds.

stream="<dynamic_stream_name>"
Specify the name of the Dynamic Analysis stream to commit defects and source code.

user="<user_name>"
User name for Coverity Connect server. If no user name is specified, the Broker uses the name of the
operating system user that invokes it. (Default: Operating System user name.)

Examples

• Commits the source code to Coverity Connect. This target uses cov-start-da-broker with
onlysourcecommit="true". Splitting the source commit from the dynamic defect commit –
especially in Ant build files– is a good practice because it ensures that the whole target will fail if the
source commit fails.

<property name="demos.idir" location="example-idir"/>

<target name="source.commit" depends="build-project">
 <cov-start-da-broker
 failonerror="true"
 configFile="${config.file}"
 dir="${demos.idir}"
 onlySourceCommit="true"
 />
</target>

363

cov-start-da-broker

• Starts the Broker in the background. This target uses cov-start-da-broker with
onlylisten="true" to listen for Dynamic Analysis Agent connections and to stream their defects to
Coverity Connect.

<target name="broker.listen">
 <cov-start-da-broker
 failonerror="true"
 configfile="${config.file}"
 onlylisten="true"
 />
</target>

Sample configuration file:

host=cim.example.com
dataport=9090
user=jdoe
password=secret
stream=Example-dynamic

364

Name
cov-stop-da-broker Stop the Dynamic Analysis Broker using an Ant task.

Synopsis

<cov-stop-da-broker ATTRIBUTES/>

Description

The cov-stop-da-broker Ant task stops the Dynamic Analysis Broker, which receives defects from
Dynamic Analysis instances and sends them to Coverity Connect.

Attributes

The list below describes the attributes for the cov-start-da-broker Ant task.

shutdowntype="<broker-shutdown-type>"
Specify how the Dynamic Analysis Broker shuts down. Can be one of three values: clean, dirty or
early.

clean
(Default) Tells the Broker to exit once all of the following are true:

• The Broker has finished committing source code to Coverity Connect

• All Dynamic Analysis Agents have disconnected from the Broker.

• The Broker has finished sending all of the defects that the Dynamic Analysis Agents reported
to Coverity Connect

dirty
Tell the Broker to exit immediately. The Broker terminates the source commit if it has not
completed, closes connections to Agents (which will themselves exit if their failfast option
is true), and drops any defects that it has not sent to Coverity Connect. If the source commit
already finished successfully before the dirty shutdown, some defects from this run of the Broker
may appear in Coverity Connect, otherwise, no defects from this run of the Broker will appear in
Coverity Connect.

early
Tell the Broker to close its connections to Agents (which will themselves exit if their failfast
option is true) and then exit when all of the following are true:

• The Broker has finished committing source code to Coverity Connect.

• The Broker has finished sending all of the defects that the Agents reported (before having their
connections to the Broker forcibly closed) to Coverity Connect.

brokerhost="<host_or_IP>"
Specify the hostname or IP address on which the Broker is running. Default: localhost

365

cov-stop-da-broker

brokerport="<port_number>"
Specify the port on which the Broker is listening. Default: 4422

Examples

The example below shows a clean shutdown of the Broker.

<target name="broker.shutdown">
 <cov-stop-da-broker shutdowntype="clean"/>
</target>

366

Coverity Connect Commands

367

Name
cov-admin-db Administer Coverity Connect.

Synopsis

cov-admin-db backup [--dir] <file_or_dir> [--force] [--no-overwrite] [-j
<number_of_processors>] [--debug]

cov-admin-db check-integrity [--install-dir <install_dir>][--debug]

cov-admin-db optimize [--debug]

cov-admin-db psql [--debug]

cov-admin-db reset-admin-password [--debug]

cov-admin-db restore <file_or_dir> [--force] [--no-overwrite] [-j
<number_of_processors>] [--debug]

cov-admin-db scramble --input-dump <file_or_dir> --output-dir <dir_name> [--
debug]

cov-admin-db tune {[--read]|[--show-profile]|[--suggest]|[--write]}[--debug]

cov-admin-db upgrade-schema [--debug]

Log File

This command generates a log file: <install_dir_cc>/logs/cov-admin-db.log.

Description

The cov-admin-db command performs various operations on Coverity Connect as described in the
following table.

Subcommand DB type Operation

backup -- Backs up the database to an archive file or directory. This option
only works with the embedded database.

See the section called “Backing up and Restoring a Database”.

check-integrity embeddedChecks the integrity of your database by verifying tables,
sequences, columns, constraints, and indexes.

See the section called “Checking Database Integrity”.

optimize embeded Improves database use of indexes and statistics.

See the section called “Optimizing the Database”.

psql external Runs the psql command on the database, allowing you to issue
queries interactively to PostgreSQL.

368

cov-admin-db

Subcommand DB type Operation
embedded

reset-admin-
password

external Changes password for the admin account to that specified at the
prompt.

restore -- Restores data to the embedded database, using the specified
archive file or directory.

See the section called “Backing up and Restoring a Database”.

scramble external

embedded

Strips all sensitive information from your database backup so that
Coverity support can troubleshoot it.

See the section called “Preparing the Connect Database to Send to
Synopsys”.

tune external

embedded

Allows you to tune PostgreSQL and Java JVM settings for the
Coverity Connect database for optimal performance. Tune options
allow you to read tune settings, display the server profile, display
suggested settings, and to apply the suggested tune settings.

See the section called “Tuning Coverity Connect for Your
Environment”.

upgrade-schema external

embedded

Upgrades an archived schema from a previous version of Coverity
Connect to make it compatible with the current version of Coverity
Connect.

General Options

--debug
Displays debug output.

Backing up and Restoring a Database

Use the backup and restore subcommands to back up and restore your database. These variants only
work with the embedded database.

cov-admin-db backup [--dir] <file_or_dir> [--force] [--no-overwrite] [-j
<number_of_processors>] [--debug]

cov-admin-db restore <file_or_dir> [--force] [--no-overwrite] [-j
<number_of_processors>] [--debug]

• Backup backs up the database to an archive file or directory.

• Restore restores data to the embedded database, using the specified archive file or directory. Before
you use this subcommand, run the cov-im-ctl maintenance command.

In addition to restoring the data, this command upgrades the schema to make the schema compatible
with the current version of Coverity Connect. The archive file is not modified during this process.

369

cov-admin-db

Caution

Use caution when restoring a database with this command because it deletes all data from the
current database.

With both backup and restore, you have a choice of two different formats: a file or a directory. Files are
both more convenient to work with than directories and faster for backups and restores.

Option Use

--dir With Backup: The directory where you want the database backed up.

With Restore: The directory from which data is restored to the
database.

--force Suppresses user inputs during the backup and restore process to help
automate the procedure.

--no-overwrite Specifies that the following will not be overwritten:

• An existing backup file with the backup command

• The contents of a database with the restore command

If you do not specify this option, you must manually answer the
questions during the backup/restore process. All questions are skipped
if --force is present.

-j
<number_of_processors>

Use with either subcommand to control the level of parallelism
and reduce the amount of time for the operation. The
<number_of_processors> attribute sets the number of core
processors available on your system.

This setting has no effect for file backup/restore. It defaults to 4 for
directory-based backup/restore. 2 or 3 is recommended.

Checking Database Integrity

Use the check-integrity subcommand to check the integrity of your database: the command verifies
that tables, sequences, columns, constraints, and indexes have the intended definitions.

Note

This operation automatically runs before the cov-admin-db backup command is executed and
after the cov-admin-db restore command is executed.

cov-admin-db check-integrity [--install-dir <install_dir_name>] [--debug]

Use the --install-dir option to specify another Coverity Connect installation to check. The default
location is <install-dir-CC>. The subcommand is compatible with all versions of Coverity Connect.

370

cov-admin-db

Optimizing the Database

Use the optimize subcommand to optimize database use of indexes and statistics.

You can use this subcommand without putting Coverity Connect in Maintenance mode.

To reclaim the maximum amount of space, you can back up and restore the embedded database after
optimizing. For information about this process, see "Administering the Coverity Connect database" in the
Coverity Platform 2020.12 User and Administrator Guide.

Preparing the Connect Database to Send to Synopsys

You might need to send a backup of your Connect database to Coverity support. You have two options
for doing so securely:

• Remove the source code from the database before sending. Your Support representative can explain
how you do that.

• Anonymize the database.

This operation, called scrambling, not only removes source code, but destroys all names of items in
the database (for example, users, components, and streams), replacing them with small numbers.
Because the data is overwritten, there is no way to “un-scramble” a scrambled database.

Scrambling has disadvantages: 1) It takes longer than removing source. 2) Depending on the problem
that Support needs to diagnose, you might need to work with Support to match a few of the scrambler-
generated numbers to their unscrambled names.

Use the scramble subcommand to anonymize your database before sending it to Coverity Support. This
command works with all supported CIM version backups.

The syntax of the scramble command is as follows:

cov-admin-db scramble --input-dump <file_or_dir> --output-dir <output_dir>
[--debug]

Use the --input-dump option to specify the name of the input backup file or directory. This is the
file you want scrambled. The output of the scrambling operation is a database backup directory,
<output_dir>.

The basic workflow is as follows:

1. Run the cov-admin-db backup command to create a backup of your database.

2. To avoid impacting the resources used by your production Connect instance, install Connect on a
different host. Use the embedded database option when installing.

3. On the instance installed above, run the cov-admin-db scramble command to scramble the
database backup.

371

cov-admin-db

The cov-admin-db scramble command takes the file or directory you provide with the --input-
dump option, and restores it into a temporary database. It then scrambles information in the temporary
database.

4. The cov-admin-db scramble command then backs up the stripped database to the directory
specified by the --output-dir option.

5. You can now make a tar or zip archive of the <output_dir> directory and send it to Coverity
Support.

Note

Like removing source, scrambling takes significant disk space, both for the two backups and for the
temporary database. The temporary database will consume the same amount of disk space as the
production database.

Tuning Coverity Connect for Your Environment

The cov-admin-db tune command is used by the installer at install time to adjust your Coverity
Connect database and JVM settings for best performance.

After the product is installed, you can use the cov-admin-db tune subcommand to retune Coverity
Connect. You might want to retune for reasons like the following:

• Your environment has changed, and you want to retune the system in response to those changes.

• To restrict use of available resources.

Command syntax provides the following options:

cov-admin-db tune {[--read]|[--show-profile]|[--suggest]|[--write]}[--debug]

Option Use

--read Reads the current tune settings and displays them.

--show-profile
[[<key>=<value>]...]

Displays the profile that describes the current environment:
hardware and OS settings.

Use the <key=value> expression to override current profile
settings.

--suggest
[[<key>=<value>]...]

Calculates optimal Coverity Connect tuning values based on the
current profile and displays what would be written to the settings
files with a subsequent cov-admin-db --write command.

Use the <key=value> expression to provide alternate values for
profile settings.

--write
[[<key>=<value>]...]

Calculates optimal Coverity Connect tuning values based on
current profile settings and writes them to the settings files.

372

cov-admin-db

Option Use
Use the <key=value> expression to provide alternate values for
profile settings.

You must restart Coverity Connect for these settings to take
effect.

The subcommand assembles a description of the available resources, called a profile, which is a
collection of settings. The profile isn't stored, but it is used with the --show-profile, --suggest, and
--write options.

Profile settings include the following:

Setting Meaning

isExternalDb Boolean: true if the database disk is external (not embedded).

isSsd Boolean: true if the database disk is an SSD.

mode Use "default".

os "Windows" or "Linux"

physicalMemory Physical memory in gigabytes.

processorCount Number of cores.

tomcatMemoryFraction A number between 0 and 1 that indicates the proportion of memory to
allocate to the Coverity Connection Web application.

Profile settings are derived from three sources (arranged from lowest to highest precedence):

1. The current environment detected by the application, which is overridden by

2. Values provided on the cov-admin-db tune command line using <key=value>, which are
overridden by

3. Values set using environment variables

For example, the following sequence of commands illustrate how profile settings can be overridden:

$ cov-admin-db tune --show-profile
isExternalDb = false
isSsd = false
mode = default
os = Linux
physicalMemory = 16g
processorCount = 12

Entering the following command:

$ cov-admin-db tune --show-profile processorCount=10

Displays the profile as follows:

373

cov-admin-db

isExternalDb = false
isSsd = false
mode = default
os = Linux
physicalMemory = 16g
processorCount = 10

Executing the following commands

$ export physicalMemory=10g

$ cov-admin-db tune --show-profile physicalMemory=20g

Displays the physical memory of 10g because the environment variable setting overrides the command
line setting.

isExternalDb = false
isSsd = false
mode = default
os = Linux
physicalMemory = 16g
processorCount = 10

How you use tune options depends on your use case:

• If your environment has changed and you simply want to retune your system for these changes, use
the cov-admin-db tune --write command.

• If you want to retune for testing or to limit the use of available resources, use the cov-admin-db
tune --write < key=value> command.

Note

Remember to restart Coverity Connect after retuning.

Understanding the Difference Between --write and --suggest

This section explains how system settings are derived from the system profile, and how you use the --
suggest and --write options to display or change these settings.

1. As mentioned before, the system's profile is assembled from three sources: current settings, values set
on the cov-admin-db command line, and values set using environment variables.

To display the profile use the --show-profile option.

2. A calculator is chosen based on the profile's mode setting. (The default mode is normally the one
used.)

3. The profile is provided as input to the calculator.

4. Based on this input, the calculator outputs a collection of settings for the JVM and database.

• --suggest outputs these settings to the console.

374

cov-admin-db

• --write writes these settings to their configuration files.

Upgrading the Database

Use the upgrade-schema subcommand to upgrade your database schema: The command modifies the
existing schema and data to make it compatible with the current version of Coverity Connect.

The upgrade-schema subcommand supports an external PostgreSQL database or the embedded
database. Because the cov-admin-db restore command and the installer always upgrade the
schema, you need to run cov-admin-db upgrade-schema only when using an external database.

375

Name
cov-archive Export streams to an archive file; import streams from an archive file; get information about
an archive file.

Synopsis

This command has three variants depending on whether you want to export, import, or get information. A
fourth variant returns help information about one of the first three variants.

cov-archive [--debug] export-streams [--remove [--silent]] --archive
<archive-file> [--project <project-name>...]... [--stream <stream-
name>...]...

cov-archive [--debug] import-streams --archive <archive-file> [--cluster-
config <cluster-config-file>]

cov-archive [--debug] list --archive <archive-file>

cov-archive help [<command>]

cov-archive -h

cov-archive --help

Description

The cov-archive commands allow you, the system administrator, to export a set of streams into an
archive file and optionally delete the exported streams, import streams from an archive, or get information
about an archive file (its identifier, version, the date and time of creation, the streams contained,
and so on) or a cluster config file (the identifier of the corresponding archive file, the identifier of the
corresponding Coverity Connect coordinator, the date and time of creation). You can also get help about
cov-archive command options.

