SYNOPSYS

Coverity Extend SDK 2020.12 Checker Development
Guide

Coverity Extend Software Development Kit (Coverity Extend SDK) is part of Coverity Analysis.
Copyright 2020 Synopsys, Inc. All rights reserved worldwide.

Table of Contents

1. Coverity EXtENd SDK USBQEccuuiiiiiiiiieii ettt et ettt e e e e et e e e e eaa e eees 1
R O 11T = PSPPSR 3
0 90t O [1 oo [Tox 1T I PP TPPTT 3
1.1.2. Coverity Extend SDK dir€Ctory SIrUCIUIEccouiiiuiiiiiiiiiiiei e e 3
1.1.3. Compiling Coverity Extend SDK Checkersccoiiiiiiiiiiiiiiiiic e 4
1.2. Creating your first checker: HellOo e 5
1.2.1. The Hello checker SOUrCe COEc.uuiiiiiiiiiiiiii e 5
1.2.2. Compiling the Hello ChECKET i 6
1.2.3. Running the Hello Checker ... 7
1.2.4. Committing the issues to Coverity CONNECEoveiuiiiiiiiiiii e 11
1.2.5. Dissecting the hello CheCKErooiiiiii e 12
1.2.6. Creating a makefile for CONVENIENCEco.uiiiiiiiiiiiiii e 13
1.3. The ADSIract SYNAX TIEE ...ivniiii i e e e e e e e e e eens 15
1.3, WhHaL IS The AST 2 et 15
1.3.2. Examining nodes in the AST with print_treeccoooiiiiiiiiiiii e 16
1.3.3. PAEINS oo 18
1314, ACCESSOIS ..ottt e e e et e e e a e 20
1.4. State maching ParadigMmo..iiiiiii e e 22
1.4.1. Simple checker vs. checker With StOre ..o, 22
1.4.2. ADSEract iNTErPretationoc.. i 22
G T V]| o] ([T TP PP PPTI 23
1.4.4. Manipulating the SIOMEcou i e 24
1.4.5. Example: tracking the sign of eXPreSSiONSc.viiiiiiiiiiiiii e 24
T O 1011 o U PP PPTPT 27
1.5.1. OUTPUT_ERROR ...ttt ettt e e s 27
1.5.2. ADD _EVENT oo ettt et e 27
1.5.3. COMMIT_ERRORiiiiiiiiiiiii ettt et e enees 28
1.5.4. ADD_INPUTFILE_ONLY_EVENT ...ootiiiiiiiiieii e 28
1.5.5. COMMIT_INPUTFILE_ONLY_ERRORcotiiiiiiiiiiiiiiii e 28
1.5.6. ADD_INPUTFILE_EVENT ..ottt 28
1.5.7. COMMIT_INPUTFILE_ERRORouiiiiiiiiiiiii et 28
1.5.8. EXAMPIE: SIGN2 ..ot 29
1.6, CONAITIONAISceiiii ettt e e et e et e e e e e e et e e e enn e eees 30
1.6.1. ANALYZE_CONDITION ...iiiiiiiiiiiieiiit ettt ettt e et e e e e ennaneeeens 30
1.6.2. MATCH_CONDuiiiiiiiciei ettt ettt e e e e e 30
1.6.3. fOrce_bacCKtracCkcoouiiiiiiii 31
1.6.4. EXaMPIE: SIGN3B .ot 31
1.6.5. ADSEIraCt COMPAIISONiitiiii ittt et et e e e et e e e eeenas 31
1.6.6. ComMPArisON EVAlUALIONoiiuiiiiiie e e 32
L7 PAINS et 34
1.7.1. Many paths per fUNCHON ... e 34
1.7.2. False path pruning (FPP) ... e 34
1.7.3. TWO-PASS ChECKING .. .ceuiiiiiii e 35
1.7.4. TEIMINALION ..oietieiiit ettt et e e e e et e e et r e e e et e e e e e e e enraneeees 35
1.8. Examining the class hierarChyo 36
IR 70t S [1 oo [Tox 1T I PP TPPTT 36

Coverity Extend SDK 2020.12 Checker Development Guide

1.8.2. Mapping from variables to their Class/typeooevviiiiiiiiii e 36
1.8.3. Tree StUCLUIE Of tYPES .uuciiiiiiiiii et e e e e 37
R FR S @ - T PP 37
S ST Y o LT B 1 (=1 = L (o £ PP 38
1.8.6. When are type_t objects resident in MemMOrY?cveviiieiiiieiiiiicii e e e 38
1.8.7. Example: print type informationcoooiiiiiiiii i 39
1.8.8. Example: switch default ..o 39
1.9. Reporting events and defects on iNput files ... 40
1.9.1. Additional steps for building Coverity Extend SDK checkers for Android
=T o] o] 1= 1o =N 40
1.9.2. Input file class extend _iNputfile_tcooiiiiiiii e 40
1.9.3. INPUL fil& MACIOS ...ivvniiiiii e e e e e e e 40
1.9.4. Input file checker eXamPIESiiiiii e 42
0 TR I (010 o] (=13 g o Yo 1 o S 43
1.10.1. A Coverity Extend SDK checker aborts execution with a Tree used with no match
LT o] PP 43
2. Coverity EXtend SDK REIEIENCEccuuuiiiiiiiii e e e e e e e e 46
P70 I 1 1 £ To 111 1o) o JRR PP 48
A o - oo | T o (0] o Tod 1T o L PP 49
2.2.1. Handler fUNCLION OVEIVIEWccocuuiiiiiiiiieee e e e e e 49
2.3, PaAlBINIS oot e 57
2.3.1. Patterns for C# and Java CheCKErScovuuiiiiiiii e 58
2.3.2. Functions common to all Patternscccoeiiiiiii i 58
2.3.3. ASTNodePattern SUPEICIASSccouuieiiiiiiiii e 59
2.3.4. EXPressionPattern SUPEICIASScviuuiiiiiiiiiiice e e e e 59
2.3.5. TYPEPALEIN SUPEICIASS ...uuieeiiiiiiieiie e e e e e e e e e e eaaas 60
2.3.6. SymbOoIPAttern SUPEICIASScvvviiii e e e 60
2.3.7. Predefined pattern 0bJECEScccuiiiiiiiii i 60
2.3.8. EXPreSSiON PAtEINS ...couiiiiiiiiii e 60
2.3.9. StAtEMENT PAIEINS .ot 67
b T (O B @ g =T gl o =1 (=] f 1 68
2.4, ACCESSONS ..ottt ettt ettt ettt ettt e ettt e e e e 71
2.4.1. Additional AST query fUNCLONScc.uiiiiiii e 71
2.4.2. Queries on the current fUNCLIONc.oiiiiiiii e 71
2.4.3. Queries on the CUIrent fileccooiiiii i 72
A @ U= oY o g T (== P 72
P T I 4 ST (o] = PP 73
2.5.1. SEOIE OVEIVIEW ...euuiiiiiii et e ettt e et e et e e et e e e et e e e e et e e e e et e e e e et e e e e et es 73
2.5.2. void SET_STATE(IEE t, INT V) .iiiiiiiii e e e 73
2.5.3. vOId CLEAR _STATE(IIEE 1) 1eevuiieiiiiiii ettt e e e e e eeaees 74
2.5.4. bool GET_STATE(IEE t, iNt &V) wuuiiiiieiii i e e e e e 74
2.5.5. bool MATCH_STATE(ree t, iNt V) coovniiiiiiii i 74
2.5.6. bool COPY_STATE(tree dst, tre€ SIC) ..vuiivvuiiiii e e e e 74
2.5.7. FOREACH_IN_STORE(tree &t, int &) {body } ...coovviiiiiiii e, 74
2.5.8. bool ADD_EVENT(tree t, char const *tag, deSC)c.ccvveiiiiiiiiiiiiiiecie e 74
2.5.9. bool COMMIT_ERROR(tree t, char const *tag, desc)ccoovevriieviiieviiieeeieenn, 74
2.5.10. ADD_INPUTFILE_EVENT ..ottt ettt e e e enees 75
2.5.11. COMMIT_INPUTFILE_ERRORouiiiiiiiiiiiii e 75

Coverity Extend SDK 2020.12 Checker Development Guide

AT Ao [1 o J=1Y =T | PP 76
A R Y/ 011 TP 77
P2 A% S 141 1 o T [T 1 o o PP 77
2. T 2. Y P o e e 77
P s T 10|V Y ¢ P 78
A A T Tor 1 - T 17/ 1= 78
A L T o T 1101 (=1 g 1Y/ o1 T S PN 78
A T 1 =\ Y £/ oL PP PR PPN 79
A O oV =T o o <] g 1Y/ o L= ST 79
b A < T {01 Tox o T T £/ o = P 79
A S =Yoo o 1= To [N 1] 1= N S 79
2. 7. 00, SCOP b ittt 79
2.7.11. defiNed _tYPE b e 80
A 2 Y o =T (Y Y o1 S 80
2.7.13. forward_declarable type t.......coiiiiiiii 80
A =Y o1 1o ¢ T o 1= S PPN 80
2 A5 T - Vo [S PP 80
b A T 1T o T 3 o = A 80
2 A O (= o [PSP 81
A S T = 11 £ o = 81
2.7 00, PAFENL L ittt 81
b O B {0 T 1o o 1 SN 82
A T 2 T=T o 0] o 1= T 1 o L= PN 82
2.7.22. extend _INPULFIlE To 82
2.8. Reference INfOrMAatioNooieiiiii e e e e e e eeeen 83
2.8.1. HEAEr fllES i 83
2.8.2. NamME MaANGING ..uuiiiiiiiiicii e e e e e e e r e 83
3. ChecCKer EXAMPIES ..ot 89
3.1. CheCKer SOUICE fIlES ...oiiiiiiiiii e e e e e eeans 90
311, SIGN ChECKET o 90
3.1.2. SIGN2 ChECKET .o 94
3.1.3. SIGN3 ChECKET .. 98
0 I S o 1 A Y/ 0T T3 o o] o 107
3.1.5. SWItCh_defaUIt.CPP vovneiei i 109
3.1.6. javascript._ matCh_l0Cal.CPP ..uuevve i 110
4. Coverity Runtime Library Development GUIAEc..oiiiiiiiiiii e e 111
T @ V=T o T S UPPRSPI 112
A 1 (=Yt (o] S {18 [ox (1 (= 113
4.3. Building the Runtime Library for Daemon and LiNUXcccooeviiiiiiiieiiiieei e, 114
4.4, Testing the Runtime Library for LINUXoooiiiiiiiiiii e e e eaes 115
4.5. Deploying a Runtime Library and Daemon for LINUXcccoeiieiiiieiiiieiiin e eeeieeenn, 116
4.5.1. Dynamic Library DeploymMENtooiuiiiiiiiiii e 116
4.5.2. Static Library DeplOYMENLcoouiiiiiiii e 116
4.5.3. DAemon DEPIOYMENTiiuiiiii e e e e e e e e 116
4.6. Building the Runtime Library and Daemon for WindOWScccocuviieiiiieiiineiiineceeeins 118
4.7. Testing the Runtime Library for WINdOWSccoiiiiiiiii e 119
4.8. Deploying a Runtime Library and Daemon for WINdoOwsScccoovviiiiiiiieiin e, 120
4.9. Configuring the Runtime Library Build for Linux and Windowsc.ccceveviiiiiiinieiinn, 121

Coverity Extend SDK 2020.12 Checker Development Guide

4.9.1. Common Environment Variablesccooiiiiiiiiiiiiiiie e 121
4.9.2. Linux-specific Environment Variablescccooiiiiiiii i 122
4.9.3. Windows-specific Environment Variablescccoooviiiiiiiiiiiiie e, 122
4.10. Instrumentation Predicate LanQUAagEcouueiiiieiiiiiei e e e e e e e e e e e e 124
4.10.1. NON-CIT COMPIIEr SUPPOIT «..vuiiiieii et e e e e e e e e e et e e e e e eaaens 124
4.10.2. CIT predicate language eXtENSIONSuieiviieeiiieiiiieeiiee e e e e eaans 130

Part 1. Coverity Extend SDK Usage

Table of Contents

1.1.

1.2.

1.3.

1.4.

1.5.

1.6.

1.7.

L@ Y= = PRSP 3

0 0 O [11 e Yo [o 1T PP 3

1.1.2. Coverity Extend SDK direCtory StrUCIUIEccuuiiiiiieiii i e e e e e eaa s 3

1.1.3. Compiling Coverity Extend SDK ChECKEISiciiiiiiiiiiiiiiiecie e e e 4

Creating your first checker: HEllOcouuiiiiii e 5

1.2.1. The Hello cheCker SOUICE COUEcoouuiiiiiiiiiiiei e 5

1.2.2. Compiling the HEllo ChECKETuniiiii e 6

1.2.3. Running the Hello CheCKETccounii e 7

1.2.4. Committing the issues to Coverity CONNECTovviiiiiiiiieiie e e 11
1.2.5. Dissecting the hello ChECKETiiiii e 12
1.2.6. Creating a makefile for CONVENIENCEccuuiiiiiiii e 13
The ADSITACt SYNIAX TIEE ..iuviiiii i e e e e e e e e e e et e e et e e e e eees 15
e T B V1Y o P L LSRR 1 L= NS PP 15
1.3.2. Examining nodes in the AST with print_treecoviiiiiiiii i, 16
R TR T o 11 (=] 1 1 PSR PRP 18
R Yol o] =TT o £ PP PPTUPTT 20
State Maching Paradigmiii e 22
1.4.1. Simple checker vs. checker With StOreccoooiiiiiiiiii e, 22
1.4.2. ADSEract INTErPretationcciu i e e 22
R T 1 o] (o[PP 23
1.4.4. Manipulating the STOMEccceuiiiiiiiie e e e e 24
1.4.5. Example: tracking the sign of eXPreSSioNSovvviiiiiii i 24
L 1111 o 11 | PP 27
1.5.1. OUTPUT_ERROR ..ottt ettt e et e et e e e et e e e e eaen s 27
ST N 1 Y =l PP 27
1.5.3. COMMIT_ERROR ..ottt e et e et r e e e et e e e e et aeeeenen 28
1.5.4. ADD_INPUTFILE_ONLY_EVENT ...iittiiiiiiiiieiii et e e e e e et e e e 28
1.5.5. COMMIT_INPUTFILE_ONLY_ERROR ..ottt e 28
1.5.6. ADD_INPUTFILE_EVENT ..ottt e et e e e et e e e e e s 28
1.5.7. COMMIT_INPUTFILE_ERRORouiiiiiiiiiiiii ettt e e 28
TR S R e T 101 o] [T o 12 29
(©0] o110 F= £ PPT 30
1.6.1. ANALYZE_CONDITION ..ituiiiiiitiieeiiii ettt e e et e e et e e e et s e e e et s e e e eatn s eeeentnaeaeee 30
1.6.2. MATCH_COND ...uuiiiiiiiiietiii ettt et e et e e et e e e et e e e et e e e e et e e e eaan s 30
1.6.3. fOrce _DACKITACKuuiiiii i e e e e 31
R B e T 4] o] [T o o I 31
GRS TAY o153 = Lox T 131 0 T= 14 1< ISP 31
1.6.6. ComMPAriSON EVAIUALIONiiiiiiiii e e e e e e e e e e e e e et eeaa e eaes 32
= 11 SRR 34
1.7.1. Many paths per fUNCLION ..o e e 34
1.7.2. False path pruning (FPP) ... e e e e e e aen 34

1.7.3. TWO-PASS ChECKING ...iiinii e e e e s 35

O =T o 11 = o o USRS 35
1.8. Examining the Class hi€rarChyc..ooiiiiiiiii e 36
R 700 O [11 o Yo [o 1T PP 36
1.8.2. Mapping from variables to their ClasS/AYPeovvviiiiii i 36
1.8.3. Tree StIUCIUIE Of TYPES ..iiiiiiii et e e e ean s 37
R B O - T PP 37
S ST Y/ o ST S 1 (=1 = L (o £ 38
1.8.6. When are type_t objects resident in MEMOIY?ccocoiiiiiiiiiiii e 38
1.8.7. Example: print type informationc.oiiiiiiiiiiii e 39
1.8.8. Example: sWitch defaultccooiiiiiii e 39
1.9. Reporting events and defects on iNPUL filE@Soivii i 40
1.9.1. Additional steps for building Coverity Extend SDK checkers for Android applications 40
1.9.2. Input file class extend _iNPULfile_tcoooiiiii s 40
TR T] o 10 11 L= g = T o 1= 40
1.9.4. Input file checker EXamPIESiiii i 42
0 TR I (010 o] (=3 g o Yo 1 Vo 43

1.10.1. A Coverity Extend SDK checker aborts execution with a Tree used with no match

error.

Chapter 1.1. Overview

Table of Contents

0 0t O [1 1o T [o 1T I PP 3
1.1.2. Coverity Extend SDK dir€CtOry StIUCLUIEiiiuiiiii e e e e e e e e e e e e eenaeees 3
1.1.3. Compiling Coverity Extend SDK ChECKEISccvuuiiiiiiiiii e e e 4

1.1.1. Introduction

Coverity Extend SDK is a framework for writing program analyzers (that is, checkers) in C++ that support
analyses of C/C++, Java, and C# applications. Much of this framework is the same as that used by the
checkers in Coverity Analysis. The framework provides the following services:

» Basic front-end features: parsing, type checking and elaboration, abstract syntax construction, template
instantiation, and linking across translation units.

« Facilities to inspect abstract syntax, using pattern matching.

» Mechanisms to traverse paths in the abstract syntax in execution order, prune false paths, and merge
similar states to ensure termination in loops.

» Flexible checker state management for derivation of flow-sensitive properties.

» Output routines that work with the false path pruning (FPP) mechanism to ensure that defects are only
reported in feasible paths.

What you must write is a description of a state machine, also known as an abstract interpreter. This
description specifies how the state transitions occur and which states constitute errors. The Coverity
Extend SDK framework then runs this state machine over each function in the code that is undergoing
analysis, collects the defect (issue) reports (those produced in error states), and allows you to commit the
reports to Coverity Connect, where developers can learn about and triage the issues.

@ Note

CodeXM is a language specifically designed for writing new checkers. If you have not already
invested in the Extend SDK, we strongly recommend you use CodeXM rather than the mechanisms

described in this manual. See Learning to Write CodeXM Checkers & .

1.1.2. Coverity Extend SDK directory structure

The installer puts Coverity Extend SDK resources into the <i nst al | _di r >/ sdk directory. It contains
the following subdirectories:

» conpi | er — Coverity Extend SDK compiler for checker source code.
» doc — Coverity Extend SDK documentation in HTML and PDF formats.

» header s — Coverity Analysis specific C++ header files that are needed to compile a Coverity Extend
SDK checker. See Section 2.8.1, “Header files” for a description of each header.

Coverity_CodeXM_Learning.html

Overview

e | i bs — Binary files that are needed to link to a Coverity Extend SDK checker.

» sanpl es — Sample checkers that illustrate different Coverity Extend SDK features.

1.1.3. Compiling Coverity Extend SDK checkers
The Coverity Extend SDK provides a few tools for compiling checkers:

* On Unix and Windows: The bui | d- checker or, on Windows, bui | d- checker . bat command. You
will use this command to build the Hello checker sample in Chapter 1.2, Creating your first checker:
Hello.

<instal | _dir>/sdk/buil d-checker <checker-nane>
This command compiles a Coverity Extend SDK checker. It looks in the current directory for
<checker _name>. c or <checker _nane>. cpp, compiles it, and places the executable in the
current directory. You can then run it as you would run cov- anal yze. (For information about
cov- anal yze, see the Coverity Command Reference.)

The bui | d- checker command needs to be able to find the Coverity Extend SDK installation
directory. If you copy the command from <i nst al | _di r >/ sdk to another location, you must
set environment variable PREVENT_ROOT to the root directory of the Coverity Extend SDK
installation. For example:

For example, on Unix:
export PREVENT_ ROOT=<i nstal |l _dir>/sdk
For example, on Windows:

set PREVENT_ROOT=<i nstal | _dir>/sdk

e Makefil ein<install _dir>/sdk/sanpl es compiles all the sample checkers located in
<instal | _dir>/sdk/sanpl es. You need to run Makef i | e from this directory. For example:

> cd <install _dir>/sdk/sanpl es
> nmake

; Caution

When compiling on a Windows system, you must use the make command provided by GNU, and
your system must be configured to use a POSIX shell. The Cygwin environment is one possible
solution.

The console output consists of a number of compile and link command lines. After successful
completion, the console will print a message similar to the following:

SUCCESS! Your checker has been conpiled to ./whil el oopassign

» On Unix only: Each sample checker subdirectory (for example, <i nst al | _di r >/ sdk/ sanpl es/
hel | 0) includes a Makef i | e that is designed to compile just that checker. See Section 1.2.6,
“Creating a makefile for convenience”.

Chapter 1.2. Creating your first checker: Hello

Table of Contents

1.2.1. The Hello CheCKEr SOUICE COURuuuiiiiiii et ettt e et e e e e e e e 5
1.2.2. Compiling the Hello ChECKETooiiii e 6
1.2.3. Running the Hello CRECKETcooui e 7
1.2.4. Committing the issues to COVErtY CONNECTuiiiiiiiieiiiiie e 11
1.2.5. Dissecting the hello ChECKET oo e 12

1.2.6. Creating a makefile for convenience

In this section, you will build and run the Hello checker, then commit issues it finds to a stream in Coverity
Connect. In addition to using Coverity Connect and the Coverity Extend SDK, you will also need to run
Coverity Analysis commands on sample code and use Coverity Analysis to run your Hello checker.

g Requirements

« You must have an installation of Coverity with a valid license. The Coverity Analysis installer
can install Coverity Analysis along with the Coverity Extend SDK component and other Coverity
products.

For an introduction to Coverity products, see Coverity Analysis 2020.12 User and Administrator
Guide & .

* You must have access to an installation of Coverity Connect. As a best practice, you should use
a test instance of Coverity Connect, rather than using a production instance. At minimum, you
(or a Coverity Connect administrator) should set up a separate project in Coverity Connect with
a test stream into which you can commit issues found by the Hello checker. You will need the
stream name and a Coverity Connect role that gives you permission to commit issues to that
stream and to view issues in that stream.

For Coverity Connect installation and configuration details, see Coverity 2020.12 Installation and
Deployment Guide B and Coverity Platform 2020.12 User and Administrator Guide &' .

1.2.1. The Hello checker source code

In this section, you create a simple Coverity Extend SDK checker (hel | 0. cpp) designed to print every
abstract syntax tree that is passed into the ANALYZE TREE function. In subsequent sections, you will
compile and run this checker, then commit the issues that it finds in a code sample to Coverity Connect.
To create the Hello checker:

1. Type or copy the following source code into a text editor:

/*
(c) 2017, Synopsys, Inc. Al rights reserved worl dw de.

cov_analysis_administration_guide.pdf
cov_analysis_administration_guide.pdf
cov_deploy_install_guide.pdf
cov_deploy_install_guide.pdf
cov_platform_use_and_admin_guide.pdf

Creating your first checker: Hello

The information contained in this file is the proprietary and confidenti al
i nformati on of Synopsys, Inc. and its licensors, and is supplied subject to,
and may be used only by Synopsys custoners in accordance with the terns and
conditions of a previously executed |icense agreement between Synopsys and that
cust oner.

*/

/1 hello.c
[/l trivial Extend checker

#i ncl ude "extend-1|ang. hpp" /1 Extend API
START_EXTEND_CHECKER(hello, sinple);
ANALYZE_TREE()

{
cout << "ANALYZE TREE: " << CURRENT_TREE << endl;

QUTPUT_ERROR(" ANALYZE_TREE: " << CURRENT_TREE);
Ret urnPat ret;

if(MATCH(ret)) print_tree(CURRENT_TREE);
}

END_EXTEND_CHECKER() ;
MAKE_MAI N(hel | o)

/'l ECF

The source code and makefile for this checker are located in the <i nstal | _di r >/ sdk/ sanpl es/
hel | o directory.

Unlike the print_tree checker (see Section 1.3.2, “Examining nodes in the AST with print_tree”), this
checker restricts the level of information that is returned by using an i f statement before calling
print_tree.

2. Save this file as hel | 0. cpp in a directory that is outside of the Coverity Extend SDK installation
directory.

For example: <HELLG> so that your checker source file is now called HELLQO' hel | 0. cpp
2 Note

Saving the file inside of the installation directory can make the upgrade process for Coverity
Extend SDK more difficult.

1.2.2. Compiling the Hello checker

In this section, you compile the Hello checker that you built in Section 1.2.1, “The Hello checker source
code”.

Creating your first checker: Hello

To compile the Hello checker:

1.

Go to your <HELLO> directory, and invoke bui | d- checker :

> cd <HELLC>
> <install _dir>/sdk/buil d-checker hello

Note that the argument is hel | 0, not hel | o. cpp.
<i nstal | _dir>is the Coverity Analysis root directory.

After printing the compilation and linking command line, this build command prints the following:

SUCCESS! Your checker has been conpiled to ./hello

If an error occurs, set your PATH. See bui | d- checker in Section 1.1.3, “Compiling Coverity
Extend SDK checkers”.

7 Note

On Unix, you can run the makefile for the sample checker instead of running bui | d- checker.
This file is located in the <i nst al | _di r >/ sdk/ sanpl es/ hel | o directory.

On Windows, if you see the following error when compiling your checker, you must either
restart your console as an administrator or make a copy of the sanpl es directory:

C./Program Fi | es/ Coverity/ Coverity Static Anal ysis/sdk/conpiler/bin/ld.exe:
cannot open output file hello.exe: Perm ssion denied

collect2: Id returned 1 exit status
ERROR: Checker "hello" did not successfully conpile.

Locate the following output in your <HELLG> directory:
* hel | o (on Unix)
* hel | 0. exe (on Windows)

This output is the checker program, which supports a command-line interface similar to cov-
anal yze, except that it can only run one checker. (For information about cov- anal yze, see the

Coverity 2020.12 Command Reference &)

1.2.3. Running the Hello checker

In this section, you run the Hello checker that you compiled in Section 1.2.2, “Compiling the Hello
checker”. See Requirements before attempting to complete the steps in this section.

To run the Hello checker:

1.

Create some sample input for the checker.

You can save the following code as a file called HELLO/' t est 1/ hel | 0. t est . c:

cov_command_ref.pdf

Creating your first checker: Hello

/*

(c) 2017, Synopsys, Inc. Al rights reserved worl dw de.
The information contained in this file is the proprietary and confidenti al
i nformati on of Synopsys, Inc. and its licensors, and is supplied subject to,
and may be used only by Synopsys custoners in accordance with the terns and
conditions of a previously executed |icense agreenment between Synopsys and that
cust oner.

*/

/1 testl/hello.test.c
/1 test input for 'hello" checker

int foo()
{

int x = 1;
X += 5;
return Xx;

}
Il ECF

2. Use Coverity to configure a compiler.

To configure gcc and g++ compilers with Coverity Analysis:

> cd <install _dir>/bin
> ./cov-configure --gcc

To configure the Microsoft C/C++ compiler ¢l . exe with Coverity Analysis:

> cd <install _dir>\bin
> cov-configure --nsvc

@ Note

The remaining steps in this section assume that you are using the Unix-based gcc compiler.

If you are using a different compiler, configure it instead, and adjust the command lines

to use the appropriate command-line syntax for that compiler and operating system. For
guidance with the configuration of such compilers, see the Coverity Analysis 2020.12 User and
Administrator Guide. For more complete information about compiler configuration, you can also
refer to the Coverity Analysis 2020.12 User and Administrator Guide and the Coverity 2020.12
Command Reference documentation on the cov- confi gur e. All of this documentation is
available from <i nst al | _di r>/ docs/ <en| j a>/ i ndex. ht M (where en contains the
English-language documentation set for Coverity Analysis, and j a contains the Japanese-
language documentation).

3. Use cov- bui | d to intercept calls to the compiler and save its abstract syntax in the intermediate
directory.

Creating your first checker: Hello

On Unix:

> cd <HELLO>
> <install _dir>/bin/cov-build --dir int_dir gcc -c testl/hello.test.c

On Windows:
> <install _dir>\bin\cov-build --dir int_dir cl testl\hello.test.c
Upon successful completion, this command prints the following output:

[...]
1 ¢/ C++ conpilation units (100% are ready for analysis
The cov-build utility conpleted successfully.

This command creates a ¢/ eni t subdirectory (an emit directory) in your intermediate directory that
contains the cov- bui | d output; <HELLO>/int _dir/c/enit.

For information about the cov- bui | d command, see the Coverity 2020.12 Command Reference .
Use your Hello checker (hel | 0) to analyze this intermediate directory:
a. Copy the hel | o checker program into the Coverity Analysis bi n directory.

For example, on Unix:

> cp hello <install _dir>/bin

On Windows:

> copy hello.exe <install _dir>\bin

b. Run hel | o from your <HELLO> directory:

> cd <HELLO>
> <install _dir>/bin/hello --dir int _dir --force

g Note

The options to the hel | o checker are the same as those for the cov- anal yze
command.

