Coverity Fortran Syntax Analysis
User Guide 2018.01

Copyright © 2018 Synopsys, Inc. All rights reserved worldwide.

The information in this document is subject to change without notice. There is no warranty
regarding its correctness or completeness. Use of this manual and the software described
is governed by the terms of the accompanying software license agreement.

Copyright © 2018 Synopsys, Inc. All rights reserved worldwide.

Coverity is a registered tfrademark of Synopsys, Inc.

Absoft is a trademark of Absoft Corporation.

DEC, PDR VAX, AXR, Alpha, RSX, VMS, OpenVMS, Ultrix and Tru64 UNIX are
trademarks of Hewlett Packard Company.

DR Fortran-77 is a tfrademark of Digital Research, Inc.

FTN77 and FTN95 are trademarks of Salford Software Ltd.

FTN9O is a joint frademark of Salford Software Ltd and the Numerical Algorithms Group Ltd.
Hewlett-Packard, UX, Fortran/9000 are trademarks of Hewlett-Packard Company.
IBM, MVS, VS Fortran, Professional Fortran, RS/6000 and AlX are trademarks of
Intfernational Business Machines Corporation.

Intel is a frademark of Intel Corporation.

Cray, Unicos, CF77 and CF90 are trademarks of Silicon Graphics, Inc.

Silicon Graphics, IRIX and MIPSpro are tfrademarks of Silicon Graphics, Inc.

Lahey, F77L, LF90 and LF95 are tfrademarks of Lahey Computer Systems, Inc.

Linux is a registered frademark of Linus Torvalds.

Microsoft, MS-DOS, MS-Fortran, Microsoft Fortran PowerStation, Windows 95,

and Windows NT are trademarks of Microsoft Corporation.

MicroWay and NDP Fortran-386 are tfrademarks of MicroWway, Inc.

NAG and NagWare are frademarks of The Numerical Algorithms Group Limited.
Prospero Fortran and Pro Fortran-77 are trademarks of Prospero Software.
Ryan-McFarland and RM/Fortran are trademarks of Ryan-McFarland Corporation.
Sun and Solaris are frademarks of Sun Microsystems, Inc.

WATCOM is a tfrademark of Sybase, Inc.

All other trademarks and registered trademarks are the property of their respective holders.

Contents

Contents

1 Infroduction

1.1 What does Coverity Fortran Syntax Analysisdo?
1.2 Why Use Coverity Fortfran Syntax Analysis?
1.3 Application Areds
1.4 Thismanual

Tutorial
2.1 Basic Operation v e e
2.2 Analyzing asingle sourcefile
2.2.1 Enabling Warning and Information Messages
2.2.2 Producing a source listing with cross-references
2.3 Analyzing more thanone sourcefile
2.3.1 Analyzing all source files in one or more directories
24 The program analysis v v e
2.5 Thereference structureorcalltree
2.6 The module dependencytree e
2.7 Usinglibraryfiles o
2.8 Usingmodules e
2.8.1 Using third-partylibraries
2.9 Portability and conformance tostandards oL
2.9.1 Standardconformance
2.9.2 Compileremulation
2.9.3 Sefting your own, orcompany standard o 0L
2.9.4 Cross-platformdevelopment o o
295 Usingincludefiles e
2.9.6 Mulli-platform development o o

Operation

3.1 Using Coverity Fortran Syntax Analysis o o o

3.2 Specifyingalistfile

3.3 Specifying alibraryfile

3.4 OptONS . v v e e e
3.4.1 Configuratfion selectionoptions

3

O O 00 N N

11
12
13
13
14
14
14
15
15
15
16
16
16
16
17
17
17
17
17

CONTENTS

3.4.2 Othercontroloptions e 21
3.4.3 Program-unitanalysis 21
3.4.4 Globalprogramanalysis 24
3.4.5 Output . .. 25
3.4.6 Lbrary . .. 27
3.4.7 MisCellaneous v v v v e e 27
3.4.8 Defaults 28
3.4.9 The usage of analysisoptions 29
3.5 Exitstatus 30
3.6 Theusage of includefiles 30
3.7 Coverity Fortran Syntax Analysis library files 31
3.8 Theusageofmodules 32
3.9 Maintaininglibrary files. 33
3.9.1 Maintaining library filesincommandmode 33
3.9.2 EXamples 34
3.10 The usage of language extensions o v i 34
3.10.1 Compiler emulation andincludefiles 35
3.11 Generating Fortran 90 inferfaces. 36
3.11.1 Operation of interf from the commandline 36
3.12 Storing the Reference structure and dependency of modules 36
S A3 MESSATES .« v v v o 37
3.13.1T Operational Messages v v v i e e e 37
3.13.2 ANAlYSIS MESSATES -+« v v v v e e 37
3.13.3 System mMeEssaAgES . . v v v v e e e 38
3.13.4 Redefinition and suppression of messages o 38
3.13.5 Temporary suppression of Messages . . v v v v v v v v v v v e 38
3.13.6 Reporfing Messages v v v v o 39
3. 14 Tuningtheoutput 40
3.15 Line or statement numbering o 40
3.16 Date and fime format 41
Analysis 43
4.7 Programunit analysis 43
4.1.1 Inferpretation of source coderecords, 43
4,12 Lay-outofsourcecodelisting 44
4.1.3 Syntaxanalysis e 44
4.1.4 Type verification e 44
4.1.5 Localverification of argumentlists 0 L. 45
4,1.6 \Verification of procedure entries. o 0000 45
4.1.7 InfrinsiC procedures e 46
4,1.8 Funcfionprocedure e 46
4.1.9 Program-unit crossreferences o 0o 46
4.2 Reference structure (Calltree) o i 53
4.2.1 Analysis of the reference structure 54

4.2.2 Display of the reference structure 54

CONTENTS 5

4.2.3 Display of sub trees of the reference structure 55
4.2.4 Reference structure in XML format 55

4.3 Display of module dependencies e 55
4.3.1 Display of dependencies for specific modules 56
4.3.2 Display of module dependenciesin XMLformat 56

4.4 Globalprogram analysis. o e e 56
4.4.1 \Verification of procedurereferences 56
4.4.2 Verification of argumentlistso o o 56
4.4.3 \Verification of commonblocks. 0L 57
4.4.4 \Verificationofmodules 57
4.4.5 Global program crossreferences e 57
4.4.6 Cross references of common-block objects, 60
4.4.7 Cross references of public module derived types 61
4.4.8 Crossreferences of public moduledata 61

4.5 Specification of procedure interfaces o0, 61
4.5.1 Using FORTRAN 77 syntOX v v o v v e e e e e e e 62
452 Using Fortran Q0 syntax e 62
4.5.3 Using Coverity Fortran Syntax Analysis atfrioutes 63

4.6 MetriCs 65
4.7 Finalreport . . . o e 65
A Supported Fortran syntax 67
A1 Compilerssupported 68
A.2 General language extensions supported oo 71
A.3 Table with Fortran 77 longuage extensions 73
A.4 Table with Fortran 90/95/2003/2008/2015 language extensions 83
A5 Absoft Fortran 77 extensions 95
A.6 Apollo/Domain Fortfran extensions o e 95
A.7 Compag Forfran extensions e e 96
A.8 Convex Fortran extensions 96
A.9 Cray Fortran 77 extensions e 96
A.10Cyber NOS/VE Fortran extensions v i i i i Q7
A.T1DEC PDP-11 Fortran-77 extensions v v v v e e e e e 97
A.12DEC FORTRAN and VAX Fortran extensions 97
A.13 Digital Research Fortran-77 extensions o o 97
A TAF2c Fortran 77 extensions o o o o e e 98
A.TS5GNU Fortran 77 extensions o o e 98
A.16 HP-UX FORTRAN/9Q000 and HP Fortran 77 extensions Q8
A T71BM AIX XL FORTRAN extensions v v v v v e e e e e e e e 99
A T8IBM VS Fortran V2 extensions v v v v e e s 99
A.l9Intel Fortran extensions 100
A.20Lahey F77L Fortran-77 extensions e e 100
A.21 Microsoft Fortran extensions e 100
A22NDP Forfran extensions e 101

A.230racle Forfran extensions e e e 101

C History of changes

D

A.24 Prime Fortran-77 extensions
A.25 Salford Fortran extensions
A.26 Silicon Graphics MIPSpro Fortran 77 extensions
A.27 Sun Fortran 77 extensions
A.28 Unisys 1100 Fortran-77 extensions
A.29 Watcom Fortran 77 extensions
A.30The configuration file
A.30.1 EXTENSIONS
A.30.2 INTRINSICS
A.30.3 OCI (OPEN/CLOSE/INQUIRE) specifiers
A.30.4 MESSAGES
A.30.5 OUTPUT
A.30.6 VARIOUS

Limitations

B.1 Configuration determined limits

Message summary

References

Glossary

CONTENTS

115
117
177

181

Chapter 1

Infroduction

Coverity Fortran Syntax Analysis is a Fortran program development, conversion, mainte-
nance, verification and documentation tool. It parses Fortran programs, verifies the syntax
and composes cross-reference tables. It analyzes separate program units as well as the
program as a whole.

Coverity Fortran Syntax Analysis has been integrated into the Coverity Analysis work-
flow, permitting the coding errors it detects to be managed and displayed through a
Coverity Platform instance.

In that workflow, the Fortran sources constituting a program are anlyzed using
cov-run—fortran and written 1o the specified intermediate directory. Following that, the
analysis results may be uploaded to Coverity Platform using cov-commit-defects.

Coverity Fortran Syntax Analysis does not use cov-build; therefore it does not perform
a build capture, nor does it perform a filesystem capture. It is necessary to specify the files
to be analyzed explicitly on the command line.

1.1 What does Coverity Fortran Syntax Analysis do?

Coverity Fortran Syntax Analysis verifies syntax by parsing the source program. This is done
as precisely as possible for the selected compiler emulation. The full Fortran 2015 syntax
(which includes the Fortran 2008, Fortran 2003, Fortran 95, Fortran 90 and FORTRAN 77 syn-
tax) is supported. Many Fortran 2015 features are also supported. Moreover most language
extensions of many compilers are accepted. As an option, the syntax can be verified for
strict conformance to the FORTRAN 77, Fortran 90, Fortran 95, Fortran 2003, Fortran 2008, or
Fortran 2015 standard.

Cross-reference tables of all objects within program units are composed. Information
and warnings concerning the usage of all objects are provided.

The reference structure (call tree) of the program can be analyzed and presented.
Recursive references are traced and verified. The persistence of common-block objects
and global module data is verified.

The consistency of the entire program is verified by checking the category and type
of the procedures and the argument lists of all procedure references. Length, type and
structure of the common blocks specified in the various program units are compared.

7

8 CHAPTER 1. INTRODUCTION

Cross-reference tables of all procedures, common blocks, common-block objects, mod-
ules, public module data, external I/O and include files over the program are composed.