You may import an archive into a Coverity Connect instance that has the same or a newer version as the
Coverity Connect instance used to create the archive. You can check the Coverity Connect version used
to create the archive using the cov-archive list command.

The cov-archive command generates a log file <CC_install_dir>/logs/cov-archive.log.

Important

You may use the import-streams command of cov-archive only while Coverity Connect is
in maintenance mode. You can run the export-streams command while Coverity Connect is
operational.

Important

The command import-streams has exactly two outcomes: it either completes successfully or
fails without doing any observable changes to the Coverity Connect database:

• If the command completes without reporting an error, then the outcome is success.

376

cov-archive

• If the command reports an error, then the outcome may be either success or failure. In the
majority of cases the reported error means that the command failed, but in some rare cases
(for example, if the command issued a commit but did not receive a response for some reason)
the only way to tell whether the outcome is success or failure is by checking whether the
database contains a stream from the archive or not. Such checking may be done by executing
the command again—if the first command succeeded, then the second one fails by reporting that
the streams already exist.

Options

--archive <archive-file>
The path of the file to which you are exporting or from which you are importing. The path is either
absolute or relative to the shell's current working directory.

--cluster-config <cluster-config-file>
The path to the cluster config file. The path is either absolute or relative to the shell's current working
directory. This file is created as a result of completing the first step of the two-step import into a
subscriber Coverity Connect instance and is required to do the second step. This option must be
specified for each of the two steps. If this option is not specified when the command is executed
on the coordinator (step one), then the command imports an archive into the coordinator instead of
producing a cluster config file.

Importing into a standalone/coordinator Coverity Connect instance is a straightforward action.
Importing into a subscriber Coverity Connect instance is a two-step process.

Step one is executed on the coordinator instance in the Coverity Connect cluster that contains the
target subscriber instance and produces a cluster config file required to do the second step.

Step two is executed on the target subscriber instance only after this instance catches up with the
changes introduced on the coordinator by the first step. These changes are specified by the cluster
config file. Importing is refused if the data specified in the file is not present in the target subscriber.
You may see whether the subscriber caught up with its coordinator by navigating to "Help">"System
Diagnostics">"Cluster" and looking at the "Last synchronized" timestamp.

Note that it is allowed to have the same streams in different Coverity Connect instances in a cluster.
This means streams from the archive are allowed to exist in the coordinator when doing step one,
and the streams existing in the coordinator are allowed to be imported to its subscriber when doing
step two.

Before deciding to import into a coordinator/subscriber instance you should make sure that the data
replication between them is happening successfully. This can be done informally by checking that
the aforementioned "Last synchronized" timestamp is not too old, e.g., that its value is within the last
24 hours. Do not import into a coordinator/subscriber if there appears to be an issue with the data
replication process between them because doing so may only further complicate the issue.

<command>
One of the following: export-streams, import-streams, list or help. If nothing is specified, it
is interpreted as help.

377

cov-archive

--project <project-name>
The name of the project from which you want to export streams. You must specify either a project or
a stream; you may specify both project and stream names.

--remove
Remove the exported streams from the database, when exporting successfully completes.

Note that the data belonging to the streams is deleted in the background while Coverity Connect is
running. This does not prevent using the --remove option while Coverity Connect is in maintenance
mode: the data will eventually be deleted once Coverity Connect starts. You can run vacuum
full later if you need to return the freed up storage space to the OS. We recommend setting
cim.cleanup.stream.delay.min = 2 in cim.properties if you have a significantly higher
value specified explicitly in cim.properties and you are going to delete large number of streams.
See Coverity Platform User and Administrator Guide for more details about this property.

--silent
Suppress confirmation of the action. This option may be specified only when using the --remove
option.

--stream <stream-name>
The name of the stream you want to export. You must specify either a project or a stream; you may
specify both project and stream names.

Limitations and considerations

Please observe the following limitations and considerations in using the cov-archive command.

Limitations

• The following data is not exported: cross references, issue categorization maps, component maps,
components, licenses and users ("Committed by") associated with snapshots, "Bind Password" of
LDAP configurations (it must be set after importing either manually or via the Web Services API -
see the Web Services API Reference for more information).

• You cannot import individual streams from an archive.

Considerations

• Imported triage stores (and associated data) are not merged. Instead, a new triage store is created
in the target database.

• Attribute definitions in the target database must be the same (and defined using the same index
order), otherwise the import will fail.

• LDAP configurations are merged based on their display name. If the target database has a
configuration with the same UUID but a different display name, the import will fail.

• Users are imported in a disabled state, and user preferences are not exported.

• If a user in the archive is already present in the target database, that user will not be disabled
and preferences will be preserved.

378

cov-archive

• Users are merged if they have the same login name, deleted status, and LDAP configuration
(which may or may not be merged, as described above).

• Only stream-level user/group role assignments are exported. Role permissions are not exported
because importing them may change access to other entities in the target Coverity Connect
instance. When importing role assignments, each role is imported (without its permissions) if it
does not exist in the target database, otherwise the existing role is used.

• CIDs of imported issues are preserved unless they are empty or they belong to a different pre-
existing issue.

Exit codes

• 0: The command successfully completed.

• 1: Either an error occurred or help was requested.

Examples

The following command displays the usage help for the command export-streams.

cov-archive help export-streams

The following command exports a stream named s1 and all streams linked to the projects named p1 and
p2 to a file ../s1_p1_p2.covarch ".

cov-archive export-streams --stream s1 --project p1 --project p2
 --archive ../s1_p1_p2.covarch

The following command imports streams from the file ../s1_p1_p2.covarch and writes detailed logs.

cov-archive --debug import-streams --archive ../s1_p1_p2.covarch

The two commands that follow import streams from the file ../s1_p1_p2.covarch into a subscriber in
a two-step process.

Step one: Execute on the coordinator.

cov-archive import-streams --archive ../s1_p1_p2.covarch --cluster-config ../
s1_p1_p2.covclustcfg

Step two: Wait until the target subscriber catches up with the coordinator, then execute on the subscriber.

cov-archive import-streams --archive ../s1_p1_p2.covarch --cluster-config ../
s1_p1_p2.covclustcfg

379

Name
cov-get-certs Create a file of trusted self-signed certificates.

Synopsis

cov-get-certs --host <host> --port <port> --certs <certs_file>

Description

In situations where Coverity Connect is a client of other services (email, Bugzilla, JIRA, LDAP) and one
or more of those services uses a self-signed certificate, cov-get-certs is used to transfer that server's
self-signed certificate to Coverity Connect's trust store of CA root certificates, thus enabling Coverity
Connect to connect using SSL to the service.

Before the Coverity 8.0 release, cov-get-certs was needed for all Java applications. Now it is needed
only for Coverity Connect

If you want to edit the certificate file, use your JRE's keytool command. The password for the
certificates file is changeit.

Options

--host <server-host>
The server hostname, which Coverity Connect is a client of.

--port <server-port>
The host server's HTTPS connection port.

--certs <cert_file>
The name of the certificate file. Because this defaults to Coverity Connect's Java trust store (at
<Coverity Connect install directory>/jre/lib/security/cacerts), you don't
normally need to use this option.

Example

cov-get-certs --host example.com --port 8443

380

Name
cov-im-ctl Start or stop Coverity Connect.

Synopsis

cov-im-ctl {maintenance | start | status | stop} [-w <seconds>]

Description

The cov-im-ctl command performs various operations, including starting or stopping Coverity
Connect.

On Windows systems, when Coverity Connect is installed as a service, the cov-im-ctl.exe program is
often unnecessary because Coverity Connect starts and stops automatically when the system boots up or
shuts down. When Coverity Connect is installed as a service, any administrator can use this command.

When Coverity Connect is not installed as a service, only the user who installed Coverity Connect is able
to use this program to start or stop it.

Options

maintenance
Place the embedded database in maintenance mode. Use this option, for example, before you
restore a database from backup.

start
Start Coverity Connect.

status
Provide status information about Coverity Connect.

stop
Stop Coverity Connect.

-w <seconds>
Wait at least the specified number of seconds for a response to this request.

Examples

Check to see if Coverity Connect is running:

> cov-im-ctl status

Stop Coverity Connect:

> cov-im-ctl stop

Start Coverity Connect:

> cov-im-ctl start

381

Name
cov-import-cert Import certificate for SSL communication for coordinator/subscribers.

Synopsis

cov-import-cert <cert_file> <truststore_file>

Description

cov-import-certs allows you add the certificate into the user's own truststore, to allow authentications
between a coordinator and a subscriber. If the truststore does not exist, one will be created. For more
information, see Configuring Coverity Connect enterprise clusters in the Coverity Platform 2020.12 User
and Administrator Guide .

Options

<cert_file>
The name of the certificate file.

<truststore_file>
The truststore file shared for SSL communication. If the truststore does not exist, one will be created.

382

cov_platform_use_and_admin_guide.pdf#sharing_triage_data
cov_platform_use_and_admin_guide.pdf#sharing_triage_data

Name
cov-manage-im Manage and query defects, projects, and streams in Coverity Connect.

Synopsis

cov-manage-im --mode defects [MODE OPTIONS][CONNECTION OPTIONS][SHARED
OPTIONS]

cov-manage-im --mode projects [MODE OPTIONS][CONNECTION OPTIONS][SHARED
OPTIONS]

cov-manage-im --mode streams [MODE OPTIONS][CONNECTION OPTIONS][SHARED
OPTIONS]

cov-manage-im --mode triage [MODE OPTIONS][CONNECTION OPTIONS][SHARED
OPTIONS]

cov-manage-im --mode motd [MODE OPTIONS][CONNECTION OPTIONS][SHARED OPTIONS]

cov-manage-im --mode commit [MODE OPTIONS][CONNECTION OPTIONS][SHARED
OPTIONS]

cov-manage-im --mode notification [MODE OPTIONS][CONNECTION OPTIONS][SHARED
OPTIONS]

cov-manage-im --mode auth-key [MODE OPTIONS][CONNECTION OPTIONS][SHARED
OPTIONS]

Description

The cov-manage-im command modifies and queries information for defects, projects, and streams
in Coverity Connect. This command also outputs logging information to <install_dir_cc>/logs/
cim.log.

This command has the following modes of operation:

• Defects mode

• Projects mode

• Streams mode

• Triage mode

• MOTD mode

• Commit mode

• Notification mode

383

cov-manage-im

• Authentication key mode

The cov-manage-im command can operate on (update or delete) the set of objects that were matched
by a query within a single command line.

Each cov-manage-im mode accepts CONNECTION options that allow you specify connection settings
such as host name, port number, and so forth, on the command line.

Alternatively, you can use the coverity_config.xml file, which is a configuration file that you
can edit to store connection options for cov-manage-im. If you run the cov-manage-im command
from a Coverity Analysis or Coverity Analysis package, you can create a default version of this file at
<install_dir_sa>/config/coverity_config.xml by running the cov-configure command.
After you run the cov-configure command, you must add the elements as in the example that
follows, if you want to include connection options in the configuration file instead of on the command
line. If you run the cov-manage-im command from a Coverity Connect package, you must manually
create the default coverity_config.xml file, and move it to <install_dir_cc>/config/
coverity_config.xml.

The following example element in the coverity_config.xml file defines connection options for
Coverity Connect:

<!DOCTYPE coverity SYSTEM "coverity_config.dtd">
<coverity>
 <config>
 <cim>
 <host>cim.company.com</host>
 <port>8443</port>
 <!-- HTTPS port -->

 <client_security>
 <user>test</user>
 <password>secret</password>
 <ssl>yes</ssl>
 <certs>/pathto/.certs</certs>
 </client_security>
 </cim>
 </config>
</coverity>

Note

Glob arguments are patterns used for filter expressions. In glob patterns, * matches zero or more
characters, and ? matches exactly one character.

Defects mode

Query and update defects in Coverity Connect.

Synopsis

--mode defects --show <SCOPE> [<FILTER>] [<OUTPUT>] [<OTHER>]

384

cov-manage-im

--mode defects --update <SCOPE> [<FILTER>] <SET> [<OTHER>]

Defects mode options

In general, you can specify options in any order. The exception is when you add more than one project or
stream within a single command. In this case, you must specify the options for the properties of each new
stream or project at the same time.

The <OTHER> option listed in the synopsis refers to sets of command line options that are common to all
modes. The options are:

• Common OUTPUT options

• CONNECTION options

• Shared options

OPERATION options
Exactly one OPERATION option is required:

--show
Output a comma separated value (CSV) list of defects from the specified scope that matches the
filter criteria. Use the --fields option to control the display of the defect fields and their order.

--update
Update attributes of defects from the specified scope that match the filter criteria. At least one
SET option is required. FILTER options are not required.

SCOPE
Define the project or the set of streams to show or update. All defect operations require a scope
definition.

When the same defect occurs in multiple streams, and a project scope is specified, the defects are
represented as a merged defect for display and filtering purposes. For example, if the same
defect occurs in two separate streams, and the action attribute values are different, Coverity Connect
calculates a merged action. The merged action is then displayed for the merged defect. FILTER
options match against the merged defect.

The SCOPE options are:

--project <name>
Specify the name of a project that contains the defects that you want to show or update. You can
only scope for one project.

--stream <name>
Specify the name of a stream, or streams.

FILTER
FILTER options focus the set of defects in the given scope that will be operated on. You can specify
multiple instances of each filter, with the exception of the --file and --function filters, which you
can only specify once.

385

cov-manage-im

If you specify multiple instances of the same filter, the values are effectively ORed together.
Different filter options are effectively ANDed together. For example, --action a --action b
--severity c --severity d matches defects of the criteria (action = a OR b) AND
(severity = c OR d).

The FILTER options are:

--cid <cid-set>
Operate on a single CID or set of CIDs. <cid-set> can be:

• A single CID. For example, --cid 10118.

• A range of CIDs. Denote range with a hyphen (-). For example, --cid 10203-10209.

• A comma-separated list of single CIDs and ranges of CIDs. For example, --cid
10118,10119,10203-20109,10388.

--action <action>
Operate on defects whose action attribute value exactly matches the <action> string. Valid
strings match the list of Action values on the Coverity Connect Attribute Details screen. The
standard (unedited) values in Coverity Connect are:

• Undecided

• Fix Required

• Fix Submitted

• Modeling Required

• Ignore

Use Various for <action> to select merged defects that have different action attribute values.

--classification|--class <class>
Operate on defects whose classification attribute value exactly matches the <class> string.

<class> must be one of the following:

• Unclassified

• Pending

• False Positive

• Intentional

• Bug

• Various

Use Various for <classification> to select merged defects that have different classification
attribute values.