The output looks something like the following:

Looki ng for translation units
[O---------- 25----------- 50---------- 75--------- 100]|
EE R R I R R R I I R R I R
[STATUS] Conputing links for 1 translation unit
[O---------- 25----------- 50---------- 75--------- 100]|

R S S S S S O S o I

[STATUS] Conputing virtual overrides

9

cov_command_ref.pdf

Creating your first checker: Hello

[O---------- 25-----o - 50---------- 75--------- 100]|
EE R R R I R O I S S R R S R R S S S R O R
[STATUS] Conputing cal |l graph

[O---------- 25------o - 50---------- 75--------- 100]|
EE I O R I R O I S S R R S R I S S R O S
[STATUS] Topologically sorting 1 function
[O---------- 25-----o-- 50---------- 75--------- 100]|
EE R R O R S I R O I S R R S R R R S S S R O R
[STATUS] Conputing node costs

[O---------- 25-----o-- 50---------- 75--------- 100]|
EE R O R I R I S S R R R R R R S S R O R
[STATUS] Starting anal ysis run

ANALYZE TREE: "{...}"

ANALYZE TREE: "int x = 1"

ANALYZE_TREE: "x"

ANALYZE_TREE: "1"

ANALYZE_TREE: "x = 1"
ANALYZE_TREE: "x = 1;"
ANALYZE_TREE: "int x = 1;"

ANALYZE TREE: "x"
ANALYZE TREE: "x"
ANALYZE TREE: "5"
ANALYZE TREE: "x + 5"
ANALYZE TREE: "x = x + 5"
ANALYZE _TREE: "x += 5;"
ANALYZE TREE: "x"
ANALYZE_TREE: "return x;"
tree = S return
loc = <file ID 0>:5:3-<file ID 0>:5:11
expr = E_vari abl e:
type = int
deepl D = 2147483646
var = x, type = int, dflags = {}

islmplicit =0
ANALYZE_TREE: "<destruction for x>"
[0---------- 25----------- 50---------- 75--------- 100|

EEEEE R RS SRS SR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESEEEES]

Anal ysis summary report:

Files anal yzed 1

Total LoC input to cov-analyze : 2990
Functi ons anal yzed 1

Pat hs anal yzed 1

Ti me taken by Coverity analysis : 00:00: 00
Def ect occurrences found : 15 hello

Aside from the usual cov- anal yze text, the output consists of one line for each call to the
ANALYZE TREE function, showing the abstract syntax tree that was passed to it.

The checker also creates <HELLO>/ i nt _di r/ <pr ogr anm ng_| anguage>/ out put/
hel | 0. errors. xm , containing that output in a format that can be committed to Coverity Connect.

10

Creating your first checker: Hello

1.2.3.1. Running the Hello checker from another directory

You can run a Coverity Extend SDK checker from a directory other than <i nstal | _di r>/ bi n (as
shown in Section 1.2.3, “Running the Hello checker”). You might do so if Coverity is installed to a read-
only directory.

The Hello checker requires the following options:
» The installation directory: Specified by the - - pr event - r oot option.

» The intermediate directory: Specified by the - - di r option.

For example:

> cd <HELLO>

> <install _dir>/sdk/buil d-checker hello

> <install _dir>/bin/cov-build --dir int_dir_2 gcc -c testl/hello.test.c
> ./hello --dir int_dir_2 --prevent-root=<install _dir>

1.2.4. Committing the issues to Coverity Connect

Just as you can commit the output of the cov- anal yze command to Coverity Connect, you can also
commit the issues that the Hello checker finds.

To commit issues found by Hello to Coverity Connect:
1. Prepare Coverity Connect to receive the issues found by the Hello checker:
a. StartCoverity Connect.

The startup command is located in the Coverity Connect / bi n directory:

> cd <install _dir_cc>/hbin
> ./cov-start-im

b. Log into Coverity Connect.

c. Create a project that is configured with a Coverity Analysis stream for the C/C++ programming
language.

For example: hel | o_st r eamin the project ext end_exanpl es
2 Note
If you need help with any of these steps, contact your Coverity Connect administrator.

2. Use Coverity to commit (push) the issues to Coverity Connect:

> <install _dir>/bin/cov-commt-defects \
--host <server_host nane> \
--port <port_nunber> \
--stream hel | o_stream\

11

Creating your first checker: Hello

--user admin --dir int_dir
This command produces output similar to the following on the console:

Connecting to server sduke-t61p: 9090
2012-08-06 21:54:57 UTC - Committing 4 file descriptions...
| G mm e e S em e TS 100|

Rk R Rk kR S Rk R Ok R Rk kb kO R

2012-08-06 21:54:57 UTC - Committing 4 source files...
| G mm e e S em e TS 100|

Rk R R kR S Rk O R kR Rk kS R

2012-08-06 21:54:56 UTC - Cal cul ating 4 cross-references...
| G mm e e e TS 100|

Rk R Rk kO R Rk R Rk kS R

2012-08-06 21:54:57 UTC - Conmitting 4 cross-references...
| G mm e e S em e TS 100|

Rk R R kR O kR Sk R O Rk kO kS

2012-08-06 21:54:58 UTC - Committing O functions...
2012-08-06 21:54:58 UTC - Committing 15 defect occurrences...
| G mm e e S em e TS 100|

Rk R Rk kO R Ok R R Rk kS R

2012-08-06 21:54:59 UTC - Committing 3 output files...
| G mm e e S em e TS e 100|

Rk R R kR O R Rk R Rk kS R

New snapshot | D 10004 added.
El apsed time: 00:00: 04

1.2.5. Dissecting the hello checker
This section describes each line of hel | 0. cpp.

The following include is for the header file that contains declarations for the classes, functions, and
macros that comprise the Coverity Extend SDK API:

#i ncl ude "extend-|ang. hpp" // Coverity Extend SDK API
The headers are explained in detail in Section 2.8.1, “Header files”.

The next line declares that the name of the checker is hel | o and that it is a simple checker:

START_EXTEND_CHECKER(hell o, sinple);

Here, si npl e means that the checker is flow-insensitive: the checker is stateless, and the Abstract
Syntax Tree (AST) nodes are not visited in any particular order. An AST is a tree-shaped data structure
that represents the phrase structure of the concrete input syntax (for more information, see Chapter 1.3,
The Abstract Syntax Tree). >Note that subsequent sections will introduce you to examples of flow-
sensitive checkers. The Coverity Extend SDK macros such as START _EXTEND CHECKER and
ANALYZE TREE are explained in Chapter 2.2, Handler functions.

The next line starts the principal function of a checker:

ANALYZE_TREE()

12

Creating your first checker: Hello

The body of ANALYZE TREE is called for every AST in the program that is undergoing analysis. The
ASTs are passed one at a time, and as they arrive, each one is then the CURRENT _TREE.

The next line prints the current AST to standard output:

{
cout << "ANALYZE TREE: " << CURRENT_TREE << endl;

The next line prints the current AST as an issue report:

OUTPUT_ERROR(" ANALYZE_TREE: " << CURRENT_TREE);

This report is also stored in an intermediate directory output file, out put / hel | 0. errors. xm . Note
that, as discussed in Chapter 1.5, Output, not every call to OUTPUT _ERROR results in a user-visible
issue report. For example, if the path along which the issue is found is later determined to be infeasible,
the report is suppressed. Consequently, printing to standard output is useful as a debugging aid, but
QUTPUT_ERROR should be used for the actual issue reports.

The Extend SDK defines pattern types which can be used to determine if the current AST node meets
certain criteria. As an example, here we create a pattern which matches return statements by declaring a
variable ret of type Ret ur nPat . The MATCH predicate determines whether the current AST node being
processed by the checker matches the pattern. See Section 1.3.3, “Patterns ” for more details.

The pri nt _t ree function displays detailed information about the AST node; for more information, see
Section 1.3.2, “Examining nodes in the AST with print_tree”

Ret urnPat ret;
if(MATCH(ret)) print_tree(CURRENT_TREE)
}

The next line signals the end of the checker:

END_EXTEND_CHECKER() ;

The final line creates mai n() , the entry point to the checker executable. The name of the checker is
passed as an argument.

MAKE_MAI N(hel | 0)

1.2.6. Creating a makefile for convenience

When creating your own checkers, you can adapt the Hello makefile (<i nstal | _di r >/ sdk/ sanpl es/
hel | o/ Makefi | e) and the checker . nk file that it includes: checker . nk and i ncl ude. k.

Makef i | e for the Hello sample checker:

hel |l o/ Makefil e
Makefile for the 'hell o' Extend checker

nanme of the checker
i ncl ude checker. nk

13

Creating your first checker: Hello

default target
al | : $(CHECKER)

rul es shared by the exanpl e checkers
i nclude ../include. nk

EOF

The checker . nk file for the Hello sample checker:

hel | o/ checker . nk
set CHECKER to 'hell o'
This fragnent is separated into its own file so that it can
be used by the Makefile in this directory, as well of those
in the test subdirectories.
CHECKER : = hel | o

EOF

14

Chapter 1.3. The Abstract Syntax Tree

Table of Contents

1.3 0. WAt 1S TN A S T 2 it et ettt ettt 15
1.3.2. Examining nodes in the AST with print_treeo 16
R R T - 11 (] 1 L PSPPSR 18
L34, ACCESSOIS ..ttt ettt e ettt h e e ettt e ea e e e e e e e e ea e en e 20

There are three main tasks that a checker typically performs:
1. Inspect the AST to recognize syntax of importance.
2. Update the store to reflect the effect of that syntax (simple checkers do not do this).

3. Output errors when appropriate.

1.3.1. What is the AST?

An Abstract Syntax Tree (AST) is a tree-shaped data structure that represents the phrase of the concrete
input syntax of the source code. For example, the input 1+2* 3 has a corresponding AST that looks like
this:

+
/\
1 *
/\
2 3

From this AST fragment, you can infer that the multiplication of 2 and 3 happens first (even though *
occurs textually after the +), and the result is added to 1. If the input is instead (1+2) * 3, then the AST is:

*

/\
+ 3
/\
1 2

Note that the grouping parentheses has affected the AST by changing the order of operations. The
parentheses are not explicitly present in the AST, since the tree structure is sufficient to represent their
effect.

In Coverity Analysis, the AST is the output of the parser, and the input to the checker.
AST fragments can be grouped into several categories:

» Expressions, such as the examples shown previously.

o Statements, suchasx = 3; orwhile (true) { ... }.

e Type identifiers, suchasint orclass C{ ... }.

» Function definitions as a whole.

15

The Abstract Syntax Tree

Although there are a few other categories, these are the main ones that most checkers use.

1.3.2. Examining nodes in the AST with print_tree

You can use the pri nt _tree function to return detailed information about each node of the AST, as
shown in the print_tree checker next:

/1 print_tree.c
/1l Coverity Extend SDK checker printing the AST tree at every node

#i ncl ude "extend-I| ang. hpp" /1 Coverity Extend SDK API
START_EXTEND_CHECKER(hell o, sinple);

ANALYZE_TREE()
{

}

END_EXTEND_CHECKER() ;

print _tree(CURRENT_TREE) ;

MAKE_MAI N(hello)
/1 ECF

The source code and makefile for this checker are located in the <i nstal | _di r >/ sdk/ sanpl es/
print _tree directory.

Like the hello checker, this checker prints every abstract syntax tree that is passed into the
ANALYZE_TREE function. However, the pri nt _t r ee checker returns much more detailed information
than the hel | o checker. You can use pri nt _tree(CURRENT_TREE) to expose detailed information
about an AST node. For example, the exact kind and many other details of each program element are
exposed by the el ement structure, which you can see in the output below.

If you run this checker on the sample program at <i nstal | _di r >/ sdk/ sanpl es/print_tree/
testl/print_tree_test.cpp the output has the following format:

[STATUS] Readi ng call graph

[STATUS] Conputing cl ass hierarchy

| O---------- 25- - 50---------- 75--------- 100]|
EE R IR S S I I S S I S S S I S I S S I I S I S I S S I I S I S S I O I O
[STATUS] Conputing call graph

[STATUS] Starting analysis run (anal ysis pass)

| O---------- 25- - 50---------- 75--------- 100]|

***tree — S Corrpound

loc = /nfs/foo2/ extend/ sanpl es/print_tree/testl/print_tree.test.cpp:5
endLoc = /nfs/foo2/extend/ sanples/print_tree/testl/print_tree.test.cpp:9
stnms = {
el ement = S_decl:
loc = /nfs/foo2/ extend/ sanpl es/print_tree/testl/print_tree.test.cpp:6
decl = Decl aration:
var = "x"
init = 1 N_expr:

16

The Abstract Syntax Tree

expr = E_intLit:
cached_hash = 0
type = int
i =1
ori gi nal _expr = <null Expression>

destructi onCode = <null Statenent>

initCode = S_expr:
loc = /nfs/foo2/ extend/ sanpl es/print_tree/testl/print_tree.test.cpp:6
expr = E_assign:
cached_hash = 0
type = int
target = E vari abl e:
cached_hash = 0
type = int
var = "x"
op = 21
src = E.intLit:
cached_hash = 0
type = int
i =1
ori gi nal _expr = <null Expression>

destroyStnts = {
tree = S _destroy

}

el ement = S _expr:
loc = /nfs/foo2/ extend/ sanpl es/print_tree/testl/print_tree.test.cpp:7
expr = E_assign:
cached_hash = 0
type = int
target = E vari abl e:
cached_hash = 0
type = int
var = "x"
op =9
src = E.intLit:
cached_hash = 0
type = int
i =5
ori gi nal _expr = <null Expression>

element = S_return:
loc = /nfs/foo2/ extend/ sanpl es/print_tree/testl/print_tree.test.cpp:8

17

The Abstract Syntax Tree

expr = E_variabl e:
cached_hash = 0
type = int

var = "X
islnplicit =0
}
1.3.3. Patterns

The main method that checkers use to inspect the AST is through the use of patterns, which are
fragments of syntax with pattern variables (holes) that can match arbitrary subtrees. The basic approach
is to define a pattern with named holes, test to see if the pattern matches some input syntax, and then
use the named holes to examine the parts of the patterns that match.

1.3.3.1. Expression patterns

The expression patterns are, in most cases, constructed using C++ operator overloading. For an
example, see <i nst al | _di r>/ sdk/ sanmpl es/ patterns/ patterns. cpp.

Expr a, b;
if (MATCH TREE(a + b , CURRENT_TREE)) {

cout << " matched an addition; a=" << a << ", b=" << b << endl;
}

This checker fragment declares two pattern variables (holes) called a and b, with type Expr . The
Expr pattern type matches any expression; there are other pattern types that are more restrictive. For
convenience, there is a predefined pattern variable called " " (underscore) that matches anything.

The previous code then constructs a pattern expression:

a+hb

The + here is actually an overloaded operator that constructs a pattern. The pattern matches input ASTs
that use the binary operator +.

It then uses MATCH_TREE to compare the constructed pattern to CURRENT _TREE (which is the AST
passed to ANALYZE_TREE). This returns true when the input matches the pattern. For example, when
given the following line of input syntax:

Z =X +Y;

the checker fragment prints out:

mat ched an addition; a="x", b="y"

because there is exactly one subexpression in the input file that matches the pattern.

When the line of code:

18

The Abstract Syntax Tree

cout << "matched an addition; a=" << a << ", b=" << b << endl;

prints a pattern variable (such as a), it prints the AST fragment that the pattern variable matched. This
AST fragment can also be obtained explicitly by calling the Pat t ern: : get _tree() method.

Since it is common to use MATCH_TREE with CURRENT _TREE, the MATCH macro is available as a
shortcut:

MATCH(<pattern>) is equival ent to MATCH TREE(<pattern> CURRENT_ TREE)

To match a function call expression, create a pattern of type Cal | Si t e:
Call Site bar("bar"); /1 match call to bar()

i f (MATCH(bar))
cout << "call to bar: " << CURRENT TREE << endl;

When the Cal | Si t e pattern matches, you can inspect its arguments using the nar gs and get _arg
methods:

for (int i=0; i < bar.nargs(); i++) {
cout << " arg " << (i+l) << ": " << bar.get_arg(i) << endl;

}

To match a call site with specific patterns for the arguments, simply pass the argument patterns to
Call Site::operator():
Const _int ci;
i f (MATCH(bar(ci)))
cout << " single literal integer argunent: " << ci.llval() << endl;

The previous fragment utilizes the Const _i nt pattern, which matches an expression that is an integer
literal.

See Section 2.3.8, “ Expression patterns” for more information.
1.3.3.1.1. Variable kind patterns

There are several pattern types that match uses of specific kinds of variables. Some of the more
important are next.

Table 1.3.1. Patterns for variables

Parameter Usage

Local Var use of local variable

StaticVar use of a variable with static storage duration
A obal Var use of a variable with global scope

See Section 2.3.8.3, “Variable reference expression patterns” for more information.
1.3.3.1.2. Pattern combinators

Patterns can be combined using the following general-purpose combinators.

19

The Abstract Syntax Tree

Table 1.3.2. Pattern combinators

And(pl, p2) match if p1 and p2 match the given AST

O (pl, p2) match if p1 or p2 matches the given AST

Wt hi n(p) match if some enclosing (parent or ancestor of
given) AST matches p

Cont ai ns(p) match if a subtree (descendant) of the given AST
matches p

For example, given the declarations:
Call Site bar("bar");

Const _int ct;

Local Var 1v;

StaticVar sv;

G obal Var gv;

the pattern:

bar(O(ct,lv), O(sv,gv))

matches any call to bar with two arguments, where the first argument is either an integer literal or a local
variable, and the second is either a static variable or a global variable.

The following figure illustrates how W't hi n() looks for parents/ancestors, and Cont ai ns() looks for
descendants:

Figure 1.3.1. Within() and Contains() combinators example

Thus, the following statement
MATCH(Wthin(Contains (pat)))
matches the pattern from anywhere within the current function.

See Section 2.3.10.5, “Combinators (And, Or, etc.)” for more information.

1.3.4. Accessors

In addition to the patterns, there are a variety of functions that perform various queries on the AST. This
section covers some of the more common functions. See Chapter 2.4, Accessors for more information.

Several accessors return information about the current function being analyzed.

Table 1.3.3. Accessors for functions

current _function_get nane name of current function

current _function_get _return_type return type of current function

20

The Abstract Syntax Tree

current _file_get_nane file containing current function
print_tree Returns detailed information on the node, including
the type of pattern

Others return information about a specific AST.

Table 1.3.4. Other accessors

get _type_of _tree get expression's type

get _size of type representation size of a type

21

Chapter 1.4. State machine paradigm

Table of Contents

1.4.1. Simple checker vs. cheCker With STOFEoiiiiiiiiiiii e 22
1.4.2. ADSEract INtEIPIEtatiON it et et e e et e e et e e et e e et e e enaan s 22
G T V1 o (o [PSPPI 23
1.4.4. Manipulating the STOTEiiiiii e ettt e e aa e e eaees 24
1.4.5. Example: tracking the Sign of eXPreSSIONSvi i 24

After inspecting the AST of a particular segment of code to decide what it means, a checker must then
respond to this meaning. Typically, this is done via the state machine interaction model.

1.4.1. Simple checker vs. checker with store

The si npl e checker type (where si npl e is the second argument to START _EXTEND CHECKER) is
stateless. It is not sensitive to the order in which it encounters AST fragments. In the program analysis
literature this is known as a flow-insensitive analysis.

In contrast, the i nt _st or e checker type is stateful. It has a store, which is a map from ASTs to values.

This map can be used to implement an abstract interpreter, a concept explained in the next section. This
is called flow-sensitive analysis and is what makes the Extend SDK so powerful.

1.4.2. Abstract interpretation

Abstract interpretation is a general framework for doing program analysis. The core of the analysis is an
abstract store, which is a map from program variables to abstract values. At one extreme, the abstract
values could actually be concrete values, and then we would have a real (concrete) interpreter. However,
by abstracting the value space, we enable the analysis of programs with loops or inputs. The choice of
abstraction is dictated by the property being checked.

For example, in an analysis that looks for occurrences of a call to f open and then a call to f cl ose, you
might use the following rules:

« variable maps to 1 means f open has been called but f cl ose has not.

* variable is unmapped (mapped to nothing) means either f open has not been called, or else f cl ose
has subsequently been called.

As another example, you might want to check that a negative value is never cast to unsi gned, and use
a store with these rules:

» expression maps to O if it is negative.
» expression maps to 1 if it is negative or zero.

e expression maps to 2 if it is zero.

22

State machine paradigm

e expression maps to 3 if it is positive or zero.
* expression maps to 4 if it is positive.
» expression is unmapped if its sign is unknown

Note that these two examples not only use different abstract values (store ranges), but they map from
different constructs (variables vs. expressions, the store domains). The choice of store domain is usually
determined by concerns such as soundness and completeness: a simple domain such as local variables
will tend toward a sound analysis (where a program bug implies a defect report), while a complex domain
such as expressions will tend towards a complete analysis (where a bug-free program implies no defect
report), though this characterization oversimplifies things.

In practice, it takes some experimentation to select a good store domain and range for your particular
properties of interest.

1.4.3. Visit order

In addition to the abstraction, which was the subject of the previous section, an abstract interpreter also
interprets. This means that it simulates execution, modulo the chosen abstraction.

Consequently, like a real interpreter, an abstract interpreter visits the abstract syntax statements and
expressions in execution order. For example, in the following fragment:

X
a

y + z;
foo(b, ¢c*2);

the visit order is:

y

z

y z

X =y +z

X

X =y + z; /] statenent
b

c

2

c*2

foo(b, c*2)

a = foo(b, c*2)

a

a = foo(b, ¢c*2); /] statenent

This is called postorder traversal: the children of a given node are visited (recursively) in order, and then
the node itself is visited.

Left-hand sides of assignments are evaluated after the assignment, since the left-hand side becomes the
value of the entire assignment expression.

The previous visit order can be seen by running the hel | o checker that we created in the previously
(with the source file at <HELLO>/ hel | 0. c)on<instal | _dir>/sdk/ hello/test2/ hello.test.c.

23

State machine paradigm

When the abstract interpreter reaches choice points (such as ani f statement), it first follows one
path, then later backtracks to follow the other. In this way, all paths in the function are explored. See
Chapter 1.7, Paths for more detail about paths.

1.4.4. Manipulating the store

The store is a map from expressions to integer values:
store : expression -> integer

Some of the common functions that are used to manipulate the map are described next. For a full listing,
see Chapter 2.5, The store.

1.4.4.1. SET_STATE(t, v)
Map expression tree t to v. Any prior mapping is removed.
1.4.4.2. GET_STATE(t, v)

Retrieve the mapping for t . If it exists, GET_STATE returns true and stores the value in v. Otherwise,
CGET_STATE returns false and v is undefined.

1.4.4.3. MATCH_STATE(t, v)

Return true if t is mappedtov.

1.4.4.4. CLEAR_STATE(t)

Remove any mapping fort .

1.4.4.5. COPY_STATE(dst, src)

First, CLEAR STATE(dst) . Then, if sr ¢ is mapped, copy its mapping to dst .
1.4.4.6. FOREACH_IN_STORE(t, v)

Using a loop, bind t and v to all of the (expr essi on tree, val ue) pairs in the store. The bindings are
retrieved in an undefined order. The store should not be modified during the iteration.

1.4.5. Example: tracking the sign of expressions

The previous store functions (except for MATCH_STATE) are demonstrated in si gn. cpp, a checker
that tracks the sign of expressions. See <i nstal | _di r >/ sdk/ sanpl es/ si gn/ si gn. cpp or
Section 3.1.1, “sign checker”.

After some preliminary code to define the abstract domain, it uses the store to remember sign information
for variables and expressions.

24

State machine paradigm

When it sees certain function calls, it prints out some of the information that it is tracking. Since we
haven't yet covered the output routines, this checker just uses cout .

The si gn. test. c file (see <i nstal | _di r>/ sdk/ sanpl es/ si gn/test1/sign.test.c)provides
some basic input to the si gn. cpp checker:

/] sign.test.c
/1 test input for 'sign' checker

voi d whatis(int);
void print_store();
unsi gned sonet hi ng();

int foo(int x, int y)
{
what i s(x);
whatis(y);

int n_one = -1;
int zero = 0;
int one = 1;

whati s(n_one);
whati s(zero);
what i s(one) ;

whati s(n_one + zero);
whati s(n_one + one);

whati s(n_one - one);

whati s(one + one);

X = 3;

y =3
what i s(x+y);
X = -3;

y = -3;
what i s(x+y);
X = 0;

X = xX+1;
what i s(x);

unsi gned u = sonet hi ng();
whatis(u);

X = zero - u;
what i s(x);
whatis(x + y);

print_store();

return O;

25

State machine paradigm

}
/Il ECF

Complete the same steps that you followed for the hello checker as follows:

1. Run bui | d- checker on si gn. cpp (bui | d- checker sign).
2. Copy si gn to the Coverity Analysis bi n directory.

3. Run cov- bui | d on the si gn. t est . c file.

4. Run the si gn checker on the intermediate directory.

A portion of the output is shown next:

sign.test.c:10: "x" has unknown val ue

sign.test.c:11: "y" has unknown val ue

sign.test.c:17: "n_one" has val ue AV_NEGATI VE
sign.test.c:18: "zero" has val ue AV_ZERO
sign.test.c:19: "one" has val ue AV_PCSI Tl VE
sign.test.c:21: "(n_one + zero)" has val ue AV_NEGATI VE
sign.test.c:22: "(n_one + one)" has unknown val ue
sign.test.c:23: "(n_one - one)" has val ue AV_NEGATI VE
sign.test.c:24: "(one + one)" has val ue AV_PCSI Tl VE
sign.test.c:28: "(x + y)" has val ue AV_POCsI Tl VE
sign.test.c:32: "(x + y)" has val ue AV_NEGATI VE
sign.test.c:36: "x" has val ue AV_PGCsI Tl VE
sign.test.c:39: "u" has val ue AV_PCS ZERO
sign.test.c:42: "x" has val ue AV_NEG ZERO
sign.test.c:43: "(x + y)" has val ue AV_NEGATI VE
sign.test.c:45: print_store:

"y" has val ue AV_NEGATI VE

"x" has val ue AV_NEG ZERO

u" has val ue AV_PCS ZERO

"zero" has val ue AV_ZERO

"one" has val ue AV_PCsI Tl VE

"n_one" has val ue AV_NEGATI VE

"-1" has val ue AV_NEGATI VE

"0" has val ue AV_ZERO

"1" has val ue AV_PCSI Tl VE

"(n_one + zero)" has val ue AV_NEGATI VE
"(n_one - one)" has val ue AV_NEGATI VE
"(one + one)" has val ue AV_POCSI Tl VE
"3" has val ue AV_PCSI Tl VE

"(x + y)" has val ue AV_NEGATI VE

"-3" has val ue AV_NEGATI VE

"(x + 1)" has val ue AV_PCSI Tl VE
"(zero - u)" has val ue AV_NEG ZERO

17 mappi ngs

26

Chapter 1.5. Output

Table of Contents

R @ 10 I U (= PPN 27
IR N B 1 Y 4 N O P SSPUPR 27
1.5.3. COMMIT_ERRORiiiiitiiiii ettt e ettt e s e e et et e e et e e e e e e eaette s e e e eeaeastannneeaeeeaaeenes 28
1.5.4. ADD_INPUTFILE_ONLY _EVENT ..iiiitiiiiii oottt e ettt s e e e e e e et e e e e e e e eeanan s e e e eeeees 28
1.5.5. COMMIT_INPUTFILE_ONLY_ERRORccittiiiiiiiiiie ettt e e s aaeaan e e e e e 28
1.5.6. ADD_INPUTFILE_EVENT ...iiiiiiiiiiiiii e ee ettt s e e ettt s s e e e e e e eeatat s e s e e e eeeeantnsanaeeeeeeennnes 28
1.5.7. COMMIT_INPUTFILE_ERRORiiiiiiiiiiiiiiisie ettt e e et e s e e e e aeattaa e s e e e e eeennnnnn s 28
1.5.8. EXAMPIE: SIGN2 ...iiiiiiii ettt 29

Outputting defects. So far we have just been using cout to communicate information from a
checker, but the Coverity Extend SDK has a more sophisticated defect reporting mechanism with several
advantages:

a. The resulting reports are suitable for display in the Coverity Connect, just like other defect reports.

b. They properly take into account path feasibility, a topic covered in more detail in Section 1.7.2, “False
path pruning (FPP)".

c. A series of reports can be associated with specific variables or expressions, allowing the checker to
communicate a timeline of important events in the diagnosis of the defect. This can greatly improve the
comprehensibility of the report for flow-sensitive checkers.