Coverity Fortran Syntax Analysis can emulate a specific compiler by reading a config-
uration file in which all fypes and language extensions 1o be supported are enumerated.
The cov-run-fortran command can be used to list the available configurations; it pro-
vides guidance for selecting among them.

The global information of each program unit can be stored in library files. These can
be referenced and updated in subsequent Coverity Fortran Syntax Analysis runs. Using
libararies provides the means to test a subset of program units in the context of the entire
program. In this way, the code under active development can be analyzed more rapidly
while preserving the accuracy of the analysis.

1.2 Why Use Coverity Fortran Syntax Analysis?

Although your Fortran compiler verifies the syntax of the input source code, this check is in
general far from complete. Coverity Fortran Syntax Analysis, on the other hand, performs
this verification as completely as possible. More importantly, Coverity Fortran Syntax Anal-
ysis verifies the program as a whole. Procedure types, argument lists and common blocks
are all verified for consistency program-wide.

In active development, Coverity Fortran Syntax Analysis can save time and annoy-
ance because coding errors are detected as early as possible. Coverity Fortran Syntax
Analysis is also very useful in porting efforts: Since it can emulate a variety of target com-
pilers, it can ensure compadatibility with many compilers using a single machine to run the
analyses.

As an option, Coverity Fortran Syntax Analysis checks the conformance of your pro-
gram to the FORTRAN 77 (1), the Fortran 90 (2, 3), the Fortran 95 (4), the Fortran 2003 (5), the
Fortran 2008 (6), or the Fortran 2015 (7) standard. Although most compilers have an option
to reveal deviations from the standard, they generally perform this in a limited way. Cover-
ity Fortran Syntax Analysis, however, reveals almost all deviations which can be detected
during static analysis. This is of utmost value when developing software that is infended to
be portable.

In addition to the stream of defects that can be uploaded to a Coverity Platform
instance, Coverity Fortran Syntax Analysis produces auxiliary outputs that can be useful for
program analysis:

e an index of program units and module procedures,
e areference structure (call tree) of all subprograms,
e a dependency tree of all modules, and

e cross-reference tables of procedures, common blocks, common-block objects, mod-
ules, public module data, external I/O and include files.

Coverity Fortran Syntax Analysis can emulate most language extensions supported
across a variety of compilers. When you tell Coverity Fortran Syntax Analysis to emulate the
compiler of the target system you can use it as a code conversion and porting aid.

1.3. APPLICATION AREAS %

The global information of the various program units can be stored in library files. You
can verify newly developed or changed program units in the context of the entire program
by specifying the library files containing the global program information without analyzing
all source code anew. In this way you can develop programs in a modular way without
the risk of creating inconsistencies in the subprogram interfaces.

1.3 Application Areas

Coverity Fortran Syntax Analysis can be used to the best advantage in the following appli-
cation areas:

¢ Program development. During program development Coverity Fortran Syntax Analy-
sis signals syntax errors and presents warnings both at the program unit and program
level. It will detect substantially more of the program flaws than your compiler. Ad-
dressing these flaws will ensure that the program compiles successfully.

¢ Program maintenance. The optimal documentation presented, especially the table
of contents, the reference structure, the module dependency tree and the cross-
reference tables, will show you exactly where to find all items that will be affected
when you change global items such as an argument list or a common block.

e Education. In contrast to most compilers, Coverity Fortran Syntax Analysis shows de-
viations from the Fortran standard very precisely. Moreover Coverity Fortran Syntax
Analysis shows where implicit type conversions and fruncations occur. Invalid refer-
ences to procedures and inconsistent common blocks are common errors which are
signalled by Coverity Fortran Syntax Analysis.

e Conversion. Coverity Fortran Syntax Analysis can verify that a program is standard
conforming. In that case you will have minimal problems when transferring a program
to another computer system. Moreover Coverity Fortran Syntax Analysis can emulate
most Fortran extensions of many compilers, so you can verify the portability of your
program during development without moving the source code to the target system.

1.4 This manual

This reference manual does not intend to describe the Fortran language or the Fortran
standard. A good working knowledge of the Fortran language and nomenclature is as-
sumed.

This manual starts with a tutorial to acquaint the user with Coverity Fortran Syntax Anal-
ysis. Then it discusses the operational procedures. Thereupon a concise description of the
program unit analysis, reference structure, module dependency tree and global program
analysis follows. In the appendices you can find information on the supported Fortran syn-
tax, how you can tune Coverity Fortran Syntax Analysis to accept the compiler extensions
of your choice, and the limitations of Coverity Fortran Syntax Analysis. The manual con-
cludes with a message summary with explanations, a glossary, references and an index.

10

CHAPTER 1.

INTRODUCTION

Chapter 2

Tutorial

Coverity Fortran Syntax Analysis is a sophisticated tool that permits fine-grained control of
its Fortran source code analysis through configuration files and command line arguments.
This chapter presents an overview of its operation using the cov-run-fortran command.

The behavior of Coverity Fortran Syntax Analysis is governed in detail by its configuro-
tion file. These behaviors include: the compiler emulation and enabled language exten-
sions, data sizes, standards conformance, which checks are performed and which defects
are issued.

Coverity Fortran Syntax Analysis currently provdes over 70 compiler emulations in pre-
written configuration files, and supports easy selection among these through its configura-
tion selection options. Advanced users can also create a custom configuration files and
select one explicitly.

For a complete description of the user interface, see the chapter entitled “Operation”.
For a precise clarification of the analysis, see the chapter entitled “Analysis”.

2.1 Basic Operation

Coverity Fortran Syntax Analysis requires three pieces of information to run correctly:
1. where to write the results;
2. which configuration (compiler emulation) to use; and
3. the names of one or more files to analyze.

Coverity Fortran Syntax Analysis results are written to the intermediate directory specified
by the —-dir option.

The configuration is determined by specifying configuration options (--platform,
-—vendor, ——version, ——level) sufficient to identify the desired one uniquely. If the
choice is not unique, the first candidate in the list is used, but a warning message is printed.
If no configuration options are specified at all, then the generic configuration file “f95” is
used by default. If no choices match the configuration selection criteria, then an error is
issued.

11

12 CHAPTER 2. TUTORIAL

The name of the desired configuration file can also be specified explicitly using the
—--configuration option. This option makes it possible to use custom configuration files.

The names of files to be analyzed are simply listed on the command line. Analysis
options and filenames must follow control options on the command line. The command
parser can usually determine where the list of control options ends and the list of analysis
options and filenames begins. However, since some cases are ambiguous, it is recom-
mended practice to always place the —- delimiter between the list of control options and
the list of analysis options and filenames.

A minimal command line to run cov-run-fortran looks like:

cov-run—-fortran --dir idir -- test.f

assuming that test . £ exists in the current working directory. The corresonding output is

Coverity Fortran Syntax Analysis version 2018.01 on Linux 3.13.0-133-generic x86_64

[STATUS] Reading Fortran configuration files.
[STATUS] Selecting configuration file.
[WARNING] No configuration specified.

Using generic configuration £95
[STATUS] Running Fortran analysis
[STATUS] Converting results
[STATUS] Importing to intermediate directory
test.f
Successfully imported 1 source files.
[STATUS] cov-run—-fortran finished

indicating that cov-run-fortran ran successfully and imported the defects from one source
file.

2.2 Analyzing a single source file

It is advisable to start simply by analyzing a single source file. Choose a source file con-
taining a program unit that does not use modules, or one that contains all the referenced
modules. In this way you can verify the settings and experiment using some of the options.

When using Coverity Fortran Syntax Analysis in commandline mode an example of the
analysis of a single source file is:

cov-run—-fortran —--dir idir -- test

The default filename extension is .f.

You may need 1o specify some analysis options to indicate the source form and specify
the path of the include files (if these are not in the path of the source file) before you get
the results you expect. These options are:

-allc. Analyze adll columns of the source input records (beyond column 72 for fixed
source form).

2.2. ANALYZING A SINGLE SOURCE FILE 13

-cntl ¢ Allow a maximum of ¢ continuation lines in a statement (beyond 19 for fixed
source form).

-ff, Source code input is in free source form. (This is the default for source files with a
filename extension of .f90, .f95, .f03, or f08.)

—-define. Define meta symbols for conditional compilation. The specified symbols must be
separated by a ”; “.

-1 Set directories of include files. The items in the list must be separated by a “; “.

These options must be specified before the source file they are intended to affect. If speci-
fied before the first in a list of source files, they affect all source files (globally). For example:

cov-run—-fortran —--dir idir —-- —-allc -cntl 100 -ff —-define x86 source.f

The negative form of an option is the option preceded by an “n”, e.g. —nff indicates fixed
form.

If the source file contains more than one program unit, they are analyzed in the order
in which they appear, and a global analysis is performed in addition to the program unit
analysis.

2.2.1 Enabling Warning and Information Messages

The ——impact option provides coarse-grained control over the number of defects included
in the analysis results. It takes the values High, Medium and Low and is set o High by default.
Warning messages are included in the analysis results if -—impact=Medium and information
messages are additionally included if -—impact=Low. If a listing or report file is produced,
all enabled messages are printed, regardless of the ——impact setting.

Users can also select the types of messges produced using the —-warn and -inf anal-
ysis options and their negations -nwarn and —-ninf.

-inf, -ninf Show/do not show informational messages.
-warn, -nwarn Show/do not show warnings.

These options affect the contents of the listing and report files as well as the defects that
appear in the analysis results.

Advanced users can exert fine-grained control over the impact of messages by cre-
ating and using a custom configuration file.

2.2.2 Producing a source listing with cross-references
A listing file is produced by the option -I. e.g.
cov-run-fortran --dir idir -- -1 mylistingfile mysourcefile.f

A listing filename consisting of a single “-" denotes stdout, SO

cov-run-fortran —--dir idir -- -1 - mysourcefile.f

14 CHAPTER 2. TUTORIAL

produces a listing in the log file. The log file can be found in the file output/forchk.log
relative to the root of the specified intermediate directory.

Some funing may be required to analyze the code and produce defects consistent
with your needs. The available options and their effects on analysis are describe in detail
in the chapter entitled “"Operation”. Advanced users can also control the analysis in great
detail by creating and using a custom configuration file.

2.3 Analyzing more than one source file

To analyze multiple source files, the syntax in general is:

cov-run-forcheck (control-options) — (@nalysis-options) sourcefiles

e.g.

cov-run—-fortran —--dir idir -1 mylistfile —-ff sourcel source2

All options specified before the list of source files are global: they are effective for the
analysis of each source file and for the global analysis. Options specified within the list
of source files are local: they act only upon the immediately-following source file. For
example, in

cov-run—-fortran —--dir idir -- -1 mylistfile -ff sourcel -nff source2

sourcel is analyzed using free-form syntax rules while source?2 is analyzed using fixed-form
syntax.