386

cov-manage-im

For Test Advisor policy violations, the classification must be one of the following:

• Unclassified

• Pending

• Untested

• No Test Needed

• Tested Elsewhere

• Various

--severity <severity>
Operate on defects whose severity attribute value exactly matches the <severity> string. Valid
strings match the list of severity levels on the Coverity Connect Attribute Details screen. The
standard (unedited) values in Coverity Connect are:

• Unspecified

• Major

• Moderate

• Minor

Use Various for <severity> to select merged defects that have different severity attribute
values.

--status <status>
Operate on defects whose status attribute value exactly matches the <status> string.

<status> must be one of the following:

• New

• Triaged

• Dismissed

• Fixed

--component <comp_map_name>.<comp_name>
Operate on defects found by a specified component name. The name of the component map and
component must match the <comp_map_name>.<comp_name> string.

--component-not <comp_map_name>.<comp_name>
Causes defects found by a specified component name to be excluded from the result. The name
of the component map and component must match the <comp_map_name>.<comp_name>
string. You can specify multiple component names.

387

cov-manage-im

--checker <checker>
Operate on defects found by a specific checker. The name of the checker must match the
<checker> string. For example:

--checker FORWARD_NULL

--external-reference|--ext-ref <ext-reference>
Operate on defects whose external reference exactly matches the <ext-reference> string.

--language|--lang< lang>
Operate on a stream, or streams, based on language.<lang> can be one of the following:

• C/C++, cpp

• Java, java

• C#, cs

• dynamic_java

• Mixed, mixed

• Other, other

--mergekey <mergekey>
Operate on defects whose mergekey exactly matches the <mergekey> string. You may specify
multiple mergekeys in a comma-separated list.

--owner <owner>
Operate on defects whose owner exactly matches the <owner> string.

Use Unassigned for <owner> to update defects that are not yet assigned.

--file <file>
Operate on defects whose file matches the <file> glob pattern. <file> refers to the terminal
part of a filename, not a full path. You can specify this option only once.

The glob <file> <pattern> refers to the entire pathname. Pathnames are separated by a
slash on all platforms. For example, --file *.java will match all Java files, and --file
Win.java will match only Win.java at the root of the source tree. But --file */Win.java
will match all files named Win.java in all directories.

--function <function>
Operate on defects whose function matches the <function> glob pattern. You can specify this
option only once.

--legacy <status>
Operate on defects whose legacy status matches the <status> string. Legacy status can be
any of the following values:

• True

388

cov-manage-im

• False

• Various

--newest [snapshotId]
Operate on defects which occur only in the project's most recent snapshot.

An optional parameter, [snapshotId], will compare the newest snapshot with the older
specified snapshot. The snapshot ID number must match the number in [snapshotId] exactly.

OUTPUT options
OUTPUT options are not required and are only valid with the --show option.

--newest [snapshotId]
Outputs those defects which occur only in the project's most recent snapshot.

An optional parameter, [snapshotId], will compare the newest snapshot with the older
specified snapshot. The snapshot ID number must match the number in [snapshotId] exactly.

--output fields
Display the list of valid field names for this mode. These field names can then be used with the
--fields option.

--page
Sets the number of defects that are pulled per batch. The default number of defects is 100. If you
set the --page option to 1000 then there will be fewer queries and performance can improve.
For example, by setting the --page option to 1000 you will get 20 queries rather than 200, so
you will get 10 times fewer.

Example:

cov-manage-im --host localhost --port 8080 --user admin --password coverity --
mode defects --show --project foo --page 1000

Output options
You can also specify Output options that are common to all modes.

SET options
SET options update defect attributes of the selected defects defined with the FILTER options. You
can use only one --set option for each defect attribute, such as action, severity, classification,
and so forth. However, you can specify --set options for different defect attributes on the same
command line.

--set action:<action>
Set the action defect attribute for defects that match the filter criteria to <action>. The action
attribute used for <action> must already exist in the Coverity Connect database.

--set {classification|class}:<class>
Set the classification attribute of defects that match the filter criteria to <class>.

The <class> string must be one of the following:

389

cov-manage-im

• Unclassified

• Pending

• False Positive

• Intentional

• Bug

For Test Advisor policy violations, the classification must be one of the following:

• Unclassified

• Pending

• Untested

• No Test Needed

• Tested Elsewhere

• Various

--set severity:<severity>
Set the severity defect attribute of defects that match the filter criteria to <severity>. The
severity attribute used for <severity> must already exist in the Coverity Connect database.

--set owner:<owner>
Set the owner of defects that match the filter criteria to <owner>. The owner attribute used for
<owner> must already exist in the Coverity Connect database.

--set comment:<comment>
Add a comment to the defects that match the filter criteria.

--set {ext-ref|external-reference}:<reference>
Add an external reference to the defects that match the filter criteria.

--set legacy:<status>
Set the legacy status for the defect. The acceptable values are:

• True

• False

Defects mode examples

The first example shows the four connection options that must contain values either on the command
line, or in the XML configuration file (host, port, user, password). These connection options are
intentionally dropped from most of the subsequent examples to reduce the length of the command lines.
When the connection options are not specified, assume that the values are retrieved from the default
XML configuration file.

390

cov-manage-im

Show examples

Show all (merged) defects in project X.

> cov-manage-im --host cim.company.com --port 8080 --user test \
 --password secret --mode defects --show --project X

Show all open defects in project X

> cov-manage-im ---mode defects --show --project X \
 --status New --status Triaged

Show all defects with the specified mergekey in the stream named Y.

> cov-manage-im --mode defects --show --stream Y --mergekey
 46941efa13559f40754b0d90dd99f2d2

List the defect fields that can be passed to --fields in defects mode.

> cov-manage-im --mode defects --show --project P --output fields

Control what defect fields are shown by specifying some of these fields with the --fields option.

> cov-manage-im --mode defects --show --project P \
 --fields cid,action,severity

Show particular (merged) defects in project X, filtering with different CID specifiers.

> cov-manage-im --mode defects --show --project X --cid 123
 > cov-manage-im --mode defects --show --project X --cid 123,456
 > cov-manage-im --mode defects --show --project X --cid 1-4
 > cov-manage-im --mode defects --show --project X --cid 1-4,18,25-30

Show all Triaged defects in stream Y that are classified as Bugs.

> cov-manage-im --mode defects --show --stream Y \
 --status Triaged --class Bug

Show all open defects in stream Y with no owner.

> cov-manage-im --mode defects --show --stream Y \
 --status New --status Triaged --owner Unassigned

Show all open defects in "client" source files.

> cov-manage-im --mode defects --show --stream Y \
 --status New --status Triaged --file "client-*.c"

Show all open defects listed by CID in all components.

cov-manage-im --mode defects --show --project project1 \
 --fields cid,component

Update examples

Assign all unassigned defects in streams X and Y to jdoe

391

cov-manage-im

> cov-manage-im --mode defects --update --stream X \
 --stream Y --owner Unassigned --set owner:jdoe

Set the classification of CID 10002 in project P to False Positive.

> cov-manage-im --mode defects --update --project P \
 --cid 10002 --set "class:False Positive"

Set all the attributes of CID 10002 in project P.

> cov-manage-im --mode defects --update --project P \
 --cid 10002 --set "action:Fix Required" --set class:Bug \
 --set severity:Major --set owner:jdoe \
 --set "comment:This appears to be real." \
 --set ext-ref:yyy

Set the classification of defects with the specified mergekey in stream Y to False Positive.

> cov-manage-im --mode defects --update --stream Y \
 --mergekey 46941efa13559f40754b0d90dd99f2d2 --set "class:False Positive"

Mark all defects in MyStream which were introduced in the most recent snapshot as Legacy=true.

> cov-manage-im --mode defects --stream MyStream --update --newest --set legacy:true

Mark all defects in MyStream which were introduced after snapshot 10006 as Legacy=true.

> cov-manage-im --mode defects --stream MyStream --update --newest 10006 --set
 legacy:true

Projects mode

Query, add, delete, and update projects in Coverity Connect.

Synopsis

--mode projects --show [<FILTER>] [<OUTPUT>] [<OTHER>]

--mode projects --add <SET> [<OTHER>]

--mode projects --delete <FILTER> [<OTHER>]

--mode projects --update <FILTER> <SET> [<OTHER>]

--mode projects --update <FILTER> <REMOVE> [<OTHER>]

Projects mode options

In general, you can specify options in any order. The exception is when you add more than one project
within a single command. In this case, you must specify the options for the properties of each new project
at the same time.

392

cov-manage-im

The <OTHER> option listed in the synopsis refers to sets of command line options that are common to all
modes. The options are:

• Common OUTPUT options

• CONNECTION options

• Shared options

OPERATION options
Specify exactly one OPERATION option.

--show
Output a comma separated value (CSV) list of projects that match the filter criteria. Use the --
fields option to control the display of the project fields and their order. FILTER options are not
required with --show.

--add
Add one or more new projects. A project name is required for each project that is added. You can
add multiple projects with a single command line by specifying groups of SET options for each
new project.

--delete
Delete the project or projects that match the filter criteria. At least one FILTER option is required.

--update
Update the attributes of projects that match the filter criteria. At least one FILTER option and one
SET/REMOVE option is required.

FILTER options
FILTER options focus the set of projects that are operated on. You can specify multiple instances of
each filter, except for --name and --description.

If you specify multiple instances of the same filter, the values are effectively ORed together.
Different filter options are effectively ANDed together. For example, --stream a --stream b --
description c --description d matches projects of the criteria (stream = a OR b) AND
(description = c OR d).

The FILTER options are:

--name <glob>
Operate on a project, or projects, whose name matches the specified glob pattern.

--description|--desc <glob>
Operate on a project, or projects, whose description matches the specified glob pattern.

--stream <glob>
Operate on projects that are associated with a stream whose name matches the glob pattern.

OUTPUT options
OUTPUT options are not required and are only valid with the --show operation.

393

cov-manage-im

The OUTPUT options are:

--output fields
Display the list of valid field names for the Projects mode. The field names can then be used with
the --fields option.

--output streams
Display information about each stream associated with the project, rather than the information
about the project itself.

Output Options
You can also specify Output options that are common to all modes.

SET options
The SET options apply changes to project attributes. Use --add to set the attributes of new projects,
or --update to update the attributes of existing projects. At least one SET option is required with --
update.

--set name:<name>
Specify a name for a new project with the --add OPERATION option. This option is required for
each project being added with --add. For example:

--add --set name:Project1

Update the name of an existing project using the --update OPERATION option. For example:

--update --name A --set name:B

Project names must be between 1 and 256 characters and are case insensitive. Project names
can not contain the following characters:

• : (colon)

• * (asterisk)

• / (forward slash)

• \ (back slash)

• ` (backtick)

• ' (single quote)

• " (double quote)

--set {description|desc}:<description>
Specify a description for a new project using the --add OPERATION option, or update the
description of an existing project using the --update OPERATION option.

--insert stream:<name>
Associate an existing stream with a new project using the --add OPERATION option, or with an
existing project using the --update OPERATION option.

394

cov-manage-im

This option does not create the specified stream, or streams. The streams must already exist in
Coverity Connect. You can specify multiple --insert stream options to associate multiple
streams with a project with a single command.

A stream has two types of associations with a project:

• Primary, in which a given stream is associated with a designated primary project.

• Linked, in which a non-primary project is associated with the given project through a stream
link.

See Default Triage Scope for more information about primary projects and stream links.

When a stream is associated with a primary project (ProjectA) and then inserted into another
project (ProjectB), its association with ProjectA is changed from a primary association to a
stream link. ProjectB becomes the stream’s primary project. Although cov-manage-im cannot
explicity create stream links, this mechanism can be used to create a stream link.

To help you locate primary and linked associations, stream listings in Streams mode have a
column called Primary Project. This column contains the name of the primary project that is
associated with the stream (if any). Additionally, in Projects mode, you can specify is-stream-
linked in the --fields option. This produces a column that displays yes if the stream has a
linked association, or no if it has a primary association.

REMOVE options
The REMOVE options remove stream associations from projects. Remove options work for both
primary and linked streams.

These options are only valid with the --update OPERATION option.

At least one FILTER option must be specified to prevent accidental bulk removals.

The REMOVE options are:

--remove stream:<name>
Remove a stream association from the specified projects. Streams are not removed from the
Coverity Connect. Only the project's association with the stream is removed.

The <name> argument must exactly match a stream name.

You can specify multiple --remove stream options.

--clear streams
Remove all stream associations from the selected project(s).

Projects mode examples

The first example shows the four connection options that must contain values either on the command
line, or in the XML configuration file (host, port, user, password). These connection options are
intentionally dropped from most of the subsequent examples to reduce the length of the command lines.

395

cov_platform_use_and_admin_guide.pdf#cim_primary_projects

cov-manage-im

When the connection options are not specified, assume that the values are retrieved from the default
XML configuration file.

Show examples

Show all projects.

> cov-manage-im --host cim.company.com --port 8080 --user test \
 --password secret --mode projects --show

Show all projects that contain a stream named x or y.

> cov-manage-im --mode projects --show --stream x --stream y

List the fields that can be passed to --fields in projects mode.

> cov-manage-im --mode projects --show --output fields

Next, control what fields are shown by specifying some of these fields with the --fields option.

> cov-manage-im --mode projects --show --fields project

Show stream associations for all projects.

> cov-manage-im --mode projects --show --output streams

Show stream associations for projects where the project name starts with 'a'.

> cov-manage-im --mode projects --show --output streams --name "a*"

Add examples

Add a new project with minimal attributes specified.

> cov-manage-im --mode projects --add --set name:"HelloWorld"

Add a new project with all attributes specified

> cov-manage-im --mode projects --add \
 --set name:"hello world" \
 --set desc:"A full project" \
 --insert stream:mystream

Add two new projects at the same time.

> cov-manage-im --mode projects --add \
 --set name:proj1 \
 --set desc:"First project" \
 --insert stream:mystream \
 --set name:proj2 \
 --set desc:"Second project"

Delete examples

Delete a project named old-project.

396

cov-manage-im

> cov-manage-im --mode projects --delete --name old-project

Update examples

Rename project A to B and update description at the same time.

> cov-manage-im --mode projects --update --name A \
 --set name:B --set "desc:This is now a B project"

Add stream associations to project P's existing stream associations.

> cov-manage-im --mode projects --update --name P \
 --insert stream:x

Remove all stream associations named x from project P.

> cov-manage-im --mode projects --update --name P --remove stream:x

Remove all stream associations from project P

> cov-manage-im --mode projects --update --name P \
 --clear streams

Streams mode

Query, add, delete, and update streams in Coverity Connect.

Synopsis

--mode streams --show [<FILTER>] [<OUTPUT>] [<OTHER>]

--mode streams --add <SET> [<OTHER>]

--mode streams --delete <FILTER> [<OTHER>]

--mode streams --update <FILTER> <SET> [<OTHER>]

Streams mode options

In general, you can specify options in any order. The exception is when you add more than one stream
within a single command. In this case, you must specify the options for the properties of each new stream
at the same time.