1.5.1. OUTPUT_ERROR

The simplest reporting routine is OUTPUT_ERROR(<message>) , where <nessage> has an ostr eam
oper at or << to its left. For example:

OUTPUT_ERROR(" Zounds! " << sonme_expr << " is " << sone_val ue)

This method has properties (a) and (b) from previous, but not (c). It is suitable for flow-insensitive
checkers.

1.5.2. ADD_EVENT

In Section 1.4.4, “Manipulating the store”, we oversimplified things a bit. The store actually maps an
expression to a value and a set of events:

expression -> integer, set of events
An event is created by calling ADD EVENT(t, tag, text):

* tree t — The associated expression tree. Among other things, this is used to obtain the line number
to display the event.

e string tag— Something that identifies the general kind of event, for example var _assi gn. It
provides a name for hyperlinks pointing at the event. Also, source code annotations can be used to

27

Output

suppress errors with a given event tag. Finally, the event tag affects CID merging; reports with different
sets of event tags are never merged.

e string text — A string that explains the event, for example "a i s assigned to the val ue
of b".

The set of events associated with an expression are (conventionally) a history of what has happened to
give the expression the abstract value it currently has. A good rule of thumb is that any time you set or
change an abstract value, you should add an event explaining why.

The store operations explained in Section 1.4.4, “Manipulating the store” operate on events as well as
values, transparently. For example, CLEAR_STATE removes all events, and COPY_STATE copies events.

It is not possible to associate an event with an expression (with ADD_EVENT) without first giving that
expression an abstract value (with SET_STATE). In some cases, you might need to invent a new abstract
value (for example, unknown) so that you can assign a value in order to attach an event.

Also note that simply adding an event to an expression will not cause it to be output. Rather, calling
COMW T_ERROR(t,) orCOW T_I NPUTFI LE_ERROR(t,) will outputthe event that you
add this way.

1.5.3. COMMIT_ERROR

You use COMWM T_ERROR(t, tag, text) tooutputa defect report that contains all the events in the
store that were previously associated with t and one final, main event given by t ag and t ext :

* tree t:The expression tree with which events were previously associated through the use of
ADD_EVENT(t,...) or ADD_I NPUTFI LE_EVENT(t,...).Itisan errorift does not have any
associated events (in the current implementation, COVMM T_ERROR does nothing in this case).

» tag/text: These are the same as described in ADD_EVENT and are used to create one final event

for the defect report (but this final event is not added to the store). If you pass the empty string (" ") for
both, no final event is created.

1.5.4. ADD_INPUTFILE_ONLY_EVENT

For a description, see ADD_INPUTFILE_ONLY_EVENT(/*extend_inputfile_t*/ f, line, tag, text_utf8).

1.5.5. COMMIT_INPUTFILE_ONLY_ERROR

For a description, see COMMIT_INPUTFILE_ONLY_ERROR(/*extend_inputfile_t*/ f, line, tag, text_utf8).

1.5.6. ADD_INPUTFILE_EVENT

For a description, see ADD_INPUTFILE_EVENT (tree, /*extend_inputfile_t*/ f, line, tag, text_utf8).

1.5.7. COMMIT_INPUTFILE_ERROR

For a description, see COMMIT_INPUTFILE_ERROR (tree, /*extend_inputfile_t*/ f, line, tag, text_utf8).

28

Output

1.5.8. Example: sign2

The error output routines are demonstrated in the si gn2. cpp checker (see <i nstal | _di r>/
sdk/ sanpl es/ si gn2/ si gn2. cpp or Section 3.1.2, “sign2 checker”), which is an extension of
the si gn. cpp checker discussed previously (see Section 1.4.5, “Example: tracking the sign of
expressions”).

The main difference between the si gn. cpp and si gn2. cpp checkers is that in si gn2. cpp every call
to SET_STATE is followed by a call to ADD_EVENT. There are also some calls to CLEAR_STATE, used to
remove previously-associated events in cases where a new value is being stored. COPY_STATE is used
to copy events from one expression to another, to reflect the history of each value.

The what i s query now uses COMM T_ERROCR to output the events associated with the expression being
queried, or OQUTPUT _ERROR if nothing is known about the expression.

The pri nt _st or e query uses an ost ri ngst r eamto construct a big string, which it then sends to
OUTPUT_ERRCR.

Finally, this checker has some true defect detection because it recognizes typecasts from signed to
unsigned where the source might be negative. Though these potential defects include many false
positives at first, the premise for this checker is to suppress them by adding assertions. However, in
order to respond to assertions, the checker needs to handle conditionals, which is the subject of the next
section.

29

Chapter 1.6. Conditionals

Table of Contents

1.6.1. ANALYZE_CONDITION ..uiiiiiiiieitiii ettt e et e e et e e e e b e e e eaan s 30
1.6.2. MATCH_COND ...ttt ettt ettt ettt e et et e e et et s e e e et e e e aba e eeeaans 30
1.6.3. fOrCE _DACKITACK ... cciieieeeei e et 31
1.6.4. EXAMPIE: SIONB . oiiiiiii ettt et e et 31
1.6.5. ADSEIFrACt COMPAIISONeiitieeiitt et ettt e et e e et e e et et e e e e et e e e e et e e e enbe e eeenes 31
1.6.6. COMPArISON EVAIUALIONiiiiit ittt e e et e e et e e e ebt e e e eeba e eeees 32

A checker has two fundamental sources of information about a path: assignments and conditionals.
Assignments are handled by computing an abstraction of the right-hand side, and storing that abstraction
in the left-hand side. That is, they simply correspond to updating the store.

Conditionals, on the other hand, act as constraints: the current abstract state (the store) must be refined
in such a way as to be consistent with the branch of the conditional being taken. The refinement algorithm
is dependent on the abstraction being used by the checker.

1.6.1. ANALYZE_CONDITION

ANALYZE_CONDI TI ON handles conditional guards in the same way that ANALYZE TREE handles
statements and expression side effects.

1.6.2. MATCH_COND

Within ANALYZE_CONDI Tl ON, you can use MATCH_COND to inspect the guard expression. MATCH_COND
automatically takes account of whether the true or false branch is being taken. For example, if the code to
analyze says:

if (x ==vy) {
/! then-branch
}

el se {
/] el se-branch

}

then the checker fragment:

Expr a, b;
MATCH _COND(a ! = b)

matches only when the el se branch is followed.
g Note

It is important to note that MATCH_COND only works when matching comparisons. For instance,
MATCH_COND(a == b) will match atrue a == b condition or afalse a ! = b condition.
Conditions are always comparisons except when the condition is a non-comparison boolean

30

Conditionals

expression. For instance, the condition in the expressionint x; if(x) { } will be transformed
into x ! = 0, but the condition in the expression bool x; if(x) { } will simply be x. In

the latter case, MATCH_COND will not work, so you might instead check the cov_pol arity
variable, which indicates whether the condition being evaluated is true or false. For example,
MATCH COND(a == b) isequivalenttocov_polarity ? MATCH(a == b) : MATCH(a !=
b) .

1.6.3. force_backtrack

Often, an analysis is able to determine that a path is infeasible, meaning that it cannot be executed at

run time. This discovery happens when the engine attempts to traverse through a conditional that is
inconsistent with the known facts in the store. In such cases, the checker can call f or ce_backt rack(),
which stops further exploration of this path.

1.6.4. Example: sign3

The si gn3. cpp checker illustrates handling conditionals (see <i nst al | _di r >/ sdk/ sanpl es/
si gn3/ si gn3. cpp or Section 3.1.3, “sign3 checker”).

1.6.5. Abstract comparison

The core of the checker is in the section titled abstract comparison, which defines what it means to
compare two abstract values using operators like < and ==. Whenever an operator <op> is used to
compare abstract values a and b, and we follow the path where the comparison yields true, there are
several possible consequences embodied in Abst r act Conpar i sonResul t:

1. We might decide that the comparison could not possibly have yielded true, in which case its truth is
inconsistent with the current abstract state. For example:

int x = 0;

if (x <0) {

// inconsistent, i.e., unreachable
}

2. We might discover new facts about a or b. For example:

int x = 0;
if (x ==vy) {

/1 discover that 'y' equals 0 as well
}

if (y <=0&% z >=0) {
/1 discover: y <=0
/1 discover: z >= 0
if (z ==y) {
/'l discover: y == 0 and z ==
}
}

3. We might discover no new information. For example:

31

Conditionals

if (x <vy) {
/'l lacking any previous information about 'x' and 'y', the
/1 constraint 'x < y' cannot be expressed in our abstraction

}

In the si gn3 checker, this computation is performed by the abst r act Conpari son function. This
function is probably more complicated than ones you write, but illustrates the general technique in a
realistic setting.

Because there are six relational comparison operators, there are six precomputed abstract relation tables
stored in the r el at i onal Oper at or s global variable. The Rel at i onal Oper at or class effectively
maps from an AST tree code to an abstract operator table.

1.6.6. Comparison evaluation

The ANALYZE_CONDI Tl ON function begins by attempting to match the input condition with each of the
six relational operators:

for (int i=0; i < NUM RELATI ONAL_OPERATORS; i ++) {
Rel ati onal Operator *relop = rel ati onal Operators[i];
i f (MATCH_COND(Bi nop(rel op->treeCode, a, b))) {

When it finds a match, it abstractly evaluates the arguments a and b; an unmapped expression
corresponds to AV_ UNKNOAN:

if (!GET_STATE(a, va)) { va
if (!GET_STATE(b, vb)) { vb

AV_UNKNOWK; }
AV_UNKNOWK; }

It then performs the abstract comparison by doing a table lookup:

Abstract Conpari sonResult & es = rel op->map[va][vb];

If the comparison is infeasible, that is, it could not possibly have evaluated to true, then we abort analysis
of the current path:

if ('res.consistent) {
force_backtrack();

}

Otherwise, if incorporation of the new constraint has led to a refinement of the abstract value of a or b,
then the store is updated accordingly:

if (res.newAval ue != va) {
SET_STATE(a, res.newAVval ue);

}
if (res.newBValue != vb) {

SET_STATE(b, res.newBVal ue);
}

With these refinements, the si gn3 checker is able to confirm that <i nst al | _di r >/ sdk/ sanpl es/
si gn3/test1/sign3.test.c never converts a negative integer to unsi gned even though there are
three places that have implicit conversions from i nt to unsi gned. A portion of the output is shown next:

32

Conditionals

mat ched conditional "x >= 0"; "x" = AV_UNKNOW\, "0" = AV_ZERO
refined "x" to AV_POS_ZERO

mat ched conditional "y > 0"; "y" = AV_NEG ZERO, "0" = AV_ZERO
backtracki ng due to inconsistency

mat ched conditional !"y > 0"; "y" = AV_NEG ZERO, "0" = AV_ZERO

mat ched condi tional "x == z"; "x" = AV_POS_ZERO, "z" = AV_UNKNOMW

refined "z" to AV_POS_ZERO

mat ched conditional !"x == z"; "x" AV_POS_ZERO, "z" = AV_UNKNOW

mat ched conditional !"x >= 0"; "x"
refined "x" to AV_NEGATI VE

AV_UNKNOWN, "0" = AV_ZERO

33

Chapter 1.7. Paths

Table of Contents

1.7.1. Many paths Per fUNCLIONiiiii et et e et e et e e eera e eeens 34
1.7.2. False path pruning (FPP) ..o et e e e 34
1.7.3. TWO-PASS CRECKING ..cevuniiiiii et e e e et e e 35
L.7.4. TEIMINALION «.oeitiiiiiii ettt ettt e ettt e et et e e et e bt e et ettt e et ee bt e e e enbaaeeeenbnaeeeee 35

Realities of paths. The mechanics of path traversal are relevant when writing a checker. Among other
things, this chapter explains why using cout often produces misleading results.

1.7.1. Many paths per function

The Coverity Extend SDK engine does not simply traverse one path through a function; instead it
traverses many paths to achieve complete coverage of all relevant sequences of operations.

The paths are not executed in sequence, one after another. Instead, common prefixes of paths are
analyzed once with the analysis branching at conditionals to investigate each path separately.

What this means is that your checker's handler functions such as ANALYZE TREE are called for
expression and statement trees in different paths at different times; from the checker's point of view, the
engine seems to be jumping from path to path unpredictably. This is why using cout is misleading.

The way to keep track of separate paths is by using the store. The Coverity Extend SDK engine will
always call a handler with the same store (contents) for the same path. Thus, all knowledge about the
current path should be saved to the store.

Since the events are also in the store, using ADD_EVENT is the best way to produce coherent, path-
dependent output.

1.7.2. False path pruning (FPP)

Among the reasons for what at first might seem to be unpredictable switching among paths is false path
pruning (FPP). Your Coverity Extend SDK checker is actually running in conjunction with a number of
FPP modules, each of which is looking for sequences of operations that are inconsistent. For example, in
this code:

int x = 2;
if (x '=2) {
/! unreachabl e

}

there is an FPP module that detects that the then branch of this conditional cannot be taken. That FPP
module calls f or ce_backt r ack, but won't otherwise inform your checker, so that the checker finds the
next ANALYZE_TREE coming from a different path.

34

Paths

1.7.3. Two-pass checking

Because the FPP modules are somewhat computationally expensive, they are disabled until the checker
calls either the COVM T_ERROR or QUTPUT _ERROR functions. Once the checker tries to output an error,

the analysis of that function is restarted with the FPP modules enabled. This saves time in the usual case
where a checker does not find any problems on any path, but still filters out reports from infeasible paths.

This is another reason why cout produces misleading results: your checker appears to analyze some
functions twice due to the activation of the second pass.

1.7.4. Termination

Any function that has a loop will have an infinite number of apparent paths. Even with FPP enabled, there
might still be no bound on the number of paths. For example, consider the following loop:

voi d foo(int n)
{
for (int i=0; i<n; i++) {
/1

}
}

How does the Coverity Extend SDK engine avoid running forever checking an example like
this? The Coverity Extend SDK engine notices that the second and subsequent paths through the
loop are not significantly different from the first iteration, and stops analyzing the loop. This condition is
called a fixpoint of the loop.

The concept of significantly different is difficult to describe, and is not necessary to understand fully

to write a checker. You must be aware that the contents of the store is the key determiner of whether
something is considered different by the Coverity Extend SDK; engine. As a first approximation:
exploration of the loop terminates if and only if two different iterations produce the same store. Although
the actual rule for this behavior is more complex, this abstraction is generally accurate.

What this means for a checker writer is that you must not try to track values too precisely, otherwise you
risk putting the Coverity Extend SDK engine into an infinite loop. You must choose abstractions that are
precise enough to check the property of interest, but sufficiently imprecise to allow termination.

A simple example of the imprecise concept is integers. If you track integer values exactly, then you have
an infinite abstract domain and hence the analysis does not terminate. But by abstracting this down to
just three values (negative, zero, and positive), you can ensure termination.

If you track values of arbitrarily complex expressions, then there is no guarantee of reaching a fixpoint
in a loop, so the abstract intepretation could go on forever. As another example, when tracking values
in the heap, you should avoid tracking information about arbitrarily deep nested pointer dereference
expressions. For example, tracking p- >f i el d is usually fine, but tracking p- >fi el d1- >fi el d2-

>f i el d3 is not, since the latter has enough precision to take considerable (infinite) time exploring all of
its variations.

35

Chapter 1.8. Examining the class hierarchy

Table of Contents

R 70t O [g1 1 e T [o 1T PP PPPPTN 36
1.8.2. Mapping from variables to their CIASSAYPEcooouiiiiiiii e 36
1.8.3. TrEe SHUCIUIE OF TYPBS ittt ettt ettt e et e e e et eeeban s 37
L84, ClASSES ..ttt e s 37
R T A L A1 (<] 1= 1 (o] £ TP PPTPPPPP 38
1.8.6. When are type_t objects resident in MEMOIY?c.uuiiiiiiiiiiiiiii e 38
1.8.7. Example: print type iNfOrMAatioNiiiiiiiiiiii e e e e 39
1.8.8. Example: SWitCh defalltooouniiiiiii e 39

1.8.1. Introduction

You can use the Coverity Extend SDK to examine the class hierarchy of C++, C#, or java programs.
This capability consists of an in-memory representation of the hierarchy and an API to query that
representation.

The representation and API are declared in <i nst al | _di r >/ sdk/ header s/ t ypes/ ext end-

t ypes. hpp. The comments in that header file are the definitive documentation for individual methods.
This section describes how to use the API at a high level, and Chapter 2.7, Types explains it at an
intermediate level of detail.

1.8.2. Mapping from variables to their class/type

To obtain the type of an expression or variable, match it with a pattern that inherits from Ty pedExpr
(such as Expr), and then use the TypedExpr: : get _type_t () method.

This returns a pointerto at ypes: : t ype_t (hereafter referred to as t ype_t) object, which is the root of
a C++ class hierarchy for representing types.

The t ype_t class has a number of methods for querying the actual type. For example,
type_t::as_class_p() returns a pointerto acl ass_type_t ifthattype_tisacl ass_type_t,
otherwise it returns NULL.

The following is an Coverity Extend SDK checker fragment that checks for the current expression being a
pointer to a class:

Expr e;
if (MATCH(e)) {
if (type_t *t = e.get_type_t()) {
if (class_type_t *ct = t->as_class_p()) {
/1l now 'ct' is the class_type_t representing the type
/1 of the expression matched by 'e'
}
}
}

36

Examining the class hierarchy

1.8.3. Tree structure of types

A giventype t object is actually a tree (or subtree). For example, the typeint (*) (fl oat,
char **) looks like the following:

poi nter_type_t
I

| pointed_to
\Y,
function_type_t
/ \ \
return_type/ \args[0] \args[1]
\Y, \Y, \Y,
scal ar _type_t scalar_type_t pointer_type_t
I I I
| name | name | pointed_to
I I I
"int" "fl oat" poi nter_type_t
I
| pointed_to

scal ar _type_t

| nane

|
"char"

scal ar _type_t is a leaf type.

The cl ass_type_t and uni on_type_t classes are also leaf types of a sort. Since all recursive types
(such as the type of a linked list) must go through a class or struct or union in order to recurse, you can
think of them as leaves — so that types really are trees, rather than arbitrary graphs. However, this
"leafness” is a property of the code that uses the t ype_t structure. It's merely a convenient convention.
This convention is used by t ype_recursive_visitor_t ,among others.

1.8.4. Classes

Each class in the program being analyzed is represented by a cl ass_t ype_t object in the Extend SDK.
1.8.4.1. Inheritance

Given acl ass_t ype_t, the inheritance hierarchy can be examined using, for example, the following:

class_type_ t *c = ...;
defined class_type t d = c->load _definition();
if(d) {
d- >get _parents();
}

This returns a vector of the immediate ancestors.

37

Examining the class hierarchy

To iterate over all parents, including those that are inherited, use:

class_type_t *c = ...;
defined_class_type t d = c->load_definition();
if(d) {
d->get _al | _parents();
}

1.8.4.2. Virtual function overriding relationships

Given two f uncti on_t objects, the function_t::overri des() method can be used to determine
whether one overrides the other. This function can only be called if the class hierarchy allows it. For
example, if you call f 1- >overri des(f 2),thenf1l->get_ owner_cl ass()->derives_fron{f2-
>get _owner _cl ass()) must be true.

1.8.5. type_t iterators

The t ype_t visitor classes allow types to be processed using the visitor pattern, which is sometimes
more convenient than explicit recursive processing.

1.8.5.1. type_visitor_t

The t ype_vi sitor _t is aninterface that clients can implement. The handlers, such as on_f uncti on
or on_cl ass, react to the various kinds of t ype_t nodes. Invoking its oper at or () onatype.t object
invokes the appropriate handler for the dynamic type of that object.

1.8.5.2. subtype_visitor_t

The subt ype_ vi si tor _t is another interface. When a type object'si t er _subt ypes method
is invoked, the type object invokes the passed subt ype_visitor _t::operator() oneach of
its component or "sub" types. For example, the fields of a class are considered sub types, as is the
poi nt ed_t o element of a poi nter_type_t.

1.8.5.3. type_recursive_visitor_t

The previous two interfaces are combined to form the t ype_r ecur si ve_vi si t or _t, which is both
an interface and a tree traversal mechanism. To use this class, inherit from it, and then implement the
appropriate on_ XXX methods. By default, these methods recursively traverse their sub types (hence
the r ecur si ve in the name of the visitor), except for classes and unions. That is, they visit the tree
structure described in Section 1.8.3, “Tree structure of types”. If you override one of the methods other
than on_cl ass or on_uni on, you must call the superclass method if you want recursive traversal to
proceed below the overridden point.

1.8.6. When are type _t objects resident in memory?

In general, a checker should not save t ype_t pointers beyond the analysis of the function when they
were obtained. The reason is thatt ype_t objects get loaded and unloaded as the analysis runs. The

38

Examining the class hierarchy

analysis guarantees to keep resident the set of types defined when the function being analyzed was
compiled, but not beyond that.

1.8.7. Example: print type information

The PRINT_TYPES checker example (see also, <i nst al | _di r >/ sdk/ sanpl es/ pri nt _t ypes/
print _types. cpp) demonstrates some of the t ype_t API. The checker itself simply matches
declarations and uses the declared types as a root set in a recursive exploration of the program's type
hierarchy. It also prints out the name and type of those declarations. The bulk of the work is done by the
O assTypeVi si t or, which inherits from t ype_recursi ve_vi sitor _t.Itson_cl ass method prints
out the base classes and (non-static) fields of each class that can be reached from the root set of types. It
keeps a set of class names so it can avoid printing information about the same class twice. Note that, as
explained in the previous section, you cannot keep a set of cl ass_t ype_t pointers.

1.8.8. Example: switch default

The SWITCH_DEFAULT checker example (see also, <i nst al | _di r>/ sdk/ sanpl es/

swi t ch_def aul t . cpp) demonstrates how to match the case and def aul t substatements of a switch
case statement. It reports switch statements that do not have an explicit def aul t statement and shows
how it is possible to extract the particular values in case statements.

39

Chapter 1.9. Reporting events and defects on input files

Table of Contents

1.9.1. Additional steps for building Coverity Extend SDK checkers for Android applications 40
1.9.2. Input file class extend_INPULTIIE T i e 40
1.9.3. INPUL FIl& MACIOS ...t et e e ettt e et e et e e e e e an e e et e e eaneaeens 40
1.9.4. Input file checker eXamPpPles ... e 42

In addition to analyzing ASTs and reporting defects in source code, Coverity Extend SDK checkers
can also inspect the contents of files captured during the Coverity build and emit processes and report
defects in them. These files can include source files, files packaged within a WAR file (and emitted with
cov-enit-java --webapp-archi ve or similar), or an Android Andr oi dMani f est . xnl and its
associated APK file (emitted with the - - andr oi d- apk and - -i nput -fi | e options to cov- eni t -

j ava).

1.9.1. Additional steps for building Coverity Extend SDK checkers for
Android applications

The general workflow uses cov- eni t - j ava to emit the files to the intermedidate directory, then runs the
custom checkers on the emitted files. The checkers iterate over the input files to produce the reports.

1. Emitfiles, such as Andr oi dMani f est . xm , that your checker requires to the intermediate
directory. Such files must be associated with an APK, for example:

cov-emt-java --dir nylntDir --android-apk myAPK. apk --input-file
Andr oi dMvani f est . xm

The - -i nput -fil e option is required and can be specified multiple times. The - - andr oi d- apk
option is required and can only be specified once. Descriptions of these command line options are in
the Coverity 2020.12 Command Reference.

2. Run your custom checker to analyze the input files.

1.9.2. Input file class extend_inputfile_t

This methods in this class are for iterating over and reporting defects on files built or emitted by Coverity
Analysis processes.

1.9.3. Input file macros
FOREACH_MATCHING_INPUTFILE(f, suffix_utf8)

» This macro iterates over the input files (including source and application archives) when the filesystem
path matches the specified suffix.

e f isoftype extend i nputfile_t and will be setin each iteration.

40

Reporting events and defects on input files

e suf fix_utf8isoftype const char *,which is interpreted as a NUL-terminated UTF-8
sequence.

Arguments to the function declarations in the remaining macros (below) share the following
characteristics:

» f isoftype extend inputfile_t.
* | i ne is a positive integer line number on which to report the event.

 tagandtext utf8areoftypeconst char *,whichisinterpreted as a NUL-
terminated UTF-8 sequence.

ADD_INPUTFILE_ONLY_EVENT(/*extend_inputfile_t*/ f, line, tag, text_utf8)

* Queue an event (in an input file) to report at the next use of COMMIT_INPUTFILE_ONLY_ERROR.
This macro is useful when reporting events that are entirely inside input files. It is most appropriate to
use this macro inside CHECKER_INIT or CHECKER_FINAL.

COMMIT_INPUTFILE_ONLY_ERROR(/*extend_inputfile_t*/f, line, tag, text_utf8)

* Report an error in an input file. This macro will include only events previously queued through
ADD_INPUTFILE_ONLY_EVENT. This is useful when reporting events that are entirely inside input
files.

It is most appropriate to use this macro inside CHECKER _INIT or CHECKER_FINAL.
ADD_INPUTFILE_EVENT (tree, /*extend_inputfile_t*/ f, line, tag, text_utf8)

» Create an event in input file f , and add it to the set of events in the store for t r ee. A subsequent use
of COMMIT_INPUTFILE_ERROR(tree, ...) or COMMIT_ERROR(tree, ...) will include this event in
the defect report it produces. This macro is for reporting events in input files in the context of a flow-
sensitive checker; it allows mixing events in source code and input files.

Use this macro inside any ANALYZE_* or FUNCTION_INIT handler.

Note that subsequent use of COMMIT_INPUTFILE_ERROR or COMMIT_ERROR will include this
event in the defect it creates.

For related information, see Chapter 1.9, Reporting events and defects on input files.
COMMIT_INPUTFILE_ERROR (tree, /*extend_inputfile_t*/ f, line, tag, text_utf8)
» Report the error in an input file using the events from t r ee, an AST node.

This macro is for use with a flow-sensitive checker and allows mixing events in source code and input
files.

Use this macro inside any ANALYZE_* or FUNCTION_INIT handler.

For related information, see Chapter 1.9, Reporting events and defects on input files.

41

Reporting events and defects on input files

1.9.4. Input file checker examples

The sample checkers iterate over input files, querying encoding and parent archives, loading the contents
to the emit (part of the intermediate directory), and reporting defects in both simple and stateful checkers.

Location: <i nt er medi at e_di r ect or y>sdk/ sanpl es
e java_input _file_sinple.cpp

e java_input _file stateful.cpp

42

Chapter 1.10. Troubleshooting

Table of Contents

1.10.1. A Coverity Extend SDK checker aborts execution with a Tree used with no match error. 43

1.10.1. A Coverity Extend SDK checker aborts execution with a Tr ee
used with no match error.

Example:

[STATUS] Readi ng call graph

[STATUS] Conputing call graph.

| 0---------- 25- - 50---------- 75--------- 100]|

EE R R R I R R S O

[STATUS] Increnental analysis could not be used - this may take a while.
[STATUS] Starting analysis run (anal ysis pass)

***|

ext end- patterns. hpp: 111: oper at or

P5 tree: Tree used with no match in pattern Var

SM NAME: a never follows b

ANALYZI NG a_never_follows_b_test.cpp: _Z5t est 6i

LI NE 50: "B()"

0xb23c80 0xb23c68 call _expr, NAVE: _Z1Bv TYPE: void

- 0xb23c38 0xb23c20 addr_expr TYPE: void (void)*

- 0xb23f 08 0xb23bcO function_decl NAME: _Z1Bv, public TYPE void (void)

This application has requested the Runtine to termnate it in an unusual way.
Pl ease contact the application's support team for nore information.
Returned with error code 0x3 at function 6.

Solution:
A pattern has been used before it matches anything.