2.3.1 Analyzing all source files in one or more directories

When using the commandline, you can use wildcards to specify the source files to be
analyzed, for example:

cov-run—-fortran --dir idir —-- *.f

Note: A unix shell will expand filename wildcards before passing the command line to
cov-run—-fortran. Therefore local options will only affect the first file of the expanded
list. Global options, specified before all file names, operate as expected. One can avoid
this problem by listing each source file separately rather than using wildcards. Like many
Coverity tools, cov—-run—-forcheck allows response files to be specified on the command
line. Response files can be used to provide an explicit list of input files along with the local
options affecting each.

2.4 The program analysis

Analyzing the program as a whole is a key functionality of Coverity Fortran Syntax Anal-
ysis. All references of external procedures are verified. Undefined actual arguments are

2.5. THE REFERENCE STRUCTURE OR CALL TREE 15

flagged. When the complete option —ancmpl is specified, unreferenced and undefined
global entities over the program as a whole are flagged. In that case unreferenced pro-
cedures, unreferenced common blocks, unreferenced and undefined common-block ob-
jects, unreferenced modules, unreferenced and undefined public module procedures,
operators and data are flagged. See also the sections “Verification of common blocks”
and “Verification of modules” in the chapter entitled “Analysis”.

If not all procedures are available you can make the interface available; see the
section “Specification of procedure interfaces” of the chapter “Analysis”.

2.5 The reference structure or call tree

Coverity Fortran Syntax Analysis can present the call tree in the listing file, or store it in xml
format so you can browse and use it for further analysis or documentation. In producing
the call tree, Coverity Fortran Syntax Analysis expands only one copy of each subtree for
the sake of brevity. This behavior can be overridden by specifying multiple root nodes; the
tree will be expanded at each such root node.

-shref Show the reference structure.

—-shref root.list Show the reference structure for the roots specified. The specified roots
must be separated by a “; “.

If the —anref option is in effect Coverity Fortran Syntax Analysis also analyses the tree. In
that case, procedures that are referenced recursively but are not declared as such, or
declared to be recursive but not referenced recursively are spotted.

Unsaved common blocks and module variables which are not specified in the root
of the referencing program units are reported. From Fortran 2008 on, saving is the default
behavior and most compilers will store those objects statically. However, in earlier levels of
the standard, failing to save such objects is not standard conforming and a potential risk
when porting the program to another platform.

2.6 The module dependency iree

Coverity Fortran Syntax Analysis can present the dependencies of modules as a tree. You
can also specify specific modules for which you want to see the dependencies.

-shmoddep Show the dependency tree of all modules.

-shmoddep root.list Show the dependency tree for the modules specified. The specified
modules must be separated by a “; “.

2.7 Using library files

The purpose of library files and how to use them is explained in the chapter “Operation”,
section “Coverity Fortran Syntax Analysis library files”. That knowledge is needed to under-
stand the next sections, so you are invited to make this detour now.

16 CHAPTER 2. TUTORIAL

2.8 Using modules

When importing modules with the USE statement, Coverity Forfran Syntax Analysis has to
import the public items of the module to analyze the code. Thus, the imported module
has to be analyzed before analyzing the code that imports it. Coverity Fortran Syntax
Analysis stores the public module information in a temporary library file for later reference.
If the modules are located in front of the importing program unit or if they are in separate
files and you analyze all files in one run, this works fine without further infervention. Coverity
Fortran Syntax Analysis computes a module-dependency graph and analyizes the files in
reverse-dependency order as required. In other cases you must analyze the referenced
modules first and store the result in a Coverity Fortran Syntax Analysis library. When an-
alyzing the source code which references these modules you specify this library file as a
reference library.

2.8.1 Using third-party libraries

When referencing third-party modules, e.g. supplied by the compiler vendor, Coverity For-
tfran Syntax Analysis needs the interfaces to perform the analysis. Coverity Fortran Syntax
Analysis cannot read the .mod files as supplied by the vendor because they are propri-
etary binary files. If the source code with the interfaces is supplied by the vendor you can
generate a Coverity Fortran Syntax Analysis library file containing the interfaces. See the
section “Coverity Fortran Syntax Analysis library files” of the chapter “Operation” on how to
generate the library file. If the interface is not supplied in source code, you can compose it
from the documentation as described in the chapter “Analysis”, section “Specification of
procedure interfaces”.

2.9 Portability and conformance to standards

To verify if a program is portable you can instruct Coverity Fortran Syntax Analysis to verify if
it is standard conforming. See the next subsection “Standard conformance”. To make your
program suitable for the next Fortran level you can let Coverity Fortran Syntax Analysis flag
the presence of obsolescent syntax (-obsolescent option). It is also possible to instruct
Coverity Fortran Syntax Analysis to accept only those language extensions of a compiler
that are available in another Fortran language level. This is elucidated in the subsection
“Compiler emulation”.

2.9.1 Standard conformance

For optimal portability the program should be standard conforming. Coverity Fortran Syn-
tax Analysis verifies standard conformance very precisely when you specify the —standard
option. When this option is applied, Coverity Fortran Syntax Analysis validates the syntax
for conformance to the Fortran standard of the level that is in effect (as determined by the
compiler emulation chosen). All nonstandard syntax will be flagged.

2.9. PORTABILITY AND CONFORMANCE TO STANDARDS 17

2.9.2 Compiler emulation

By choosing the appropriate configuration file, the correct language level is chosen and
the supported language extensions are enabled. If you want only those language exten-
sions to be accepted that are in the next Fortran level, you can specify one of the specific
conformance options. E.g. if you use gfortran emulation and allow all extensions which are
in the Fortran 2003 standard, you specify the —£03 option.

2.9.3 Setting your own, or company standard

Advanced users can create a custom configuration file, which can enable just the specific
language extensions supported by the compiler(s) in use and/or those whose use is deter-
mined to meet code-quality standards. A custom configuration file is used by supplying its
name as an argument 1o the ——configuration opftion.

2.9.4 Cross-platformm development

Coverity Fortran Syntax Analysis can also be used for cross-platform development. By spec-
ifying the compiler emulation file of the target platform Coverity Fortran Syntax Analysis will
analyze the program as if you were compiling on that target. Problems might arise when
include files are being used which are not available, or have filenames that are not ac-
ceptable on the host. See the next subsection. It could also be necessary to create
interfaces for system calls that are not known on the host.

2.9.5 Using include files

The syntax for the INCLUDE line or include preprocessor directive can vary with the platform
for which the program has been developed. Coverity Fortran Syntax Analysis can handle
most dialects. However, if you analyze the source on e.g. a Windows platform and the
target platform is Linux, it could be difficult to place the include files in the correct direc-
tories. Using the -1 you can specify where Coverity Fortran Syntax Analysis must search for
include files.

2.9.6 Multi-platform development

If your code is standard-conforming, you will have minimal problems in porting the pro-
gram to various platforms. By creating a configuration file that is the intersection of the
langauge extensions available among all the platforms you support, portability violations
can be flagged with ease. Platform-specific code is analyzed correctly, since cpp-like
preprocessing is supported by Coverity Fortran Syntax Analysis.

Some types can be different on the various platforms. In that case, consistent analysis
will require the creation of a different configuration file for those different platforms.

Coverity Fortran Syntax Analysis presents a warning if you use an implicit type in one
place in the code and the explicit type in another, e.g. when associating arguments,
because that implies a portability risk.

18

CHAPTER 2. TUTORIAL

Chapter 3

Operation

3.1 Using Coverity Fortran Syntax Analysis

The Coverity Fortran Syntax Analysis analyzer can be started in a command shell by typing
the cov-run-fortran command with options, source and library flenames. The com-
mand line has the following form

cov-run-fortran (control_options) — (global_options) file ((local_options) file ...)

where file is the name of a Fortran source file or Coverity Fortran Syntax Analysis library file
to be analyzed. All source files must be specified before any library file. Wild cards can be
used in the filename specifications.

Analysis options specified before the first source filename are global and apply to the
whole analysis. Options specified within the list of source files are local and apply to the
next source file only. See the section “The usage of options”. Flenames must be separated
by blanks. By default a file is assumed to be a source input file.

When a filename is preceded by the -1 option, and the filename does not have the
suffix of a source or library file, it is considered to be a list file. If a flename has a .fl1b
suffix or it is preceded by one of the library options, it is considered to be a Coverity Fortran
Syntax Analysis library file. See the sections “Specifying a list file” and “Specifying a library
file” for more information.

default suffixes:
. £ for a source input file, . 1st for alist file, . £1b for a library file
The default suffixes for source input and include files depend on the compiler emulation

chosen. See the sections on compiler emulations and supported Fortran syntax for more
information.

19

20 CHAPITER 3. OPERATION
3.2 Specifying a list file

On the command line you can specify a list file by using the -1 option with the name of
the list file as argument. A single dash denotes stdout. If no argument has been specified
with the -1 option, the name of the first (source or library) file specified is used as the name
of the list file, where the suffix is replaced by the default list file suffix (.Is7).

When no list option has been specified, all diagnostic and system messages will be
sent to stdout. That stream is captured and written to the analysis log file, which can be
found at output/forchk. log within the specified intermediate directory.

3.3 Specifying a library file

Files with a name with a . £1b suffix or flenames preceded by one of the library options
are considered to be Coverity Fortran Syntax Analysis library files. They must be specified
after the source input files, if any. When a library file is not specified, Coverity Fortran Syntax
Analysis will store all global program-unit information in a scratch file, which will be deleted
when Coverity Fortran Syntax Analysis has completed. You can, however, save this global
program-unit information by specifying a Coverity Fortran Syntax Analysis library file. In
subsequent Coverity Fortran Syntax Analysis runs you can reference and update this library
file. For detailed information, see the section on the usage of library files.

3.4 Options

We distinguish the following categories of options: options to control configuration selec-
tion and defect generation, options to tune the program-unit analysis, options to tune the
global program analysis, options to tune the output, library options, and miscellaoneous
options. The options that can be specified are summarized hereafter.

3.4.1 Configuration selection options

Configuration files contain detailed compiler emulation information, including type sizes,
enabled language extensions, additional infrinsic procedures, checker enablement and
reported impact. The configuration files contain metadata which supports selection among
them using these criteria:

platform The target hardware/OS for the compiler.

vendor The organization that created or maintains the compiler.
version The compiler version.

level The language level (standard) suppored by the compiler.

A configuration is selected using the corresponding —-plat form, -—vendor, ——version
and —-level options. If multiple configurations match the specified criteria, the first one in

3.4. OPTIONS 2]

the list is used but a warning is issued. If no configurations match the specified criteria, an
error is issued and cov-run-fortran halts.

A table of available configurations can be printed using the —-1ist-configs Op-
tion. The —--configuration optfion can be used instead of the above four options to
select a configuration file by name. The —-config-path option can be used to specify
an alternate directory to search for configuration files. By default, they are located in the
forcheck/share/ directory relative to the root of your Coverity Analysis installation.

3.4.2 Other control options

Additional control options control defect generation. The impact option selects the de-
fects to be reported from among the flaws detected by the analysis. The flaws are cate-
gorized as having Low, Medium Of High impact, based on how the nature of the flaw. These
correspond to informational (1), warning (W) and error (E) message in the text output files.