The <OTHER> option listed in the synopsis refers to sets of command line options that are common to all
modes. The options are:

• Common OUTPUT options

• CONNECTION options

• Shared options

OPERATION options
Specify exactly one OPERATION option in Streams mode.

397

cov-manage-im

--show
Output a comma separated value (CSV) list of streams that match the filter criteria. Use the --
fields option to control the display of the stream fields and their order. FILTER options are not
required with --show.

--add
Add new streams. A minimum of one stream name is required for each stream that you add.

You can add multiple streams with a single command by specifying groups of SET options for
each new stream.

--delete
Delete the streams that match the filter criteria. At least one FILTER option is required.

--update
Update the name or description of the streams that match the filter criteria. A stream's language
can not be updated after a stream has been created. At least one FILTER option and one SET
option is required.

FILTER options
FILTER options focus the set of streams that are operated on. You can specify multiple instances of
each filter, except for --name and --description.

If you specify multiple instances of the same filter, the values are effectively ORed together. Different
filter options are effectively ANDed together. For example, --project a --project b --
language c --language d matches streams of the criteria (project = a OR b) AND
(language = c OR d).

--name <glob>
Operate on a stream, or streams, whose name matches the glob pattern.

--language|--lang <lang>
Operate on a stream, or streams, based on language. lang can be one of:

• C/C++, cpp

• Java, java

• C#, cs

• dynamic_java

• Mixed, mixed

• Other, other

--description|--desc <glob>
Operate on a stream, or streams, whose description matches the glob pattern.

--stream <glob>
Operate on a stream, or streams, whose name matches the glob pattern.

398

cov-manage-im

--project <glob>
Operate on streams that are associated with projects whose name matches the glob pattern.

OUTPUT options
OUTPUT options are optional and are valid only with the --show option.

--output fields
Display the list of valid field names for this mode. These field names can then be used with the
--fields option.

Output Options
You can also specify Output options that are common to all modes.

SET options
The SET options apply changes to stream attributes. Use --add to set the attributes of new streams,
or --update to update the attributes of existing streams. At least one SET option is required with --
update.

--set {component-map|cmap}:<component-map>
Specify a component map to associate with a stream using the --add OPERATION option.

--set {description|desc}:<description>
Specify a description for a new stream using the --add OPERATION option, or update the
description of a stream using the --update OPERATION option.

--set desktopAnalysis:{disabled|enabled}
This option allows (or prohibits) the stream to provide data for Desktop Analysis. Only streams
that have specifically enabled Desktop Analysis can be used as reference streams for Desktop
Analysis users.

To set this option for newly created streams, use --add, for example --mode streams --add
--set desktopAnalysis:enabled.

To set this option for existing streams use --update, for example --mode streams --
update --set desktopAnalysis:enabled.

These options are disabled by default.

For more information, see the Coverity Platform 2020.12 User and Administrator Guide

--set expiration:{disabled|enabled}
This option allows you to set Coverity Connect to automatically delete streams after a period of
inactivity. Only streams that are specifically configured for this feature are eligible for automatic
deletion.

To set this option for newly created streams, use --add, for example --mode streams --add
--set expiration:enabled.

To set this option for existing streams use --update, for example --mode streams --
update --set expiration:enabled.

399

cov_platform_use_and_admin_guide.pdf#cim_fd_stream_config

cov-manage-im

These options are disabled by default.

For more information, see "Designating a stream for auto-deletion of expired streams" in the
Coverity Platform 2020.12 User and Administrator Guide

--set {language|lang}: <lang>
Specify a language for a new stream using the --add OPERATION option. --set language
can be used for each stream you add. If you do not set a language for the stream, it defaults
to mixed. You can not update the language of an existing stream with this option. You should
choose the default (mixed) for each new stream that you create. The other languages are
provided for backward compatibility for previously released Coverity Connect versions (in which
implicitly designated languages were required for streams). The valid languages are:

• Mixed, mixed

• C/C++, cpp

• Java, java

• C#, cs

• dynamic_java

• Other, other

Note

Other can be used when creating a stream with the --add option. Other is among the
languages that may be shown when displaying a stream with the --show option.

--set name:<name>
Specify a name for a new stream with the --add OPERATION option. This option is required for
each stream added with --add. For example

--add --set name:Stream1

Update the name of an existing stream using the --update OPERATION option. For example:

--update --name A --set name:B

Stream names must be between 1 and 256 characters and are case sensitive. Stream names
can not contain the following characters:

• : (colon)

• * (asterisk)

• / (forward slash)

• \ (backslash)

400

cov_platform_use_and_admin_guide.pdf#cim_auto_delete_streams

cov-manage-im

• ` (backtick)

• ' (single quote)

• " (double quote)

--set ownerAssignmentOption:{default_component_owner|scm|none}
This option allows you to set owner assignment options for a stream. If you do not set the
ownerAssignmentOption for the stream, it defaults to default_component_owner. You can
update this value to any of the entries mentioned above.

--set triage:<triage-store>
Specify a triage store to which the stream will belong. If the triage store is not specified, it defaults
to the default triage store.

Streams mode examples

The first example shows the four connection options that must contain values either on the command
line, or in the XML configuration file (host, port, user, password). These connection options are
intentionally dropped from most of the subsequent examples to reduce the length of the command lines.
When the connection options are not specified, assume that the values are retrieved from the default
XML configuration file.

Note

The name of the built-in triage store is Default Triage Store. Use this triage store unless a different
one has been set up.

Show examples

Show all streams.

> cov-manage-im --host cim.company.com --port 8080 --user test \
 --password secret --mode streams --show

Show all streams whose name starts with "linux-".

> cov-manage-im --mode streams --show --name "linux-*"

Show all streams whose language is Java.

> cov-manage-im --mode streams --show --lang Java

List the fields that can be passed to --fields in streams mode.

> cov-manage-im --mode streams --show --output fields

Control the fields that are shown by specifying some of these fields with the --fields option.

> cov-manage-im --mode streams --show \
 --fields stream,language,desktop-analysis

Displays the attributes of stream mystream, including the stream's language, other.

401

cov-manage-im

> cov-manage-im --mode streams --show \
 --name mystream

Add examples

Add a new C/C++ stream with minimal attributes specified.

> cov-manage-im --mode streams --add \
 --set name:HelloWorld \
 --set lang:mixed \
 --set triage:mytriagestore

Add a new stream with all attributes specified, and desktop analysis enabled.

> cov-manage-im --mode streams --add \
 --set name:HelloWorld \
 --set lang:mixed \
 --set triage:mytriagestore \
 --set "desc:My stream" \
 --set desktopAnalysis:enabled

Add two new streams at the same time

> cov-manage-im --mode streams --add \
 --set name:stream1 \
 --set lang:mixed \
 --set desc:"My new stream" \
 --set triage:mytriagestore \
 --set name:stream2 \
 --set desc:"My other new stream" \
 --set triage:mytriagestore

Associate the stream1 stream with the component1 component map.

> cov-manage-im --mode streams --update --name stream1 \
 -- set component-map:component1

Adds a new stream with other.

> cov-manage-im --mode streams --add --set --name:mystream \
 lang:other --set triage:mytriagestore

Delete examples

Delete the stream named old-stream (it can only be deleted if defects have NOT yet been committed).

> cov-manage-im --mode streams --delete --name old-stream

Update example

Rename stream A to B and update description at the same time.

> cov-manage-im --mode streams --update --name A \
 --set name:B --set "desc:This is now a B stream"

402

cov-manage-im

Triage mode

Query, add, delete, and update triage stores in Coverity Connect.

Synopsis

--mode triage --show [<FILTER>][<OUTPUT>] [<OTHER>]

--mode triage --add <SET> [<OTHER>]

--mode triage --delete <FILTER> [<OTHER>]

--mode triage --update <FILTER> <SET> [<OTHER>]

Triage mode options

In general, you can specify options in any order. The exception is when you add more than one triage
store within a single command. In this case, you must specify the options for the properties of each new
triage store at the same time.

The <OTHER> option listed in the synopsis refers to sets of command line options that are common to all
modes. The options are:

• Common OUTPUT options

• CONNECTION options

• Shared options

OPERATION options
Specify exactly one OPERATION option in Triage mode.

--show
Output a comma separated value (CSV) list of triage stores and their descriptions that match the
filter criteria. Use the --fields option to control the display of the triage store fields and their
order. FILTER options are not required with --show.

--add
Add new triage stores. A minimum of one triage store name is required for each triage store that
you add.

You can add multiple triage stores with a single command by specifying groups of SET options
for each new triage stores.

--delete
Delete the triage stores that match the name you specify.

--update
Update the name or description of the triage store that match the filter criteria. At least one
FILTER option and one SET option is required.

403

cov-manage-im

FILTER options
FILTER options focus the set of triage stores that are operated on. You can specify multiple
instances of each filter.

--name <glob>
Operate on a triage store, or triage stores, that match the name.

SET options
The SET options apply changes to triage store names and descriptions. Use --add to create a
new triage store or description, or --update to update the triage store. At least one SET option is
required with --update.

--set name:<name>
Specify a name for a new triage store with the --add OPERATION option. This option is
required for each triage store added with --add. For example

--add --set name:triagestore1

Update the name of an existing triage store using the --update OPERATION option. For
example:

--update --name triagestore1 --set name:triagestore2

Names must be between 1 and 256 characters and are case sensitive. Names can not contain
the following characters:

• : (colon)

• * (asterisk)

• / (forward slash)

• \ (backslash)

• ` (backtick)

• ' (single quote)

• " (double quote)

--set {description|desc}:<description>
Specify an optional description for a new triage store using the --add OPERATION option, or
update the description of a triage stream using the --update OPERATION option.

Triage mode examples

The first example shows the four connection options that must contain values either on the command
line, or in the XML configuration file (host, port, user, password). These connection options are
intentionally dropped from most of the subsequent examples to reduce the length of the command lines.
When the connection options are not specified, assume that the values are retrieved from the default
XML configuration file.

404

cov-manage-im

Note

The name of the built-in triage store is Default Triage Store. Use this triage store unless a different
one has been set up.

Show examples

Show all triage stores and descriptions.

> cov-manage-im --host cim.company.com --port 8080 --user test \
 --password secret --mode triage --show

Show individual triage store named mytriagestore .

> cov-manage-im --mode triage --show --name mytriagestore

Add examples

Add a new triage store and description.

> cov-manage-im --mode triage --add \
 --set name:mytriagestore \
 --set desc:"This is my new triage store"

Update examples

Change a triage store name and its description.

> cov-manage-im --mode triage --update --name mytriagestore \
 --set name:yourtriagestore \
 --set desc:"This is your new triage store"

Delete example

Delete the store triage named yourtriagestore (it can only be deleted if it does contain any streams)

> cov-manage-im --mode triage --delete --name yourtriagestore

MOTD mode

Sets and gets a message of the day for a Coverity Connect instance.

Synopsis

--mode motd --show [<OUTPUT>] [<OTHER>]

--mode motd --update <SET> [<OTHER>]

MOTD mode options

In general, you can specify options in any order.

405

cov-manage-im

The <OTHER> option listed in the synopsis refers to sets of command line options that are common to all
modes. The options are:

• Common OUTPUT options

• CONNECTION options

• Shared options

OPERATION options
Specify exactly one OPERATION option in motd mode.

--show
Outputs the current message of the day.

--update
Updates the message of the day.

OUTPUT options
OUTPUT options are optional and are valid only with the --show option.

-no-headers
Displays the message of the day without a header if enabled is specified.

SET options
The SET options apply changes the message of the day. Use --update to update the message of
the day. At least one SET option is required with --update.

--set message:"<message>"
Specify a message. For example

--set message:"this is the message of the day"

MOTD mode examples

The first example shows the four connection options that must contain values either on the command
line, or in the XML configuration file (host, port, user, password). These connection options are
intentionally dropped from most of the subsequent examples to reduce the length of the command lines.
When the connection options are not specified, assume that the values are retrieved from the default
XML configuration file.

Show examples

Show message of the day.

> cov-manage-im --host cim.company.com --port 8080 --user test \
 --password secret --mode motd --show -no-headers

Update example

Change the message of the day.

406

cov-manage-im

> cov-manage-im --mode motd --update --set message:"hello, Hello, HELLO"

Commit mode

Gets, enables, and disables the commit gate, which permits or prevents commits to the Coverity Connect
database.

Synopsis

--mode commit --update --set status:<enabled>|<disabled> [<OTHER>]

Commit mode options

In general, you can specify options in any order.

The <OTHER> option listed in the synopsis refers to sets of command line options that are common to all
modes. The options are:

• Common OUTPUT options

• CONNECTION options

• Shared options

OPERATION options
Specify exactly one OPERATION option in commit mode.

--update
Updates the commit gate status.

SET options
The SET options apply changes to the commit gate. Use --update to update the commit gate. At
least one SET option is required with --update.

--set status:{enabled | disabled}
Opens the commit gate (enabled) or closes the commit gate (disabled).

Commit mode examples

The first example shows the four connection options that must contain values either on the command
line, or in the XML configuration file (host, port, user, password). These connection options are
intentionally dropped from most of the subsequent examples to reduce the length of the command lines.
When the connection options are not specified, assume that the values are retrieved from the default
XML configuration file.

Update examples

Enable the commit gate.

> cov-manage-im --mode commit --update --set status:enabled

407

cov-manage-im

Disable the commit gate.

> cov-manage-im --mode commit --update --set status:disabled

Notification mode

Manually triggers a notification on a specific Coverity Connect view.

Synopsis

--mode notification --execute --view <viewName>

For shared views, only the user who shared the view can trigger the notification. An error will occur if the
user with whom the view is shared attempts to trigger the notification through this command option.

For help configuring notification settings for a view in Coverity Connect, see Coverity Platform 2020.12
User and Administrator Guide .

Notification mode options

In general, you can specify options in any order.

The options are:

• Common OUTPUT options

• CONNECTION options

• Shared options

OPERATION options
Specify exactly one OPERATION option in commit mode.

--execute
Triggers the firing of the notification email. --execute requires the inclusion of the --view filter.

FILTER options
FILTER options focus the set of defects that are operated on.

--view <viewName>
Specifies the Coverity Connect view for which the notification will be sent.

Notification mode example

This example shows the command to trigger a notification on the Coverity Connect view, myView.

> cov-manage-im --mode notification --execute --view myView

Authentication key mode

Create or revoke an authentication key for secure communication with the Coverity Connect server.

408

cov_platform_use_and_admin_guide.pdf#cim_email_notifications
cov_platform_use_and_admin_guide.pdf#cim_email_notifications

cov-manage-im

Synopsis

--mode auth-key --create --output-file <filename> [<SET>]

--mode auth-key --revoke <auth-key-ID>

Authentication key mode options

In general, you can specify options in any order.

SET options
The SET options apply certain attributes to the authentication key created.

--set description:<description>
Sets the description of the authentication key. If not provided, the description is an empty string.