For example, you can get this error if you run the following checker:

#i ncl ude "extend-I| ang. hpp"
START_EXTEND_CHECKER(a_never_follows_b, int_store);
ANALYZE_TREE()

{

CallSite a("A");

CallSite b("B");

Var v;

tree t;

int i;

if(MATCH b)) {

SET_STATE(v, 1);

ADD EVENT(v, "B", "B is called" << v);

43

Troubleshooting

}

else if(MATCH a)) {

FOREACH_ I N_STORE(t, i) {

ADD EVENT(v, "A", "Ais called" << v);

COWM T_ERROR(t, "A", "Ais follows b" <<t);
}

}
/1l CLEAR_STATE(v);

}
END_EXTEND_CHECKER() ;
MAKE_MAI N(a_never _fol l ows_b)

against the following test case:

extern void A();
extern void B();

Il K
void test1() {
! A();

Il K
void test2() {
! B();

Il K

void test3() {
A();
B();

}

/| Defect

void test4() {
B();
AQ);

}

Il K
void test5(int x) {
if (x) {
A();
} else {
B();
}
if ('x) {
B();
} else {
A();
}

44

Troubleshooting

}

/1 Defect
void test6(int x) {
if (x) {
A();
} else {

B();

}

if ('x) {
A();

} else {

B();
}
}

45

Part 2. Coverity Extend SDK Reference

Table of Contents

P22 I | 1 To [Tt o] o I PP 48
A o -V oo | [T o {0 Tod 1T o LSO 49
2.2.1. Handler fUNCLION OVEIVIEWcccuuiiiiiiii ettt e e e e e e e e et e e e e aae e 49
A T = (=T 1 1 PRSP 57
2.3.1. Patterns for C# and Java CheCKErScoouiiiiiiiiii e 58
2.3.2. Functions common to all PAEINSoiiiiiiiiiee e 58
2.3.3. ASTNOdEPAEIN SUPEICIASScouuiiiiiiii i e eae e 59
2.3.4. EXPressionPattern SUPEICIASSiiivuiiiiiieiiie e e e e e e e e e e eaen 59
2.3.5. TYPEPALEIN SUPEICIASScivuiiiiiieiii et e et e e e e e e e e et e e et e eanaeeees 60
2.3.6. SYMDOIPAtErN SUPEICIASSuiviiieiii et e e e e e e e eans 60
2.3.7. Predefined pattern ObJECESccceuiiiiii e 60
2.3.8. EXPreSSION PAtErNS ...couuiiiiiiii e e e e e e e e 60
2.3.9. StAEMENTE PAIIEINS .ottt et e e ea s 67
A T O B @ g 1= gl = L1 (= 1PN 68
P T ol o<1t o £ PP 71
2.4.1. Additional AST query fUNCLIONSccouiiiiiei e e 71
2.4.2. Queries on the current FUNCHONcoiiiiiiiii e 71
2.4.3. Queries 0N the CUITENt fileciiii i 72
A @ U= 1Y o g T 1= T= PN 72
P2 T I 4 ST (o] = PP 73
2.5.1. SEOIE OVEIVIEW ..eeuuniiiiii ettt e ettt e et e et e e e et e e e et e e e e et e e e e et e e e e et e e e e st e eeeatnnes 73
2.5.2. void SET_STATE(TrEe t, INT V) 1iiruiiiiiiiiii i e e e e e e e e e ens 73
2.5.3. VOId CLEAR _STATE(IIEE 1) 1evuuiiiiiiiie ettt e et e e et e e e e e eaeanas 74
2.5.4. bool GET_STATE(IEE t, Nt &V) ..iivrniiiiiiii e e e e e e e eaes 74
2.5.5. bool MATCH_STATE(IEE t, iNt V) oouniiiiiiii e e e e e 74
2.5.6. bool COPY_STATE(Lre€ dst, trE€€ SIC) ..ucvvvuiiiiiiiii it et e e e e 74
2.5.7. FOREACH_IN_STORE(tree &t, int &) { body }viiviiiiiiii e 74
2.5.8. bool ADD_EVENT(tree t, char const *tag, deSC)ccuveiiiiiiiiiieiii e e e 74
2.5.9. bool COMMIT_ERROR(tree t, char const *tag, deSC)ccvvevrieiiiiiiiiieeiieeeie e, 74
2.5.10. ADD_INPUTFILE_EVENT ..ottt ettt e e e et e e e eaaneeeenens 75
2.5.11. COMMIT_INPUTFILE_ERRORuuiiiiiiiiiiiii ettt 75
WAL T Ao [0] o =YY= o PP 76
A R Y/ o1 T PP PEPPRPN 77
FZ A S 1411 o T [T 1o o PP 77
F N 1Y/ o = ST 77
A s T 10|V 1Y/ = S PP 78
A Yo 1 - | g 1Y/ 1= I 78
A S T o To 1101 (=1 g 07/ o 1= TN S NS 78
A T 1 =\ Y A o L= PP PP PRPRPRR 79
P O oV VY =T o o 1= g 1Y o L= S PP P PP 79
b A S T {0 Tox o T T £/ = P 79
A S IR ToTo) o T=To [£/ L= 79

00 0 TR =Yoo o1 S 79

2.7. 11 defiNEA tYPE b oniiiiii i 80
A A R Y o =T (1 Y/ o1 SR 80
2.7.13. forward_declarable tyPe Tiiiiiiii i 80
00 I =Y T o T Y/ = 80
0t L T - Vo S 80
A G T T a1 To] o T Y o 1= S 80
P2 5 O (= o 1 PSP 81
A S T = 11 1Y o = 81
0 R TR o Y- = o | S 81
2 . 0 B {1 Tox 1 o 1o 82
A R 4 1=T 0 0] o 1= T Y 0 L S 82
2.7.22. extend _INPULTIIE T e 82
2.8. Reference INfOrMALIONiiiiii e et e e e e et e e e eaaa e e e eaens 83
P S B B 1= Lo =T i 1T P 83

A S I N\ = 1o o 1= 0 0 = g Vo |1 o PP 83

Chapter 2.1. Introduction

The Coverity Extend Software Development Kit (Coverity Extend SDK) is a framework for writing program
analyzers (that is, checkers) in C++ that support the analysis of C/C++, C#, and Java applications.
Features include:

Basic frontend features: Parsing, type checking and elaboration, abstract syntax construction, template
instantiation, and linking across translation units.

Facilities to inspect abstract syntax using pattern matching.

Mechanism to traverse paths in the abstract syntax in execution order, prune false paths, and merge
similar states to ensure termination in loops.

Flexible notion of checker state for checking flow-sensitive properties.

Output routines that work with the false path pruning (FPP) mechanism to ensure that defects are only
detected from feasible paths.

This guide provides detailed information about the Coverity Extend SDK API. See Part 1, “Coverity
Extend SDK Usage” for basic concepts and an introduction to using the Coverity Extend SDK.

48

Chapter 2.2. Handler functions

Table of Contents

2.2.1. HANAIEr TUNCLION OVEIVIEWeiiiiiiiiie e ettt e et e e e et et e et e e s e et e e e e e et e e raeeeenses 49

2.2.1. Handler function overview

The core of an Coverity Extend SDK checker is a set of handler functions. These handlers are called by
Coverity Analysis to inform the checker of key events.

2.2.1.1. Coverity Extend SDK checker file structure

An Coverity Extend SDK checker source file is organized as follows:

/'l checker _nane.c
/1l (comment about what the checker does)

#i ncl ude "extend-I| ang. hpp" /1l Coverity Extend SDK API
(1)

START_EXTEND_CHECKER(checker _nane, checker _type);

(2)

END_EXTEND CHECKER() ;

MAKE_MAI N(checker _nane)

In section (1) you can define arbitrary C/C++ functions and data structures. Syntactically, it is in the global
scope.

In section (2) you define the checker handler functions. Syntactically, section (2) is inside a class
definition.

You can define member variables inside section (2); doing so is somewhat cleaner than defining them as
global variables in section (1), but either method works. However, member variables cannot be initialized
at the declaration site (see Section 2.2.1.5, “INIT_OPTIONS”).

2.2.1.2. START_EXTEND_CHECKER

Synopsis

START_EXTEND CHECKER(checker name, checker_type);

Description

49

Handler functions

The START_EXTEND CHECKER macro call ends section (1) and begins section (2). This macro begins a
class declaration.

Arguments

checker _nane is the name of your checker. This is the same name as the name of the source file
(without the . ¢ extension). This name is used by Coverity Connect to identify defect reports that are
created by your checker.

checker _t ype is one of the following:

» si npl e— Checker type used for flow-insensitive (stateless) checkers. It has no store. For more
information about the store, see Chapter 2.5, The store.

* i nt _st or e— Checker type used for flow-sensitive (stateful) checkers. Its store maps from
expressions to integers; the exact meaning of the integers is up to you to establish.

» t ype— A special kind of checker that has no store and does not analyze abstract syntax trees. It visits
each class that has been defined. See Section 2.2.1.17, “ANALYZE_CLASS".

2.2.1.3. END_EXTEND_CHECKER
Synopsis

END_EXTEND_CHECKER() ;

Description

This macro call ends section (2). It terminates the class declaration started by
START_EXTEND CHECKER() .

2.2.1.4. MAKE_MAIN
Synopsis

MAKE MAI N(checker _nane);
Description

This macro call defines the mai n function of the entire checker program. checker _narne is the name of
the checker and should be the same as the name of the source file (without the . ¢ extension).

The call to MAKE_NMAI N should come directly after the call to END_EXTEND CHECKER, and should be the
last statement in the checker source file.

2.2.1.5. INIT_OPTIONS
Synopsis
INIT_OPTIONS() { <code> }

Description

50

Handler functions

The code in | NI T_OPTI ONS is executed at program startup. Use this code to initialize member variables
declared in section (2). This is the first handler function that is called when the program starts up (even
before CHECKER | NI T).

2.2.1.6. HANDLE_OPTION

Synopsis

HANDLE_OPTI ON() { <code> }

Description

This handler is called for every command-line argument to the cov- anal yze command of the form:
(--checker_option|-co) checker_nane: opti on_nane[: option_val ue]

where checker _nane is the same as the argument to START _EXTEND CHECKER.

The following macros can be used in HANDLE OPTI ONto determine the argument:

 CHECK _OPTI ON(opt) { <code> } — Executes code if the opti on_nane on the command line
equals opt .

* OPTI ON_VALUE —<option_val ue>(asachar const *)passed onthe command line, or NULL
if no value was passed.

e OPTI ON_HANDLED() — Tells Coverity Analysis that the command-line option has been recognized and
processed. Calling this function causes a return from HANDLE_OPTI ON.

» OPTI ON_NOT_HANDLED() — Tells Coverity Analysis that the option has not been recognized. Calling
this function causes a return from HANDLE_OPTI ON.

For example:

/1 The follow ng nmenber variables are | ocated between

/1 the checkers START_EXTEND CHECKER and END_EXTEND_CHECKER.
i nt node;

bool use_mangl ed;

/1 called at program startup
I NI T_OPTI ONS()
{

node = O;

use_mangl ed = fal se;

}

/1 called for each --checker_option command-|ine argunent
HANDLE_OPTI ON()

CHECK_OPTI ON("npde") {
node = atoi (OPTI ON_VALUE);
OPTI ON_HANDLED() ;

51

Handler functions

}
CHECK_OPTI ON("use_mangl ed") {
use_mangl ed = true;
OPTI ON_HANDLED() ;
}
OPTI ON_NOT_HANDLED() ;

}
/'l You can now use node and use_mangl ed i n ANALYZE_TREE.

2.2.1.7. CHECKER_INIT

Synopsis

CHECKER I NI T() { <code> }

Description

This function is called at program startup, after | NI T_OPTI ONS and HANDLE_OPTI ON have been called.

Initialization code, particularly code that depends on the command-line options, can be placed in this
function.

2.2.1.8. CHECKER_FINAL

Synopsis

CHECKER FINAL() { <code> }

Description

This function is called when the program is about to terminate.
2.2.1.9. FUNCTION_INIT

Synopsis

FUNCTION INIT() { <code> }

Description

This function is called when the checker is about to start analyzing a function. You can use functions such
as current_function_get_name [p. 71] to get information about the function that will be analyzed.

2.2.1.10. FUNCTION_FINAL
Synopsis
FUNCTI ON_FI NAL() { <code> }

Description

52

Handler functions

This function is called when the checker is finished analyzing all of the paths in a function.
2.2.1.11. ANALYZE_TREE

Synopsis

ANALYZE_TREE() { <code> }

Description

This is one of two central checker functions (ANALYZE_CONDI TI ONis the other). It is called for each
statement and expression, as described in Section 1.4.3, “Visit order”.

Options

Within the body of ANALYZE_TREE, you can use several macros to inspect the AST fragment that is
undergoing analysis:

» CURRENT_TREE— The AST node that is undergoing analysis. It has type t r ee.

e MATCH(pat) — Matches CURRENT _TREE against pattern pat , returning true if it matches. See
Chapter 2.3, Patterns.

« MATCH TREE(pat, t) — Matches t against pattern pat .
2.2.1.12. ANALYZE_CONDITION

Synopsis

ANALYZE_CONDI TI ON() { <code> }

Description

This handler is called for every conditional expression through which the current path passes (see
Chapter 1.7, Paths for more information). To inspect the condition, use MATCH_COND(pat) . This returns
true if the current condition matches pat .

= Note

Do not use MATCH or MATCH_TREE within ANALYZE_CONDI Tl ON. The latter has a polarity notion
that only MATCH_COND can handle properly.

2.2.1.13. ANALYZE_END_OF_PATH
Synopsis

ANALYZE _END OF PATH() { <code> }
Description

This function is called each time that the end of a particular path is reached. It is typically used in
checkers that need to flag the absence of something along a path.

53

Handler functions

Since multiple paths are analyzed, this function can be called many times for a single function.
2.2.1.14. PREFER_TO_ANALYZE_CSHARP

Synopsis

PREFER_TO ANALYZE_CSHARP()

Description

This function makes the checker analyze C#-based output in the intermediate directory. By default,
checkers otherwise analyze the C/C++ output.

Example:

START_EXTEND_CHECKER(cs1, sinmple);

PREFER_TO ANALYZE_CSHARP() ;

ANALYZE_TREE()

{

The following error occurs if the intermediate directory does not contain C# output:
[ERROR] This program operates on Static C#

but specified intermediate directory <int-dir>

only contains data for C C++.

@ Note

If you have both C# and C/C++ output in your intermediate directory and want to use your
checker on the C/C++, you can use the following option on the command line to override
PREFER_TO ANALYZE CSHARP: - - cpp

For example:

> <checker-nane> --dir <internedi ate_directory> --cpp

On the other hand, if you want to analyze C# output with a checker that does not call

PREFER _TO ANALYZE CSHARP, you can use the following option to override the default behavior

of the checker: - - cs

For example:

> <checker-nane> --dir <internedi ate_directory> --cs
2.2.1.15. PREFER_TO_ANALYZE_JAVA
Synopsis

PREFER_TO ANALYZE_JAVA()

54

Handler functions

Description

This function makes the checker analyze Java-based output in the intermediate directory. By default,
checkers otherwise analyze the C/C++ output.

Example:

START_EXTEND_CHECKER(javal, sinple);

PREFER _TO ANALYZE_JAVA() ;

ANALYZE_TREE()

{

The following error occurs if the intermediate directory does not contain Java output:
[ERROR] This program operates on Static Java

but specified intermediate directory <int-dir>

only contains data for C C++.

7 Note

If you have both Java and C/C++ output in your intermediate directory and want to use your
checker on the C/C++, you can use the following option on the command line to override
PREFER_TO _ANALYZE_JAVA: - - cpp

For example:
> <checker-name> --dir <intermnediate_directory> --cpp

On the other hand, if you want to analyze Java output with a checker that does not call
PREFER TO ANALYZE_ JAVA, you can use the following option to override the default behavior of
the checker: - - j ava

For example:
> <checker-name> --dir <internediate directory> --java
2.2.1.16. PREFER_TO_ANALYZE_JAVASCRIPT
Synopsis
PREFER _TO ANALYZE_JAVASCRI PT()
Description

This function makes the checker analyze JavaScript-based output in the intermediate directory. By
default, checkers otherwise analyze the C/C++ output.

Example:

START_EXTEND CHECKER(jsi1, sinple);

55

Handler functions

PREFER_TO_ANALYZE_JAVASCRI PT();
ANALYZE_TREE()

{

@ Note

If you have both JavaScript and C/C++ output in your intermediate directory and want to use
your checker on the C/C++, you can use the following option on the command line to override
PREFER_TO ANALYZE_JAVASCRI PT: - - cpp

For example:
> <checker-name> --dir <internediate_directory> --cpp

On the other hand, if you want to analyze JavaScript output with a checker that does not call
PREFER _TO ANALYZE_ JAVASCRI PT, you can use the following option to override the default

behavior of the checker: - - j avascri pt
For example:
> <checker-name> --dir <internediate_directory> --javascri pt

2.2.1.17. ANALYZE_CLASS
Synopsis

ANALYZE CLASS() { <code> }
Description

This function can only be used for t ype [p. 50] checkers. It is called for each class that is defined in
the source code. You can use the CURRENT_CLASS macro to get the class that is undergoing analysis. It
has type def i ned_cl ass_type_t.

56

Chapter 2.3. Patterns

Table of Contents

2.3.1. Patterns for C# and Java ChECKEISuuiiiiiiii e 58
2.3.2. Functions common t0 all PATEINScouuiiiiiii e 58
2.3.3. ASTNOUEPAIEIN SUPEICIASSuiiiiiii et e eab e eees 59
2.3.4. EXPresSioNPattern SUPEICIASS ... cciuuuu ittt e et e et e e et e e et e e e et e e e eat e e eeatnaeeeee 59
2.3.5. TYPEPAMEIMN SUPEICIASS ...ttt ettt e e et e e eaa e eeees 60
2.3.6. SYMDOIPALIEIN SUPEICIASS .. .eietiiieiii ettt ettt et e eeeab e eeee 60
2.3.7. Predefined pattern ODJECEScoouuiiiiiii e 60
2.3.8. EXPreSSION PALIEINISuuiiiiiiti i eeeiii et et e ettt et e e e e e e et b e et et b e et et e e e et e e eba s 60
2.3.9. STAEMENT PALIEINS ...oitiiii ettt et e et e e e e 67
P K @ 1T g o T 11 1=T 1 1 PSPPI 68

This introduction explains the pattern matching API. It does not replace the comments in the
><j nstal |l _dir>/sdk/ headers/patterns/*-patterns. hpp header files, but provides a high
level overview. You should refer to * - pat t er ns. hpp as you read this section.

Refer to the sample pattern checker at ><i nst al | _di r >/ sdk/ sanpl es/ patt erns/ patterns. cpp,
which exercises all of the APIs described in this section.

Patterns are a mechanism for inspecting AST fragments (the AST, or Abstract Syntax Tree, is the internal
representation of the code to analyze). The basic idea is to create a pattern object and then use its

mat ch() method to compare the pattern to a specific AST fragment. When mat ch() returns true, each
subpattern can be queried to obtain the AST fragment that it matched.

In addition to AST fragments (that represent code), patterns can match types and symbols. Types are
C/C++ types such as structs, classes, or typedefs. Symbols are unique representatives for variables,
functions, and class fields (as opposed to a specific appearance of them in the code). For instance, a
variable expression (which is an AST fragment) references the symbol corresponding to the variable.

Correspondingly, there are three pattern hierarchies, with the corresponding C++ type hierarchy

that they are used to match (argument type to mat ch() is a rough equivalent). Note that only an
ASTNodePat t er n (or a subclass) can be used directly with MATCH or MATCH_TREE. For MATCH_COND,
you should use Expr essi onPat t er n.

» ASTNodePat t er n (class ASTNode)
e TypePattern (classtype_t)
* Synbol Pat t er n (class synbol _t)

ASTNodePat t er n has two important sub-hierarchies for matching statements (such as a f or loop) or
expressions (such as an addition). Correspondingly, class ASTNodePat t er n has these subclasses:

e Statenent Pattern (class St at enent)

e Expressi onPatt ern (class Expr essi on)

57

Patterns

Class ASTNode has a third subclass, Decl ar at i on (variable declaration), that can be matched by the
Decl pattern. Since Decl ar at i on has no further subclasses, there is no hierarchy.

Next are diagrams of each of those hierarchies. In these diagrams triangles represent inheritance. Filled
triangles indicate that the superclass is abstract (not instantiable), while the superclasses for the open
triangles are concrete.

Figure 2.3.1. ASTNodePattern class hierarchy
Figure 2.3.2. ExpressionPattern class hierarchy
Figure 2.3.3. StatementPattern class hierarchy

Figure 2.3.4. SymbolPattern class hierarchy

2.3.1. Patterns for C# and Java checkers

The Coverity Extend SDK was originally used only to analyze C/C++ source code. Now that the Coverity
Extend SDK also supports the creation of checkers that analyze C# and Java source code, you should
note the following conventions when writing such checkers:

« To match the use of a C# struct or class or Java class, use the pattern St r uct Type. See
Section 2.3.5, “TypePattern superclass”.

» The terms function and method are sometimes used interchangeably in the Coverity Extend SDK
header files and documentation. To match a C# or Java method call, use the pattern Cal | Si t e. See
Section 2.3.8.2, “Function call site expression patterns ".

» To match the use of a C# or Java static field, use the pattern St ati cVar . See Section 2.3.8.3,
“Variable reference expression patterns”.

» To match the use of a C# or Java instance field, use the pattern Conponent . Keep in mind that
matching a non-static class instance field involves an implicit dereference. In other words, the
code obj . fi el d involves a dereference of the object reference obj . For a code example, see
<instal | _directory>/sdk/sanpl es/java_mat ch_fi el d. For more information, see
Section 2.3.8.1, “Basic expression patterns”.

* To match C# or Java references in an Coverity Extend SDK checker, you must use the Poi nt er
pattern. The Ref er ence pattern is only used for analyzing C/C++ code. Using the Ref er ence pattern
to analyze C# or Java code will not result in a match. See Section 2.3.8.4, “Type-filtered expression
patterns”.

2.3.2. Functions common to all patterns

Every pattern superclass exposes a number of methods suitable for use in the Extend SDK. In the
following, T is used to represent either ASTNode, t ype_t, or synbol _t (as appropriate).

58

Patterns

e bool match(const T *t) — The primary matching function. Call it to attempt to match a data
structure t with the pattern. If the match is a success, mat ch returns true.

« T last _<XXX>() — Returns the last T that matched the pattern. Use only if the match succeeded.
The value for <XXX> depends on which hierarchy you're using, and which level you're at in this
hierarchy, and can be ast node, t ype, synbol , expr, or st mt . For compatibility with previous
versions of the Extend SDK, get _tree is equivalentto | ast _ast node.

e« void print(ostream &ut) const — Prints a textual representation of this pattern. The text
does not depend on whether the pattern has been used to match anything; it simply describes the
structure of the pattern itself.

e« operator const T *() — Same as| ast_XXX() ; provided as a syntactic convenience.

Patterns can also be passed to oper at or <<(ost r eam) , in which case it will print the last matched T.

2.3.3. ASTNodePattern superclass

The ASTNodePat t er n is primarily used as a superclass for St at enment Pat t er n and

Expressi onPat t er n. Itis also used to inspect the tree hierarchy formed by all ASTNodes (for instance,
an expression can be contained within a f or loop). It also has a function, r ecur si ve_mat ch, that
returns a list of all the ASTNodes underneath (and including) the given one that matched the pattern.

2.3.4. ExpressionPattern superclass

Expr essi onPat t er n matches expressions. By default, most Expr essi onPat t er ns implicitly strip
casts off of the expressions they match (exceptions to this are noted), since casts are often just noise
from the point of view of program analysis; likewise for the return value of | ast _expr () and like
functions. Expr essi onPat t er n also has a few extra functions that are not available in other pattern
hierarchies:

* bool match(const Expression *e, bool polarity) — Matches an expression that is
negated if and only if pol ari ty is false. For instance, (a == b). match(e, fal se) willmatcha !
= b. Typically used in ANALYZE_CONDI Tl ON and is used in the implementation of MATCH_COND.

« match_w t h_cast s — Matches an expressions without first stripping casts. This does not affect cast
stripping in subpatterns.

» field() — Returns a pattern that matches a field taken off an expression matched by this pattern.
For instance, if A matches f 0o, then A. fi el d() matches f 0o. bar . The method can also take a
Synbol Pat t er n argument to restrict the specific fields to match.

 nethod() — Same asfi el d(), except that it matches a non-static method call.

» get _type() — Returns the type of the last matched expression.

Most C++ operators are also overloaded for class Expr essi onPat t er n, that allows for the construction
of patterns that match equivalent syntax. For instance, pattern A + B matches an addition.

59

Patterns

2.3.5. TypePattern superclass

TypePat t er n matches types. They cannot be used directly in MATCH or MATCH_TREE (because these
functions match AST nodes) but they can be used as parameters to other patterns, or used directly on
the result of get _t ype_of _tr ee. By default, most TypePat t er ns remove typedefs and qualifiers
before attempting to match (exceptions are noted). This means for instance, that a pattern x_p defined
like this:

Struct Type x("X");
Poi nt er Type x_p(Xx);

matches all these types:

typedef struct X * X p; Xp
struct X *
struct X const *

TypePatternalsohasamatch _with_typedefs _and_quali fi ers thatis analogous to
ExpressionPattern::match_wth_casts.

2.3.6. SymbolPattern superclass

Synbol Pat t er n matches symbols. Like the TypePat t er n class, Synbol Pat t er n cannot be used
directly in a MATCH or MATCH_TREE. Instead , use Synbol Pat t er n as a parameter to other patterns.
The most common Synbol Pat t er n is NanedSynbol , which can be used to match a specific function or
variable.

2.3.7. Predefined pattern objects
The Extend SDK has several pattern objects predefined for convenience.

« anyASTNode, anyExpr, anyStnt, anyType, anySynbol — Patterns that matches anything in
the relevant pattern hierarchy.

@ Note

Do not pass any<XXX> as a pattern and then try to extract the data that it last matched; they are
global and used internally, and the last matched data could change at any time.

* _ (underscore) — A pattern that matches anything in any pattern hierarchy. Because of potential
ambiguity, it's preferable to use any <XXX> described previously.

2.3.8. Expression patterns

The most commonly used pattern classes are Expr essi onPat t er ns.

AnyExpr essi on (also Expr) is the most general pattern and it matches any expression. It doesn't strip
casts.

60

Patterns

2.3.8.1. Basic expression patterns

The basic expression patterns are those that correspond directly to primitive syntactic expression
constructors. Here's a list of some of them.

Bi nop (BinaryQp op, ExpressionPattern &a, ExpressionPattern &) — Match

a binary operator, for example a + b. Typically you do not need to explicitly create a Binop,
because there are overloaded operators on Expr essi onPat t er ns that will do so automatically.
However, there are occasions where direct use is convenient. The possible values for op are listed in
><i nstal | _dir>/sdk/ headers/ast/cc_fl ags. hpp

SynBi nop(Bi naryQp op, ExpressionPattern &, ExpressionPattern & — Match an
operator that is symmetric, for example a + b. Any of the Bi nop operators can be used, but only the
symmetric ones make sense. This is useful when the a and b patterns are different, as SynBi nop
matches both (a, b) and (b, a) orderings.

ASynBi nop(Bi naryOp op, ExpressionPattern & ExpressionPattern &) — Match
an anti-symmetric operator or its dual. For example, a < b orb > a. Only anti-symmetric binops
(inequalities) can be used.

Unop(UnaryOp op, ExpressionPattern & — Match a unary operator, for example - a. As with
Bi nOp, direct use of Unop is only occasionally useful, since overloaded operators are provided that
cover most of the common uses. The possible values for op are listed in ><i nst al | _di r >/ sdk/
header s/ ast/cc_fl ags. hpp

MapAccess(Expressi onPattern &rap, ExpressionPattern &key)
This expression pattern applies only to JavaScript.

Properties of other expressions will be represented by this. Also, global variables are represented
by a MapAccess off a @ obal Var map. For example, the following will match all global variable
expressions:

d obal Var gl obal ;
MapAccess access(global, _);

if (MATCH(access)) { ... }
St ar — Match a dereference, for example * p. This will not match if p is an array (see below).

Arrayl ndex — Match an array element reference, i.e. a[i]| where a is an array. This will not match if
a is a pointer.

Assi gn — Match an assignment or compound assignment, for examplea = bora *= 2.
Ef f ect — Match an increment or decrement, for example ++a or b- - .

CondPat t er n — Match a use of the ?: operator.

Const _i nt — Match an integer literal.

Const _f | oat — Match a floating point literal.

61

Patterns

e Const _stri ng — Match a string literal.
» Conponent — Match a use of a field of an object, for example a. b.

» Cast — Match a cast. The flags control whether automatic (implicit) casts, manual (explicit)
casts, or both are matched. This includes C++-style casts such asr ei nt er pr et _cast but not
dynam c_cast .

» St nt Expr — Match a GNU statement expression, for example ({ x; vy; z; }).
» Thi s— Match a use, either explicit or implicit, of the t hi s expression.

* Addr — Match an address-of expression, for example &e.

e Thr ow— Matches a t hr ow expression.

e NewPat t er n — Matches a new expression.

* Del et ePat t er n — Matches a del et e expression.

* Dynam cCast — Matches a dynani c_cast expression.

The two remaining primitive constructs are variable reference and function call, which are addressed in
subsequent sections.

2.3.8.2. Function call site expression patterns
There are a variety of patterns to match function call sites:

e Cal | Si t e — Match function calls. This pattern is used to implement all the other ones below, which
are only provided for backwards compatibility and convenience. A Cal | Si t e pattern can be set
up to match function pointers, direct function calls or both (using set Cal | edExpr essi on) . It can
also include or exclude method/non-method calls (using set Recei ver Obj ect). It also has an
oper at or () method that allows specifying call arguments.

Note
See bullet items below for uses of Cal | Si t e that replace deprecated Fun patterns.