The ——append option allows the outputs from subsequent invocations of cov-run-fortran
to be combined. By default, the results from one invocation of cov-run—-fortran overwrite
any results already present in the intermediate directory. The ——-strip-path option can
be used to remove a common prefix from filenames store in the intermediate directory.
This reduces storage requirements and improves the speed of cov-commit-defects.

3.4.3 Program-unit analysis

Program-unit analysis options affect the analysis that can be applied to individual program
units, These are generally termed “intraprocedural” analyses, even though Fortran contains
some program-unit types that are not executable. Program-unit analysis options can be
specified with per-file granularity.

Options which are specified before any source file are global and in effect for the
entire analysis. Options appearing within the source file list are local and affect only the
analysis of the next file. Local options override the global options temporarily. After the
analysis of that file completes, all options revert to their global values. See the section “The
usage of options”.

-allc

Analyze all columns of the source input records. If negated and the -ff option is not in ef-
fect, only columns 1 to 72 (after expansion of tabs) will be analyzed. See also the sections
“Interpretation of source code records” and “Lay-out of source code listing” of the chap-
ter “Analysis”. Default: —-nallc.

—acqgintf

Use the interface of the previously analyzed subprogram with an implicit interface, if present,
to verify the references during subprogram analysis. If negated the actual argument lists

of the references in the various subprograms will only be verified during global program

analysis. You need to specify this option if you analyse an unrelated set of program units,

or if you have modified interfaces and have not yet updated the Coverity Fortran Syntax

Analysis libraries containing the inferfaces. Default: /nacgintf.

22 CHAPTER 3. OPERATION

-cntl C
Allow a maximum of ¢ continuation lines in a statement. The value of ¢ must be less than
or equal to 999. The default depends on the compiler emulation chosen.

—Ccpp
For files with a filename extension starting with .F the default is /cpp. For all other files the
default is /ncpp.

—cond
Process debug (D) lines. Default: —ncond.

—declare
Present a warning for all variables that have not been explicitly declared in a type state-
ment. Default: —-ndeclare.

_dp

Map all default reals to double precision and double precision to REAL(16). Map all default
complex objects to double complex and all double complex to COMPLEX(16). See also
-r8. Default: —ndp.

-externals
Flag referenced external procedures which have not been declared external. Default:

-nexternals.

-£77

Validate the syntax for conformance to the FORTRAN 77 standard. All nonstandard syntax
will be flagged. Note that this option does not enable FORTRAN 77 syntax by itself. To en-
able FORTRAN 77 syntax a configuration file of a FORTRAN 77 compiler must be selected.
Default: -nf77.

-£90

Validate the syntax for conformance to the Fortran 90 standard. All nonstandard syntax
will be flagged. Note that this option does not enable Fortran 90 syntax by itself. To enable
Fortran 90 syntax a configuration file of a Fortran 90 compiler must be selected. Default:
-nf90.

-£95

Validate the syntax for conformance to the Fortran 95 standard. All nonstandard syntax
will be flagged. Note that this option does not enable Fortran 95 syntax by itself. To enable
Fortran 95 syntax a configuration file of a Fortran 95 compiler must be selected. Default:
-nf95.

-£03
Validate the syntax for conformance to the Fortran 2003 standard. All nonstandard syntax

3.4. OPTIONS 23

will be flagged. Note that this option does not enable Fortran 2003 syntax by itself. To en-
able Fortran 2003 syntax a configuration file of a Fortran 2003 compiler must be selected.
Default: -nf03.

-f08

Validate the syntax for conformance to the Fortran 2008 standard. All nonstandard syntax
will be flagged. Note that this option does not enable Fortran 2008 syntax by itself. To en-
able Fortran 2008 syntax a configuration file of a Fortran 2008 compiler must be selected.
Default: -nf08.

-f15

Validate the syntax for conformance to the Fortran 2015 standard. All nonstandard syntax
will be flagged. Note that this option does not enable Fortran 2015 syntax by itself. To en-
able Fortran 2015 syntax a configuration file of a Fortran 2015 compiler must be selected.
Default: -nf15.

-ff

Source code input is in free source form. The interpretation depends on the compiler em-
ulation chosen and the specification of the —-£90, -£95, or —£03 option. For files with a
filename extension of .f90, .f95, .f03, .f2003 .f08, 2008, FY0, F95, FO3, F2003, FO8 or F2008 the
default is -££. For all other files the default is -nf£.

-i2
Default integers occupy 2 bytes by default. The length of logicals will depend on the com-
piler emulated.

-i4
Default integers and logicals occupy 4 bytes by default.

-is8
Default intfegers and logicals occupy 8 bytes by default.

—intent
Flag dummy arguments for which no INTENT attribute has been specified. Default: —-nintent.

—intrinsic
Flag referenced intrinsic procedures which have not been declared intrinsic. Default:

-nintrinsic

-obsolescent
Flag all syntax features which are marked as obsolescent in the Fortran standard which is
in effect. Default: —-nobsolescent.

-r8
Map all default reals to double precision. Map all default complex objects to double com-

24 CHAPTER 3. OPERATION
plex. See also -dp. Default: -nrs.

-relax

Relax type checking on integers, logicals and Holleriths. No messages will be produced
for type conflicts between logicals and integers, for the usage of relational operators on
logicals and for the usage of logical operators on integers. Hollerith constants can be used
in expressions and mixed with logicals, infegers and reals. Default: -nrelax.

—sSave
Save all variables by default. Default: —nsave.

-specific
Flag all referenced specific intrinsic procedures. Default: —nspecific.

-standard

Validate the syntax for conformance to the Fortran standard of the level that is in effect.
All nonstandard syntax will be flagged. The effective level is determined by the compiler
emulation chosen. Default: —-nstandard.

3.4.4 Global program analysis

—ancmpl

The complete program is analyzed and Coverity Fortran Syntax Analysis will flag unref-
erenced procedures, unreferenced and undefined common blocks, unreferenced and
undefined common-block objects, unreferenced modules, unreferenced and undefined
public module variables, unreferenced public module constants and unreferenced public
module derived types. If the —anref option and the —-rigorous are also in effect the call
tree will be traversed to detect unsaved common blocks and modules with unsaved public
data which are not specified in the root of referencing program units. See also the sections
“Analysis of the reference structure”, “Verification of common blocks” and “Verification of
modules” of the chapter “Analysis”. Default: —-nancmp1.

—anprg
Verify the consistency of the global program. If this option is not in effect, only the individual
program units are analyzed. See the section “Global program analysis”. Default: —anprg.

—anref
Analyze the reference structure. See also the section “Reference structure” of the chapter
“Analysis”. Default: —anref.

Global program analysis options are global only and must be specified before the flename
of any source or library file.

3.4. OPTIONS 25

3.4.5 Output

-1
Make a list file. The list filename is composed from the first source or library filename en-
countered, where the suffix is replaced by . 1st. Delimit the option by --. Default: -n1.

_l —
Write the list file to stdout. Default: -n1.

-1 file
Make a list file with filename file. Default: —n1.

-plen |

Place a maximum of /lines on a page, | >= 20. By default the IDE automatically takes the
value from the page setup characteristics. Default for the command line version: -plen
62,

—pwid w

Place a maximum of w characters on aline, 60 <= w <= 255. By default the IDE automat-
ically takes the value from the page setup characteristics. Default for the command line
version: —-pwid 100.

-refstruct file

Specify the name of a file in which the reference structure will be stored in XML format. If
no filename is specified the filename is fckrs.xml. See also the section “Reference structure”
of the chapter “Analysis”. Default: -nrefstruct

-moddep file

Specify the name of a file in which the module dependencies will be stored in XML format.
If no filename is specified the filename is fckmd.xml. See also the section “Module depen-
dencies” of the chapter “Analysis”. This is a command line option only. Default: —-nmoddep

-shinc
List lines included from include files. Default: —-shinc.

—-shsub

Show source code and cross references of program units and subprograms. The listing of
source code lines can be suppressed by disabling the —shsrc option. See the section
“Program-unit cross references” of the chapter “Analysis”. Default: —shsub.

—-shsrc
List source code. To list source code the -shsub option must be in effect also. See the

section “Program-unit cross references” of the chapter “Analysis”. Default: —shsrc.

—-shsngl

26 CHAPTER 3. OPERATION

Include unreferenced constants, namelist groups and procedures, declared in include files
or modules, unreferenced common-block objects and unreferenced imported module
variables in the program-unit cross-references. Default: —shsngl.

-shprg
Show cross-reference listings of the program. See also the section “Global program cross
references” of the chapter “Analysis”. Default: -shprg.

-shref
Show the complete reference structure of the referenced procedures. See also the section
“"Reference structure” of the chapter “Analysis”. Default: -shref.

—-shref root.list
Show the reference structure for the roots specified. The specified roots must be separated
bya”;”,a”:",ora”,”. Default: —-shref.

—shcom
Show cross-reference listings of common-block objects. See also the section “Cross refer-
ence of common-block objects” of the chapter “Analysis”. Default: -nshcom.

—shcom com_list
Show cross-reference listings of common-block objects of specified common blocks. The
specified common blocks must be separated by a “;“,a“:“,ora”, . Default: —-nshcom.

—-shmodtyp
Show cross-reference listings of public module derived types. See also the section “Cross
reference of public module derived types” of the chapter “Analysis”. Default: —-nshmodtyp

—shmodtyp mod_list
Show cross-reference listings of public module derived types of specified modules. The
specified modules must be separated by a ”;“,a”:", ora”, “. Default: —-nshmodtyp.

—shmodvar
Show cross-reference listings of public module data. See also the section “Cross reference
of public module data” of the chapter “Analysis”. Default; —-nshmodvar

—shmodvar mod_list
Show cross-reference listings of public module data of specified modules. The specified
modules must be separatedbya ”;“,a”:",ora ”, “. Default: -nshmodvar.

—shmoddep
Show the dependencies of modules. Default: —-nshmoddep

—shmoddep root._list
Show the dependencies of modules of specified modules. The specified modules must be

3.4. OPTIONS 27
separatedbya “;“,a”:",ora”,”. Default: -nshmoddeproot.

The options -1, -plen, -pwid, —shcom, —shmod, —shmoddep, —shprg, —shref are global
only and must be specified before the filename of any source or library file. The other
output options can also be specified locally to overrule the global setting tfemporary. See
the section “The usage of options”.

3.4.6 Llibrary

—Ccreate
Create new library file. If more than one library file is specified, the library file to be created
must be the first in the list. Default: -ncreate.

—include

Include all program units from the library file in the analysis. To prevent the string following
the option 1o be interpreted as an option argument, you can terminate the option with
“~", Default: —-ninclude

—include sub_list
Include specified program units from library file in the analysis. The specified program units
must be separated by a ”; ", a”:",ora”,”. Default: —-ninclude.