--set expiration:<dateTime>
Sets the expiration date for the authentication key. There are four accepted syntaxes for
<dateTime>:

• YYYY-MM-DD

The authentication key will expire on the date specified.

• YYYY-MM-DD[T]hh:mm(:ss)

The authentication key will expire on the date and time specified. Date and time may be
separated by "T" or a space, and seconds are optional.

• "after_<N>_days"

The authentication key will expire <N> days in the future.

• "after_<N>.<M>_days"

The authentication key will expire <N>.<M> days in the future.

Note

See the Coverity Platform 2020.12 User and Administrator Guide for important information about
authentication key restrictions.

Authentication key mode examples

Create example

This example creates an authentication file named "myFile" with the description, "test user authentication
file." This authentication file will expire in 90 days.

> cov-manage-im --host cim.company.com --port 8080 --user test \
 --password secret --mode auth-key --create --output-file myFile \

409

cov_platform_use_and_admin_guide.html#cim_using_auth_keys

cov-manage-im

 --set description:"test user authentication file" \
 --set expiration:"after_90_days"

Revoke example

This example revokes the authentication key with ID 12345.

> cov-manage-im --mode auth-key --revoke 12345

Common OUTPUT options

The following OUTPUT options are common to all modes.

--fields
Specify the fields to output with a --show OPERATION option. The list of fields are specified as a
comma-separated value (CSV) list.

To display a list of field names that are valid for a given mode, use --show --output fields in
that mode. For example:

> cov-manage-im --mode projects --show --output fields

The following examples generate a comma-separated list of the values in the specified fields.

> cov-manage-im --mode projects \
 --show --fields project,description,creation-date,last-modified-date

> cov-manage-im --mode projects \
 --show --output streams --fields project,stream-name,is-stream-linked

> cov-manage-im --mode streams \
 --show --fields stream,language,description

> cov-manage-im --mode defects --stream MySampleStream \
 --show --fields action,cid,checker

The order in which the fields are specified in the CSV list is the order in which they display. The same
field can be listed multiple times.

--no-headers|-nh
Do not print field headers with --show operation.

--separator <sep>
Use <sep> to separate CSV values instead of a comma.

--output-file|-of <file>
Write output to a file named by <file>.

CONNECTION options

The following CONNECTION options are common to all modes. You can also store connection details in
the <install_dir_sa>/config/coverity_config.xml [p. 384] file.

410

cov-manage-im

--auth-key-file <keyfile>
Specify the location of your authentication key file, created in Authentication key mode. See
the Coverity Platform 2020.12 User and Administrator Guide for important information about
authentication key restrictions.

--certs <filename>
In addition to CA certificates obtained from other trust stores, use the CA certificates in the given
<filename>. For information on the new SSL certificate management functionality, please see
Coverity Platform 2020.12 User and Administrator Guide

--host <server-hostname>
Specify the Coverity Connect server hostname. To use this option, the Coverity Connect server must
be running. If this option is unspecified, the default is the value from the cim/host element from the
XML configuration file.

--on-new-cert <trust | distrust>
Indicates whether to trust (with trust-first-time) self-signed certificates, presented by the server,
that the application has not seen before. For information on the new SSL certificate management
functionality, please see Coverity Platform 2020.12 User and Administrator Guide

--port <server-port>
Specify the Coverity Connect server HTTP or HTTPS connection port. To use this option, the
Coverity Connect server must be running. If this option is unspecified, the default is established in the
following order:

1. The value from the cim/port element from the XML configuration file.

2. 8080. If --ssl is present, the default is 8443.

--ssl
Allow Coverity Connect to use an SSL-encrypted channel.

--url <path>
Allows you to connect to a CIM instance that has a context path in its HTTP(S) URL. You can
use this option instead of the --host, or --port options. The --url option is provided to
accommodate the use of a context path and to deal with setting up Coverity Connect behind a
reverse proxy.

Use HTTPS or HTTP to connect to Coverity Connect HTTPS or HTTP port. For http, the default
port is 80; for https, the default port is 443. For example:

https://example.com/coverity

https://cimpop:8008

http://cim.example.com:8080

Note

You may not use the commit:// scheme in the URL.

411

cov_platform_use_and_admin_guide.html#cim_using_auth_keys
cov_platform_use_and_admin_guide.html#cim_ssl_client_cert_mgmt
cov_platform_use_and_admin_guide.html#cim_ssl_client_cert_mgmt

cov-manage-im

--user <user_name>
Connect to Coverity Connect as user_name. If this option is unspecified, the default is established in
the following order:

1. The cim/client_security/user element from the XML configuration file.

2. The COV_USER environment variable.

3. The USER environment variable.

4. The name of the operating system user invoking the command (if supported).

--password <password>
Specify the password for either the current user name, or the user specified with the --user option.
If this option is unspecified, the default is established from the cim/client_security/password
element from the XML configuration file.

--userLdapServer <domain>
Specify the domain of the user. If this option is not specified, the domain is resolved following this
procedure:

1. If the user name contains "@", two possible users are considered, one with the name as given,
and one with the name comprising the substring after the last "@".

2. If one and only one user name is found, then the domain is set to the domain of this user.

3. Otherwise, an error is output explaining that the domain could not be automatically set, and asking
the user to explicitly specify a domain with —userLdapServer for users who are ldap users.

Note

Coverity recommends using this parameter to avoid issues when LDAP authentication is used.

Shared options

The following options are common to all modes of the cov-manage-im command.

--config|-c <coverity_config.xml>
Use a specified XML configuration file instead of the default configuration file located at
<install_dir_sa>/config/coverity_config.xml.

--debug|-g
Turn on basic debugging output. You must specify a mode and at least one option for proper debug
reporting. This option will issue a warning if the command line that you are using is not valid; for
example, if you use an unsupported option in a particular mode.

--verbose|-V <0, 1, 2, 3, 4>
Set the detail level of command messages. Higher is more verbose (more messages). Defaults to 1.
Use --verbose 0 to disable the output of --show options.

412

cov-manage-im

--response-file|-rf <file>
Specify command line options in <file>. These options are processed as if they are specified on
the command line at the same point as the response file is specified. Multiple response files can be
used on a single command line, but nested response files are not allowed.

Lines in response files starting with # are considered to be comments and are ignored.

413

Name
cov-start-im Start Coverity Connect.

Synopsis

cov-start-im

Description

The cov-start-im command starts Coverity Connect.

On Windows systems, when Coverity Connect is installed as a service, the cov-start-im.exe
program is often unnecessary because Coverity Connect starts automatically when the system boots up.
When Coverity Connect is installed as a service, any administrator can use this command.

When Coverity Connect is not installed as a service, only the user who installed Coverity Connect is able
to use cov-start-im to start it.

414

Name
cov-stop-im Stop Coverity Connect.

Synopsis

cov-stop-im

Description

The cov-stop-im command stops Coverity Connect.

On Windows systems, when Coverity Connect is installed as a service, the cov-stop-im.exe program
is often unnecessary because Coverity Connect stops automatically when the system shuts down. When
Coverity Connect is installed as a service, any administrator can use this command.

When Coverity Connect is not installed as a service, only the user who installed Coverity Connect is able
to use cov-stop-im to stop it.

415

Name
cov-support Create support information package for Coverity Connect.

Synopsis

cov-support [-v | -vv] [--coverity-home <coverity-base-directory>] [--with-
config] [--with-logs [days]] -ol--output <outputfile>

Description

The cov-support command creates a compressed archive containing various property and log files for
Coverity Connect. Support may request that you create this archive and submit it for analysis.

If --with-config is specified, then the following files in the /config folder are included in the archive:

• cim.properties

• server.xml

• VERSION

• system.properties

• postgresql.conf

• web.properties

If --with-logs is specified, then log files in the /logs, /postgressql, and /.install4j directories
are added to the archive.

Options

--coverity-home name_of_directory
Specify the directory where Coverity Connect is installed, if it is installed in a directory other than the
directory specified by coverity-base-directory.

-o | --output name_of_file
Destination output file. File is in tar-bzip2 format.

--with-config
Include configuration files in the support archive.

--with-logs <days>
Include log files in the support archive for the past number of days.

-v
Enable verbose logging information (for debug purposes)

-vv
Enable very verbose logging information (for trace purposes)

416

cov-support

Example

To obtain the config files and the log files for five days, and put them in an archive named support-
archive:

> cov-support -v --with-config --with-logs 5 -o support-archive

417

CVSS Report

418

Name
cov-generate-cvss-report Generate a CVSS report from an existing CVSS report configuration.

Synopsis

cov-generate-cvss-report <configuration-file> [--company-logo <path-to-
company-logo>] [--help] [--on-new-cert <value>] [--output <output-path-to-
pdf>] --password <spec> [--profile <profile.json>] --project <project-name>
[--includeCusp][--report] [--scores]

Description

The cov-generate-cvss-report command creates a CVSS report based on a configuration file and
defect information in Coverity Connect.

Note

When generating a report, it is recommended that you use the --profile <security-
profile-file> and --scores options in the same command as the --output <output-
file> and --report options.

You can also generate a report without using the --profile <security-profile-file>
and --scores options, but you should ensure that the CVSS_* attributes are updated before
generating the report.

Options

Optional arguments:

--company-logo
Path to the company logo file.

--help
Shows the help message and exits.

--includeCusp
Add 16 CUSP CWE Id's to the SANS 25 CWE ID's list. This adds the following CWE rules to those
currently supported:

• [26] CWE-770: Allocation of Resources Without Limits or Throttling

• [28] CWE-754: Improper Check for Unusual or Exceptional Conditions

• [29] CWE-805: Buffer Access with Incorrect Length Value

• [30] CWE-838: Inappropriate Encoding for Output Context

• [32] CWE-822: Untrusted Pointer Dereference

• [33] CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization
('Race Condition')

419

cov-generate-cvss-report

• [34] CWE-212: Improper Cross-boundary Removal of Sensitive Data

• [37] CWE-841: Improper Enforcement of Behavioral Workflow

• [40] CWE-825: Expired Pointer Dereference

--on-new-cert <value>
<value> can be trust or distrust. If the server provides an untrusted self-signed certificate and
the value is set to distrust (which is the default), an attempt to connect to the server using SSL
may fail.

--output <output-path-to-pdf>
The name of the PDF output file. The --output <output-file> option replaces any existing
<output-file> files with the same name. Must be used in conjunction with the --report option.

--profile <PROFILE>.JSON
A .csv file with CWE-CVSS vector mappings

--report
Must be specified with the --output <output-file> option. Can also be used with the --
profile <security-profile-file> and --scores options. When specified without the --
scores option, it generates a CVSS Report and does not update the CVSS_* attributes.

When specified with the --scores option, the --report option generates the CVSS Report and
also updates the CVSS_* attributes in Coverity Connect.

--scores
When specified with the --report option, the --scores option updates the CVSS_* attributes in
Coverity Connect when generating a report.

Required arguments:

<configuration-file>
A .yaml file containing server configuration, Coverity Connect project, and other report-related
parameters

Note

(Optional)

To enable an HTTPS connection, specify the https protocol for the url property in your
configuration properties file. If your Coverity server uses a self-signed certificate, you
may choose to specify the certs property and the location of the certificate (CA) in your
configuration properties file.

--password <spec>
Coverity Connect password specifier

The password <spec> argument is required, and has four forms:

1. console

420

cov-generate-cvss-report

The password is read from the keyboard without echoing to the console.

2. file:<filename>

The password is read from the first line of the file <filename>.

3. file:-

The password is read from standard input. This is used with pipes and redirection.

4. env:<variable>

The password is read from the environment variable <variable>.

--project <project-name>
Coverity Project to assign CVSS metrics to defects

Examples

This command uses the config.yaml file to generate a CVSS Report in the MyReport.pdf file. If
the Coverity Connect server provides a self-signed certificate, it will be trusted. The Coverity Connect
server’s password is provided from the value of an environment variable. The command also uses the
Master_CWE_CVSS_Base_Score_Profile_V1.json file to update the scores in Coverity Connect.

cov-generate-cvss-report ../config/cvss-rpt-config.properties --on-new-cert trust
--output MyReport.pdf --password env:PASSWORD_ENV_VAR
--profile ../config/Master_CWE_CVSS_Base_Score_Profile_V1.json
--project foo --report --scores

This command uses the cvss-rpt-config.yaml file to generate a CVSS Report in the
AnotherReport.pdf file. You will be prompted to enter the Coverity Connect server’s password in
the console.

cov-generate-cvss-report ../config/cvss-rpt-config.yaml --output AnotherReport.pdf
--password console --project project-name-2 --report

Copyright Notice

Copyright (c) 2020 Synopsys, Inc. software-integrity-support@synopsys.com

421

Coverity Integrity Report

422

Name
cov-generate-integrity-report A command-line application for generating a Coverity Integrity Report.

Synopsis

cov-generate-integrity-report [-c <ja | en>] [--certs <certificate file>] [-H] [-h
<Coverity Connect hostname>] [-j <project name>] [-o <report file name>] [--on-new-cert
<trust | distrust>] [-p <Coverity Connect port>] [-P <password>] [-t] [-u <user>]

Description

The cov-generate-integrity-report command runs the Coverity Integrity Report application for
generating a Coverity Integrity Report. For information about Coverity Integrity Report, see the Coverity
Platform 2020.12 User and Administrator Guide .

Options

-c, --locale <ja | en>
Locale of the report, either "ja" or "en".

--certs <certificate-file>
An optional collection of CA certificates.

-H, --help
Print this message.

-h, --host <Coverity Connect hostname>
Hostname of the Coverity Connect server.

-j, --project <project name>
Name of the project on which to report.

-o, --output <report file name>
Name of the resulting pdf file (default "integrity_report.pdf")

--on-new-cert <trust | distrust>
Indicates whether to trust (with trust-first-time) self-signed certificates, presented by the server, that
the application has not seen before. Default is distrust. For information on the new SSL certificate
management functionality, please see Coverity Platform 2020.12 User and Administrator Guide

-p, --port <Coverity Connect port>
Port used by the Coverity Connect server.

-P, --password <console>| file:<filename>| env:<variable>
You can set the password as an enviornment variable and pass the environment variable with the
command:

export passwordENV=coverity
--password evn:passwordENV

423

cov_platform_use_and_admin_guide.html#integrity_report_guide
cov_platform_use_and_admin_guide.html#integrity_report_guide
cov_platform_use_and_admin_guide.html#cim_ssl_client_cert_mgmt

cov-generate-integrity-report

-t, --trial
Skip page 3 of the report, which contains severity data.

-u, --user <user>
User

All other options are specified in the configuration file (default report_config.properties).

Example

cov-generate-integrity-report

Exit codes

Most Coverity Analysis commands can return the following exit codes:

• 0: The command successfully completed the requested task.

• 1: The requested task is complete, but it did not return (or find) any results. Note that some Coverity
Analysis commands do not return this error code.