* Fun() — Match a call to any function, including calls through function pointers. Equivalent to:
Cal I Site()

For backwards compatibility, note that using oper at or () with no arguments has no effect (but using
Cal | Si t e with no arguments matches a call with no arguments).

g Note
This function is deprecated as of version 2020.12.
Use Cal | Si t e instead. For example:

* You can replace the following:

62

Patterns

Fun f;

With the following:

CallSite f;

e Fun(char const *nane, fun_options flags = NONE) — Match a call to a function, restricted
as follows:

If the call is through a function pointer, match if and only if f | ags includes

FUNCTION_POINTERS_ALLOWED.

If the call is to a named function (including class methods):

 If nanme is NULL, then match.

e Otherwise, if f | ags includes UNMANGLE_NAME, match if the unmangled name of the called
function equals nane.

Name mangling is a technique used by compilers to encode the type of an entity in its linker
symbol name. For more information, see Section 2.8.2, “Name mangling”.
« Otherwise, match if the mangled name of the called function equals nane.

Note
This function is deprecated as of version 2020.12.
Use Cal | Si t e instead. For example:
» You can replace the following:
Fun f(nane);
With the following:
Call Site f(nane, /*unmangl e*/fal se);

Note that MATCH(f ()) is equivalent to MATCH(f) when f is a Fun. However, iff is a
Cal | Site, MATCH(f ()) will only match a call with no arguments, so Coverity recommends
using MATCH(f) in this case.

« You can replace the following:
Fun f(NULL, Fun:: FUNCTI ON_POl NTERS ALLOVED) ;
With the following:
CallSite f;
« You can replace the following:
Fun f(nanme, Fun:: FUNCTI ON_PO NTERS_ALLOVED) ;

With the following:

Functi onDecl fnDecl (name, /*unnmangl e*/fal se);

63

Patterns

CallSite f(O (fnDecl, *_));

* You can replace the following:
Fun f(NULL, Fun::FUNCTI ON_PO NTERS REQUI RED) ;
With the following:
CallSite f(*);

* You can replace the following:

Fun f (NULL, Fun::FUNCTI ON_PO NTERS_DI SALLOVWED) ;

With the following:

Functi onDecl fnDecl;
Call Site f(fnDecl);

* Fun(Mil ti pl eNamesTag mtag, const char **fnanmes, fun_options flags = NONE)
— Similar to the previous pattern, except for a call to a named function, match if the name equals any
of the strings in the NULL-terminated f nanmes array. If f nanes begins with NULL, match regardless of
the called function's name.
Note

This function is deprecated as of version 2020.12.

Use Cal | Si t e instead. For example:

* You can replace the following:

Fun f (Fun:: matchMil ti pl eNames, nanes);

With the following:

Call Site f(nanedSymnbol s(nanes));
Menber Fun — Match a call to a nonstatic member function, and provide patterns for the arguments. At
a minimum, a pattern must be provided for the receiver object (the instance). Optionally, a sequence of
argument patterns may be specified using oper at or () .
z Note
This function is deprecated as of version 2020.12.

Use Cal | Si t e instead. For example:

* You can replace the following:

Menber Fun f (receiver);

With the following: 64

Patterns

CallSite f;
f.set Recei ver bj ect (recei ver);

Const ruct or — Match a call to a constructor.

CopyConst ruct or — Match a call to a copy constructor, which is a special case of what
Const ruct or matches.

Dest ruct or — Match a call to a destructor.

Anyf un — Match a call to any function (there is no filtering based on function name). If you specify an
argument pattern, the pattern matches if any argument at the call site matches the argument pattern.
For example, Anyf un() (Const _i nt) matches any call where a literal int is among the arguments.

Note
This function is deprecated as of version 2020.12.
Use Cal | Si t e instead. For example:

» You can replace the following:

Anyfun f;
MATCH(f (pat));

With the following:

Call Site f;
f.set AnyArg(pat);

2.3.8.3. Variable reference expression patterns

There are several patterns that match variable references, possibly taking into account scope and
linkage:

Var — Match a variable used in an expression.

TenmpVar — Match a use of a temporary variable inserted by the parser.
Local Var — Match a use of a (nonstatic) local variable.

St at i cVar — Match a use of a static variable.

@ obal Var — Match a use of a global variable.

Par m— Match a use of a formal parameter.

Funct i onDecl — Match a use of a function as an expression (either the called expression in a
function call, or taking the address of a function).

FunLocal — Match a use of a local variable, formal parameter, or a field of (recursively) a class/struct/
union-valued local or parameter. This corresponds to stack-allocated storage (except arrays).

65

Patterns

2.3.8.4. Type-filtered expression patterns

Several patterns match expressions with certain types:

* Array — Match an expression with array type.

e Const _obj — Match an expression whose type has the const qualifier.

« ExprWthType (TypePattern & — Matches an expression whose type is matched by the given
TypePat t er n. For example,

I nt eger integer
is equivalent to:

I ntegral Type itype;
Expr Wt hType integer(itype);

* Fl oat — Matches an expression with a floating point type (such as f | oat or doubl e). Same as
Expr Wt hType (Fl oat Type).

* Fl oat Type— Matches a floating point type (float, double, or long double). For example, you can pass
this as a parameter to ExprWithType's constructor.e.

* Functi onPoi nt er — Match an expression with pointer to function type.

* | nt eger — Matches an expression with an integral type. Same as Expr Wt hType
(I'ntegral Type).

« | nt egr al Type— Matches an integral type, for instance i nt , char or bool butnotfl oat or
doubl e.

* NonConst Addr — Like Addr [p. 62] (match a use of the address-of operator), except it does not
match if the object whose address is taken has the const type qualifier (for instance, when using a
const reference function argument).

* Poi nt er — Match an expression with pointer or reference type.

» Ref er ence — Match an expression with a C++ reference type.

e Scal ar — Matches an expression with a scalar type. Same as Expr Wt hType (Scal ar Type).
» Scal ar Type — Matches any scalar type (integral or floating point).

e Struct — Match an expression with struct or cl ass type.

e Uni on — Match an expression with union type.

2.3.8.5. Complex expression patterns

Program analyses often need to detect certain kinds of more complex expression patterns. Several
Extend SDK patterns do just this:

66

Patterns

e Ar g — Match an expression used as an argument to a function call. Accessors are provided to
navigate to the call itself, and to see where in the call list the matched expression appeared. Will not
strip casts.

e Condi ti onPattern — Match an expression used as a guard for a control flow statement or short-
circuit operator.

+ O f set — Match an expression that is the same as or an offset off of a given expression (pattern).
For example, if you have an AST p that denotes a pointer, then O f set (Sanme(p)) matches an
expression like &p- >f 00 which denotes a pointer to the same object that p does, but displaced by the
offset of field f 0o. It will also recursively handle e.g. & p + 10) - >f oo.

* AnyFi el d — Given an expression (pattern), match an expression that is formed by appending field
access operators. For example, given a, AnyFi el d(a) matchesa. b and a. b. c.

» AnySubpart — Like AnyFi el d, except also allow array accesses, and (optionally) pointer
dereferences.

* Lval — Match an lvalue, which is an expression that can appear on the left-hand side of an
assignment operator. For example, x and * p are Ivalues, whereas 3 and a+b are not (assuming those
expressions use the built-in operators). A function call f () that returns a reference is translated by the
parser into an explicit dereference *f () and the latter is matched by Lval .

2.3.8.6. Evaluation patterns

The evaluation patterns find the subexpression s of a (potentially) larger expression e that specifies the
value yielded by e. These patterns are most easily explained in terms of the Eval s_t o function.

« BEval Pattern (Pattern &pat) — Use Eval s_t o repeatedly to dig down into the matched
expression, stopping as soon as pat matches a subexpression returned by Eval s_t o.

e Eval sToPattern — Use Eval s_t o to dig down to the smallest subexpression, then attempt to
match pat against that subexpresssion.

2.3.9. Statement patterns

Each kind of statement has its own pattern to match it:

* AnySt at enent (also St nt Pat) — Match any statement.

» DoWwhi | ePat — Match a do statement.

e Expr St nt — Match a statement containing a single expression, for example a++; .
« | fPat — Matchani f statement.

Note that the guard expression fori f , f or, and whi | e is normalized to a Boolean, and the match
expression must agree with this normalized form. For example:

int f();

67

Patterns

if(frO) { ...}

The test is normalized by the parser to:
if (f() '=0) { ...}

Hence, to match this, use:

CallSite call;
MATCH(| f Pat (call !'= 0))

There is an example of this in ><i nst al | _di r >/ sdk/ sanpl es/ patt erns/ patterns. cpp.
For Pat — Match a f or statement.

Wi | ePat — Match a whi | e statement. See ><i nstal | _di r >/ sdk/ sanpl es/
whi | el oopassi gn/ whi | el oopassi gn. cpp for some examples.

Swi t chPat — Match a swi t ch statement.

Ret ur nPat — Match a r et ur n statement. You can specify whether a value is returned. While there
is always a return statement even when falling through the end of a function, you should use the
ANALYZE END OF PATH handler to respond to control flow that exits the function.

Try — Match atry/ cat ch statement.
AsmPat — Match an asmstatement.

LoopPat — Matches f or , whi | e and do statements. This pattern does not match loops with a
condition of constant 0, for example it won't match:

do {} while (0);
because this isn't a loop. You can use DoWhi | ePat to match this case.
Use:

Expr Pat | oop_cond;
LoopPat | oop(| oop_cond);

to match a loop and pull out the conditional expression. You can then check the conditional (for
example is a <= b, or a > b) and act accordingly.

2.3.10. Other patterns

2.3.10.1. Binding patterns

The following classes are part of the implementation of Sarme and Pt r Sane, but they are not intended to

be used directly.

* Bi ndi ng

68

Patterns

Pat t er nBi ndi ng
Pt r Bi ndi ng
Pt r Bi ndi ngPattern

2.3.10.2. Syntactic context filters

Cont ai nsPat (Pattern &subpattern) — Match a tree that has a subtree that matches
subpattern.

I nCont ext Pat (Pattern &context) — Match a tree that has a parent tree that matches
cont ext .

I nSt at erent Cont ext Pat — Similar to | nCont ext Pat , but only searches within the closest
enclosing statement.

SubTreePat (tree t) — Match any subtree of t.

2.3.10.3. STL construct patterns

STL_cont ai ner — Match an expression that denotes an instance of an STL container. Member
functions are provided that match invocations of corresponding member functions on the container..
STL_i t er at or — Match an expression that denotes an instance of an STL iterator. Member
operators are provided that match applications of operators to the iterator.

2.3.10.4. Miscellaneous patterns

Exi t Scope — Match a local variable going out of scope. This matches when exiting using ar et urn
statement, or any other way the flow goes out of a block (for example, br eak or got o statements).
DeadVari abl e — Match a local variable becoming dead, which means that its value is not used
again on the current path. The main purpose of this pattern is to optimize a checker's performance by
removing useless mappings from the store.

2.3.10.5. Combinators (And, Or, etc.)

constant (int i) — Equivalentto Const _int(i).

assi gn(Expressi onPattern &a, ExpressionPattern &) — Equivalentto Assi gn(a, b).
cast (Expressi onPattern &) — Equivalentto Cast (e).

opt _cast (Expressi onPattern &e): — Equivalentto Or (e, Cast(e)).

Const — Build a Const _obj pattern.

And(Pattern &a, Pattern &b, ...) — Match if all of the argument patterns match. Available
for all pattern hierarchies.

O (Pattern &, Pattern &b, ...) — Match if any of the argument patterns match. Available
for all pattern hierarchies.

Not (Pattern &) — Match if a does not match.

Cont ai ns — Build a Cont ai nsPat pattern.

69

Patterns

e« Wt hi n — Build an | nCont ext Pat pattern.
« Wt hinStatenment — Build an | nSt at ement Cont ext Pat pattern.

 Eval s_t o — Look in an expression e to find the subexpression s that determines the value yielded
by e. For example, Eval s_to(a = b) returns b. The exact forms that are recognized are documented
in the comments above the declaration in ><i nst al | _di r >/ sdk/ header s/ pat t er ns/ ext end-
patterns. hpp.

70

Chapter 2.4. Accessors

Table of Contents

2.4.1. Additional AST QUETY TUNCLIONSuuiiiiiii ettt e et e e e e e eees 71
2.4.2. Queries on the CUrrent fUNCHIONoiiiiii e e e e aeens 71
2.4.3. Queries 0N the CUIMTENT fileoiii i e e e e e e een 72
A @ U= oY o g T 1= L PPN 72

2.4.1. Additional AST query functions

A number of additional AST query functions are declared in <i nst al | _di r >/ sdk/ header s/ ext end/
ext end- | ang. hpp, which are described next.

The type safe Abstract Syntax Tree can be accessed from Coverity Extend SDK checkers. Details about
the interface are located in <i nstal | _di r >/ sdk/ header s/ ast/cc. ast.

2.4.2. Queries on the current function

Since the analysis works one function at a time, several functions return information about the current
function being analyzed.

e current_function_get nangl ed_nane — Returns the full, mangled name of the current function.

e current _function_get_nane — Returns the identifier for the current function, for example f oo.
This name is never mangled.

e current_function_get_signat ure — If the function's name is mangled (that is, a C++ function,
but not mixed code using ext ern " C"), returns the result of demangling. This includes scope and
parameter type information, for example N: : f oo(i nt) . Otherwise, this returns the identifier of the
function, for example, pri ntf.

« current_function_get_cl ass_name — Returns the scope in which the current function is
defined, for example N. For a function in the global scope, returns the empty string (" ").

e current _function_is_ctor — Returns true if the current function is a constructor.

« current _function_is_dtor — Returns true if the current function is a destructor.

e current_function_is_pure_virtual — Returns true if the current function is a pure virtual
function. Note that a pure virtual function is defined as follows:
class Myd ass {

virtual void pureDefined() = 0; // conbining pure and inline NOT all owed

H

void Myd ass::pureDefined() { /* but this IS allowed */ }

71

Accessors

e current_function_is_virtual — Returns true if the current function is a virtual function.

2.4.3. Queries on the current file
Additional queries return information about the file in which the current function is defined.
e current _file_get name — Returns the name of the file in which the current function is defined.

o current_fil e_lineno— Returns the line number where the current AST fragment appears.

2.4.4. Queries on trees

These queries return information about the current tree.

* is_tree_i n_macr o — If the current tree is inside a macro, returns the macro's name. Otherwise, it
returns NULL.

 get _type_of tree(tree t) — Returnsthetype_t representing the type of t . If t does not have
a type, returns NULL.

e get _size of type(type_t *t) — Returns the representation size in bytes for objects of type t .

72

Chapter 2.5. The store

Table of Contents

P TR Y (o 1= B0 V= V= PP 73
2.5.2. vOid SET_STATE(IrEE 1, INE V) oeriiiiiiiii i e e e e e e e e et e e e e e ean s 73
2.5.3. VOId CLEAR_STATE(IIEE 1) 1evevevureiiiieeeiieiiiiiieae s e e eeeeeati s s s e e e e eeaaat s s s e e e aeeasatns s s seeeeeeennrnnnns 74
2.5.4. bool GET_STATE(IEE t, INE &V) orvuiiiii i e e e e e e e e et e e e e e aanaees 74
2.5.5. bo0ol MATCH_STATE(IrEE t, INt V) 1oiiiiiiiii i e e e e e e e e e e et e e e aeranaeees 74
2.5.6. bOOl COPY_STATE(LrEE dSt, trEE SIC) ..evvuuiiiiiiiiiie e et e e e e e et e e e e e e e e e e e e e aeranaaees 74
2.5.7. FOREACH_IN_STORE(tree &t, int &) {body } ...oovvviiiiiieiiiii e 74
2.5.8. bool ADD_EVENT(tree t, char const *tag, dESC)ccuuiiviiiiiiiiiiiii e e e e 74
2.5.9. bool COMMIT_ERROR(tree t, char const *tag, deSC)c.cvivviiiiiiiiiiiiieiii e e 74
2.5.10. ADD_INPUTFILE_EVENT ...iiiiiiiiiiii it e ettt e e et s s s e e et e e aatan s s e e e e e e eeatnsnnaeaeeeeennnes 75
2.5.11. COMMIT_INPUTFILE_ERRORouuiiiiiiiiitiiiiii it eee et s s s e e e ettt s s s e e e e e e anatannnaeeeaeeennnes 75

2.5.1. Store overview

The store is the primary data structure for a flow-sensitive checker (a flow-insensitive checker has no
store). It is an approximation of a set of states that a real, running program might be in. As the checker
walks over the program's abstract syntax tree (one function at a time), it simulates the program's behavior
by changing the store in response to program operations such as assignments and function calls.

The store is a map from abstract syntax trees denoting expressions (AST nodes) to a pair consisting of
an integer and an event sequence:

store : tree -> (int, event[])

The integer part of a mapping value is an abstract value. Whereas a real program (typically) has an
infinite state space of concrete values, a checker reduces these down to a finite number of abstract
values so that the checker can terminate. Much of the art of checker design is in choosing the set of
abstract values. Although the examples in this manual are meant to suggest basic approaches, there are
no hard and fast rules about abstract domain design, so some experimentation is required.

The event sequence part of the mapping value is for defect reporting purposes. It summarizes the
sequence of abstract state transitions that have occurred for the mapped expression, so that a user
viewing the report can understand what the checker did when it arrived at some conclusion. Note that an
expression must be mapped to some abstract value before events can be attached to it.

The Extend SDK API provides several macros for querying and manipulating the store, as documented in
the following sections.

For a detailed example of using the store, see Section 1.4.5, “Example: tracking the sign of expressions”.

2.5.2. void SET_STATE(tree t, int v)

If there is no mapping for t , creates a mapping, setting the integer component to v and the event
sequence component to the empty sequence.

73

The store

2.5.3. void CLEAR_STATE(tree t)

Removes a mapping for t if one exists.

2.5.4. bool GET_STATE(tree t, int &v)

If there is no mapping for t , returns false.

If there is a mapping for t , returns true, and sets v to equal the integer component of that mapping.

2.5.5. bool MATCH_STATE(tree t, int v)

If there is a mapping for t , and the integer component of that mapping is equal to v, then returns true.

Otherwise, returns false.

2.5.6. bool COPY_STATE(tree dst, tree src)

First, calls CLEAR_STATE(dst) .
Next, if there is no mapping for sr ¢, returns false.

Otherwise, creates a mapping for dst , sets its integer value and event sequence to equal those of sr c,
and returns true.

2.5.7. FOREACH_IN_STORE(tree &t, int &v) { body }

For each mapping in the store, bind t to the tree and v to the integer component, then execute body.
The body is syntactically in a f or loop, so br eak and cont i hue can be used to control the iteration.

The loop iterates over the mappings in an undefined order.

It is an error to modify the store during the iteration.

2.5.8. bool ADD_EVENT(tree t, char const *tag, desc)

If there is no mapping for t , returns false.
Otherwise, appends a new event to the event sequence to which t is mapped, and returns true.

The new event is constructed using t ag and desc. The latter is evaluated as the right-hand argument to
operator <<(ost r eam&) so you can construct complicated event strings, for example:

ADD_EVENT(t, "ny_tag", "One plus " << 1 << " is " << (1+41));

See Chapter 2.6, Adding events for more information on tags.

2.5.9. bool COMMIT_ERROR(tree t, char const *tag, desc)

If there is no mapping fort, or t has no events, returns false.

74

The store

If t ag is neither NULL nor the empty string (" "), outputs the event sequence associated with t , plus one
more event, constructed from t ag and event as described in ADD_EVENT.

g Note

Due to these rules, you must create a mapping for a tree before you can add or output events.
Further, you need to add at least one event (by using ADD_EVENT) before calling COVM T_ERROR.
In some circumstances, you need to invent a dummy value and/or event for this purpose.

2.5.10. ADD_INPUTFILE_EVENT

For a full description of this macro, see ADD_INPUTFILE_EVENT (tree, /*extend_inputfile_t*/ f, line, tag,
text_utf8).

2.5.11. COMMIT_INPUTFILE_ERROR

For a full description of this macro, see COMMIT_INPUTFILE_ERROR (tree, /*extend_inputfile_t*/ f, line,
tag, text_utf8).

75

Chapter 2.6. Adding events

A defect report (error) from a checker consists of a nonempty sequence of events. An event is a pair
consisting of two strings: a tag, and a description. A typical checker creates an event each time it updates
its store, and a final event when it outputs an defect report. Event tags are short, single-word strings.
Typically, a checker has one tag for each major kind of event that it creates.

You can suppress defect reports by adding source code annotations as described in the Coverity 2020.12
Checker Reference . The event tag named is in the annotation.

Event descriptions are arbitrary strings that describe what is happening and what the defect is to the user.

The main way to create a defect report is to use ADD_EVENT and COVM T_ERROR. However, using
QUTPUT_ERROR(desc) outputs a single-event defect report immediately, bypassing the store entirely.
Input file macros are also used for producing events and errors (see Chapter 1.9, Reporting events and
defects on input files).

Outputting a defect does not necessarily mean it will ultimately be put into the final list of defects, due to
two pass checking, which is explained in Section 1.7.3, “Two-pass checking”.

76

cov_checker_ref.pdf#codeannotate
cov_checker_ref.pdf#codeannotate

Chapter 2.7. Types

Table of Contents

P % O 11 o o 0T (o] o TSP P PP UPPPTTR 77
A |V oL S PP 77
P R T = 0|V 1 L PP PPPN 78
A A o - | g 1Y o1 ST SPP PP SPPPTTRPPPIN 78
A ST o o] 101 (T G 1Y o 1= PO PT TR 78
TV =\ Y 1] L= S PP 79
A O oY = Vo] o [T S 1 o1 PPN 79
P AR T 0 T (o o 1Y/ o 1= PP TPPPPTI 79
2.7.9. SCOPEU Y PO b ittt et 79
P T O oo] o1 PPN 79
B % N o [1 o T=To [1 o1 A TSP TOPPTTRN 80
P A A Y o =T o (= 1 1= TSP PP TOPPTTR 80
2.7.13. forward_declarable _type toooeiiiii e 80
A =Y 01U [4 T 1Y/ o L S PP 80
A % R T Vo [TP PSP SPPPTTR 80
P % N T ¥ o1 To] o T 1Y/ L= ST SPPPTTRUPPPTNS 80
A % N G (1= (o [PP PP SOPPTTRTP 81
2. 708, ClaSS YD b ittt ettt 81
A R o 1= 1 (=T 1 | PP PPN 81
A . O B {0 T 1 o] o 1 PPN 82
P A W 11T o g L= g £ o L= PP PPTT R PPPPPT 82
2.7.22. extend _INPULITE To e e 82

2.7.1. Introduction

As explained in Chapter 1.8, Examining the class hierarchy, types are represented using objects drawn
from a class hierarchy rooted att ype_t . Each of the classes and its fields is described in the following
sections.

2.7.2. type_t

This class is the superclass of all type representation classes. It does not have any data members.

It has a number of virtual functions that can be used to determine which t ype_t subclass that an object
is. This information is also available using standard run-time type identification, but these methods are
sometimes more convenient. For each subclass SUB, there are methods:

» const SUB &as_SUB() const — If this object has dynamic type SUB, returns a reference to it as
such. Otherwise, throws i nval i d_t ype_excepti on.

« SUB &as_SUB() — Same as previous, but accepts/returns a hon-constant reference.

e« const SUB *as_SUB p() const — If this object has dynamic type SUB, returns a pointer to it as
such. Otherwise, returns NULL.

77

Types

« SUB *as_SUB p() — Same as previous, but accepts/returns a non-constant pointer.

2.7.3. any_type t
This is a placeholder type for JavaScript, since it is a dynamic language and detailed type information is
not available. Most types in JavaScript will be treated as pointers to any_t ype_t . The exceptions to this

are scalar types (e.g. integer literals) and pointers to the "char " scalar type (e.qg. string literals). As such,
the matching described for most types in this chapter is not applicable to JavaScript.

2.7.4. scalar_type_t

This class represents a fundamental type such as i nt . It has the following fields and methods.

e string name — Name of the type. Possible values are:

e "voi d"
e "bool "
e "char"

e "signed char"
e "unsi gned char"”

e "short"

e "unsi gned short™
e "int"

e "unsigned int"

* "long"

e "unsi gned | ong”

« "long | ong"

e "unsigned | ong | ong"
e "float"

e "doubl e"

e "l ong doubl e"

e int size— Size in bytes of objects of this type.

* bool m.is_fl oat — True if this type is a floating-point type (one of f | oat , doubl e or | ong
doubl e).

* bool m.is_signed — True if this type is any of the floating-point types, or one of the signed integer
types.

2.7.5. pointer_type _t

This class represents a pointer, reference, or pointer to member type.

 type_t pointed_to— The referenttype. Ifitis a menber type_t, then this type represents a
pointer to member.

Types

2.7.6. array_type_t
This class represents an array type.
* type_t el enent _type — The type of the elements.

* int el ement_count — Number of elements in the array. A value of -1 indicates that it is a variable
length array.

2.7.7.cv_wrapper_type_t

This class represents a variant of an underlying type but with const or vol ati | e (or both) applied.

e type_t target — The type thatis being wrapped with cv-qualifiers. Cannot be
cv_wr apper _type_t.

« v_flag_ t fl ags — Bitmap of cv-qualifiers being applied. Never 0.
2.7.8. function_type_t
This class represents a function type.

* type_t args[] — The sequence of argument types. For nonstatic methods, the receiver object
(t hi s) type is the first argument.

e type_t return_type — The return type of the function.

* bool has_varar gs — If true, the function accepts a variable number of arguments. The ar gs
sequence has the required parameter types (those that precede ". . .").

2.7.9. scoped_type t

This class is a superclass of types that the user can define.

* string nane — The name of the type.

e string unmangl ed_nanme — The name of the type, mangled as defined by the 1A64 C++ ABI.

e scope_t scope — The scope in which this type appears.

2.7.10. scope_t

This class represents a named scope in the program being analyzed.
* string name — Name of the scope mangled as defined by the IA64 C++ ABI.
e string unmangl ed_name — Unmangled name of the scope.

e scope_t parent — Parent scope, or NULL.

79

Types

2.7.11. defined_type _t

This class is the superclass of t ypedef type_t.

e string file— The file in which the definition appears. If it is only declared, this is the file in which
the declaration appears.

e int |ine_no— The line number of the previous declaration or definition.

2.7.12. typedef_type _t

This class represents at ypedef .

e type_t target — The type for which this t ypedef is an alias.

2.7.13. forward_declarable type t

This class is a superclass of the types that can be forward-declared: class/union or enum only.

e bool is_defined— Indicates that the objectis ani nt ernal _defi ned cl ass_type_t or
i nternal defined _enumtype_t, andthe as_defi ned function can be called.

e bool is_forward_decl ar ed — Indicates that the type was forward-declared and the definition is
not contained in the f or war d_decl ar abl e_t ype_t objectitself.is_forward_decl ar ed is the
negation of i s_def i ned. To find out if a definition is available, use the has_def i ni ti on function.

e bool is_unnanmed — Indicates if the type was originally unnamed. The get _nane function returns a
generated name.

* bool has_definition— Indicates if there is a definition for this type.
2.7.14. enum_type _t

This class represents an enumeration type.
e int size— The size in bytes of an object of this enumeration's type.

e tag_ t val ues[] — The sequence of enumerators in this enumeration.

2.7.15. tag_t

This class represents a single enumerator in an enumeration.

e string name — The name of the enumerator.

e int val ue — The value to which the enumerator is defined.
2.7.16. union_type_t

This class represents a union type.

80

Types

i nt si ze — The size in bytes of this union.

field t fields[] — The set of members of this union.

2.7.17. field_t

This class represents a member of a union.

stri ng name — The name of the member.

type_t type — The type of the member.

bool is_bit_fiel d— Determine if the field is a bit field.

bool is_anonynous_bit_fiel d— Determine if the field is an anonymous bit field.

defined_cl ass_type_t get_owner_cl ass — Retrieve the owner class as
defined_cl ass_type_t.

class_type_t *owner_cl ass — Retrieve the type as nenber _type_t.
unsi gned get _of f set — Retrieve the offset, in bytes, from the beginning of the object.

unsi gned char get_bit_of f set — If a bit field, this is the non-byte offset (O otherwise). The bit
field's bit offset is therefore get _of fset() * 8 + get_bit_offset().

bool is_signed_bitfield— True if the type of a bitfield is explicitly signed, For example, si gned
int.

bool i s_nut abl e — Determine if this is a mutable field (mutable keyword).

2.7.18. class_type_t

This class represents a class or struct type.

bool m.is_struct — True if this object represents a struct, false if it represents a class.
i nt si ze — The size in bytes of this class.

parent t parents[] — The sequence of base classes.

2.7.19. parent_t

This class represents an immediate parent class of another class.

AccessKeywor d access — The accessibility of the base class.
bool is_virtual — True if this is a virtual base class.

class_type_t get class() — A member function.