—-library

The filename specified is a Coverity Fortran Syntax Analysis library file. Default: -nlibrary.
The current directory is searched first if the given library file path is relative. If that fails and
the library name is a simple name (without path components), the models directory in the
installation tree is also searched.

—update

Update library file. If the file does not exist, it will be created. Default: —-nupdate.

Library options are local only and must be specified right in front of the name of the library
file on which they must operate.

3.4.7 Miscellaneous

—-batch
Exit if error during command processing. Default: -nbatch.

—define
Define meta symbols for conditional compilation. Default: -ndefine.

-help
Present help information on screen. Default: —-nhelp.

-key

28 CHAPTER 3. OPERATION

A security key used internally for license authentication between Coverity and Coverity
Fortran Syntax Analysis.

To run Coverity Fortran Syntax Analysis either a valid Coverity Fortran Syntax Analysis license
or a valid security key is required.

Default: (none).

-1
Set directories of include files. When the first characterisa ”, ” or “: “ the current directory
is also searched. Default: -n1I.

—idep d
Generate a file with all referenced include files. Default: —nidep.

—informative
Show informative messages. Default: —informative.

-log
Show defines and undefines of meta variables. Default: —-nlog.

—report r
Generate areport file r. If no flename is specified the filename is fck.rep. Default: —-nreport.

—rigorous

Flag less robust and less portable code at the cost of more informative messages. Do not
limit the number of messages for a statement or argument list. This option is useful when
developing new code and fo improve the quality of existing code. Do not use this opfion
when analysing a project for the first time. See the sections “Syntax analysis”, “Verification
of argument lists”, and “Verification of common blocks” of the chapter “Analysis”. Default:

-nrigorous.

—truncate
Truncate names 1o 6 significant characters. Default: -ntruncate.

-warnings

Show warnings. Default: -warnings.

Most of the miscellaneous options are global only and must be specified before the file-
name of any source or library file. The -informative and —warnings options can also be
specified locally to override the global setting. See the section “The usage of options”.

3.4.8 Defaults

-nallc -nacgintf -nancmpl -anprg —-anref -nbatch -ncond -ncreate -ndecl
-ndefine -ndp -nexternals -nf77 -nf9%0 -nf95 -nf03 -nf08 -nfl5 -nff -nI -nidep
-ninclude -informative -nintent -nintrinsic -ni2 -i4 -ni8 -nl -nlibrary -nlog

—nmoddep —-nobsolescent -plen 62 -pwid 100 —nr8 -nrelax —-nreport —nrefstruct

3.4. OPTIONS 29

-nrigorous -nsave -nshcom -shinc -shmoddep -nshmodvar -shprg -shref -shsngl

—-shsrc -shsub -nspecific -nstandard —-ntruncate —-nupdate -warnings

For files with a flename extension of .f90, .f95, .f03, .f08, .FQO, .F95, .FO3, or .FO8 the
default source form is freeform —f £.

The default number of allowed continuation lines depends on the compiler emulation
chosen.

On the page headers in the listing file, the specified non-default analysis options will be
shown. You can override the default options by setting the environmental variable FCKOPT
to the default options of your choice. For example for the C shell:

setenv FCKOPT "-plen 66 —-pwid 100 -£f77"
or for the Bourne or Korn shell:

export FCKOPT="-plen 66 -pwid 100 —-£77"

3.4.9 The usage of analysis options

An analysis option starts with “-“, or “—-". To negate an option, precede it by “n”, or
“no-" for example -nwarnings, Or ——no-warnings. Analysis options can be truncated as
long as they are unique. Option arguments (include directories, common blocks, modules,
defined meta symbols, roots, and program units) must be separated by a “;“, a “:“, or a
“,",e.g. -1 dirl:dir2, -shcom coml, com2 Of —shmod modl,mod2. A double-dash “—-"
can be used to signal the end of the global options list.

The output options determine which information will be stored in the list file. You must
specify the -1 option for these options to have any effect. When the -1 option has not
been specified, or when certain sections of the output are being suppressed by, for ex-
ample, the —nshsub or -nshprg options, all diagnostic and system messages generated
during this suppression will be sent to output file, which an be found in output/forchk.log
in the intfemediate directory. During program-unit analysis all syntax messages will be pre-
ceded by the related statement.,

Options specified on the command line in front of the first flename are global and
hold for all input files. Options specified in front of a subsequent flename are local and
hold for that file only; they overrule the global setting temporarily.

For example:

cov-run—-fortran --dir idir -1 prg -£f77 prgl subl -relax sub2

willanalyze prgl. f, subl. £, sub2. £ and generate listings and cross references inprg. 1st.
All nonstandard Fortran 77 syntax will be flagged. Type checking is relaxed while process-
iNng sub2. f.

Since wildcards in flenames are expanded by the shell, local options apply only to
the first flename in the expanded list. Since the order in which filenames are substituted is
determined by the shell, this can lead to unstable or unexpected results. When using locall
options, it is recommended to specify all source file names explicitly.

30 CHAPTER 3. OPERATION

3.5 Exit status

Coverity Fortran Syntax Analysis exits with a specified exit status which can be tested in
command files.

0 Success
2 User Error
4 Internal Error

User errors indicate that there was a problem with the command-line syntax, a file was
missing or some other error in configuring and running the tool. An internal error indicates
that cov-run-fortran encountered an error in processing and aborted. Internal errors
should be reported to Coverity Support.

3.6 The usage of include files

When Coverity Fortran Syntax Analysis encounters an INCLUDE line, or an include prepro-
cessor directive, it tfries to open the include file specified. When an absolute filename has
been specified, as for example in /usr/project/incfil.h, Or “/incfil.h it opens that
file.

When a relative filename has been specified, the search strategy differs among the
various platforms. Coverity Fortran Syntax Analysis conforms to this search strategy. On
most platforms the search strategy is as follows:

Coverity Fortran Syntax Analysis first tries to find the include file relative to the directory
of the current source file. Then Coverity Fortran Syntax Analysis tries to find the include file
relative to the current directory. Then it uses the directories as specified by the -1 dir option.
If Coverity Fortran Syntax Analysis cannot find the include file on the directories specified it
tries to locate it on the default include directory /usr/include.

On some platforms the strategy is different and is as listed in the next paragraphs.

For HP/UX:

When a relative filename has been specified Coverity Fortran Syntax Analysis first tries
to find the file on the directory of the source file in which the include directive has been
specified. Then it uses the directories as specified by the -1 option. If Coverity Fortran Syn-
tax Analysis cannot find the include file on the directories specified, it tries to locate it on
the current directory and then on the default include directory /usr/include.

For IBM/AIX:

When a relative flename has been specified Coverity Fortran Syntax Analysis uses the
directories as specified by the -1 opftion. If Coverity Fortran Syntax Analysis cannot find
the include file on the directories specified it tries to locate it on the current directory, af-
ter that it searches the directory of the source file and then the default include directory

/usr/include.

3.7. COVERITY FORTRAN SYNTAX ANALYSIS LIBRARY FILES 31

When you want to specify more than one include directory with the -1 dir option you
mustusea ”; ", a”:",ora”,” asseparator.

On IBM/AIX Coverity Fortran Syntax Analysis converts an IBM/MVS type flename “ (xxx) ”
to lowercase characters.

The default suffix for include files depends on the compiler emulation chosen. See the
sections on compiler emulations and supported Fortran syntax for more information.

3.7 Coverity Fortran Syntax Analysis library files

Coverity Fortran Syntax Analysis stores the global information of all program units in a Cover-
ity Fortran Syntax Analysis library file. You can save this file for later reference. The first time
you specify a library file it has to be created using the —create option. If global program
analysis is in effect (this is the default) all information from the library file is included in the
global analysis.

New or modified program units can then be analyzed and their global information
stored or replaced in the library. To update the library, you specify the library file with the
—update option. If global program analysis is in effect, all information from the library will
again be included in the global analysis.

When the global information of the program units of a program has been stored in one
or more libraries in this way, you can analyze the program units in the context of the entire
program by referring to these libraries. Now all implicit intferfaces are known to Coverity
Fortran Syntax Analysis and all references of subprograms can be verified. Coverity Fortran
Syntax Analysis scans the libraries in the specified order and includes all referenced pro-
gram units found in the global analysis. Each individual library is searched recursively until
no references are resolved any more.

You can force Coverity Fortran Syntax Analysis to include all or only specific program
units from a library in the analysis.

When you specify only library files as input, Coverity Fortran Syntax Analysis will per-
form a global program analysis, and presents the reference structure and program cross
references if requested. All information contained in the first library file will be included in
the analysis by default. The other libraries are searched for referenced program units as
previously explained.

When you want to create a library file you specify the —create option. The library file
will be created and the global information of the analyzed program units will be stored in
this library file. For example:

cov-run—-fortran —--dir idir —-- test.f —-create testlib.flb

will analyze the source file test . £ and place the global information in the newly created
library file testlib. flb.

New or modified program units can then be analyzed and their global information
stored or replaced in this library file by specifying the library file with the —update option.
For example:

32 CHAPTER 3. OPERATION

cov-run-fortran --dir idir -- test.f -update testlib.flb

will analyze the source file test.f and replace the global information in the library file
testlib.flb.

Now you can analyze new or changed program units in the context of the entire
program by referring to previously created libraries. When libraries are specified using the
-library option, Coverity Fortran Syntax Analysis merely references the specified libraries.
It uses the library information to resolve global references, but does not analyze or update
the specified libraries. For example:

cov-run-fortran --dir idir -- testl.f -library testlib.flb

will analyze the source file test1.f and verify the procedure references, common blocks
etc. of dll references which reside in the library file test1lib. flb.

By specifying the —-include option you can force Coverity Fortran Syntax Analysis to in-
clude all or specific program units from a library in the analysis. For example:

cov-run—-fortran --dir idir -- testl.f -library -include subl,sub2 testlib.flb

will analyze the source file test1.f and verify the procedure references of the program
units SUBT and SUB2 which reside in the library file test1ib. f1b.
In the next two examples we analyze library files only:

cov-run-fortran --dir idir -- -library projectlib.flb -1ib plotlib.flb

will analyze the program consisting of all program units contained in the library file
projectlib.flb and all references found in the library file plotlib. f1b.

cov-run-fortran --dir idir -- -library projectlib.flb -incl plotlib.flb

will analyze the program consisting of all program units contained in the library files
projectlib.flb and plotlib.flb.

You can delete, compress and list the information of program units in the library file
using the unsupported utility fcklib. See the section “Maintaining library files” for further
information.

3.8 The usage of modules

When Coverity Fortran Syntax Analysis encounters a USE statement it must have the public
information of the module at hand. So Coverity Fortran Syntax Analysis needs to analyze
the referenced modules before the reference is encountered. Therefore Coverity Fortran
Syntax Analysis analyzes the input files first for “USE dependencies” and determines the
order to analyze the input files.