• 2: The command was unable to complete the requested task. This error typically includes an error
message and some remediation advice.

• 4: An unexpected error occurred. This error should not occur when the product is used in a supported
way. Very likely, the requested task was not completed. This error typically provides some diagnostic
and/or debugging output, such as a stack trace.

For exceptions, see cov-commit-defects(Coverity 2020.12 Command Reference), cov-analyze, and cov-
build.

Copyright Notice

Copyright (c) 2020 Synopsys, Inc. software-integrity-support@synopsys.com

424

MISRA Report

425

Name
cov-misra-report Launches a GUI application for configuring MISRA Report.

Synopsis

cov-misra-report <config.yaml>

Description

The cov-misra-report command runs the GUI MISRA Report application for configuring and
generating a MISRA Report. The MISRA Report uses analysis results for a project in Coverity Connect
to evaluate a codebase and create a formatted report. The codebase is evaluated against a policy, which
is a set of rules or standards for determining pass or fail. The result for each element is presented in
the MISRA Compliance section in the Executive Summary of the report. For information about MISRA
Report, see the Coverity Platform 2020.12 User and Administrator Guide .

Exit codes

Most Coverity Analysis commands can return the following exit codes:

• 0: The command successfully completed the requested task.

• 1: The requested task is complete, but it did not return (or find) any results. Note that some Coverity
Analysis commands do not return this error code.

• 2: The command was unable to complete the requested task. This error typically includes an error
message and some remediation advice.

• 4: An unexpected error occurred. This error should not occur when the product is used in a supported
way. Very likely, the requested task was not completed. This error typically provides some diagnostic
and/or debugging output, such as a stack trace.

For exceptions, see cov-commit-defects(Coverity 2020.12 Command Reference), cov-analyze, and cov-
build.

426

cov_platform_use_and_admin_guide.html#misra_report_guide

Name
cov-generate-misra-report Generate a MISRA report from an existing MISRA report configuration.

Synopsis

cov-generate-misra-report <configuration file> [--help] --output <output-
file> --password <spec> --on-new-cert <trust|distrust>

Description

The cov-generate-misra-report command creates a MISRA Report based on a configuration file
and current issue data in Coverity Connect.

Options

<configuration file>
Coverity MISRA Report configuration (config.yaml) file made by the cov-misra-report GUI
application.

--help
Display the help message and exit.

--on-new-cert <trust|distrust>
Indicates whether to trust (with trust-first-time) self-signed certificates, presented by the server, that
the application has not seen before.

--output <output-file>
Name of the PDF output file. The file will be replaced if present.

--password <spec>
Coverity Connect password specifier

The password <spec> argument is required, and has four forms:

console
The password is read from the keyboard without echoing to the console.

file:<filename>
The password is read from the first line of the file <filename>.

file:-
The password is read from the standard input. This is for use with pipes and redirection, not for
keyboard input.

env:<variable>
The password is read from the environment variable <variable>.

Examples

cov-generate-misra-report MyConfiguration.yaml --output MyReport.pdf --password
 console

427

cov-generate-misra-report

This command will use the configuration file MyConfiguration.yaml to generate a MISRA Report in the file
MyReport.pdf. You will be prompted to enter the Coverity Connect server password on the console.

Copyright Notice

Copyright (c) 2020 Synopsys, Inc. software-integrity-support@synopsys.com

428

OWASP Web Top 10

429

Name
cov-generate-owasp2017-report Generate an OWASP Top Ten report.

Synopsis

cov-generate-owasp2017-report <config-file> --password <pw> --project
<project-name> --help

Description

The OWASP Top Ten report generator uses analysis results for a Coverity Connect project to evaluate
the analyzed codebase. Based on this evaluation, it creates an OWASP Top Ten report, which details the
assessments that were done, provides a summary of findings, and specifies the remediations needed.
Information from this report is of special interest to application security assurance teams and their
clients. .

Options

<configuration-file>
A file named config.yml that specifies information used in the report title page, and notification
information for the project owner.

--password <pw>
Password to log in to Coverity Connect.

--project <project-name>
Specifies the name of the Coverity project for the source code being analyzed.

--help
To display other attributes that are supported by the launcher.

Examples

Report the line count for the Apache regcomp.c file:

cov-generate-owasp2017-report config/cvss-rpt-config.properties --password abracadabra
 --project myProject

Copyright Notice

Copyright (c) 2020 Synopsys, Inc. software-integrity-support@synopsys.com

430

Mobile OWASP Top 10

431

Name
cov-generate-mobile-owasp-report Generate a mobile OWASP report.

Synopsis

cov-generate-mobile-owasp-report <config-file> --password <pw> --project
<project-name> --help

Description

The Mobile OWASP Top Ten report generator uses analysis results for a Coverity Connect project
to evaluate the analyzed codebase. Based on this evaluation, it creates a Mobile OWASP Top Ten
report, which details the assessments that were done, provides a summary of findings, and specifies the
remediations needed. Information from this report is of special interest to application security assurance
teams and their clients.

Options

<configuration-file>
A file named config.yaml that specifies information used in the report title page, and notification
information for the project owner.

--password <pw>
Password to log in to Coverity Connect.

--project <project-name>
Specifies the name of the Coverity project for the source code being analyzed.

--help
To display other attributes that are supported by the launcher.

Examples

Report the line count for the Apache regcomp.c file:

cov-generate-mobile-owasp-report config/cvss-rpt-config.properties --password
 abracadabra --project myProject

Copyright Notice

Copyright (c) 2020 Synopsys, Inc. software-integrity-support@synopsys.com

432

PCI DSS

433

Name
cov-generate-pci-dss-report Generate a PCI DSS report.

Synopsis

cov-generate-pci-dss-report <config-file> --password <pw> --project <project-
name> --report --help

Description

The PCI DSS report generator uses analysis results for a Coverity Connect project to evaluate the
analyzed codebase. Based on this evaluation, it creates a report, which details the assessments that
were done, provides a summary of findings, and specifies the remediations needed. Information from this
report is of special interest to application security assurance teams and their clients.

Important

You are required to generate a CVSS report before you can use the PCI DSS report generator
because the latter depends upon the vulnerability scoring system defined by CVSS. For information
about generating a CVSS report, see "Coverity CVSS Report" in the Coverity Platform User and
Administrator Guide.

Options

<configuration-file>
A file named config.yaml that specifies information used in the report title page, and notification
information for the project owner.

--password <pw>
Password to log in to Coverity Connect.

--project <project-name>
Specifies the name of the Coverity project for the source code being analyzed.

--report
Required.

--help
To display other attributes that are supported by the launcher.

Examples

Report the line count for the Apache regcomp.c file:

cov-generate-pci-dss-report config/cvss-rpt-config.properties --password abracadabra
 --project myProject

Copyright Notice

Copyright (c) 2020 Synopsys, Inc. software-integrity-support@synopsys.com

434

Security Report

435

Name
cov-security-report Launches a GUI application for configuring Security Report.

Synopsis

cov-security-report <config.yaml>

Description

The cov-security-report command runs the GUI Security Report application for configuring and
generating a Security Report. The Security Report uses analysis results for a project in Coverity Connect
to evaluate a codebase and create a formatted report. The codebase is evaluated against a policy, which
is a set of rules or standards for determining pass or fail. The report's policy has 4 elements, and each
element must pass for the policy to pass. The result for each element is presented in the Scorecard in
the Executive Summary of the report. For information about Security Report, see the Coverity Platform
2020.12 User and Administrator Guide .

Exit codes

Most Coverity Analysis commands can return the following exit codes:

• 0: The command successfully completed the requested task.

• 1: The requested task is complete, but it did not return (or find) any results. Note that some Coverity
Analysis commands do not return this error code.

• 2: The command was unable to complete the requested task. This error typically includes an error
message and some remediation advice.

• 4: An unexpected error occurred. This error should not occur when the product is used in a supported
way. Very likely, the requested task was not completed. This error typically provides some diagnostic
and/or debugging output, such as a stack trace.

For exceptions, see cov-commit-defects(Coverity 2020.12 Command Reference), cov-analyze, and cov-
build.

436

cov_platform_use_and_admin_guide.html#security_report_guide
cov_platform_use_and_admin_guide.html#security_report_guide

Name
cov-generate-security-report Generate a Security Report from an existing Security Report configuration.

Synopsis

cov-generate-security-report <config file> [--auth-key-file <filename>][--
company-logo <logo>] [--help] [--includeCusp] [--locale <locale>] [--on-new-
cert trust|distrust] [--output <filename>] [--password <spec>] [--project
<project-name>] [--user <username>]

Description

The cov-generate-security-report command creates a Security Report based on a configuration
file and current issue data in Coverity Connect.

Options

--auth-key-file <filename>
Coverity Connect authentication key file.

--company-logo <logo>
Path to company logo file.

<config file>
Security Report configuration (.yaml) file made by the cov-security-report GUI application.

--help
Display the help message and exit.

--includeCusp
Include CWE/SANS Cusp in SANS top25 list.

--locale <locale>
Locale of the report: one of en_US (English, default), ja_JP (Japanese), ko_KR (Korean), or
Simplified Chinese (zh_CN).

--on-new-cert trust|distrust
Indicates whether to trust (with trust-first-time) self-signed certificates, presented by the server, that
the application has not seen before. If distrust (default), attempting to connect to the server using
SSL fails if the server provides an untrusted self-signed certificate.

--output <output-file>
Name of the PDF output file. The file will be replaced if present.

--password <spec>
Coverity Connect password specifier

The password <spec> argument is required, and has three forms:

console
The password is read from the keyboard without echoing to the console.

437

cov-generate-security-report

file:<filename>
The password is read from the first line of the file filename. Use "-" for filename to read from standard
input.

env:<variable>
The password is read from the environment variable <variable>.

--project <project-name>
Name of the project in Coverity Connect.

--user <username>
Coverity Connect user name.

Examples

cov-generate-security-report MyConfiguration.yaml --output MyReport.pdf --password
 console

This command will use the configuration file MyConfiguration.yaml to generate a Security Report
in the file MyReport.pdf. You will be prompted to enter the Coverity Connect server password on the
console.

Copyright Notice

Copyright (c) 2020 Synopsys, Inc. software-integrity-support@synopsys.com

438

Coverity CERT Report

439

Name
cov-cert-report Launches a GUI application for configuring CERT Report.

Synopsis

cov-cert-report

Description

The cov-cert-report command runs the GUI CERT Report application for configuring and generating
a CERT Report. The CERT Report uses analysis results for a project in Coverity Connect to evaluate
a codebase and create a formatted report. The codebase is evaluated against a policy, which is a set
of rules or standards for determining pass or fail. The report's policy has 4 elements, and each element
must pass for the policy to pass. The result for each element is presented in the Scorecard in the
Executive Summary of the report. For information about CERT Report, see the Coverity Platform 2020.12
User and Administrator Guide .

Exit codes

Most Coverity Analysis commands can return the following exit codes:

• 0: The command successfully completed the requested task.

• 1: The requested task is complete, but it did not return (or find) any results. Note that some Coverity
Analysis commands do not return this error code.

• 2: The command was unable to complete the requested task. This error typically includes an error
message and some remediation advice.

• 4: An unexpected error occurred. This error should not occur when the product is used in a supported
way. Very likely, the requested task was not completed. This error typically provides some diagnostic
and/or debugging output, such as a stack trace.

For exceptions, see cov-commit-defects(Coverity 2020.12 Command Reference), cov-analyze, and cov-
build.

440

cov_platform_use_and_admin_guide.html#cert_report_guide
cov_platform_use_and_admin_guide.html#cert_report_guide

Name
cov-generate-cert-report Generate a CERT Report from an existing CERT Report configuration.

Synopsis

cov-generate-cert-report <configuration file> [--help] --output <output-file>
--password <spec> --certs <certificate file> --on-new-cert <trust | distrust>

Description

The cov-generate-cert-report command creates an updated CERT Report based on a
configuration file and current issue data in Coverity Connect.

Options

--certs <filename>
In addition to CA certificates obtained from other trust stores, use the CA certificates in the given
filename.

<configuration file>
Coverity CERT Report configuration (.yaml) file

--help
Display the help message and exit.

--on-new-cert >trust | distrust>
Indicates whether to trust (with trust-first-time) self-signed certificates, presented by the server, that
the application has not seen before.

--output <output-file>
Name of the PDF output file. The file will be replaced if present.

--password <spec>
Coverity Connect password specifier

The password <spec> argument is required, and has four forms:

console
The password is read from the keyboard without echoing to the console.

file:<filename>
The password is read from the first line of the file <filename>.

file:-
The password is read from the standard input. This is for use with pipes and redirection, not for
keyboard input.

env:<variable>
The password is read from the environment variable <variable>.

441

cov-generate-cert-report

Examples

cov-generate-cert-report MyConfiguration.yaml --output MyReport.pdf --password console

This command uses the MyConfiguration.yaml file to generate a CERT Report in the
MyReport.pdf file. You will be prompted to enter the Coverity Connect server password in the console.

Copyright Notice

Copyright (c) 2020 Synopsys, Inc. software-integrity-support@synopsys.com

442

Appendix A. Accepted date/time formats

Many Test Advisor commands and options accept an argument for date/time. The format for these
arguments must match one of the following patterns:

YYYY-MM-DD Midnight, local time zone
YYYY-MM-DD[T]hh:mm(:ss)? Local time zone
YYYY-MM-DD[T]hh:mm(:ss)?Z UTC time zone
YYYY-MM-DD[T]hh:mm(:ss)?[+-]hh:mm Time zone explicitly specified

*Dates before 1970 are not allowed.

Examples:
2014-07-01 Midnight on July 1, 2014, local time zone
2014-07-01 13:00 1pm on July 1, 2014, local time zone
2014-07-01T13:00:30 30 sec after 1pm on July 1, 2014, local time zone
2014-07-01 13:00Z 1pm on July 1, 2014, UTC time zone
2014-07-01 13:00-07:00 1pm on July 1, 2014, Pacific Daylight Time
2014-07-01T13:00-08:00 1pm on July 1, 2014, Pacific Standard Time
2014-07-01T13:00+09:00 1pm on July 1, 2014, Japan Standard Time

443

Appendix B. Coverity Glossary

Table of Contents
Glossary ... 444

Glossary

A
Abstract Syntax Tree (AST) A tree-shaped data structure that represents the structure of concrete

input syntax (from source code).

action In Coverity Connect, a customizable attribute used to triage a CID.
Default values are Undecided, Fix Required, Fix Submitted, Modeling
Required, and Ignore. Alternative custom values are possible.

Acyclic Path Count The number of execution paths in a function, with loops counted one
time at most. The following assumptions are also made:

• continue breaks out of a loop.

• while and for loops are executed exactly 0 or 1 time.

• do…while loops are executed exactly once.

• goto statements which go to an earlier source location are treated as
an exit.

Acyclic (Statement-only) Path Count adds the following assumptions:

• Paths within expressions are not counted.