81

Types

2.7.20. function_t

This class represents a function.

type_t *get_return_type— Getthe return type of this function.

function_type t *get ftype — Getthe function type.

bool
bool
bool
bool
bool

bool

i s_virtual — Determine if the method is virtual.

i s_pur e — Determine if the method is pure virtual.

i s_nonst ati c_net hod — Determine if the method is non-static.
i s_static_met hod — Determine if the method is static.

i s_ct or — Determine if the method is a constructor.

i s_dt or — Determine if the method is a destructor.

2.7.21. member_type t

This class represents the type of a member of a class.

e type_t nenber _type — The type of this class member.

» class_type_t c — The class of this member.

2.7.22. extend_inputfile t

For a description, see Chapter 1.9, Reporting events and defects on input files.

82

Chapter 2.8. Reference information

Table of Contents

P S B B o T 1o (= gl 1= TP 83
2.8.2. NAME MANGING .ttt e et e et et e e e e et e e e e ettt e e eeta e e e eeta e e e eeteaeaeees 83

The following sections contain header file and nhame mangling reference information.

2.8.1. Header files

The many header files in the <i nstal | _di r >/ sdk/ header s directory are necessary to compile
an Coverity Extend SDK checker. However, only the following subset of these files declare or define
functionality that can be used in an Coverity Extend SDK checker.

« ast/ast node. hpp - Defines the ASTNode class, the base class of abstract syntax tree (AST) node
types, such as expressions and statements.

» ast/cc. ast - Defines the AST node types, representing statements, expressions, and so on. It
serves as the source for the generated header ast/ cc. ast. hpp.

» ast/cc_fl ags. hpp - Defines enumerations used by AST node types.

» ext end/ ext end-1 ang. hpp - Defines the primary set of macros that an Coverity Extend SDK
checker uses.

Note that ext end- checker - t ypes is not useful for end users.
* synbol s/field. hpp-Definesthefield_t type, asynbol _t representing a data member.
» synbol s/ functi on. hpp - Defines the f uncti on_t type, a synbol _t representing a function.

* synbol s/ synbol . hpp - Defines the synbol _t type, which is the base type for all the symbols (such
as variables and functions).

» synbol s/ vari abl e. hpp - Defines the vari abl e_t type, a synbol _t representing a variable
(global or local, including static data members).

e types/ ext end-types. hpp - Defines the t ype_t hierarchy, representing types.
* types/scal ar-types. hpp - Defines enums and macros to go with the scal ar _t ype_t type.

You can also use standard C/C++ headers.

2.8.2. Name mangling

83

Reference information

Name mangling is a technique used by compilers to encode the type of an entity in its linker symbol
name. This is necessary because of function overloading:f (i nt) and f (i nt, i nt) are distinct entities,
so their linker symbol names must be distinct.

2.8.2.1. Mangled naming scheme: C++

For C++ name mangling, Coverity uses the IA64 C++ ABI B name mangling scheme, regardless of
whether it is running on the IA64 platform or not. Table 2.8.1, “C++ Mangled names” provides the
mangled names of two functions, as defined by that scheme.

Table 2.8.1. C++ Mangled names

Unmangled name Mangled name
f(int) _ZAfi
f(int,int) _ZAfii

2.8.2.2. Mangled naming scheme: C#

Coverity uses a specialized grammar to represent the names and signatures of C# types, fields, methods,
and so on. The rules for C# name mangling are as follows:

* Nested namespaces are separated by a period: Syst em Dat a
» Types directly contained by a namespace are separated by a period: Syst em Mat h

» Types represented by special keywords, such as int or void, are represented by their equivalent fully-
gualified system types: Syst em | nt 32

» Array types are represented as in C#, by appending brackets containing zero or more commas:
System Char [,]

» Nested types are separated by a solidus: Qut er d ass/ | nner d ass

» Unconstructed generic types and methods are represented by appending a backtick and
the generic arity (the number of type parameters) to the mangled type or method name:
System Col | ections. Generic.Dictionary 2

» Constructed generic types are represented by appending to the mangled type
name a comma-separated list of mangled type arguments in angle brackets:
System Col | ections. Generic.Dictionary 2<System I nt32, System Stri ng>

« Type members other than nested types are separated from their containing type by a double colon:
MyCl ass: :nyField

» Method names are followed by first, a parenthesized, comma-separated list of mangled formal
parameter types (ote that the comma is not followed by a space), and second, the mangled return type:
System Mat h: : Si n(Syst em Doubl e€) Syst em Doubl e

84

http://mentorembedded.github.io/cxx-abi/abi-examples.html#mangling

Reference information

Class constructors, instance constructors and destructors are treated as void-returning methods named
.cctor,.ctor,or.dtor respectively: Syst em Obj ect::.ctor()System Voi d

Property accessors are represented as though they were methods; the property name is prepended
with get _ or set _ as appropriate: Syst em St ri ng: : get _Char s() System Char|[]

Similarly, event accessors are represented as though they were methods; the property name is
prepended with add_ and r enove_ as appropriate.

Indexers are treated as though they were methods; the indexer name is get |t emor set _|temas
appropriate: System String:: get _Item System I nt 32) Syst em Char

User-defined operators are treated as though they were methods named op_Addi ti on,
op_Logi cal Not . The full list is as follows:

I= op_Inequality

< op_LessThan

> op_GreaterThan

<= op_LessThanOrEqual

>= op_GreaterThanOrEqual

* op_Multiply

/ op_Division

% op_Modulus

+ op_Addition / op_UnaryPlus
- op_Subtraction / op_UnaryNegation
<< op_LeftShift

>> op_RightShift

& op_BitwiseAnd

| op_BitwiseOr

A op_ExclusiveOr

! op_LogicalNot

~ op_OnesComplement

++ op_Increment

-- op_Decrement

operator true op_True
operator false op_False
implicit operator <t ype> op_Implicit
explicit operator <t ype> op_Explicit

Formal type parameters are represented using the name of the parameter.

85

Reference information

« Unsafe pointer types have a * appended to the mangled name.

For example: the mangled name of the method in:

nanmespace N

{

cl ass O<T>

{

class I<U, V>

{
voi d McWE(L<Ws w,

}

class L<X> {}

}
Would be:

int[] i) {}

N.O1/1 2:: M1(N L 1<Ws, System Int32[]) System Voi d

2.8.2.3. Mangled naming scheme: Java

Coverity uses a specialized grammar to mangle the names of Java identifiers (I denti fi er), which
include the names of packages, classes, fields, methods, and so on. Table 2.8.2, “Java Mangled name

grammar” provides synopses of that grammar, and
mangled name for several identifiers in the sample.

Table 2.8.2. Java Mangled name grammar

the code sample [p. 87

Identifier type Synopsis®

ClassName {ldentifier "$" }ldentifier
MethodName I dentifier

FieldName Identifier

PackageName Identifier {"." Identifier}

MangledClassName

[PackageNanme "."]d assNane {"[]" }

MangledFieldName Mangl edd assNanme "." Fi el dNane

PrimitiveTypeName "bool ean" |"char" |"fl oat" |"doubl e" |
"byte" |"short" |"int" |"] ong"

TypeName Mangl edCl assName | Prim tiveTypeNane {
"I}

ReturnTypeName TypeNane | "voi d"

ArgList TypeNane {", " TypeNane }

MangledMethodName Mangl edd assNanme "." MethodNanme " (" [
ArgList] ")" ReturnTypeNane

#The synopses use the following syntax:

« Brackets for a sequence that is optional: []

86

] that follows it provides the

Reference information

« Curly braces for a sequence that can be omitted or repeated: { }

« Pipes for a sequence that must match exactly one of the options: " x" |"y" |"z"

The comments in the following code sample list the mangled names of classes, fields, methods, and
other items in a sample Java class.

/1 (c) 2017, Synopsys Inc. Al rights reserved worl dw de.

package p;

class Quter { /1 p.Quter?
int i = 24; /1 p.Quter.i?
String str = "s"; /] p.Quter.str

/1l The following "virtual" function is created to
[/l initialize all non-static nenber fields:
I/ p.CQuter.<instance_field_ initializations>()void?

static final int a =1; [/ p.Cuter.a

static int b = 2; /'l p.Quter.b
static {

b =777,
}

/1 The following "virtual" function is created to do
/1 all the static initializations for this class:
/1 p.Quter.<clinit>()void

Quter() { /1 p.Quter.<init>()void
int local Var = 4; /1 1ocal Var*
}
int foo(int i, int j) { /1 p.Quter.foo(int, int)int
return 21;
}
void printne(String s) { /1 p.CQuter.printne(java.lang. String)void®
Systemout. println(s); /'l java.io.PrintStreamprintln(java.lang.String)void
}

L)t a class is declared within a package, then its mangled class name is always prepended with its package name.
Examples: j ava. | ang. Stri ng, Package. Cl assA

Class field names are always prepended with the full class name and the package name, if any.

Example: Package. C assA. fiel d
3A few special methods are created automatically (if applicable) for each class:

* <init>-A class constructor.
« <clinit>-Amethod containing all the static initalizers for a class.

e« <instance_field_initializations>-A method containing the initializers for non-static member fields.

4Local variable names do not require any mangling. The package and class names are not prepended for local variables.
SUnless a type is one of the primitive types (such as boolean, char, or int), its mangled type name includes the package it belongs
to. Example: j ava. | ang. String

87

Reference information

class Inner { /1 p.Cuter$lnner®
int field = 1; /1 p.Quter$lnner.field
int bar(int i, int j) { // p.CQuter$lnner.bar(int, int)int’®
return 22;
}
}
voi d test AnonCl ass(String s) { /'l p.CQuter.testAnonC ass(java.lang. String)void
final String capturedLocal =s; // capturedLocal

I nner anonynousl nstance =
new I nner () { /1 p.Cuter$1®

/'l The constructor that is generated for an anonynous cl ass
/'l takes the containing class instance as an argunent:

I p. Quter$l. <init>(p. Quter)void

I

/1 In addition, a synthetic field called "this$0" is

/1 created to refer to the containing class instance.

/1 And synthetic fields called val $<var_nane> are created

/1 for any captured |ocal variables fromthe containing class.

public String getS() { /1 p.Quter$l.getS()java.lang. String
Quter nyParent = /'l myParent
Quter.this; /1 this$0
return capturedLocal ; // val $capturedLocal °
}
IE
}
}
g Note

Also note that Java class constructors have different mangled names than C++ constructors. For
example, compare the C++ name CO ass: : CA ass() to the Java name Javad ass. <i nit>.

®Nested class names are denoted with $. Example: Package. Qut er $I nner 1$I nner 2

"The return type for a method is located at the end of the mangled name, rather than at the beginning.
Example: Package. Cl assA. print String(java.lang. String)void. Otherwise,
mangled method names are very readable (especially compared to mangled C functions).
8When matching the mangled name of a method, be careful to notice the space between arguments. For
example, attempting to match the name f oo(i nt, i nt) voi d will not result in a
match. You must use the following, instead: f oo(i nt, int)void

9Anonymous classes have no real name, so they are assigned numbers. The numbers are assigned arbitrarily and you should not
depend on their appearance in a particular order. For the purpose of name mangling, anonymous classes are treated as nested

classes. Example: Package. Qut er $1
OThere are two kinds of synthetically-created variables, and they are both related to the way that an anonymous class captures

values from its enclosing class or method.
 t hi s$0 - Pointer to the enclosing class instance.

« val $<ori gi nal _vari abl e_nane> - Captured local variables. When a final local variable is used inside an anonymous class,
this name is used to refer to it.

88

Part 3. Checker Examples

Table of Contents

3.1. CheCKer SOUICE FIlES ...ttt e e e e 90
K 0 B~ To | I of =] (=] S PRSP 20
3.1.2. SIGN2 CRECKET ...t et e e e e e 94
3.1.3. SIGN3 CRECKET ...t et e e e e 98
R S o 1 o A 1] 0 LT ol o] o TP UPPPTPPPPPIN 107
3.1.5. SWItCh_deFAUIL.CPP -. et 109

3.1.6. javascript_matCh_OCALCPP .. oieeeiiieiiii et 110

Chapter 3.1. Checker source files

Table of Contents

G 0 I T YT T T L= = 90
3.1.2. SIGN2 ChECKET ..o e 94
3.1.3. SIGN3 ChECKET . e e 98
0 I S o 1 Y/ 01T o o o PP 107

G 0 I L) Cod o =3 = U1 o3 o P 109
3.1.6. javascript_MatCh_l0CaAl.CPP «.vuieeiiii et e e 110

Some of the sample checkers that were too long to include in the previous sections are reproduced here.
z Note

The complete set of source code and makefiles are available in the <i nstal | _di r >/ sdk/
sanpl es directory.

3.1.1. sign checker
/'l keep track of the sign of each expression
#i ncl ude "extend-I| ang. hpp" /1 Extend SDK API

R R T utilities ------------ommommonoo-
/1 skip past pathname conponent of a file nane
char const *strip_path(char const *fnane)

/1 find last slash; don't want to rely on strrchr being present
for (char const *p = fname; *p; p++) {
if (*p=="1") {
fname = p+1; /1l go one past this (maybe |ast) slash
}
}

return fnane;

}

[/l print out the current file/line (stripping the path of the file),
/1 and return an ostream for additional printing
ostream &cout _| oc()

{
return cout << strip_path(current file_get_name()) << ":"
<< current_file_lineno() << ": ";
}
R R T AbsValue ----------------o

// abstract val ue donain
enum AbsVal ue {

AV_NEGATI VE, /I <0
AV_NEG ZERO, Il <=0
AV_ZERO, Il 0

90

Checker source files

AV_POS_ZERQ, Il >=0
AV_PCSI Tl VE, /I >0
AV_UNKNOWN /1 unknown; only for return value from abstract

/1 arithnetic, not to be put into store

i ¢

/1 confirmthe int is in the right range for an AbsVal ue
voi d bcAbsVal ue(int i)
{
assert((unsigned)i < AV_UNKNOW) ;
}

/1 map fromint to AbsValue; this is necessary because the store
/'l stores ints, not AbsValues, as its declared type
AbsVal ue toAbsVal ue(int i)

bcAbsVal ue(i);
return (AbsVal ue)i

}

/1 print an abstract val ue

ostrean& operat or<< (ostream &os, AbsVal ue v)

{

switch (v) {

default: assert(!"bad AbsVal ue code");
case AV_NEGATIVE: return os << "AV_NEGATI VE"
case AV_NEG ZERO return os << "AV_NEG ZERO'
case AV_ZERO return os << "AV_ZERO';
case AV_POS ZERO return os << "AV_POS_ZERO'
case AV_POSITIVE: return os << "AV_PCSI Tl VE"

A abstract operations --------------------
/| abstract addition; assunmes overflow can't happen
AbsVal ue abstract Add(AbsVal ue a, AbsVal ue b)

{

static AbsVal ue const map[5][5] = {
/'l b: a: <0 <=0 0 >=0 >0
/* <0 */ { AV_NEGATI VE, AV_NEGATI VE, AV_NEGATI VE, AV_UNKNOW, AV_UNKNOMWN 1},
/* <=0 */ { AV_NEGATIVE, AV_NEG ZERO, AV_NEG ZERO, AV_UNKNOWN, AV_UNKNOM 1},
/* 0 */ { AV_NEGATIVE, AV_NEG ZERO, AV_ZERO, AV_POS_ZERO, AV_POCSI TI VE },
/* >=0 */ { AV_UNKNOWN, AV_UNKNOWN, AV_POS ZERO, AV_POS ZERO, AV_POSI TIVE },
[* >0 */ { AV_UNKNOWN, AV_UNKNOWN, AV _PCSITIVE, AV_PGCSITIVE, AV_POSITIVE },

IE

bcAbsVal ue(a);
bcAbsVal ue(b);
return map[a][b];

}

AbsVal ue abstract Sub(AbsVal ue a, AbsVal ue b)
{

91

Checker source files

[/l just invert the sign of 'b' and add

bcAbsVal ue(b);

return abstract Add(a, toAbsVal ue(AV_PCSITIVE - b));
}

A R the checker ----------------------
/1 This store maps expressions to AbsVal ue; unnmapped expressions
/'l have unknown sign

START_EXTEND_CHECKER(sign, int_store);

ANALYZE_TREE()
{
/1 integer literal?
Const _int ci;
if (MATCH(ci)) {
if (ci.llval() <0) {
SET_STATE(CURRENT_TREE, AV_NEGATI VE) ;
}

elseif (ci.llval() == 0) {
SET_STATE(CURRENT_TREE, AV_ZERO) ;
}

el se {
SET_STATE(CURRENT_TREE, AV_PGCSI Tl VE) ;
}

return;

}

/1 unsigned vari abl e?
Scal ar scal
Var var;
if (MATCH(var) && MATCH(scal) && scal.get_type()->is_unsigned()) {
int v;
i f (GET_STATE(CURRENT_TREE, v) && v == AV_POSITI VE) {
/1 'var' is already known to be positive, so leave it al one
}

el se {
/] set it to >= 0
SET_STATE(CURRENT _TREE, AV_PCS_ZERO);
}
}

/1 arithnetic?
Expr a, b
if (MATCH(a+b)) {
int va, vb
if (CGET_STATE(a, va) && GET_STATE(b, vb)) {
AbsVal ue v = abstract Add(t oAbsVal ue(va), toAbsVal ue(vb));
if (v != AV_UNKNOMW) {
SET_STATE(CURRENT _TREE, V);
}

}

return;

92

Checker source files

}

}
if (MATCH(a-b)) {
int va, vb;
i f (GET_STATE(a, va) && GET_STATE(b, vb)) {
AbsVal ue v = abstract Sub(t oAbsVal ue(va), toAbsVal ue(vb));
if (v != AV_UNKNOW) {
SET_STATE(CURRENT _TREE, V);
}

}

return;

}

/'l assignnent ?

if (MATCH(a = b)) {
COPY_STATE(a, b);
return;

}

/'l query for abstract val ue?
if (MATCH(Call Site("whatis")(a))) {
int val;
if (CGET_STATE(a, val)) {
cout_loc() << a << " has value " << toAbsValue(val) << endl;
}
el se {
cout _loc() << a <<
}

return;

}

has unknown val ue" << endl;

/! print entire store?
if (MATCH(Cal | Site("print_store"))) {
cout_loc() << "print_store:\n";

i nt mappi ngs = 0;
const ASTNode* t;

int v;

FOREACH | N_STORE(t, v) {
cout << " " <<t << " has value " << toAbsValue(v) << endl;
nmappi ngs++;

}

cout << " " << mappings << " mappings" << endl;

return;

}

END_EXTEND_CHECKER() ;

MAKE_MAI N(sign)

93

Checker source files

3.1.2. sign2 checker

/'l keep track of the sign of each expression

/'l Extended fromsign.c: Use Extend SDK APl output routines.
#i ncl ude "extend-I| ang. hpp" /1 Extend SDK AP

usi ng std::ostringstream

A R utilities ------------------------
/'l skip past pathnanme conponent of a file nane

char const *strip_path(char const *fnane)

/1 find last slash; don't want to rely on strrchr being present
for (char const *p = fname; *p; p++) {

if (p[0] =="/" && p[1] !="\0") {
fname = p+1; /1l go one past this (maybe |ast) slash
}
}
return fnane;

}

/1 print out the current file/line (stripping the path of the file),
/1 and return an ostream for additional printing
ostream &cout _| oc()
{
return cout << strip_path(current file_get_name()) << ":"
<< current _file_lineno() << ": ";

A R AbsValue -------------------~-----
/| abstract val ue domain
enum AbsVal ue {

AV_NEGATI VE, /I <0

AV_NEG ZERQ, Il <=0

AV_ZERQ, /10

AV_POS_ZERQ, Il >=0

AV_PCSI Tl VE, /I >0

AV_UNKNOWN /1 unknown; only for return value from abstract

/1 arithnetic, not to be put into store

i ¢

/1 confirm (bounds check) that the int is in the right range
voi d bcAbsVal ue(int i)
{
assert((unsigned)i < AV_UNKNOW) ;
}

/1 map fromint to AbsValue; this is necessary because the store
/'l stores ints, not AbsValues, as its declared type

AbsVal ue toAbsVal ue(int i)

{

94

Checker source files

bcAbsVal ue(i);
return (AbsVal ue)i;

}

/1 print an abstract val ue

ostrean& operat or<< (ostream &os, AbsVal ue v)

{

switch (v) {

default: assert(!"bad AbsVal ue code");
case AV_NEGATIVE: return os << "AV_NEGATI VE"
case AV_NEG ZERO return os << "AV_NEG ZERO'
case AV_ZERO return os << "AV_ZERO';
case AV_POS ZERO return os << "AV_POS_ZERO'
case AV_POSITIVE: return os << "AV_PCSI Tl VE"

A abstract operations --------------------
/| abstract addition; assunmes overflow can't happen
AbsVal ue abstract Add(AbsVal ue a, AbsVal ue b)

{

static AbsVal ue const map[5][5] = {
/'l b: a: <0 <=0 0 >=0 >0
/* <0 */ { AV_NEGATI VE, AV_NEGATI VE, AV_NEGATI VE, AV_UNKNOW, AV_UNKNOMW 1},
/* <=0 */ { AV_NEGATIVE, AV_NEG ZERO, AV_NEG ZERO, AV_UNKNOWN, AV _UNKNOM 1},
/* 0 */ { AV_NEGATIVE, AV_NEG ZERO, AV_ZERO, AV_POS_ZERO, AV_POCSI TI VE },
/* >=0 */ { AV_UNKNOWN, AV_UNKNOWN, AV_POS _ZERO, AV_POS ZERO, AV_POSI TIVE },
[* >0 */ { AV_UNKNOWN, AV_UNKNOWN, AV _PCSITIVE, AV_PGCSITIVE, AV_POSITIVE },

IE

bcAbsVal ue(a) ;
bcAbsVal ue(b);
return map[a][b];

}

/| abstract subtraction
AbsVal ue abstract Sub(AbsVal ue a, AbsVal ue b)
{
[/l just invert the sign of 'b' and add
bcAbsVal ue(b);
return abstract Add(a, toAbsVal ue(AV_PCSITIVE - b));
}

A R the checker ----------------------
/'l This store nmaps expressions to AbsVal ue; unmapped expressions
/'l have unknown sign

START_EXTEND_CHECKER(sign2, int_store);

ANALYZE TREE()

{
/1 integer literal?
Const _int ci;
if (MATCH(ci)) {

95

Checker source files

if (ci.llval() < 0) {
SET_STATE(CURRENT_TREE, AV_NEGATI VE);

}
elseif (ci.llval() == 0) {
SET_STATE(CURRENT_TREE, AV_ZERO) ;
}
el se {
SET_STATE(CURRENT_TREE, AV_PCSI Tl VE) ;
ADD_EVENT(CURRENT_TREE, "literal", "Saw literal value: " << ci.llval());
return;

}

/1 unsigned vari abl e?
Scal ar scal
Var var;
if (MATCH(var) && MATCH(scal) && scal.get_type()->is_unsigned()) {
int v;
i f (GET_STATE(CURRENT_TREE, v) && v == AV_POSITI VE) {
/1 'var' is already known to be positive, so leave it al one
}

el se {
/] set it to >=0
CLEAR_STATE(CURRENT_TREE) ; /1 avoid lots of 'unsigned events
SET_STATE(CURRENT _TREE, AV_PCS_ZERO);
ADD_EVENT(CURRENT_TREE, "unsigned", "Variable is unsigned");
}
}

/1 arithmetic?

Scalar a,b

i f (MATCH(a+b)) {
/1 any prior info we m ght have had regarding "a+b" is irrel evant
CLEAR_STATE(CURRENT_TREE) ;

int va, vb
i f (CGET_STATE(a, va) && GET_STATE(b, vbh)) {
AbsVal ue v = abstract Add(t oAbsVal ue(va), toAbsVal ue(vb));
if (v != AV_UNKNOMW) {
// at this time, there is no way to copy the events fromtwo
/1 different sources, so just get what | can ... bug 3439
COPY_STATE(CURRENT_TREE, a);

SET_STATE(CURRENT_TREE, V);
ADD_EVENT(CURRENT _TREE, "addition",
"Addition: " << a << " (" << toAbsValue(va) <<
") plus " << b << " (" << toAbsVal ue(vb) <<
") yields " << v);
}
}

return;

96

Checker source files

if (MATCH(a-b)) {
CLEAR STATE(CURRENT TREE) ;

int va, vb;
if (GET_STATE(a, va) && GET_STATE(b, vb)) {
AbsVal ue v = abstract Sub(toAbsVal ue(va), toAbsVal ue(vb));
if (v != AV_UNKNOW) {
COPY_STATE(CURRENT_TREE, a);
SET_STATE(CURRENT_TREE, V);
ADD_EVENT(CURRENT_TREE, "subtraction",
"Subtraction: " << a << " (" << toAbsVal ue(va) <<
") minus " << b << " (" << toAbsVal ue(vb) <<
") yields " << v);
}
}

return;

}

/'l assignnent ?
if (MATCH(a = b)) {
COPY_STATE(a, b);
ADD_EVENT(a, "var_assign",
"Assigning " << a << " to value of " << b);
return;

}

/| possible conversion error?
I nt egral Type dest Type;

Cast cast(a, destType); /1 cast fromexpression 'a' to type 'destType'
if (MATCH(cast) && !a.get_type()->is_unsigned() && destType.is_unsigned()) {
int v;

if (GET_STATE(a, v)) {
if (v == AV_NEGATI VE) {
COW T_ERROR(a, "conversion_error",
a << " is converted to 'unsigned but is known to be negative");

else if (v == AV_NEG ZERO {
COW T_ERROR(a, "conversion_error",

a << " is converted to 'unsigned" but nay be negative");
}
el se {
/1l we know it is *not* negative, so the cast is safe

}
}
el se {

QUTPUT_ERROR(a << " is converted to 'unsigned but may be negative");
}

}

/'l query for abstract val ue?

if (MATCH(Call Site("whatis")(a))) {
int val;
if (CGET_STATE(a, val)) {

97

Checker source files

COW T_ERROR(a, "whatis", a << " has value " << toAbsVal ue(val));

}
el se {
/'l here, COW T_ERROR woul d do not hi ng
QUTPUT_ERROR("whatis: " << a << " has unknown val ue");
}
return;

}

/! print entire store?
if (MATCH(Call Site("print_store"))) {
ostringstream os;
0S << "print_store: ";

i nt mappi ngs = O;

const ASTNode* t;

int v;

FOREACH | N_STORE(t, v) {
i f (mappings > 0) {

0s << ", ";

}

0S <<t <<
nmappi ngs++;

has value " << toAbsVal ue(v);

}

0s <<

<< nmappi ngs << mappi ngs";

QUTPUT_ERROR(0s.str());
return;

}
}

END_EXTEND_CHECKER() ;

MAKE_MAI N(sign2)

3.1.3. sign3 checker

/'l keep track of the sign of each expression

/'l Extended fromsign.c: Use Extend SDK APl output routines.
#i ncl ude "extend-I| ang. hpp" /1 Extend SDK API

#if 1

define DI AGNOSTI C(stuff) cout << stuff << endl /* user ; */
#el se

define DI AGNOSTI C(stuff) ((void)Q) /* user ; */

#endi f

A T AbsValue ------------------------

/| abstract val ue domain
enum AbsVal ue {

98

Checker source files

AV_NEGATI VE, /Il <0

AV_NEG ZERQ, Il <=0

AV_ZERQ, /10

AV_POS_ZERQ, Il >=0

AV_PCSI Tl VE, /I >0

AV_UNKNOWN, /1 unknown; only for return value from abstract

/1 arithnetic, not to be put into store
NUM_ABSVALS

i ¢

#defi ne FOREACH_ABSVAL(var) \
for(AbsVal ue var = AV_NEGATI VE; var < NUM ABSVALS; \
var = (AbsVal ue) (var+1))

/'l confirm (bounds check) that the int is in the right range
voi d bcAbsVal ue(int i)
{
assert((unsigned)i < AV_UNKNOW) ;
}

/1 this one allows the AV_UNKNOM val ue
voi d bcAbsVal ueU(int i)
{
assert((unsigned)i < NUM ABSVALS);
}

/1 map frominteger code to AbsVal ue; this is necessary because the
/] store stores ints, not AbsValues, as its declared type
AbsVal ue toAbsVal ue(int i)

bcAbsVal ueU(i) ;
return (AbsVal ue)i;

}

/!l map a integer value to abstract val ue
AbsVal ue abstract Si ngl eVal ue(l ong | ong v)
{
if (v <0) {
return AV_NEGATI VE;

elseif (v ==0) {
return AV_ZERQ,
}
el se {
return AV_PCSI Tl VE;
}
}

/1 print an abstract val ue
ostrean& operat or<< (ostream &os, AbsVal ue v)
{
switch (v) {
default: assert(!"bad AbsVal ue code");

99

Checker source files

case AV_NEGATI VE: return os << "AV_NEGATI VE"
case AV_NEG ZERO return os << "AV_NEG ZERO'
case AV_ZERO return os << "AV_ZERO';
case AV_POS ZERO return os << "AV_POS_ZERO'
case AV_POSITIVE: return os << "AV_PCSI Tl VE"
case AV_UNKNOWN: return os << "AV_UNKNO/W!