3.9. MAINTAINING LIBRARY FILES 33

The public information of analyzed modules is stored in the specified create or update
library. If no create or update library has been specified this information is stored in a fem-
pory library file. See the section “Coverity Fortran Syntax Analysis library files” for information
on how to use library files.

You could also analyze modules first and store the public information in one or more
libraries. When analyzing the referencing program units you must specify these libraries.

3.9 Maintaining library files

You can list and remove program units contained in a Coverity Fortran Syntax Analysis
library file and can compress it.

When Coverity Forfran Syntax Analysis replaces the information of program units it ac-
tually stores the new information at the end of the library file and updates the index. When
you remove the information of program units from the library file the librarian only removes
the index entry from the library file. To retain the free space from the library file you have
to compress it.

Also when you add the information of more and more program units the index of the
library file becomes scattered and the global program unit analysis will take more time.
Compressing the library file makes the index contiguous again.

3.9.1 Maintaining library files in command mode

fcklib is an unsupported utility that can be used to maintain Coverity Fortran Syntax Anal-
ysis library files. This utility can be found in the forcheck/bin/ directory relative to the root
of your Coverity Analysis installation. With fck1ib, you can list and remove program units
and compress the library.

fcklib is run by typing the fcklib command, with options and library flename. The
fcklib command line has the following form:

fcklib options libraryfile

In inferactive mode, you can enter the options and library flename as a respond to the
system prompt:

option(s) and library file?

When you specify the —rm option without any program unit names, fck1lib prompts for the
names of the program units to be removed:

program unit (s)?

You can enter a list of program units, separated by comma’s or blanks.

34 CHAPTER 3. OPERATION

The default suffix of Coverity Fortran Syntax Analysis liorary flenames is . £1b. The following
options are implemented:

-batch Exit if error during command processing. Default: -nbatch.
-help Present brief help. Default: —nhelp.

-remove § Remove one or more program units from the library. The program unit names
must be separated by a “, “. Default: -nremove.

-file_remove f Remove all program units contained in the source file specified from the
library. The filenames must be separated by a “, “. Default: —-nfile_remove.

—-compress compress the library. Default: -ncompress.

Note: When fcklib compresses alibrary file, it creates atemporary file . #fcklib.

which is deleted after successful compression. If, however, fcklib ends abnor-
mally, the user will find this file on its current directory.

-1 list the program units contained in the library. Default: -n1.

If more options have been specified in the same command the -rm option is carried
out first. Then the library will be compressed, if asked for. Finally, if a listing of library program
units is requested, the program units will be shown.

3.9.2 Examples
fcklib —-remove subl, sub2,sub3 tstlib

This command will remove the program units SUB1, SUB2, and sUB3 from the Coverity For-
tfran Syntax Analysis library file tst1ib. f1b.

fcklib -compress tstlib

This command will create a new, compressed, library tst1ib. £1b out of the existing library
tstlib.flb.

You can combine the —remove and —compress options in one command:
fcklib -remove subl, sub2, sub3 —-compress tstlib

The names of the program units are converted to upper case before usage because in the
library file all names are stored in upper case characters.

3.10 The usage of language extensions

Coverity Fortran Syntax Analysis can analyze programs written in FORTRAN 66, FORTRAN 77,
Fortran 90, Fortran 95, Fortran 2003, Fortran 2008, and Fortran 2015. Moreover Coverity

tmp,

3.10. THE USAGE OF LANGUAGE EXTENSIONS 35

Fortran Syntax Analysis supports many language extensions of the various compilers. When
using language extensions a program can become less portable. Coverity Fortran Syntax
Analysis can be used to verify portability and to assist in converting Fortran programs from
one platform to another.

When specifying the —-st andard option Coverity Fortran Syntax Analysis flags all devia-
tions from the Fortran standard of the level that is in effect, e.g. Fortran 95 when a Fortran 95
compiler emulation has been chosen. If the program is standard conforming, you will have
minimal problems converting the program to platforms which support the same or higher
level of the Fortran standard. The —obsolescent option can be used to flag syntax which is
marked as obsolescent in the Fortran standard of the level in effect. The —rigorous option
additionally flags less portable code and indicates possible unintentional usage.

The Fortran language level, the types and language extensions of a compiler to be
emulated are specified in a configuration file. The configuration is selected from among
the built-in configuration files by using the ——plat form, ~—vendor, —-—versionand --level
options. A specific configuration file — including a custom configuration — can be se-
lected using the ——configuration option.

In the appendix “Supported Fortran syntax” the supported compilers are listed. For
each of the supported compilers a configuration file is supplied. These files can be found
in the forcheck/share/ directory relative to your Coverity Analysis installation root.

When operating in command line mode the default file name extensions (suffixes) of
source and include files are specified in the configuration file which can be adapted by
the user. See the table with supported language extensions in the appendix “Supported
Fortran syntax”.

In the appendix “Supported Fortran syntax” the supported language extensions are
listed. When you want to enable different language extensions than the default you have
to make a copy of the appropriate configuration file and delete or add lines for the spe-
cific language extensions. You can find the numbers of these extensions in the appendix
“Supported Fortran syntax” and in the file £xdf.txt.

You also can verify if the Fortran syntax extensions of the emulated compiler are ac-
cepted by a higher Fortran level. E.g. when specifying the -£03 option Coverity Fortran
Syntax Analysis flags all deviations from the Fortran 2003 standard.

3.10.1 Compiler emulation and include files

When you analyze a Fortran source program on a host computer the INCLUDE lines must
be processed by Coverity Fortran Syntax Analysis so the include files must be opened and
read on the host system. Therefore Coverity Fortran Syntax Analysis will not verify the syntax
of the filename specified in the INCLUDE line for conformance to the syntax of the emu-
lated compiler, but allows for the various syntaxes. So, for example, the VAX Fortran syntax
INCLUDE ' (INCL1) /NOLIST’ and INCLUDE ’MODEL:INC1’ will be accepted on all sys-
tems. However, you cannot use the syntax INCLUDE ’ [USER.PROJ]INCLIB (INCL1)’ on
non-VMS systems because on non-VMS systems Coverity Fortran Syntax Analysis cannot
open a member of an include library file. The VMS symbolic path (like MODEL: in the ex-
ample) is stripped by Coverity Fortran Syntax Analysis to allow the file to be found on non
VMS systems.

36 CHAPTER 3. OPERATION

Bear in mind that when emulating a certain compiler, the default file name extension
(suffix) of include files is taken from the configuration file used so it adapts to the defaults of
the system and compiler chosen. See also the previous section.

3.11 Generating Fortran 90 interfaces

The unsupported utility interf takes a Coverity Fortran Syntax Analysis liorary file as input
and produces a Fortran 90 module with an interface body for each of the subprograms in
the library file. The output is in Fortran 90 free source form.

This can be useful when converting from FORTRAN 77 to Fortran 90 and to examine the
properties of the subprograms as contained in the library file. By specifying the module in
the program units which references these subprograms the interfaces of the subprograms
become explicit and both the compiler and Coverity Fortran Syntax Analysis can now verify
the references while compiling or analyzing the program unit.

3.11.1 Operation of interf from the commandline

This utility can be found in the forcheck/bin/ directory relative to the root of your Coverity
Analysis installation. The command line has the following form:

interf (options) libraryfile outpuftfile

where libraryfile is the name of the Coverity Fortran Syntax Analysis library file in which
the information of the program units is stored. The default suffix of Coverity Fortran Syntax
Analysis library filenames is . £1b. Outputfile is the name of the file in which the generated
module with the interfaces will be stored. The default suffix is . £. The following options are
implemented:

-batch Exitif errors occur during command processing. Default: -nbatch.

-help Present help information on screen. Default: —nhelp.

3.12 Storing the Reference structure and dependency of mod-
ules

Beside presenting the reference structure (call tfree) and the dependency free of modules
in the listing file Coverity Fortran Syntax Analysis can store the reference structure and the
module dependencies in XML format in separate output files by specifying a flename in
the IDE or enabling the reference structure and module dependencies file options. See
also the subsection “Reference structure in XML format” and “Module dependencies in
XML format” of the chapter “Analysis”.

3.13. MESSAGES 37

3.13 Messages

We distinguish three kinds of messages, viz. operational messages, analysis messages and
system messages.

3.13.1 Operational messages

Operational messages are generated when a problem occurs during the operation of
Coverity Fortran Syntax Analysis. They are of the form rck-- .. ., for example:

FCK-—- open error on input or include file

For many operational messages an i/o status code is presented. This code is system de-
pendent, and is provided for debugging purposes only. When reporting problems to the
Coverity Fortran Syntax Analysis support team, please specify the message and the i/o
status code. Operational messages are sent to the report file and to your screen or log file.

3.13.2 Analysis messages

Those analysis messages flagged with an “1° are informative, with a ‘'w’ are warnings, those
flagged with an '&” are errors.

Informative messages hold no conflicts with the Fortran standard. Warnings indicate
the usage of extensions to the standard. Error messages will arise when the Fortran stan-
dard has been violated.

The distinction between warnings and error messages, however, is not principal. In
general we can say that warnings indicate constructions which, if accepted by your com-
piler, impose no risk to the proper execution of the program, while errors indicate construc-
tions which may influence the proper execution.

All analysis messages have a number. In the manual appendix “Message summary”
you will find a list of all messages with explanation for those messages which are not self-
explanatory. During program unit analysis a message is preceeded by the file name and
line number to be able to locate the the problem in the source file easily. To use this feature
you should, however, not change the method of line or statement numbering as described
in the section “Line or statement numbering”.

The following remarks can be made on the presentation of analysis messages:

e Only the first 6 analysis messages in a statement are presented, unless the -rigorous
option has been specified. The number can be changed by specifying max.msg = n
in the (VARIOUS) section of the configuration file.

e Only the first 6 problems encountered in an argument list or common block are pre-
senfed, unless the —rigorous option has been specified. The number can be changed
by specifying max.msg = nin the (VARIOUS) section of the configuration file.

Analysis messages are sent to the report file and to the listing file if specified, or to the
forchk.log file otherwise.

38 CHAPTER 3. OPERATION

3.13.3 System messages

When a problem arises in Coverity Fortran Syntax Analysis itself (like overflow of a buffer), a
system message in capitals between parentheses will show, for example:

*x [5 O] (TOO MANY PROGRAM UNITS, REMAINDER NOT PROCESSED) .

A system message is flagged with an o (overflow) or an E (error). Analysis will proceed after
an overflow message, the analysis, however, is no longer complete. A system error is usually
fatal.

System messages are sent to the report file and to the listing file if specified, or to your
screen or log file otherwise.

3.13.4 Redefinition and suppression of messages

This section describes how to redefine the severity level flag of Coverity Fortran Syntax Anal-
ysis’s analysis messages. To suppress them temporary see the next section.

If you use a private configuration file for a specific compiler emulation or set of lan-
guage extensions you can add records (using an editor) consisting of the number of the
message 1o be redefined along with the severity level flag that you want Coverity Fortran
Syntax Analysis to present. The lines with the messages to be redefined must be placed in
the section “ [MESSAGES]”.