• Multiple case labels at the same statement are counted as a single
case.

advanced triage In Coverity Connect, streams that are associated with the same always
share the same triage data and history. For example, if Stream A and
Stream B are associated with Triage Store 1, and both streams contain
CID 123, the streams will share the triage values (such as a shared
Bug classification or a Fix Required action) for that CID, regardless of
whether the streams belong to the same project.

Advanced triage allows you to select one or more triage stores to update
when triaging a CID in a Coverity Connect project. Triage store selection
is possible only if the following conditions are true:

• Some streams in the project are associated with one triage store (for
example, TS1), and other streams in the project are associated with

444

Coverity Glossary

another triage store (for example, TS2). In this case, some streams
that are associated with TS1 must contain the CID that you are
triaging, and some streams that are associated with TS2 must contain
that CID.

• You have permission to triage issues in more than one of these triage
stores.

In some cases, advanced triage can result in CIDs with issue attributes
that are in the Various state in Coverity Connect.

See also, triage.

analysis annotation A marker in the source code. An analysis annotation is not executable,
but modifies the behavior of Coverity Analysis in some way.

Analysis annotations can suppress false positives, indicate sensitive
data, and enhance function models.

Each language has its own analysis annotation syntax and set of
capabilities. These are not the same as the syntax or capabilities
available to the other languages that support annotations.

• For C/C++, an analysis annotation is a comment with special
formatting. See code-line annotation and function annotation.

• For C# and Visual Basic, an analysis annotation uses the native C#
attribute syntax.

• For Java, an analysis annotation uses the native Java annotation
syntax.

Other languages do not support annotations.

annotation See analysis annotation.

C

call graph A graph in which functions are nodes, and the edges are the calls
between the functions.

category See issue category.

checker A program that traverses paths in your source code to find specific
issues in it. Examples of checkers include RACE_CONDITION,
RESOURCE_LEAK, and INFINITE_LOOP. For details about checkers,
see Coverity 2020.12 Checker Reference.

checker category See issue category.

445

Coverity Glossary

churn A measure of change in defect reporting between two Coverity Analysis
releases that are separated by one minor release, for example, 6.5.0 and
6.6.0.

CID (Coverity identifier) See Coverity identifier (CID).

classification A category that is assigned to a software issue in the database. Built-
in classification values are Unclassified, Pending, False Positive,
Intentional, and Bug. For Test Advisor issues, classifications include
Untested, No Test Needed, and Tested Elsewhere. Issues that are
classified as Unclassified, Pending, and Bug are regarded as software
issues for the purpose of defect density calculations.

code-line annotation For C/C++, an analysis annotation that applies to a particular line of
code. When it encounters a code-line annotation, the analysis engine
skips the defect report that the following line of code would otherwise
trigger.

By default, an ignored defect is classified as Intentional. See
"Models and Annotations in C/C++" in the Coverity Checker Reference.

See also function annotation.

code base A set of related source files.

code coverage The amount of code that is tested as a percentage of the total amount
of code. Code coverage is measured different ways: line coverage, path
coverage, statement coverage, decision coverage, condition coverage,
and others.

component A named grouping of source code files. Components allow developers
to view only issues in the source files for which they are responsible,
for example. In Coverity Connect, these files are specified by a Posix
regular expression. See also, component map.

component map Describes how to map source code files, and the issues contained in the
source files, into components.

control flow graph A graph in which blocks of code without any jumps or jump targets are
nodes, and the directed edges are the jumps in the control flow between
the blocks. The entry block is where control enters the graph, and the
exit block is where the control flow leaves.

Coverity identifier (CID) An identification number assigned to a software issue. A snapshot
contains issue instances (or occurrences), which take place on a specific
code path in a specific version of a file. Issue instances, both within a
snapshot and across snapshots (even in different streams), are grouped
together according to similarity, with the intent that two issues are
"similar" if the same source code change would fix them both. These
groups of similar issues are given a numeric identifier, the CID. Coverity

446

Coverity Glossary

Connect associates triage data, such as classification, action, and
severity, with the CID (rather than with an individual issue).

CWE (Common Weakness
Enumeration)

A community-developed list of software weaknesses, each of which is
assigned a number (for example, see CWE-476 at http://cwe.mitre.org/
data/definitions/476.html). Coverity associates many categories of
defects (such as "Null pointer dereferences") with a CWE number.

Coverity Connect A Web application that allows developers and managers to identify,
manage, and fix issues found by Coverity analysis and third-party tools.

D

data directory The directory that contains the Coverity Connect database. After
analysis, the cov-commit-defects command stores defects in this
directory. You can use Coverity Connect to view the defects in this
directory. See also intermediate directory.

deadcode Code that cannot possibly be executed regardless of what input values
are provided to the program.

defect See issue.

deterministic A characteristic of a function or algorithm that, when given the same
input, will always give the same output.

dismissed issue Issue marked by developers as Intentional or False Positive in the Triage
pane. When such issues are no longer present in the latest snapshot of
the code base, they are identified as absent dismissed.

domain A combination of the language that is being analyzed and the type of
analysis, either static or dynamic.

dynamic analysis Analysis of software code by executing the compiled program. See also
static analysis.

dynamic analysis agent A JVM agent for Dynamic Analysis that instruments your program to
gather runtime evidence of defects.

dynamic analysis stream A sequential collection of snapshots, which each contain all of the issues
that Dynamic Analysis reports during a single invocation of the Dynamic
Analysis broker.

E

event In Coverity Connect, a software issue is composed of one or more
events found by the analysis. Events are useful in illuminating the
context of the issue. See also issue.

447

http://cwe.mitre.org/data/definitions/476.html
http://cwe.mitre.org/data/definitions/476.html

Coverity Glossary

F

false negative A defect in the source code that is not found by Coverity Analysis.

false path pruning (FPP) A technique to ensure that defects are only detected on feasible paths.
For example, if a particular path through a method ensures that a given
condition is known to be true, then the else branch of an if statement
which tests that condition cannot be reached on that path. Any defects
found in the else branch would be impossible because they are “on a
false path”. Such defects are suppressed by a false path pruner.

false positive A potential defect that is identified by Coverity Analysis, but that you
decide is not a defect. In Coverity Connect, you can dismiss such issues
as false positives. In C or C++ source, you might also use code-line
annotations to identify such issues as intentional during the source code
analysis phase, prior to sending analysis results to Coverity Connect.

fixed issue Issue from the previous snapshot that is not in the latest snapshot.

fixpoint The Extend SDK engine notices that the second and subsequent paths
through the loop are not significantly different from the first iteration, and
stops analyzing the loop. This condition is called a fixpoint of the loop.

flow-insensitive analysis A checker that is stateless. The abstract syntax trees are not visited in
any particular order.

function annotation For C/C++, an analysis annotation that applies to the definition of a
particular function. The annotation either suppresses or enhances the
effect of that function's model. See "Models and Annotations in C/C++"
in the Coverity Checker Reference.

See also code-line annotation.

function model A model of a function that is not in the code base that enhances the
intermediate representation of the code base that Coverity Analysis uses
to more accurately analyze defects.

I

impact Term that is intended to indicate the likely urgency of fixing the issue,
primarily considering its consequences for software quality and security,
but also taking into account the accuracy of the checker. Impact
is necessarily probabilistic and subjective, so one should not rely
exclusively on it for prioritization.

inspected issue Issue that has been triaged or fixed by developers.

intermediate directory A directory that is specified with the --dir option to many commands.
The main function of this directory is to write build and analysis results

448

Coverity Glossary

before they are committed to the Coverity Connect database as a
snapshot. Other more specialized commands that support the --dir
option also write data to or read data from this directory.

The intermediate representation of the build is stored in
<intermediate_directory>/emit directory, while the analysis
results are stored in <intermediate_directory>/output. This
directory can contain builds and analysis results for multiple languages.

See also data directory.

intermediate representation The output of the Coverity compiler, which Coverity Analysis uses to run
its analysis and check for defects. The intermediate representation of the
code is in the intermediate directory.

interprocedural analysis An analysis for defects based on the interaction between functions.
Coverity Analysis uses call graphs to perform this type of analysis. See
also intraprocedural analysis.

intraprocedural analysis An analysis for defects within a single procedure or function, as opposed
to interprocedural analysis.

issue Coverity Connect displays three types of software issues: quality
defects, potential security vulnerabilities, and test policy violations. Some
checkers find both quality defects and potential security vulnerabilities,
while others focus primarily on one type of issue or another. The Quality,
Security, and Test Advisor dashboards in Coverity Connect provide high-
level metrics on each type of issue.

Note that this glossary includes additional entries for the various types of
issues, for example, an inspected issue, issue category, and so on.

issue category A string used to describe the nature of a software issue; sometimes
called a "checker category" or simply a "category." The issue pertains
to a subcategory of software issue that a checker can report within the
context of a given domain.

Examples:

• Memory - corruptions

• Incorrect expression

• Integer overflow Insecure data handling

Impact tables in the Coverity 2020.12 Checker Reference list issues
found by checkers according to their category and other associated
checker properties.

449

Coverity Glossary

K

killpath For Coverity Analysis for C/C++, a path in a function that aborts program
execution. See <install_dir_sa>/library/generic/common/
killpath.c for the functions that are modeled in the system.

For Coverity Analysis for Java, and similarly for C# and Visual Basic,
a modeling primitive used to indicate that execution terminates at this
point, which prevents the analysis from continuing down this execution
path. It can be used to model a native method that kills the process, like
System.exit, or to specifically identify an execution path as invalid.

kind A string that indicates whether software issues found by a given checker
pertain to SECURITY (for security issues), QUALITY (for quality issues),
TEST (for issues with developer tests, which are found by Test Advisor),
or QUALITY/SECURITY. Some checkers can report quality and security
issues. The Coverity Connect UI can use this property to filter and
display CIDs.

L

latest state A CID's state in the latest snapshot merged with its state from previous
snapshots starting with the snapshot in which its state was 'New'.

local analysis Interprocedural analysis on a subset of the code base with Coverity
Desktop plugins, in contrast to one with Coverity Analysis, which usually
takes place on a remote server.

local effect A string serving as a generic event message that explains why the
checker reported a defect. The message is based on a subcategory of
software issues that the checker can detect. Such strings appear in the
Coverity Connect triage pane for a given CID.

Examples:

• May result in a security violation.

• There may be a null pointer exception, or else the
comparison against null is unnecessary.

long description A string that provides an extended description of a software issue
(compare with type). The long description appears in the Coverity
Connect triage pane for a given CID. In Coverity Connect, this
description is followed by a link to a corresponding CWE, if available.

Examples:

• The called function is unsafe for security related
code.

450

Coverity Glossary

• All paths that lead to this null pointer comparison
already dereference the pointer earlier (CWE-476).

M
model In Coverity Analysis of the code for a compiled language—such as C,

C++, C#, Java, or Visual Basic—a model represents a function in the
application source. Models are used for interprocedural analysis.

Each model is created as each function is analyzed. The model is an
abstraction of the function’s behavior at execution time; for example,
a model can show which arguments the function dereferences, and
whether the function returns a null value.

It is possible to write custom models for a code base. Custom models
can help improve Coverity's ability to detect certain kinds of bugs.
Custom models can also help reduce the incidence of false positives.

modeling primitive A modeling primitive is used when writing custom models. Each
modeling primitive is a function stub: It does not specify any executable
code, but when it is used in a custom model it instructs Coverity Analysis
how to analyze (or refrain from analyzing) the function being modeled.

For example, the C/C++ checker CHECKED_RETURN is associated
with the modeling primitive _coverity_always_check_return_().
This primitive tells CHECKED_RETURN to verify that the function being
analyzed really does return a value.

Some modeling primitives are generic, but most are specific to a
particular checker or group of checkers. The set of available modeling
primitives varies from language to language.

N
native build The normal build process in a software development environment that

does not involve Coverity products.

O
outstanding issue Issues that are uninspected and unresolved.

outstanding defects count The sum of security and non-security defects count.

outstanding non-security
defects count

The sum of non-security defects count.

outstanding security defects
count.

The sum of security defects count.

451

Coverity Glossary

owner User name of the user to whom an issue has been assigned in Coverity
Connect. Coverity Connect identifies the owner of issues not yet
assigned to a user as Unassigned.

P
postorder traversal The recursive visiting of children of a given node in order, and then the

visit to the node itself. Left sides of assignments are evaluated after
the assignment because the left side becomes the value of the entire
assignment expression.

primitive In the Java language, elemental data types such as strings and integers
are known as primitive types. (In the C-language family, such types are
typically known as basic types).

For the function stubs that can be used when constructing custom
models, see modeling primitive.

project In Coverity Connect, a specified set of related streams that provide a
comprehensive view of issues in a code base.

R
resolved issues Issues that have been fixed or marked by developers as Intentional or

False Positive through the Coverity Connect Triage pane.

run In Coverity releases 4.5.x or lower, a grouping of defects committed to
the Coverity Connect. Each time defects are inserted into the Coverity
Connect using the cov-commit-defects command, a new run is
created, and the run ID is reported. See also snapshot

S
sanitize To clean or validate tainted data to ensure that the data is valid.

Sanitizing tainted data is an important aspect of secure coding practices
to eliminate system crashes, corruption, escalation of privileges, or
denial of service. See also tainted data.

severity In Coverity Connect, a customizable property that can be assigned
to CIDs. Default values are Unspecified, Major, Moderate, and Minor.
Severities are generally used to specify how critical a defect is.

sink Coverity Analysis for C/C++: Any operation or function that must
be protected from tainted data. Examples are array subscripting,
system(), malloc().

Coverity Analysis for Java: Any operation or function that must be
protected from tainted data. Examples are array subscripting and the
JDBC API Connection.execute.

452

Coverity Glossary

snapshot A copy of the state of a code base at a certain point during development.
Snapshots help to isolate defects that developers introduce during
development.

Snapshots contain the results of an analysis. A snapshot includes both
the issue information and the source code in which the issues were
found. Coverity Connect allows you to delete a snapshot in case you
committed faulty data, or if you committed data for testing purposes.

snapshot scope Determines the snapshots from which the CID are listed using the Show
and the optional Compared To fields. The show and compare scope is
only configurable in the Settings menu in Issues:By Snapshot views and
the snapshot information pane in the Snapshots view.

source An entry point of untrusted data. Examples include environment
variables, command line arguments, incoming network data, and source
code.

static analysis Analysis of software code without executing the compiled program. See
also dynamic analysis.

status Describes the state of an issue. Takes one of the following values: New,
Triaged, Dismissed, Absent Dismissed, or Fixed.

store A map from abstract syntax trees to integer values and a sequence of
events. This map can be used to implement an abstract interpreter, used
in flow-sensitive analysis.

stream A sequential collection of snapshots. Streams can thereby provide
information about software issues over time and at a particular points in
development process.