A abstract operations --------------------
/1 abstract addition; assunmes overflow can't happen
AbsVal ue abstract Add(AbsVal ue a, AbsVal ue b)

{

static AbsVal ue const map[AV_UNKNOWN] [AV_UNKNOMWN] = {
/'l b: a: <0 <=0 0 >=0 >0
/* <0 */ { AV_NEGATI VE, AV_NEGATI VE, AV_NEGATI VE, AV_UNKNOW, AV_UNKNOMWN 1},
/* <=0 */ { AV_NEGATIVE, AV_NEG ZERO, AV_NEG ZERO, AV_UNKNOWN, AV _UNKNOM 1},
/* 0 */ { AV_NEGATIVE, AV_NEG ZERO, AV_ZERO, AV_POS_ZERO, AV_POCSI TI VE },
/* >=0 */ { AV_UNKNOWN, AV_UNKNOWN, AV_POS _ZERO, AV_POS ZERO, AV_POSI TIVE },
[* >0 */ { AV_UNKNOWN, AV_UNKNOWN, AV _PCSITIVE, AV_PGCSITIVE, AV_POSITIVE },

Ji ¢

bcAbsVal ue(a);
bcAbsVal ue(b);
return map[a][b];

}

/| abstract subtraction
AbsVal ue abstract Sub(AbsVal ue a, AbsVal ue b)
{
[/l just invert the sign of 'b' and add
bcAbsVal ue(b);
return abstract Add(a, toAbsVal ue(AV_PCSITIVE - b));
}

R abstract conparison -----------------
/1l Record the consequences of |earning that the conparison 'a' op 'b'
Il is true
struct Abstract Conpari sonResult {
/1 if this is false, we know the conparison could *not* be true
/1l so we will abort the path
bool consi stent;

/1 what is the new approximation for '"a' and 'b'?
AbsVal ue newAval ue;
AbsVal ue newBVal ue;

[

/1l the type of a preconputed relation map; naps fromthe abstract

/1 values of its argunents to the abstract conparison result

t ypedef Abstract Conpari sonResult Rel ati onMap[NUM _ABSVALS] [NUM _ABSVALS] ;

/'l concrete rel ational operator

100

Checker source files

t ypedef bool (*ConcreteOperator)(int a, int b);

/1 conpute best approxinmation of union of concrete val ues
/! represented by 'a' and 'b'
AbsVal ue great est Lower Bound(AbsVal ue a, AbsVal ue b)

{

if (a == AV_UNKNOM || b == AV_UNKNOWN) {
return AV_UNKNOWW;

}

static AbsVal ue const map[AV_UNKNOWN] [AV_UNKNOMWN] = {
/'l b: a: <0 <=0 0 >=0 >0
/* <0 */ { AV_NEGATIVE, AV_NEG ZERO, AV_NEG ZERO, AV_UNKNOWN, AV _UNKNOM 1},
/* <=0 */ { AV_NEG ZERO, AV_NEG ZERO, AV_NEG ZERO, AV_UNKNOWN, AV _UNKNOM 1},
/* 0 */ { AV_NEG ZERO, AV_NEG ZERO, AV_ZERO, AV_POS_ZERO, AV_POS ZERO },
/* >=0 */ { AV_UNKNOWN, AV_UNKNOWN, AV_POS ZERO, AV_POS ZERO, AV_POS ZERO },
/* >0 */ { AV_UNKNOWN, AV_UNKNOWN, AV_POS ZERO, AV_POS ZERO, AV_POSI TIVE },

Ji ¢

bcAbsVal ue(a) ;
bcAbsVal ue(b);
return map[a][b];

}

/1l Test if a given concrete value is a nenber of the set represented
/1 by the given abstract val ue.
bool el ementOf (i nt concrete, AbsVal ue abstract)
{
switch (abstract) {
default: assert(!"bad AbsVal ue");
case AV_NEGATIVE: return concrete < 0;
case AV_NEG ZERO return concrete <= 0;
case AV_ZERO return concrete == 0;
case AV_POS ZERO return concrete >= 0;
case AV_POSITIVE: return concrete > O;
case AV_UNKNOMWN: return true;

}
}

/1 Concretize 'a" and 'b', filter for pairs satisfying 'op', then
/'l re-abstract.
Abstract Conpari sonResul t abstract Conpari son(AbsVal ue a, AbsVal ue b,

Concr et eQper at or op)
{

Abstract Conpari sonResult ret;
ret.consistent = fal se;
ret.newAval ue AV_UNKNOWN;
ret.newBVval ue AV_UNKNOWN;

/1l The algorithmhere is to just conpare all pairs of concrete
/1 values drawn from[-2,2], since that is sufficient precision
/1 to distinguish all our abstract conparisons.

101

Checker source files

I
/!l This is pretty stupid (inefficient), but it works, and we'll only
/1 do it once at the begi nning.
for (int aa=-2; aa<=2; aat++) {
if ('elementf(aa, a)) { continue; }
for (int bb=-2; bb<=2; bb++) {
if ('elementOf (bb, b)) { continue; }

// Now 'aa' is a concrete elenent of 'a', and 'bb' is a
/'l concrete elenent of 'b'.

/1l Filter on 'op'.
if ('op(aa, bb)) {
conti nue;

}

/'l Abstract the ('aa', 'bb') pair.
AbsVal ue aaa = abstract Si ngl evVal ue(aa);
AbsVal ue bbb abstract Si ngl eVal ue(bb);

/1 Fold this into our current approxination.
if ('ret.consistent) {
ret.consistent = true;

ret.newAval ue = aaa;
ret. newBVal ue = bbb;
}
el se {

ret. newAval ue
ret. newBVal ue

gr eat est Lower Bound(r et. newAval ue, aaa);
gr eat est Lower Bound(r et. newBVal ue, bbb);

}
}

}

return ret;
}
A L rel ational operators -------------------
/1 information about a single relational operator ("<", "==", etc.)
cl ass Rel ati onal Operator {
publi c: /1 data

/'l Code to denote it
Bi naryQp bi nar yOp;

/1 concrete conparison function; this is used to conpute 'nap'
Concr et eOper at or concr et eOp;

/1 abstract conparison table
Rel ati onMap nap;

publi c: /'l funcs
Rel at i onal Oper at or (Bi naryOp bop, ConcreteQperator concrete);

}i

102

Checker source files

Rel ati onal Operat or: : Rel ati onal Oper at or (Bi naryOp bop, ConcreteQOperator concrete)
bi nar yOp(bop),
concr et eOp(concrete)

{
/1 conpute the abstract operation table
FOREACH_ABSVAL(a) {
FOREACH_ABSVAL(b) {
map[a] [b] = abstract Conpari son(a, b, concreteQp);

}
}

/1 concrete conparisons

bool conparelLess(int a, int b) { return a < b; }
bool conparelLessEq(int a, int b) { return a <= b; }
bool conpareGreater(int a, int b) { return a > b; }
bool conpareGreaterEq(int a, int b) { return a >= b; }
bool conpareEqual (int a, int b) { return a == b; }
bool conpareNot Equal (int a, int b) { return a !=b; }

enum { NUM_RELATI ONAL_OPERATORS = 6 };
Rel ati onal Operator *rel ati onal Oper at or s| NUM_RELATI ONAL_OPERATORS] ;

A R the checker ----------------------
/'l This store nmaps expressions to AbsVal ue; unmapped expressions
/'l have unknown si gn.

START_EXTEND_CHECKER(sign3, int_store);

/1 Called at program startup.

CHECKER _| NI T()

{
rel ati onal Oper at or s[0]
rel ati onal Operat or s[1]
rel ati onal Qper at or s[2]
rel ati onal Oper at or s[3]
rel ati onal Oper at or s[4]
rel ati onal Oper at or s[5]

}

ANALYZE TREE()
{
/1 integer literal?
Const _int ci;
if (MATCH(ci)) {
SET_STATE(CURRENT_TREE, abstract Si ngl eVal ue(ci.llval ()));
ADD_EVENT(CURRENT_TREE, "literal", "Saw literal value: " << ci.llval());
return;

}

new Rel ati onal Operat or (Bl N_LESS, conparelLess);

new Rel ati onal Oper at or (Bl N_LESSEQ conparelLessEq);

new Rel ati onal Oper at or (Bl N_GREATER, conpareG eater);

new Rel ati onal Oper at or (Bl N.GREATEREQ conpar eG eat er Eq) ;
new Rel ati onal Oper at or (Bl N_EQUAL, conpar eEqual);

new Rel ati onal Oper at or (Bl N_NOTEQUAL, conpar eNot Equal) ;

/1 unsigned vari abl e?

Scal ar scal ;

Var var;

if (MATCH(var) && MATCH(scal) && scal.get_type()->is_unsigned()) {

103

Checker source files

int v;
i f (GET_STATE(CURRENT TREE, v) &&% v == AV_POSI TI VE) {
/1 'var' is already known to be positive, so leave it al one

}

el se {
/] set it to >=0
CLEAR_STATE(CURRENT_TREE) ; /1 avoid lots of 'unsigned events

SET_STATE(CURRENT _TREE, AV_PCS_ZERO);
ADD_EVENT(CURRENT_TREE, "unsigned", "Variable is unsigned");
}

}
// arithnmetic?
Scal ar a, b

if (MATCH(a+b)) {

/1 any prior info we m ght have had regarding "a+b" is irrel evant
CLEAR_STATE(CURRENT_TREE) ;

int va, vb
i f (CGET_STATE(a, va) && GET_STATE(b, vbh)) {
AbsVal ue v = abstract Add(t oAbsVal ue(va), toAbsVal ue(vb));
if (v != AV_UNKNOMW) {
// at this time, there is no way to copy the events fromtwo

/1 different sources, so just get what | can ... bug 3439
COPY_STATE(CURRENT_TREE, a);

SET_STATE(CURRENT_TREE, V);
ADD_EVENT(CURRENT _TREE, "addition",
"Addition: " << a << " (" << toAbsValue(va) <<
") plus " << b << " (" << toAbsVal ue(vb) <<
") yields " << v);
}
}
return;

}

if (MATCH(a-b)) {
CLEAR STATE(CURRENT TREE) ;

int va, vb
if (CGET_STATE(a, va) && GET_STATE(b, vb)) {
AbsVal ue v = abstract Sub(toAbsVal ue(va), toAbsVal ue(vb));
if (v != AV_UNKNOW) {
COPY_STATE(CURRENT_TREE, a);
SET_STATE(CURRENT_TREE, V);
ADD_EVENT(CURRENT_TREE, "subtraction",
"Subtraction: " << a << " (" << toAbsVal ue(va) <<
") minus " << b << " (" << toAbsVal ue(vb) <<
") yields " << v);
}
}

return;

104

Checker source files

/'l assignnent ?
if (MATCH(a = b)) {
COPY_STATE(a, b);
ADD_EVENT(a, "var_assign",
"Assigning " << a << " to value of " << b);
return;

}

/| possible conversion error?
I nt egral Type dest Type;

Cast cast(a, destType); /1 cast fromexpression 'a' to type 'destType'
if (MATCH(cast) && !a.get_type()->is_unsigned() && destType.is_unsigned()) {
int v;

if (GET_STATE(a, v)) {
if (v == AV_NEGATI VE) {
COW T_ERRCR(a, "conversion_error",
a << " is converted to 'unsigned but is known to be negative");

else if (v == AV_NEG ZERO {
COW T_ERROR(a, "conversion_error",

a << " is converted to 'unsigned" but nay be negative");
}
el se {
/1l we know it is *not* negative, so the cast is safe

}
}
el se {

QUTPUT_ERROR(a << " is converted to 'unsigned but may be negative");
}

}

/'l query for abstract val ue?
if (MATCH(Call Site("whatis")(a))) {
int val;
if (CGET_STATE(a, val)) {
COW T_ERROR(a, "whatis", a << " has value " << toAbsVal ue(val));

}
el se {
/'l here, COW T_ERROR woul d do not hi ng
QUTPUT_ERROR("whatis: " << a << " has unknown val ue");
}
return;

}

/! print entire store?

if (MATCH(Call Site("print_store"))) {
std::ostringstream os;
0S << "print_store: ";

i nt mappi ngs = O;
const ASTNode* t;
int v;

105

Checker source files

FOREACH | N_STORE(t, V) {

}

0s <<

i f (mappings > 0) {

0s << °,

}

0S <K t <<
nmappi ngs++;

QUTPUT_ERROR(0s.str());
return;

ANALYZE_CONDI TI ON()

{
/*

*/

const cond_cfg_edge_t *cond_edge =

has value " << toAbsVal ue(v);

<< nappi ngs << " mappi ngs";

dynam c_cast <const cond_cf g_edge_t

i f(!cond_edge) return;

bool cov_polarity = cond_edge->pol arity;

const Expression *cond = cond_edge- >cond;

const ASTNode* astnode = (const ASTNode*)cond;

/1 conparison?

Expr a, b;

for (int i=0; i < NUM RELATI ONAL_OPERATORS; i ++) {

Rel ati onal Operator *relop = rel ational Operators[i];

i f (MATCH_COND(Bi nop(r el op- >bi

int va, vb;
if (! GET_STATE(a, va)) { va
if (! GET_STATE(b, vb)) { vb

DI AGNOSTI C(" mat ched condi ti ona
(cov_polarity? ""
neonTec g g o=

<< b << " =

/1 do the abstract conparison
Abstract Conpari sonResult &res
if ('res.consistent) {

nary®, a, b))) {

AV_UNKNOMK; }
AV_UNKNOMK; }

<
<

" e
"I") << CURRENT_TREE <<
< toAbsVal ue(va) <<

< toAbsVal ue(vh));

rel op- >map[va] [vb] ;

DI AGNCSTI C(" backt racki ng due to inconsistency");

force_backtrack();
return;

}

/] update store?

if (res.newAval ue !'= va) {
SET_STATE(a, res.newAval ue);
ADD _EVENT(a, "conditional",

*>(edge);

Refined via conditional " << CURRENT_TREE);
DI AGNOSTI C(" refined " << a << " to " << res.newAval ue);

106

Checker source files

}
if (res.newBValue != vb) {

SET_STATE(b, res. newBVal ue);
ADD_EVENT(b, "conditional", "Refined via conditional " << CURRENT_TREE);
DI AGNOSTI C(" refined " << b << " to " << res.newBVal ue);
}
}
}
}

END_EXTEND_CHECKER() ;

MAKE_MAI N(sign3)

3.1.4. print_types.cpp

/1 print type information for every local variable
#i ncl ude "extend-I| ang. hpp" /1l Extend API

#i ncl ude <string> /] std::string

#i ncl ude <set> /] std::set

usi ng nanespace types;
usi ng namespace std;

/1 set of classes whose info has been printed
set<string> printedd asses;

Il type_recurisve visitor_t is defined in extend-types. hpp
class C assTypePrinter : public type_recursive_visitor_t {

publi c:
virtual void on_class(const class_type_t &ct);
[
voi d C assTypePrinter::on_class(const class_type_t &c)
{
defined_class_type t ct = c.load _definition();
if ('et) {
return;
}
/'l obtain qualified nane as a string, e.g., "A:B.:C'
ostringstream os;
0s << ct;

string name = os.str();

/'l check to see if we've already printed it
if (printedC asses.find(nane) != printedC asses.end()) {
return;

}

pri ntedd asses. i nsert(nane);

/1 print class/struct nane

107

Checker source files

cout << nane << endl

/1 print what this class inherits from
foreach(p, ct->get_parents()) {
cout << " parent: << p->get _class() << endl

}

/1 print fields
foreach(f, ct->get_fields()) {
cout << " field: " << (*f)->get_pretty_nane()
<< ", type: " << (*f)->get_type() << endl
}

/'l re-examine field types, |ooking for classes to print; do this
/1 after the above | oop so we don't get fields fromdifferent
/1 classes nixed together
foreach(f, ct->get_fields()) {
(*f)->get_type()->visit(*this);
}

/1l simlarly for parent classes
foreach(p, ct->get_parents()) {
p->get _class()->visit(*this);
}
}

voi d printVarlnfo(const Expression* varTree)

if (lvarTree) {
return;

}

type_t const *t = get_type_of _tree(varTree);
if ('t) {
return;

}

cout << "local variable:\n"
<< " file: " << current_file_get_nanme() << "\n"

<< " line: << current_file_lineno() << "\n"
<< " function: " << current_function_get_nane() << "\n"
<< " wvar: " << varTree << "\n"
<< " type: " << *t << endl|
/1 visit all the types in 't', looking for classes to print
Cl assTypePrinter ctp;
ctp(t);

START_EXTEND_CHECKER(print_types, sinmple);

108

Checker source files

ANALYZE_TREE()

Decl decl;
i f (MATCH(decl)) {
print Var | nfo(decl.var());
}
}

END_EXTEND_CHECKER() ;

MAKE_MAI N(print_types)

3.1.5. switch_default.cpp

// find switch/case statenents with no "default"”

#i ncl ude "extend-I| ang. hpp" /1l Extend API

START_EXTEND_CHECKER(switch_default, sinple);

ANALYZE_TREE()

{
Swi t chPat sw;

if (MATCH(sw)) {
const S switch *s = sw. last_stnt();
vect or<const Statenment *> cases;

/1 getTargets gets all the "S case" and the "S default", if
/1 any, for the switch.
/'l See cc. ast
s- >get Tar get s(cases) ;
bool hasDefault = fal se;
foreach(i, cases) {
const Statenment *stnmt = *i;
/1 as<class>() -> downcast with assert, simlar to
/1 dynam c_cast <cl ass &>
/'l as<class>C() -> sane, pointer to const
/'l if<class>() -> downcast, NULL on failure, simlar do
/1 dynam c_cast <cl ass *>
const S default *def = stnmt->ifS defaultC();
i f(def) {
hasDef ault = true;
br eak;
} else {
/[l Only possibilities = S default and S _case, so this
/1 must be an S_case.
const S case *case_stnt =
stnt->asS caseC();
/1 You can obtain the value of the "case"
const E_intLit *case_expr = case_stnt->expr;

109

Checker source files

| ong | ong case_val ue = case_expr->i;

/1 This is not relevant for this checker, but is only
/1 included as an exanple

}

}
i f(!hasDefault) {

QUTPUT_ERROR("switch statenent doesn't have a \"defaul t\"");
}

}

END_EXTEND_CHECKER() ;

MAKE_MAI N(switch_default)

3.1.6. javascript_match_local.cpp

#i ncl ude "extend-I| ang. hpp" /'l Extend API
START_EXTEND _CHECKER(javascri pt_nmatch_| ocal, sinple);
PREFER_TO_ANALYZE_JAVASCRI PT();

ANALYZE_TREE()

{
Local Var | ocal 1;
Local Var | ocal 2;
if (MATCH(l ocal 1 = | ocal 2))
{
OUTPUT_ERROR(" Found JavaScript local from" << local2 << " to " << local1l);
}
}

END_EXTEND_CHECKER() ;

MAKE_MAI N(j avascri pt _match_| ocal)

110

Part 4. Coverity Runtime Library Development Guide

Table of Contents

T @ =T gV T PSPPI 112
4.2, DIFECLONY SEUCIUIEiiiiiiei ittt ettt e e et e et et e et et e e e e et e e e e et s 113
4.3. Building the Runtime Library for Daemon and LINUXccccoviiiiiiiiiiiiiiieciieceii e 114
4.4, Testing the Runtime Library for LINUXooiouuieii e 115
4.5. Deploying a Runtime Library and Daemon fOr LINUXooveieuiiniiiiineci e 116
4.5.1. Dynamic Library DepIOYMENTccouuuiiiiiiiie e 116
4.5.2. Static Library DeplOYMENTcooiuiiiiiiiie e e 116
4.5.3. DAEMON DEPIOYMENT ...oouiniieiiii ettt ettt et e e e e e b e eeeens 116
4.6. Building the Runtime Library and Daemon for WindoWScccoviiiiiiiniiiiiiineccineecei e 118
4.7. Testing the Runtime Library for WiNAOWScooouiiiiiiii e 119
4.8. Deploying a Runtime Library and Daemon for WINAOWScooooiiiiiieiiiiiineecineeec e 120
4.9. Configuring the Runtime Library Build for Linux and WiNdOWSocceiiiiiiiiinniiiieeci, 121
4.9.1. Common Environment Variablescooiiiiiiiiiiii e 121
4.9.2. Linux-specific Environment Variablesoiiiiiiiiiii 122
4.9.3. Windows-specific Environment Variablescooiiiiiiiiiiiii e 122
4.10. Instrumentation Predicate LANQUATEuiiiiiiiiiiiiiiiie et e e et e e eain e eees 124
4.10.1. NON-CIT COMPIIET SUPPOIeeitiieeeiii ettt ettt e e e eeeab e e enanaeeees 124

4.10.2. CIT predicate language eXIENSIONSiiiiuuuneiiiii ettt ettt e et e eena e eeaaas 130

Chapter 4.1. Overview

When cov- bui | d is used to build an instrumented binary for function coverage analysis, code for
gathering coverage data is injected into the program. The runtime library is required to gather the
coverage data and write it to an output channel to make it available for analysis.

As provided, the runtime library supports file and network based output. See Test Advisor 2020.12 User
and Administrator Guide Ef for implementation information.

112

test_advisor_use_and_admin_guide.pdf#cov_function_coverage_instrumentation
test_advisor_use_and_admin_guide.pdf#cov_function_coverage_instrumentation

Chapter 4.2. Directory Structure

The Runtime Library source and build scripts reside in the directory $SPREVENT _ROOT/ sdk/ r unt i nme/
ta-runtine.

The wi ndows- scri pt s subdirectory contains the Windows command line scripts needed to compile
and test the Coverity Runtime Library.

The t est s subdirectory contains the unit and integration tests. When the library is built and tests
executed, the following subdirectories will be created:

* | i b: Contains the static and shared versions of the Runtime Library.
» 0bj s: Contains the object files produced when the Runtime Library source files are compiled.

e test-resul ts: Contains one subdirectory for each test that ran, along with the captured output for
that test. Each test subdirectory will contain the shared and static versions of the test's executable and
the output files produced by the executables.

113

Chapter 4.3. Building the Runtime Library for Daemon and
Linux

Bash shell scripts are provided with the Runtime Library to build the library, build and run a suite of unit
and integration tests, and to clean up all build artifacts.

It is advisable to make your own copy of the source code tree and place it under version control, then
verify that the code can be built and pass all tests before making modifications.

To perform a build, run the command:

bash ./uni x-build.sh all
Build artifacts will be placed in the following subdirectories:
» obj s: Will contain the . o files compiled from source.

* | i b: Will contain the new versions of the daemon executable and the shared and static runtime
libraries.

In this example, a simple wrapper script changes the compiler name from the default "gcc” to "cc", builds
the libraries and runs the tests, with all other variables left at their default values:

#! / usr/ bi n/ env bash

export CC=cc

bash ./uni x-build.sh all

bash ./uni x-build.sh testsuite

114

Chapter 4.4. Testing the Runtime Library for Linux

To run the unit and integration tests on Linux, use the following command within the source directory:

bash ./unix-build.sh testsuite

Upon completion of the tests, the uni x- bui | d. sh script will write out a summary of the number of tests
run, and the number that failed.

Individual tests can be run by going to the directory for that test and executing:

bash ./uni x-buil d. sh

Providing BUILD_TYPE=DEBUG to the uni x- bui | d. sh script will enable errexit and trace modes for
the bash scripts. The libraries and tests will be compiled with debugging enabled. Example:

BUI LD_TYPE=DEBUG bash ./uni x-build. sh

The unit tests are written to be standalone tests so as not to introduce a dependency on any given unit
test framework.

Each integration test exercises specific layers and components of the Runtime Library, with an emphasis
on the correct handling of error conditions.

Tests are built and run against the shared and static versions of the Runtime Library.

Many test directories contain copies of expected output data. This can range from binary data (test-flush)
to expected error messages (test-logging).

Cleanup of test artifacts can be done by running the following command in the parent source directory:

bash ./uni x-build.sh cl ean

115

Chapter 4.5. Deploying a Runtime Library and Daemon for
Linux

Table of Contents

4.5.1. Dynamic Library DEPIOYMENTccouuuiiiiiiiiiii ettt 116
4.5.2. Static Library DEepPIOYMENT ... oo et e e et e et eeeebe e eees 116
4.5.3. DAEMON DEPIOYMENT ..o.viiiiiiii et e et e et e e et eeeab s 116

There are several options for deploying a Runtime Library. The choice of deployment will depend on
whether the shared or static version or both will be used, and in the case of a shared library, whether
tests will be run on the same machine as where it was built.

4.5.1. Dynamic Library Deployment
To deploy a dynamic library:

1. Copy the shared library to a location where it can be read in at build time. Set the access rights so that
the library is readable by any user accounts building tests.

2. Modify the XML Configuration files for the gnu compilers and linker to reference this location. See
Instrumentation Predicate Language for instructions on how to modify the configuration files.

If the test machine is different from the build machine, or if for some other reason the copy of the
shared library used at build time is not accessible at runtime, the developer can make a local copy of
the Runtime Library on the test machine and provide access to the copy using one of the following
approaches:

1. Add the full path to the local copy, or the environment variable LD_LIBRARY_PATH.

2. Modify the XML Configuration files to change the - r pat h=/ di r link directive to point at the correct
location. For this option, the Runtime Library must be in the same location on all test machines.

3. Install the Runtime Library in one of the standard library directories, suchas /i b,/usr/lib,/
| ib64or/usr/lib64.

4.5.2. Static Library Deployment
To deploy a static library:

» Copy the static library to a location where it can be read in at build time. Set the permissions so that the
library is readable by any accounts used to build tests.

4.5.3. Daemon Deployment

An executable "ci - daenon" is built as part of the runtime used for collecting function coverage
when instrumented code is executed. Depending on the use case, you may be required to install this
executable on the test machine.

116

Deploying a Runtime Library and Daemon for Linux

If you are using cov- bui | d to collect test coverage, no special installation of ci - daenon is required. A
copy of ci - daenon already installed as part of the Coverity Analysis package will be used in this case.

If you are not using cov- bui | d to collect test coverage, you will need to copy this executable to the test
machine. This executable should be placed in a directory which is included in the PATH environment
variable when the tests are run. Either a directory already existing in the PATH can be used, or this can
be placed in a new directory with PATH updated accordingly.

117

Chapter 4.6. Building the Runtime Library and Daemon for
Windows

Windows batch scripts are provided with the Runtime Library to build the library as a shared library or
DLL, build and run a suite of unit and integration tests, and to clean up all build artifacts.

g Note
A static Runtime Library is not provided with Windows.

It is recommended that you make your own copy of the source code tree and place it under version
control, then verify that the code can be built and pass all tests before making modifications.

Prior to running the build scripts, the command line environment needs to be configured to target the
desired Visual Studio compiler. This can be accomplished in one of the following ways:

Option 1:
Open the appropriate Visual Studio Tools Command Prompt in the Visual Studio Tools folder.

Option 2:
From a command line prompt, run the appropriate VCVARSALL. BAT file. For example, in a standard
Visual Studio 2013 installation, the command would be:

> "c:\Program Fil es (x86)\Mcrosoft Visual Studio 12.0\VCvcvarsall.bat"
Option 3:

1. Setthe environment variable VCVARSALL to point to the location of the VCVARSALL. BAT file you
want to run. The build script will use this variable to automatically run the file.

2. Setthe CPU_ARCH variable to x64 to build a 64-bit library (the default), or to x86 to build a 32-bit
library. This value is passed to the VCVARSALL. BAT file to set the target processor architecture
for the Visual Studio compiler.

See the documentation on the MSDN website for more information about VCVARSALL. BAT and the
desired version of Visual Studio and processor architecture. Once the command line environment is
configured for Visual Studio, perform a build by running the command:

CVMD /E: ON / C wi ndows- bui | d. bat al |
Build artifacts will be placed in the following directories:
» obj s: Will contain the . obj files compiled from source.

« i b: Will contain the new version of the Runtime Daemon EXE, Runtime Library DLL and LI B files.
When compiled with debug enabled, will also contain the . PDB file.

118

Chapter 4.7. Testing the Runtime Library for Windows

To run the unit and integration tests on Windows, use the following command within the source directory:

CVD /E: ON / C wi ndows-bui | d. bat testsuite

Upon completion of the tests, the script will write out a summary of the number of tests run, and the
number of tests that failed.

Cleanup of test artifacts can be done by running the following command in the parent source directory:

CVD / E: ON / C wi ndows- bui | d. bat cl ean

119

Chapter 4.8. Deploying a Runtime Library and Daemon for
Windows

When running an executable instrumented with Coverity Function Coverage, the Runtime Library must be
loaded by the program for successful execution.

If the program is run under cov- bui | d, the <cov_I i b_depl oynent _pat h> and the
<cov_I i b_name> specified in the compiler configuration will be used to resolve the location of the
instrumentation runtime library and daemon.