The numbers and default severity level flags of the messages can be found in the ap-
pendix “message summary”. If you specify alevel flag * * (blank) then the message will be
suppressed fully, and will not be counted either. For Example:

335 1’
53 4 4

These configuration file records specify that the analysis message “type conflict” now wiill
be presented as Informative message and “tab(s) used” will neither be presented nor
counted.

To present specific messages only you can suppress all analysis messages by placing
the following line in this section:

suppress = "all’

and subsequently list all messages that must be presented with its severity level. To activate
this configuration file see the section “The usage of language extensions”.

3.13.5 Temporary suppression of messages

To suppress analysis messages temporarily, you can insert Coverity Fortran Syntax Analysis
directives in your source code. First you have to define the mnemonic of the directive
of your choice, beginning with an ‘", You specify this directive string on the “compiler
directive” line of the "GENERAL" section of the configuration file to use. For example:

3.13. MESSAGES 39

" IDECS’ ' !fck’ "compiler directive strings’

To define ‘Ifck’ as directive in addition to the "IDECS’ compiler directive.,

Now you can use this directive to disable and enable Coverity Fortran Syntax Analysis
analysis messages in the source code. You can either suppress messages for a block of
code or in a single statement. To suppress messages in a block of code add a line with
the directive followed by a list of the message numbers which you want to suppress, each
message number preceded by a minus sign. To enable messages again, add a line with
the directive followed by a list of message numbers, each preceded by a plus sign. You
can add online comment after the list of messages. For example:

CHARACTER%120 CH1, CH2
DATA CH1,CH2/2x%" '/

'fck -313 -384 !'suppress "possibly no value assigned" and "truncation"
CH1 = 7123’
CH2 = ’ab’

'fck +313 +384

To suppress messages for a single, compound, or line with a list of statements only, add
the directive with the list of messages you want to suppress, each preceded by a minus
sign, after the first line of the statement. For example:

CHARACTER CH=%x120
DATA CH/’ '/
IF (.TRUE.) CH = 7123’ lfck -384 -314

3.13.6 Reporting messages

The maximum number of messages that will be presented in a statement, argument list, or
common list is 6 by default. This number can be changed by specifying:

max.msg = n

in the (VARIOUS) section of the configuration file.

During subprogram analysis a message is presented in the listing file after the relevant
source code statement. In the report file, or if no listing file has been requested the mes-
sage is generally preceeded by the source code statement. You can suppress the source
code statement in the report file by specifying:

source_stm = ’'no’

in the (VARIOUS) section of the configuration file. You also can suppress only the line or
statement number of this source code statement:

source_linstm_number = ’'no’

When presenting a message Coverity Fortran Syntax Analysis adds a line with the filename

40 CHAPTER 3. OPERATION
and line number. The format of this line can be specified, e.Q.:

file line format = ' ("(file: ",a,", line: ",i0,")")’

The output of the filename and line can me made gnu-conforming by specifying:

file line_format = " (a,":",10,":")’

If you replace the i0 edit descriptor by an x the line number will be suppressed.

3.14 Tuning the output

The output options as decribed in the section ‘Options” determine which parts of the anal-
ysis are displayed in the listing file. Moreover using the miscellanious options you can specify
if you want to create a report file and if you want to present the internal table usage.

Beside using these command line options you can specify what information is sent to
stdout, is stored in the listing file, and in the report file. You can do this by setting keywords in
the (OUTPUT) section of the configuration file. In the following table the keywords that can
be applied are listed with their meaning and default value. Acceptable keyword values
are 'TRUE" and "FALSE’.

STDOUT_MSGSUM send message summary to stdout frue
STDOUT_METRICS send metrics to stdout false
STDOUT_USAGE send internal table usage to stdout false
LISTING_MSGSUM display message summary in listing file frue
LISTINGMETRICS display metrics in listing file frue
LISTING_USAGE display infernal table usage in listing file false
REPORT_MSGSUM store message summary in report file true
REPORT_METRICS store metrics in report file frue
REPORT_USAGE store internal table usage in report file frue

For example, if you want to see the message summary on your screen and the metrics not,
you specify the following lines in the (OUTPUT) section of the configuration file:

STDOUT_MSGSUM = ' TRUE’
STDOUT_METRICS = ’'FALSE’

Note that the keyword value has 1o be placed within apostrophes. You can concatenate

a supplied configuration file with a private configuration file as described in the section
"Redefinition and suppression of messages’.

3.15 Line or statement humbering

By default Coverity Fortran Syntax Analysis numbers each source input line sequentially.
Lines in include files are numbered in an hierarchical way. Line numbering starts anew for

3.16. DATE AND TIME FORMAT 41

each source input file. In this way you can use your editor to locate the lines of interest in
the easiest way.

However, you can instruct Coverity Fortran Syntax Analysis to number lines or state-
ments in a different way. To do so, you can place count_mode option lines in the (VARI-
OUS) section of the configuration file. The lines to be added have the form count mode =
rmode’ , in which mode can be:

line number source input lines

statement number statements

new_in_sub start numbering anew for each subprogram
new_in_file start numbering anew for each source input file
new_in_include apply hierarchical numbering for included

lines c.q. statements
continue_in_include proceed numbering sequentially for included
lines c.q. statements

For example, if you want statement numbering, beginning from 1 in each subprogram and
proceed statement numbering sequentially in included lines, you specify the following lines
in the (VARIOUS) section of the configuration file:

count_mode = ’statement’
count_mode = ’'new_in_sub’
count_mode = ’'continue_in_include’

Note that the mode keyword has to be placed within apostrophes. You can concatenate
a supplied configuration file with a private configuration file as described in the section
"Redefinition and suppression of messages’.

3.16 Date and time format

By default Coverity Fortran Syntax Analysis presents the date and time according to the
ISO standard. You can change this by adding a date_format Or time_format option line
to the configuration file in the (VARIOUS) section of the configuration file. The lines to be
added have the form date_format = ’format’ and time_format = ’format’, in which
format is a template for the presentation of the date and time respectively.

In the template for the date the day must be specified by dd, the month by mm or mmm
(which causes a three letter mnemonic of the month to be displayed), the year by yy or
yyyy. The year, month and day codes must be separated by a character of your own
choice which will be used as separator in the actual presentation.

In the template for the time the hours must be specified by hh or h (which causes hours
below 10 to be displayed with one digit), the minutes by mm, and the seconds by ss. The
hour, minutes and seconds codes must be separated by a character of your own choice
which will be used as separator in the actual presentation. For example:

date_format = 'yyyy-mm-dd’

42

date_format
date_format
time_format

time_format

"mmm-dd-yy’
dd/mm/yyyy’
"hh:mm:ss’

"h:mm:ss’

CHAPTER 3. OPERATION

If you use an x as the format character, the date and/or time will be suppressed in the
listings. This can be usefull if you want to compare listings of different Coverity Fortran Syntax
Analysis runs. For example:

date_format

time_format

'xx xXx xXx'

'xx xXx xx'

Chapter 4
Analysis

In this chapter we describe concisely what Coverity Fortran Syntax Analysis actually does
and what the generated output means. The analysis is carried out in four stages: the anal-
ysis of the separate program units, the generation and analysis of the reference structure
(call tree), the determination of the dependencies of modules, and the analysis of the
infegral program. Command-line options determine which of the analysis stages are acti-
vated. Beside specifying these options you can specify language extensions and analysis
options in the configuration file used.

4.1 Program unit analysis

4.1.1 Interpretation of source code records

If you specify the -£f option Coverity Fortran Syntax Analysis reads the source input in
free source form, as supported by the compiler emulation chosen. If you specify the
—-standard, -£90,-£95, -£03, or -£08 option as well, Coverity Fortran Syntax Analysis reads
the source input according to the Fortran 90 and up free source form standard.

Tabs are expanded to blanks before the statement is processed. In fixed source form,
source lines are extended with blanks or tfruncated in the following way: If a source line —
after expansion of tabs — consists of less than 72 characters, it will be extended with blanks
to 72 characters. This is significant for character and Hollerith constants. Any characters
beyond column 72 are ignored, unless the —a11c option is in effect.

Lower case characters are converted to upper case before interpretation, except
within character and Hollerith constants. If your compiler (as configured) does not accept
lower case characters, tabs or form feeds, one message only will be given for each subpro-
gram to inform you that you used lower case characters, tabs, or form feeds respectively.
Also if you use include files and this feature is not supported by the conifugred compiler,
only one warning for each subprogram will be presented.

43

44 CHAPTER 4. ANALYSIS

4.1.2 Lay-out of source code listing

A source code listing is generated if a listing file has been requested and both the —shsub
and the -shsrc options are in effect. To make clear which part of fixed source records
is being ignored, the source record past column 72 of non-comment records is printed at
column 83 and higher. Comment records, however, are printed verbatim. If the —allc or
the - £ £ option is enabled, all records are printed verbatim.

Source input lines or statements are numbered as described in the section “Line or
statement numbering” of the chapter “Operation”. If the -shinc option is specified, input
records which are read from an include file are presented with hierarchical line numbers.

The pages on the listing file are numbered. When you use Coverity Fortran Syntax
Analysis’s library facility, a hierarchical page numbering system is provided. In that case
Coverity Fortran Syntax Analysis maintains a library version number which is updated each
time you insert or replace program units in the library. The page numbers printed on the list-
ing present the library version number and the page sequence number as “version.page”.

4.1.3 Syntax analysis

Coverity Fortran Syntax Analysis verifies the syntax of each program unit. If the -standard
option is in effect then the syntax will be verified for conformance to the Fortran standard
of the level that is currently in effect. If the -£77, -£90, -£95, -£03, -£08 or -£15 optionisin
effect, the syntax will be verified for conformance to the FORTRAN 77, Fortran 90, Fortran 95,
Fortran 2003, Fortran 2008, or Fortran 2015 standard respectively, as closely as possible dur-
ing statfic analysis. For Fortran 90 and up, most constraints — as specified in the standard
— are verified. If the —obsolescent option specified, Coverity Fortran Syntax Analysis flags
all obsolescent features as specified in the Fortran standard which is in effect.

You can also instruct Coverity Fortran Syntax Analysis to accept certain vendor-specific
Fortran language extensions. The appendix “Supported Fortran syntax” describes all lan-
guage extensions supported. By default Coverity Fortran Syntax Analysis accepts common
extensions of the default compiler of the system on which Coverity Fortran Syntax Analysis
operates. To emulate a different compiler or to enable a different set of language exten-
sions, see the section “The usage of language extensions” of the chapter “Operation”.

Beside performing a lexical analysis and parsing the syntax, Coverity Fortran Syntax
Analysis performs limited semantic analyses. Coverity Fortran Syntax Analysis presents a
message if a variable is referenced without being defined. Unless the -rigorous option
has been enabled this is limited to statements which are certainly executed sequentially.