T

tainted data Any data that comes to a program as input from a user. The program
does not have control over the values of the input, and so before using
this data, the program must sanitize the data to eliminate system
crashes, corruption, escalation of privileges, or denial of service. See
also sanitize.

translation unit A translation unit is the smallest unit of code that can be compiled
separately. What this unit is, depends primarily on the language: For
example, a Java translation unit is a single source file, while a C or C++
translation unit is a source file plus all the other files (such as headers)
that the source file includes.

When Coverity tools capture code to analyze, the resulting intermediate
directory contains a collection of translation units. This collection
includes source files along with other files and information that form the

453

Coverity Glossary

context of the compilation. For example, in Java this context includes
bytecode files in the class path; in C or C++ this context includes both
preprocessor definitions and platform information about the compiler.

triage The process of setting the states of an issue in a particular stream, or of
issues that occur in multiple streams. These user-defined states reflect
items such as how severe the issue is, if it is an expected result (false
positive), the action that should be taken for the issue, to whom the issue
is assigned, and so forth. These details provide tracking information for
your product. Coverity Connect provides a mechanism for you to update
this information for individual and multiple issues that exist across one or
more streams.

See also advanced triage.

triage store A repository for the current and historical triage values of CIDs. In
Coverity Connect, each stream must be associated with a single triage
store so that users can triage issues (instances of CIDs) found in the
streams. Advanced triage allows you to select one or more triage stores
to update when triaging a CID in a Coverity Connect project.

See also advanced triage.

type A string that typically provides a short description of the root cause
or potential effect of a software issue. The description pertains to a
subcategory of software issues that the checker can find within the
scope of a given domain. Such strings appear at the top of the Coverity
Connect triage pane, next to the CID that is associated with the issue.
Compare with long description.

Examples:

The called function is unsafe for security related code

Dereference before null check

Out-of-bounds access

Evaluation order violation

Impact tables in the Coverity 2020.12 Checker Reference list issues
found by checkers according to their type and other associated checker
properties.

U
unified issue An issue that is identical and present in multiple streams. Each instance

of an identical, unified issue shares the same CID.

uninspected issues Issues that are as yet unclassified in Coverity Connect because they
have not been triaged by developers.

454

Coverity Glossary

unresolved issues Defects are marked by developers as Pending or Bug through the
Coverity Connect Triage pane. Coverity Connect sometimes refers to
these issues as Outstanding issues.

V

various Coverity Connect uses the term Various in two cases:

• When a checker is categorized as both a quality and a security
checker. For example, USE_AFTER_FREE and UNINIT are listed as
such in the Issue Kind column of the View pane. For details, see the
Coverity 2020.12 Checker Reference.

• When different instances of the same CID are triaged differently.
Within the scope of a project, instances of a given CID that occur in
separate streams can have different values for a given triage attribute
if the streams are associated with different . For example, you might
use advanced triage to classify a CID as a Bug in one triage store but
retain the default Unclassified setting for the CID in another store. In
such a case, the View pane of Coverity Connect identifies the project-
wide classification of the CID as Various.

Note that if all streams share a single triage store, you will never
encounter a CID in this triage state.

view Saved searches for Coverity Connect data in a given project. Typically,
these searches are filtered. Coverity Connect displays this output in
data tables (located in the Coverity Connect View pane). The columns in
these tables can include CIDs, files, snapshots, checker names, dates,
and many other types of data.

455

Appendix C. Coverity Legal Notice

Table of Contents
C.1. Legal Notice ... 456

C.1. Legal Notice

The information contained in this document, and the Licensed Product provided by Synopsys, are the
proprietary and confidential information of Synopsys, Inc. and its affiliates and licensors, and are supplied
subject to, and may be used only by Synopsys customers in accordance with the terms and conditions
of a license agreement previously accepted by Synopsys and that customer. Synopsys' current standard
end user license terms and conditions are contained in the cov_EULM files located at <install_dir>/
doc/en/licenses/end_user_license.

Portions of the product described in this documentation use third-party material. Notices, terms and
conditions, and copyrights regarding third party material may be found in the <install_dir>/doc/en/
licenses directory.

Customer acknowledges that the use of Synopsys Licensed Products may be enabled by authorization
keys supplied by Synopsys for a limited licensed period. At the end of this period, the authorization
key will expire. You agree not to take any action to work around or override these license restrictions
or use the Licensed Products beyond the licensed period. Any attempt to do so will be considered an
infringement of intellectual property rights that may be subject to legal action.

If Synopsys has authorized you, either in this documentation or pursuant to a separate mutually accepted
license agreement, to distribute Java source that contains Synopsys annotations, then your distribution
should include Synopsys' analysis_install_dir/library/annotations.jar to ensure a clean
compilation. This annotations.jar file contains proprietary intellectual property owned by Synopsys.
Synopsys customers with a valid license to Synopsys' Licensed Products are permitted to distribute this
JAR file with source that has been analyzed by Synopsys' Licensed Products consistent with the terms of
such valid license issued by Synopsys. Any authorized distribution must include the following copyright
notice: Copyright © 2020 Synopsys, Inc. All rights reserved worldwide.

U.S. GOVERNMENT RESTRICTED RIGHTS: The Software and associated documentation are provided
with Restricted Rights. Use, duplication, or disclosure by the U.S. Government is subject to restrictions
set forth in subparagraph (c)(1) of The Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of Commercial Computer Software – Restricted
Rights at 48 CFR 52.227-19, as applicable.

The Manufacturer is: Synopsys, Inc. 690 E. Middlefield Road, Mountain View, California 94043.

The Licensed Product known as Coverity is protected by multiple patents and patents pending, including
U.S. Patent No. 7,340,726.

Trademark Statement
Coverity and the Coverity logo are trademarks or registered trademarks of Synopsys, Inc. in the
U.S. and other countries. Synopsys' trademarks may be used publicly only with permission from

456

Coverity Legal Notice

Synopsys. Fair use of Synopsys' trademarks in advertising and promotion of Synopsys' Licensed
Products requires proper acknowledgement.

Microsoft, Visual Studio, and Visual C# are trademarks or registered trademarks of Microsoft Corporation
in the United States and/or other countries.

Microsoft Research Detours Package, Version 3.0.

Copyright © Microsoft Corporation. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or affiliates. Other names may be trademarks of
their respective owners.

"MISRA", "MISRA C" and the MISRA triangle logo are registered trademarks of MISRA Ltd, held on
behalf of the MISRA Consortium. © MIRA Ltd, 1998 - 2013. All rights reserved. The name FindBugs and
the FindBugs logo are trademarked by The University of Maryland.

Other names and brands may be claimed as the property of others.

This Licensed Product contains open source or community source software ("Open Source Software")
provided under separate license terms (the "Open Source License Terms"), as described in the
applicable license agreement under which this Licensed Product is licensed ("Agreement"). The
applicable Open Source License Terms are identified in a directory named licenses provided with the
delivery of this Licensed Product. For all Open Source Software subject to the terms of an LGPL license,
Customer may contact Synopsys at software-integrity-support@synopsys.com and Synopsys
will comply with the terms of the LGPL by delivering to Customer the applicable requested Open Source
Software package, and any modifications to such Open Source Software package, in source format,
under the applicable LGPL license. Any Open Source Software subject to the terms and conditions of the
GPLv3 license as its Open Source License Terms that is provided with this Licensed Product is provided
as a mere aggregation of GPL code with Synopsys' proprietary code, pursuant to Section 5 of GPLv3.
Such Open Source Software is a self-contained program separate and apart from the Synopsys code
that does not interact with the Synopsys proprietary code. Accordingly, the GPL code and the Synopsys
proprietary code that make up this Licensed Product co-exist on the same media, but do not operate
together. Customer may contact Synopsys at software-integrity-support@synopsys.com and
Synopsys will comply with the terms of the GPL by delivering to Customer the applicable requested
Open Source Software package in source code format, in accordance with the terms and conditions of
the GPLv3 license. No Synopsys proprietary code that Synopsys chooses to provide to Customer will
be provided in source code form; it will be provided in executable form only. Any Customer changes
to the Licensed Product (including the Open Source Software) will void all Synopsys obligations under
the Agreement, including but not limited to warranty, maintenance services and infringement indemnity
obligations.

The Cobertura package, licensed under the GPLv2, has been modified as of release 7.0.3. The
package is a self-contained program, separate and apart from Synopsys code that does not interact
with the Synopsys proprietary code. The Cobertura package and the Synopsys proprietary code
co-exist on the same media, but do not operate together. Customer may contact Synopsys at
software-integrity-support@synopsys.com and Synopsys will comply with the terms of the
GPL by delivering to Customer the applicable requested open source package in source format, under
the GPLv2 license. Any Synopsys proprietary code that Synopsys chooses to provide to Customer
upon its request will be provided in object form only. Any changes to the Licensed Product will void all

457

Coverity Legal Notice

Coverity obligations under the Agreement, including but not limited to warranty, maintenance services
and infringement indemnity obligations. If Customer does not have the modified Cobertura package,
Synopsys recommends to use the JaCoCo package instead.

For information about using JaCoCo, see the description for cov-build --java-coverage in the
Command Reference.

LLVM/Clang subproject
Copyright © All rights reserved. Developed by: LLVM Team, University of Illinois at Urbana-
Champaign (http://llvm.org/). Permission is hereby granted, free of charge, to any person
obtaining a copy of LLVM/Clang and associated documentation files ("Clang"), to deal with Clang
without restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of Clang, and to permit persons to whom Clang is furnished
to do so, subject to the following conditions: Redistributions of source code must retain the above
copyright notice, this list of conditions and the following disclaimers. Redistributions in binary form
must reproduce the above copyright notice, this list of conditions and the following disclaimers in
the documentation and/or other materials provided with the distribution. Neither the name of the
University of Illinois at Urbana-Champaign, nor the names of its contributors may be used to endorse
or promote products derived from Clang without specific prior written permission.

CLANG IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH CLANG OR THE USE OR OTHER DEALINGS WITH
CLANG.

Rackspace Threading Library (2.0)
Copyright © Rackspace, US Inc. All rights reserved. Licensed under the Apache License, Version 2.0
(the "License"); you may not use these files except in compliance with the License. You may obtain a
copy of the License at http://www.apache.org/licenses/LICENSE-2.0.

Unless required by applicable law or agreed to in writing, software distributed under the License is
distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations
under the License.

SIL Open Font Library subproject
Copyright © 2020 Synopsys Inc. All rights reserved worldwide. (www.synopsys.com), with
Reserved Font Name fa-gear, fa-info-circle, fa-question.

This Font Software is licensed under the SIL Open Font License, Version 1.1. This license is
available with a FAQ at http://scripts.sil.org/OFL.

Apache Software License, Version 1.1
Copyright © 1999-2003 The Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

458

Coverity Legal Notice

1. Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the following
acknowlegement: "This product includes software developed by the Apache Software Foundation
(http://www.apache.org/)."

Alternately, this acknowlegement may appear in the software itself, if and wherever such third-
party acknowlegements normally appear.

4. The names "The Jakarta Project", "Commons", and "Apache Software Foundation" must not be
used to endorse or promote products derived from this software without prior written permission.
For written permission, please contact apache@apache.org.

5. Products derived from this software may not be called "Apache" nor may "Apache" appear in their
names without prior written permission of the Apache Group.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Apache License Version 2.0, January 2004 http://www.apache.org/licenses/
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in
compliance with the License. You may obtain a copy of the License at: http://www.apache.org/
licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is
distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations
under the License.

Results of analysis from Coverity and Test Advisor represent the results of analysis as of the date and
time that the analysis was conducted. The results represent an assessment of the errors, weaknesses
and vulnerabilities that can be detected by the analysis, and do not state or infer that no other errors,
weaknesses or vulnerabilities exist in the software analyzed. Synopsys does NOT guarantee that all
errors, weakness or vulnerabilities will be discovered or detected or that such errors, weaknesses or
vulnerabilities are are discoverable or detectable.

SYNOPSYS AND ITS SUPPLIERS DISCLAIM ALL WARRANTIES, CONDITIONS AND
REPRESENTATIONS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THOSE RELATED

459

Coverity Legal Notice

TO MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, SATISFACTORY QUALITY,
ACCURACY OR COMPLETENESS OF RESULTS, CONFORMANCE WITH DESCRIPTION, AND
NON-INFRINGEMENT. SYNOPSYS AND ITS SUPPLIERS SPECIFICALLY DISCLAIM ALL IMPLIED
WARRANTIES, CONDITIONS AND REPRESENTATIONS ARISING OUT OF COURSE OF DEALING,
USAGE OR TRADE.

460

	Coverity 2020.12 Command Reference
	Table of Contents
	Coverity Analysis Commands
	cov-analyze
	cov-blame
	cov-build
	cov-capture
	cov-collect-models
	cov-commit-defects
	cov-configure
	cov-copy-overrun-triage (Deprecated)
	cov-count-lines
	cov-emit
	cov-emit-cs
	cov-emit-go
	cov-emit-java
	cov-emit-swift
	cov-emit-vb
	cov-export-cva
	cov-extract-scm
	cov-find-function
	cov-format-errors
	cov-generate-hostid
	cov-help
	cov-import-msvsca
	cov-import-results
	cov-import-scm
	cov-install-updates
	cov-link
	cov-make-library
	cov-manage-emit
	cov-preprocess
	cov-record-source
	cov-run-desktop
	cov-run-fortran
	cov-security-da
	cov-test-configuration
	cov-translate
	cov-upgrade-static-analysis
	cov-wizard

	Coverity Analysis Ant Tasks
	covanalyzeandcommit
	covbuild

	Test Advisor Commands
	cov-emit-server
	cov-emit-server-control
	cov-manage-history
	cov-patch-bulleye

	Dynamic Analysis Commands
	cov-start-da-broker
	cov-stop-da-broker

	Dynamic Analysis Ant Tasks
	cov-dynamic-analyze-java
	cov-dynamic-analyze-junit
	cov-start-da-broker
	cov-stop-da-broker

	Coverity Connect Commands
	cov-admin-db
	cov-archive
	cov-get-certs
	cov-im-ctl
	cov-import-cert
	cov-manage-im
	cov-start-im
	cov-stop-im
	cov-support

	CVSS Report
	cov-generate-cvss-report

	Coverity Integrity Report
	cov-generate-integrity-report

	MISRA Report
	cov-misra-report
	cov-generate-misra-report

	OWASP Web Top 10
	cov-generate-owasp2017-report

	Mobile OWASP Top 10
	cov-generate-mobile-owasp-report

	PCI DSS
	cov-generate-pci-dss-report

	Security Report
	cov-security-report
	cov-generate-security-report

	Coverity CERT Report
	cov-cert-report
	cov-generate-cert-report

	Appendix A. Accepted date/time formats
	Appendix B. Coverity Glossary
	Glossary

	Appendix C. Coverity Legal Notice
	C.1. Legal Notice