@ Note

If there are multiple compiler configurations with different values for the

<cov_| i b_depl oynment _pat h> but the same value for the <cov_I| i b_nane>, the results are
undefined. Alternatively, different versions of the runtime library can be identified with unique
names and referenced in separate compiler configurations. For more information, see "Configuring
compilers for Coverity Analysis" in the Coverity Analysis 2020.12 User and Administrator Guide.

If instrumented programs are run standalone, then Windows will resolve the location of the Runtime
Library and Daemon using the following order:

1. The directory where the executable module for the current process is located.
2. The current directory.

3. The Windows system directory. The Get Syst enDi r ect or y function retrieves the path of this
directory.

4. The Windows directory. The Get W ndowsDi r ect or y function retrieves the path of this directory.
5. The directories listed in the PATH environment variable.

If all of the programs will use the same Runtime Library and Daemon, then the library and daemon can be
installed in the locations described in steps 3, 4, or 5. If different versions of the library and daemon are
required, then a runtime library and daemon should not be installed in these directories, and the locations
described in steps 1 and 2 are preferable.

120

Chapter 4.9. Configuring the Runtime Library Build for Linux
and Windows

Table of Contents

4.9.1. Common Environment Variables ... 121
4.9.2. Linux-specific Environment Variablesoii i 122
4.9.3. Windows-specific Environment Variablesoooiiiiiiiiii e 122

Configuration for building the ci-runtime libraries is controlled via a set of environment variables defined in
the file uni x- bui | d- conmon. sh on Linux, and wi ndows- scri pt s\ wi ndows- bui | d- cormon. bat
on Windows.

Overriding these variables will allow the developer to control compiler and linker options, such as the
location of input and output files, and flags passed to the compiler and linker.

4.9.1. Common Environment Variables

The following environment variables are common to both the Windows and Linux build scripts:

PREVENT_ROOT
This environment variable must be set if the run-time source distribution is not located inside a
Coverity Analysis installation.

RUNTIME_DEST_DIR
Default destination for build artifacts in the source directory.

TESTSUITE_DIR
Destination directory for test executables and output. Each test appears in its own subdirectory.

RT_OBJ_DIR
Destination for the compiled object files.

LIB_DIR
Destination for the library files.

SHARED_LIB
Path name for the shared library.

CcC
The C compiler command.

CC_LD
Linker command used to build the shared library.

AR
Archive command used to build the static library.

121

Configuring the Runtime Library Build for Linux and Windows

CFLAGS
Compiler options common to both the static and shared versions.

SHARED_CFLAGS
Flags for compiling object files for the shared library.

SHARED_LIB_FLAGS
The flags needed to link the shared library to the integration tests.

BUILD_TYPE
Normally this variable is not set. Setting it to DEBUG builds the library with debug information on the
target platform.

VERBOSE
Generate detailed output of the build script's execution.

4.9.2. Linux-specific Environment Variables

The following environment variables are only used by the Linux build scripts:

SHARED_OBJ_DIR
Destination for the shared version of the compiled object files.

STATIC_OBJ_DIR
Destination for the static version of the compiled object files.

STATIC_LIB
Path name for the static library.

SHARED_CC_LD_FLAGS
Flags for linking the shared library.

LIB_FLAGS
Common library flags used by integration tests.

STATIC_LIB_FLAGS
The flags needd to link the static library to the integration tests.

4.9.3. Windows-specific Environment Variables

The following environment variables are only used by the Windows build scripts:

IMPORT_LIB
The name of the import library associated with the DLL.

LIB_OUTPUT_FLAG
Flag to indicate the name of the Runtime Libary DLL.

IMPORT_LIB_FLAG
Flag to indicate the name of the associated import library.

122

Configuring the Runtime Library Build for Linux and Windows

INCLUDE_FLAG
Flag to indicate a path for include files.

SOURCE_INCLUDE_DIR
Directory containing the Runtime Library header files.

TESTS_INCLUDE_DIR
Directory containing header files shared by the tests.

C_OUTPUT_FILE_FLAG
Flag to indicate the name of an output file (usually an executable) for the C compiler.

VCVARSALL
Optional variable containing the full path name of the VCVARSALL.BAT file that will be used to set up

compiler dependencies for the build. Only used when cl.exe is hot among the PATH directories.

CPU_ARCH
Indicates the processor architecture to target when the VCVARSALL.BAT file is used. Legal values
are "x86" for 32-bit applications and "x64" for 64-bit applications. The default value is "x86".

123

Chapter 4.10. Instrumentation Predicate Language

Table of Contents

4.10.1. NON-CIT COMPIIET SUPPOIT ..ottt ettt ettt et e et e e et e e et et e e e e eba s 124
4.10.2. CIT predicate language eXIENSIONSccoeuiiuiiiiiiieiiii et r e e 130

The Instrumentation Predicate Language supports Instrumentation Predicate Language and the runtime
library by allowing the specification of rules and conditional logic to modify native compiler command
lines. The Instrumentation Predicate Language is specified in the form of nested xml tags, within the
standard compiler configuration files.

4.10.1. Non-CIT compiler support

Default Instrumentation Predicate Language rules are generated for the gcc family of compilers and
linkers (gcc, g++, Id, collect2). Compiler configuration files specify whether the target binary is a compiler
and/or a linker with the following xml fields:

e <is_compiler>true|false]</is_conpiler>
e <is_linker>[true|false]</is_linker>

Instrumentation is only carried out when i s_I i nker is set to true, otherwise any Instrumentation
Predicate Language rules will be ignored. These xml fields must appear after all other fields in the
conpi | er node for each relevant compiler variant. Example:

<confi g>
<bui | d>
<conpi |l er>
<tenpl at e_conpi | er >true</tenpl at e_conpi |l er>
<conp_nane>| d</ conp_nane>
<conp_t ransl at or >l d</ conp_transl at or >
<conp_I| ang>C/ C++</ conp_| ang>
<f ake_conpi | er >t rue</fake_conpi |l er>
<is_conpiler>fal se</is_conpil er>
<is_linker>true</is_I|inker>
</ conpi |l er>

Additionally, all Instrumentation Predicate Language xml fields must be contained within opening and
closing <i nst runent _pr edi cat e> tags, and appear in the compiler-specific options node above the
<begi n_comuand_I| i ne_confi g> field. Example:

<confi g>
<bui | d>
<conpi |l er>

124

Instrumentation Predicate Language

<i s_conpil er>fal se</is_conpiler>
<is_linker>true</is_|inker>
</ conpi |l er>
<opti ons>
<id>ld-1d-.*</id>
<opt _prei nclude_fil e>3$CONFI GDI R$/ . . / user _nodef s. h</ opt _prei ncl ude_fil e>
<i nstrunent _predi cat es>
<renpve_regex>- Werror </ renpve_r egex>
</instrunment _predicates>

<begi n_command_| i ne_confi g></ begi n_command_| i ne_confi g>

<pre_prepend_ar g>--no_error_recovery</pre_prepend_arg>
</ opti ons>

If the <i nst runment _pr edi cat e> tags are placed under the <begi n_conmrand_I i ne_confi g> field,
the compilation will result in a fatal error.

@ Note

In template configuration files, the i s_conpi | er andi s_I| i nker fields are immutable and are
displayed in the file only for informational purposes. Other Instrumentation Predicate Language
elements (i nstrunment _predi cat es, i nstrunment _vari abl es, i nstrunent _unsupport ed)
are present and modifiable in template files.

4.10.1.1. Removing arguments from the native command line

Instrumentation Predicate Language provides the r enove_r egex rule for removing arguments from the
native command line. This xml field specifies a regex to search for, and remove from, the command line.
For example, consider the following scenario.

Original command line:
> thingl fool thing2 foo2

Removal rule:

<renpve_r egex>f 0o</renpve_r egex>

Resulting command line:

> thingl thing2

The regex "foo" matched f ool and f 002, so both were removed from the command line.

4.10.1.2. Inserting arguments onto the native command line

Instrumentation Predicate Language also provides rules for inserting strings onto the command line. This
process is slightly more complex than removing arguments, as the relative position of the inserted string
must also be specified.

125

Instrumentation Predicate Language

Each insertion rule must be surrounded by opening and closing <i nser t > tags. Specify the string you
want to insert onto the command line with the i nserti on_stri ng field. By default, the inserted string
will be placed at the very beginning of the command line. For example:

Original command line:
> thingl fool

Insertion rule:

<insert>
<insertion_string>argl</insertion_string>
</insert>

Resulting command line:

> argl thingl fool

Insertion rules can also specify conditions on the placement of the new string within the native command
line. These conditions use regex matching to locate an existing argument, and specify whether to place
the new string before or after the matched regex. Condition tags must be placed in the same set of

<i nsert > tags as the string to be inserted.

4.10.1.2.1. Insert condition: precedes_r egex

The pr ecedes_r egex condition specifies that the insertion string should be placed on the command
line, just before the left-most regex match. Multiple pr ecedes_r egex conditions may be specified, and
the inserted string will be placed immediately before the first argument that satisfies any condition. For
example:

Original command line:

> thingl fool

Insertion rule:

<insert>
<insertion_string>argl</insertion_string>
<pr ecedes_r egex>f oo</ precedes_r egex>
</insert>

Resulting command line:
> thingl argl fool

If there is no match on the command line for the regex, the insertion string will be placed at the default
location (the beginning of the command line).

You can also specify a special value of "nothing" to pr ecedes_r egex. This specifies that the inserted
string should precede no other argument, and will instead be placed at the very end of the command
line. Alternatively, using the special value, "anything", will cause the string to be placed at the start of the
command line.

126

Instrumentation Predicate Language

4.10.1.2.2. Insert condition: f ol | ows_r egex

The f ol | ows_r egex condition specifies that the insertion string should be placed on the command line,
after the right-most regex match. Multiple f ol | ows_r egex conditions may be specified, and the inserted
string will be placed directly after the first argument that satisfies any condition. For example:

Original command line:

> thingl fool

Insertion rule:

<insert>
<insertion_string>argl</insertion_string>
<f ol | ows_r egex>f oo</fol | ows_regex>
</insert>

Resulting command line:

> thingl fool argl

If there is no match on the command line for the regex, the insertion string will be placed at the default
location (the beginning of the command line).

You can also specify a special value of "anything" to f ol | ows_r egex. This specifies that the inserted
string should follow all other arguments, and will be placed at the very end of the command line.
Alternatively, using the special value, "nothing", will cause the string to be placed at the start of the
command line.

4.10.1.2.3. Combined conditions

It is possible to specify both pr ecedes_r egex and f ol | ows_r egex conditions in the same insertion
rule. They will be combined to place the insertion string between two existing arguments. For example:

Original command line:

> -one -two -three -four

Insertion rule:

<insert>
<insertion_string>argl</insertion_string>
<pr ecedes_r egex>t hr ee</ pr ecedes_r egex>
<f ol | ows_regex>t wo</fol | ows_r egex>
</insert>

Resulting command line:
> -one -two argl -three -four

In this case, ar g1 follows the matched argument, - t wo, and precedes the matched argument, - t hr ee.
If the precedes_regex and f ol | ows_r egex conditions contradict each other (so that satisfying one
condition makes it impossible to satisfy the other), the result is a fatal error.

127

Instrumentation Predicate Language

If there is no match on the command line for either regex, the insertion string will be placed at the default
location (the beginning of the command line).

4.10.1.2.4. Insertion groups

Instrumentation Predicate Language allows the grouping of insertion rules into if/else style blocks. This
places individual insertion rules in order, so that if the first insertion rule is unsatisfiable (because it has
contradictory pr ecedes_r egex and f ol | ows_r egex conditions), the next insertion rule is executed
instead. Insertion groups are specified by opening and closing <i nsert _gr oup> tags. Within these tags
will be one <i nsert > rule to attempt first, followed by one or more <or _i nsert > rules, to be attempted
in order until one is executed. For example:

Original command line:

> -one -two -three -four

Insertion rule:

<i nsert_group>
<i nsert>
<insertion_string>sonething</insertion_string>
<pr ecedes_r egex>t wo</ pr ecedes_r egex>
<f ol | ows_regex>t hree</fol | ows_regex>
</insert>
<or _insert>
<insertion_string>sonething_el se</insertion_string>
<pr ecedes_r egex>t hr ee</ precedes_r egex>
<fol | ows_r egex>t wo</fol | ows_r egex>
</or_insert>
<i nsert_group>

Resulting command line:
> -one -two argl -three -four

The first insert rule in the group is unsatisfiable against the given command line. This means that the
or _insert ruleis attempted, and because it is satisfiable, results in the final command line.

If none of the insert rules inside an insertion group are satisfiable, the result is a fatal error.
4.10.1.2.5. Instrumentation variables

Instrumentation variables are placeholders in an insertion string, the value of which can be specified in
the configuration file by using the following syntax:

<i nstrunent _vari abl e>

<var _name>vari abl e nane</var _nane>

<var _val ue>val ue of the variabl e</var_val ue>
</instrument_vari abl e>

These i nstrunent _vari abl e specifications should appear outside of the
<i nstrunent _predi cat es> tags. The supported instrumentation variables are named:

128

Instrumentation Predicate Language

e cov_lib_name
e cov_lib_path
» cov_lib_deployment_path

The correct syntax for specifying a instrumentation variable within an insertion string is
[[:variable_nane:]].Forexample:

<insertion_string>r[[:cov_lib_path:]] -I[[:cov_lib_nanme:]]</insertion_string>
4.10.1.3. Conditional branching

Instrumentation Predicate Language supports conditional logic, using the following if/elif conditions:
e <contai ns_regex>regex</ cont ai ns_regex>

e <not _cont ai ns_r egex>r egex</ not _cont ai ns_r egex>

e <is_conpiler>true|fal se</is_conpil er>

e <is_linker>true|fal se</is_linker>

The syntax for conditional statements in Instrumentation Predicate Language is as follows:

<if>
<condi ti ons>
<cond>
<is_conpil er>true</is_conpiler>
</ cond>
</ condi ti ons>
<t hen>
. // insertion and/or renoval rules
</t hen>
</[if>
<elif>
<condi ti ons>
<cond>
<is_linker>true</is_I|inker>
</ cond>
</ condi ti ons>
<t hen>
. [/l different insertion and/or renoval rules
</t hen>
<lelif>

Conjunctions: and_cond/or_cond

You can use and/or conjunctions in if/elif statements, using the <and_cond> and <or _cond> xml fields.
See below:

<and_cond>
<cond>

129

Instrumentation Predicate Language

<cont ai ns_r egex>sonme regex</contai ns_r egex>
</ cond>
<cond>
<i s_conpil er>fal se</is_conpiler>
</ cond>
<cond>
<is_linker>true</is_|inker>
</ cond>
</ and_cond>

In the example above, the <and_cond> field returns true if each of the nested conditions evaluate to
true, otherwise the entire block is false. When using <or _cond>, the field is true if at least one of the
nested conditions is true, and will only be false if all of the nested conditions are false.

Conjunctions can be nested within each other. For example:

<and_cond>
<cond>A</ cond>
<or _cond>
<cond>B</ cond>
<cond>C</ cond>
</ or _cond>
</ and_cond>

The example above will only return true if:
» Aistrue
AND

* BOR Cis true
4.10.1.4. Unsupported switches

Coverity instrumentation does not support certain switches for certain compilers. For example,
-spec fil e isunsupported for gcc. If this appears on a native command line, it will result in
a fatal error for cov-t r ansl at e. You can specify which switches are unsupported by using
<i nst runent _unsupport ed> tags. For example:

<i nstrument _unsupported>sw t chl</i nstrument _unsupported>
<i nstrument _unsupport ed>sw t ch2</i nstrument _unsupport ed>

These tags must be placed outside of the i nst runent _pr edi cat es tags.

4.10.2. CIT predicate language extensions

As with non-CIT compilers, CIT compilers can also make use of regex matching to achieve removal and
insertion of command-line arguments. However, because CIT compilers support switch table rules, more
complex extensions to the Instrumentation Predicate Language can be used.

Supported CIT predicate language extensions include non-regex versions of the standard, non-CIT
predicates:

130

Instrumentation Predicate Language

e <contains>..</contai ns>

e <not _contai ns>.. </ not_cont ai ns>
e <renove>..</renove>

e <precedes>..</precedes>

e <follow ng>..</foll ow ng>

s Note

Each of the above is evaluated using the switch-parsing rules in the relevant
<conpi | er >_switches.dat switch table. Note that use of CIT predicate language extensions for
non-CIT compilers will result in a fatal error in cov-t r ansl at e.

Syntax of the above CIT extensions is common to each of the predicates. For example:
<cont ai ns>

<sw t ch>f oo</ swi t ch>

<ar g>argl</arg>

<ar g>ar g2</ ar g>

<arg>...</arg>
</ cont ai ns>

The "switch" xml tag should not contain any switch prefixes. For example, if the command line contains
any of the following switches, then the swi t ch tag should only contain "f 0o":

+ -foo
» [foo
» --foo

Arguments to the swi t ch tag are considered regex matches. Specifically, consider the following
command line:

> -foo=two /foo=three --foo=four
The condition below will match on - f oo=t wo /f oo=t hr ee.
<cont ai n>

<sw t ch>f oo</ swi t ch>

<ar g>"t </ arg>

</ cont ai ns>

Note in particular that the regex matches on swi t ch arguments do not cross argument boundaries.

4.10.2.1. oa_split

Switches such as - | pat hl, pat h2, pat h3 that are really equivalentto - | pat hl - I pat h2 -1 pat h3
(where the switch arguments are separated by one or more delimiters) are specified in the switch table

131

Instrumentation Predicate Language

as oa_spl it followed immediately by the delimiter(s). Specifying CIT instrumentation predicates for
switches like this behave as follows:

<cont ai ns>
<swi t ch>l </ swi tch>
<ar g>pat h</ ar g>

</ cont ai ns>

The above rule evaluates to true if there is a switch - | on the command line that has any argument
component matching the regex "path".

In the following condition:

<cont ai ns>
<sw t ch>l </ swi t ch>
<ar g>pat hl</ ar g>
<ar g>pat h2</ ar g>
</ cont ai ns>

If there exists a switch - | on the command line where either pat hl or pat h2 is one of its arguments,
there is a match.

4.10.2.2.0a_al ternate_tabl e

When a switch is marked oa_al t er nat e_t abl e in the switch table, this designates that the switch

is for specifying switches to another program, and that you need to use an alternate switch table to
interpret it. For example, the following signifies that the value to Xpr epr ocessor should be interpreted
by <conpl i er >_preprocessor_switches.dat and the results should be a ppended to the command line:

{" Xpreprocessor", oa_dash|oa_alternate_table, "preprocessor", oa_append}
Suppose a command line contains:
-W,-MD file.c -W, foo,-MM-MP -W, - MD, bar - W, - MD, f 002
where the preprocessor switch table contains entries
{"MD', oa_dash|oa_unattached},
{"MV', oa_dash},
{"MP", oa_dash}
Example 1:
<cont ai ns>
<swi t ch>Wp, </ swi t ch>
<ar g>MD</ ar g>

</ cont ai ns>

This will result in a match against any switch grouping with - Wh, MDiin it. In the above case, a match will
be made on all of - W, - MD - W, f 00, - MM - MP - W), - MD, bar - W, - MD, f 002.

Example 2:

<cont ai ns>

132

Instrumentation Predicate Language

<sw t ch>Wp, </ swi t ch>
<ar g>MD</ ar g>
<ar g>f oo</ ar g>

</ cont ai ns>

This will match on - W, - MD - W, f oo, - MM - MP - W, - MD, f 002.
Example 3:
<cont ai ns>

<swi t ch>Wp, </ swi t ch>

<ar g>MD</ ar g>

<ar g>bar </ ar g>
</ cont ai ns>

This will match on - W, - MD, bar

133

	Coverity Extend SDK 2020.12 Checker Development Guide
	Table of Contents
	Part 1. Coverity Extend SDK Usage
	Chapter 1.1. Overview
	1.1.1. Introduction
	1.1.2. Coverity Extend SDK directory structure
	1.1.3. Compiling Coverity Extend SDK checkers

	Chapter 1.2. Creating your first checker: Hello
	1.2.1. The Hello checker source code
	1.2.2. Compiling the Hello checker
	1.2.3. Running the Hello checker
	1.2.3.1. Running the Hello checker from another directory

	1.2.4. Committing the issues to Coverity Connect
	1.2.5. Dissecting the hello checker
	1.2.6. Creating a makefile for convenience

	Chapter 1.3. The Abstract Syntax Tree
	1.3.1. What is the AST?
	1.3.2. Examining nodes in the AST with print_tree
	1.3.3. Patterns
	1.3.3.1. Expression patterns
	1.3.3.1.1. Variable kind patterns
	1.3.3.1.2. Pattern combinators

	1.3.4. Accessors

	Chapter 1.4. State machine paradigm
	1.4.1. Simple checker vs. checker with store
	1.4.2. Abstract interpretation
	1.4.3. Visit order
	1.4.4. Manipulating the store
	1.4.4.1. SET_STATE(t, v)
	1.4.4.2. GET_STATE(t, v)
	1.4.4.3. MATCH_STATE(t, v)
	1.4.4.4. CLEAR_STATE(t)
	1.4.4.5. COPY_STATE(dst, src)
	1.4.4.6. FOREACH_IN_STORE(t, v)

	1.4.5. Example: tracking the sign of expressions

	Chapter 1.5. Output
	1.5.1. OUTPUT_ERROR
	1.5.2. ADD_EVENT
	1.5.3. COMMIT_ERROR
	1.5.4. ADD_INPUTFILE_ONLY_EVENT
	1.5.5. COMMIT_INPUTFILE_ONLY_ERROR
	1.5.6. ADD_INPUTFILE_EVENT
	1.5.7. COMMIT_INPUTFILE_ERROR
	1.5.8. Example: sign2

	Chapter 1.6. Conditionals
	1.6.1. ANALYZE_CONDITION
	1.6.2. MATCH_COND
	1.6.3. force_backtrack
	1.6.4. Example: sign3
	1.6.5. Abstract comparison
	1.6.6. Comparison evaluation

	Chapter 1.7. Paths
	1.7.1. Many paths per function
	1.7.2. False path pruning (FPP)
	1.7.3. Two-pass checking
	1.7.4. Termination

	Chapter 1.8. Examining the class hierarchy
	1.8.1. Introduction
	1.8.2. Mapping from variables to their class/type
	1.8.3. Tree structure of types
	1.8.4. Classes
	1.8.4.1. Inheritance
	1.8.4.2. Virtual function overriding relationships

	1.8.5. type_t iterators
	1.8.5.1. type_visitor_t
	1.8.5.2. subtype_visitor_t
	1.8.5.3. type_recursive_visitor_t

	1.8.6. When are type_t objects resident in memory?
	1.8.7. Example: print type information
	1.8.8. Example: switch default

	Chapter 1.9. Reporting events and defects on input files
	1.9.1. Additional steps for building Coverity Extend SDK checkers for Android applications
	1.9.2. Input file class extend_inputfile_t
	1.9.3. Input file macros
	1.9.4. Input file checker examples

	Chapter 1.10. Troubleshooting
	1.10.1. A Coverity Extend SDK checker aborts execution with a Tree used with no match error.

	Part 2. Coverity Extend SDK Reference
	Chapter 2.1. Introduction
	Chapter 2.2. Handler functions
	2.2.1. Handler function overview
	2.2.1.1. Coverity Extend SDK checker file structure
	2.2.1.2. START_EXTEND_CHECKER
	2.2.1.3. END_EXTEND_CHECKER
	2.2.1.4. MAKE_MAIN
	2.2.1.5. INIT_OPTIONS
	2.2.1.6. HANDLE_OPTION
	2.2.1.7. CHECKER_INIT
	2.2.1.8. CHECKER_FINAL
	2.2.1.9. FUNCTION_INIT
	2.2.1.10. FUNCTION_FINAL
	2.2.1.11. ANALYZE_TREE
	2.2.1.12. ANALYZE_CONDITION
	2.2.1.13. ANALYZE_END_OF_PATH
	2.2.1.14. PREFER_TO_ANALYZE_CSHARP
	2.2.1.15. PREFER_TO_ANALYZE_JAVA
	2.2.1.16. PREFER_TO_ANALYZE_JAVASCRIPT
	2.2.1.17. ANALYZE_CLASS

	Chapter 2.3. Patterns
	2.3.1. Patterns for C# and Java checkers
	2.3.2. Functions common to all patterns
	2.3.3. ASTNodePattern superclass
	2.3.4. ExpressionPattern superclass
	2.3.5. TypePattern superclass
	2.3.6. SymbolPattern superclass
	2.3.7. Predefined pattern objects
	2.3.8. Expression patterns
	2.3.8.1. Basic expression patterns
	2.3.8.2. Function call site expression patterns
	2.3.8.3. Variable reference expression patterns
	2.3.8.4. Type-filtered expression patterns
	2.3.8.5. Complex expression patterns
	2.3.8.6. Evaluation patterns

	2.3.9. Statement patterns
	2.3.10. Other patterns
	2.3.10.1. Binding patterns
	2.3.10.2. Syntactic context filters
	2.3.10.3. STL construct patterns
	2.3.10.4. Miscellaneous patterns
	2.3.10.5. Combinators (And, Or, etc.)

	Chapter 2.4. Accessors
	2.4.1. Additional AST query functions
	2.4.2. Queries on the current function
	2.4.3. Queries on the current file
	2.4.4. Queries on trees

	Chapter 2.5. The store
	2.5.1. Store overview
	2.5.2. void SET_STATE(tree t, int v)
	2.5.3. void CLEAR_STATE(tree t)
	2.5.4. bool GET_STATE(tree t, int &v)
	2.5.5. bool MATCH_STATE(tree t, int v)
	2.5.6. bool COPY_STATE(tree dst, tree src)
	2.5.7. FOREACH_IN_STORE(tree &t, int &v) { body }
	2.5.8. bool ADD_EVENT(tree t, char const *tag, desc)
	2.5.9. bool COMMIT_ERROR(tree t, char const *tag, desc)
	2.5.10. ADD_INPUTFILE_EVENT
	2.5.11. COMMIT_INPUTFILE_ERROR

	Chapter 2.6. Adding events
	Chapter 2.7. Types
	2.7.1. Introduction
	2.7.2. type_t
	2.7.3. any_type_t
	2.7.4. scalar_type_t
	2.7.5. pointer_type_t
	2.7.6. array_type_t
	2.7.7. cv_wrapper_type_t
	2.7.8. function_type_t
	2.7.9. scoped_type_t
	2.7.10. scope_t
	2.7.11. defined_type_t
	2.7.12. typedef_type_t
	2.7.13. forward_declarable_type_t
	2.7.14. enum_type_t
	2.7.15. tag_t
	2.7.16. union_type_t
	2.7.17. field_t
	2.7.18. class_type_t
	2.7.19. parent_t
	2.7.20. function_t
	2.7.21. member_type_t
	2.7.22. extend_inputfile_t

	Chapter 2.8. Reference information
	2.8.1. Header files
	2.8.2. Name mangling
	2.8.2.1. Mangled naming scheme: C++
	2.8.2.2. Mangled naming scheme: C#
	2.8.2.3. Mangled naming scheme: Java

	Part 3. Checker Examples
	Chapter 3.1. Checker source files
	3.1.1. sign checker
	3.1.2. sign2 checker
	3.1.3. sign3 checker
	3.1.4. print_types.cpp
	3.1.5. switch_default.cpp
	3.1.6. javascript_match_local.cpp

	Part 4. Coverity Runtime Library Development Guide
	Chapter 4.1. Overview
	Chapter 4.2. Directory Structure
	Chapter 4.3. Building the Runtime Library for Daemon and Linux
	Chapter 4.4. Testing the Runtime Library for Linux
	Chapter 4.5. Deploying a Runtime Library and Daemon for Linux
	4.5.1. Dynamic Library Deployment
	4.5.2. Static Library Deployment
	4.5.3. Daemon Deployment

	Chapter 4.6. Building the Runtime Library and Daemon for Windows
	Chapter 4.7. Testing the Runtime Library for Windows
	Chapter 4.8. Deploying a Runtime Library and Daemon for Windows
	Chapter 4.9. Configuring the Runtime Library Build for Linux and Windows
	4.9.1. Common Environment Variables
	4.9.2. Linux-specific Environment Variables
	4.9.3. Windows-specific Environment Variables

	Chapter 4.10. Instrumentation Predicate Language
	4.10.1. Non-CIT compiler support
	4.10.1.1. Removing arguments from the native command line
	4.10.1.2. Inserting arguments onto the native command line
	4.10.1.2.1. Insert condition: precedes_regex
	4.10.1.2.2. Insert condition: follows_regex
	4.10.1.2.3. Combined conditions
	4.10.1.2.4. Insertion groups
	4.10.1.2.5. Instrumentation variables

	4.10.1.3. Conditional branching
	4.10.1.4. Unsupported switches

	4.10.2. CIT predicate language extensions
	4.10.2.1. oa_split
	4.10.2.2. oa_alternate_table