Loop structures, IF-THEN-ELSE blocks and cASE constructs are verified. Because of
this, extended Do loops (though this is a language extension of some compilers) will always
be flagged as an error by Coverity Fortran Syntax Analysis.

4.1.4 Type verification

As part of the syntax analysis Coverity Fortran Syntax Analysis detects type conflicts. In
general the typing rules are applied more strictly than most compilers do. Type checking
is relaxed for typeless data and if the -relax option has been enabled. Coverity For-

4.1. PROGRAM UNIT ANALYSIS 45

tfran Syntax Analysis signals implicit type conversions if they can result in a loss of precision.
Specifically, an error is reported when:

e A character datum is converted to a shorter type, or an integer is converted to @
shorter intfeger.

A real or complex expression is converted to a type with lower precision.

A complex expression is converted to a real.

A real expression is converted to a complex.

A literal constant is specified in a type with lower precision than that of the target. This
check is relaxed for the value zero.

If you specify the —rigorous option, any implicit type conversion will be flagged. More-
over, padding of character variables with blanks will be flagged unless the right hand side
of the assignment statement is a character constant with zero length or consists of blanks
only.

4.1.5 Local verification of argument lists

Within a program unit the argument list of each procedure invocation is compared with
the declared interface if the interface is explicit. If the interface is implicit, Coverity Fortran
Syntax Analysis tries to locate the interface in the temporary and specified library files. If
the interface is not found, the argument list is compared with that of the first invocation.

The number of arguments, data types and data-type kind and length must corre-
spond. When an argument is a scalar in one invocation, the argument cannot be an array
name in a different invocation. In that case the message “array versus scalar conflict” will
be presented.

An array element as an actual argument is compatible with both an array name and
a scalar. In that case the first occurrence, other than an array element, determines the
expected argument rank of the referenced procedure. If array shapes differ and the
-rigorous option is in effect, an error will be presented.

For argument lists of dummy functions and subroutines, all these checks are relaxed
and only informative messages will be presented.

Only the explicit interface specified or the first argument list of an implicit interface of
each invocation — augmented with type information as described — will be stored to be
used in the global program analysis.

4.1.6 \Verification of procedure entries

Coverity Fortran Syntax Analysis verifies the dummy (formal) argument list of each individ-
ual ENTRY statement of a procedure. Unreferenced dummy arguments are flagged. If a
dummy procedure hame is used after an ENTRY statement, it must be present in the argu-
ment list of that ENTRY statement. Arguments that specify the dimensions of adjustable ar-
rays must be present in each ENTRY argument list in which the name of the adjustable array
occurs. After each ENTRY statement Coverity Fortran Syntax Analysis will detect variables

46 CHAPTER 4. ANALYSIS

which are referenced before they are defined, as long as the statements are executed
sequentially or if the —rigorous option has been enabled.

If the -rigorous option is in effect Coverity Fortran Syntax Analysis informs you if the
“entry blocks” are not disjoint, that is o say if paths from one ENTRY statement and another
coincide. This is relaxed for an ENTRY statement which follows the specification statements
immediately.

4.1.7 Intrinsic procedures

For each invocation of a Fortran intrinsic generic function, Coverity Fortran Syntax Analysis
generates a specific function according to the data type and data-type kind and length
of the arguments. The name of the generated specific function is inserted in the cross-
reference table of referenced procedures.

Coverity Fortran Syntax Analysis does not need to recognize all specific functions of
every compiler because you should use preferably the appropriate generic function. Only
for type conversion of actual arguments you may need specific functions, which are sup-
plied.

Coverity Fortran Syntax Analysis can flag each intrinsic function which has not been
declared infrinsic by specifying the —intrinsic option. By specifying the —-specific op-
tion you can flag each specific intrinsic function used.

4.1.8 Function procedure

If a function performs external I/O, (de)allocates memory, contains a STOP or PAUSE state-
ment, modifies any argument, common-block object or saved item, and the -rigorous
option has been enabled, the function is flagged as “impure”.

4.1.9 Program-unit cross references

Program-unit and procedure cross references are generated if a listing file has been re-
quested and the —shsub option is in effect. If no program-unit cross references are being
generated, all diagnostic messages are sent the report file and log file. An “..." after a list
of line or statement numbers in a cross-reference table indicates that there are more ref-
erences to that item than are presented.

The cross-reference table of each module- and internal procedure is presented straight
after its source code listing. The cross-reference tables of the program unit are presented
after all module- and internal procedures.

Variables in a statement context (data-implied-do-variables, ac-implied-do-variables, forall-
indices, and statement-function-dummy-arguments) are not included in the cross-reference
lists. The cross-reference tables of module- and internal procedures contain locally de-
clared objects and use-associated objects from locally referenced modules only. Host-
associated objects are listed in the host program unit cross-reference tables.

Subprogram entries

The cross-reference table of entries displays the following information:

4.1. PROGRAM UNIT ANALYSIS 47

The name of the program unit or procedure entry.

The program unit or procedure entry type.

The type of the result.

The nondefault type kind and length of the result.

The rank of an array valued result.

The number of dummy arguments.

The line or statement numbers of all occurrences of the name of the entry.
The line or statement number at which the entry is defined is flagged with a “#”.

Program unit and procedure types:
B BLOCK DATA program unit
F function
M module
P main program
S subroutine
Subcodes:
M module
N interface
R recursive
T internal
Intrinsic types of function entries, named constants, variables, and referenced functions:
C complex
CH character
R real
| integer
L logical
N numeric (integer, real, or complex)

? typeless

48 CHAPTER 4. ANALYSIS

Labels

The cross-reference table of labels displays all labels, the label type, and the line or state-
ment number of all occurrences. The line or statement number at which the label is de-
fined is flagged with a “#”.

Label types:

F format
L DO loop

For labels, other than Do loop or FORMAT statements, the label type field is left blank.

Derived types
The cross-reference table of derived types displays the following information:
¢ the name of the derived type.
o the type length: the number of bytes a scalar instance of this type will occupy.

¢ the line or statement numbers of all occurrences of the name of the derived type.
The line or statement number at which the type is defined is flagged with a “#”.

Unreferenced derived types, which are not specified in an include file or a referenced
module, are listed. These derived types are not used and can therefore be removed from
the program unit without affecting the operation of the program.

Constants

The cross-reference table of named constants displays the following information:

e The name of the constant.

The type: see entries.

The nondefault type kind and length.

The rank of array valued constants.

The size the constant occupies.

The line or statement numbers of all occurrences of the name of the constant.
The line or statement number at which the constant is defined is flagged with a “#”.

Only when the -shsngl option is in effect, all unreferenced constants which have been
specified in an include file or module, are listed.

For types of named constants see the section on enftries.

Unreferenced constants are listed, except those which are defined in an include file or
referenced module. These constants are not used and can therefore be removed from
the program unit without affecting the operation of the program.

To get an idea of its size Coverity Fortran Syntax Analysis presents the total size of the refer-
enced named constants,

4.1. PROGRAM UNIT ANALYSIS 49

Variables

The cross-reference table of variables displays the following information:

e The name of the variable.

The type: see entries.

The nondeafult type kind and length.

The rank of arrays.

The size the variable occupies.

The operation codes.

The line or statement numbers of all occurrences of the name of the variable.
The line or statement numbers at which the variable is modified are flagged with a
.

The kind of usage of variables and procedures is presented as a set of operation codes with
the listed meaning. Only one set of operation codes is presented for each variable. The
set of operation codes presented is the or-ed set of operation codes on all array elements,
structure components, or character positions of a variable. The operation codes of the
various array elements, components, or character elements cannot be viewed separately.
operation codes:

A “defined” by means of

- an assignment statement

- an actual argument associated with an INTENT(OUT) dummy argument
- a statement function definition statement

- an ASSIGN statement

- "associated variable” in DEFINE FILE or OPEN

- "IOSTAT=" in an IO statement

- an INQUIRE statement

C in COMMON
D initialized in a DATA or explicit type statement
| input by means of

- READ, or ACCEPT

- list in DECODE

- conversion buffer in ENCODE
- internal file in a READ

L DO variable, or FORALL index
O output by means of

- WRITE, TYPE, PRINT

- list in ENCODE

- buffer in DECODE
internal file in a WRITE

50 CHAPTER 4. ANALYSIS

P dummy argument
Q in EQUIVALENCE
R referenced, for example by means of;

- an expression

- an argument of an infrinsic procedure

- an argument of a statement function

- an actual argument associated with an INTENT(IN) dummy argument

S actual argument associated with a dummy argument with unknown intent or IN-
TENTUNOUT).

An “x" after c, or g denotes that the name is not referenced (used) and therefore is dummy.
When variables are specified in an EQUIVALENCE statement, the operation codes are pre-
sented for each variable name separately. However, when a variable is in a common
block, all objects specified in the equivalence lists concerned, are in common and a “c”
will be presented for all these objects. An “«” after this ¢ indicates that none of the objects
in the equivalence lists, containing this variable, are being used.

Only when the -shsngl is in effect, common-block objects, and module data that
are not referenced, are included in the cross-reference listing. Referenced but undefined
variables are flagged. Unreferenced variables are flagged, except those which are in
common or in a module. They are not used and can therefore be removed from the
subprogram without affecting the operation of the program.

To get an idea of its size Coverity Fortran Syntax Analysis presents the total size of the used
local variables. Use associated, allocatable and automatic objects are not included. Vari-
ables with the POINTER attribute account for the size of a pointer only.

Structures and records

Structures and records are a Fortran language extension as offered by some compiler ven-
dors. The cross-reference table of records displays the following information:

¢ The name of the record.

e The name of its structure.

e The length of the structure: the number of bytes a record occupies.
e The rank for arrays of records.

¢ The operation codes.

¢ The line or statement numibers of all occurrences of the name of the record.
The line or statement numbers at which the record is modified are flagged with a “#”.

The kind of usage of records is presented as an operation code as described for variables.
As for arrays, only one operation code is presented for each record or array of records. This
is the or-ed operation code of dll the operations on the various fields of the record and the
various array elements of an array of records.

Only when the —shsngl optionis in effect, common-block objects, and module records
that are not referenced, are included in the cross-reference listing. Unreferenced records,

4.1. PROGRAM UNIT ANALYSIS 51

which are notin common orin a module, are listed. Unreferenced structures, which are not
specified in an include file or module, are also listed. They are not used and can therefore
be removed from the subprogram without affecting the operation of the program.
Namelist groups
The cross-reference table of namelist groups displays the following information:

e The name of the namelist group.

¢ The line or statement numbers of all occurrences of the name of the namelist group.
The line or statement number at which the namelist group is defined is flagged with a
.

Only when the -shsngl option is in effect, unreferenced namelist groups, which have
been specified in an include file or module, are listed.

Referenced procedures

The cross-reference table of referenced procedures displays the following information:

e The name of the procedure.

The type: see entries.

The nondefault type kind and length of a function.

The rank of array valued functions.

The operation codes.

The line or statement numbers of all occurrences of the name of the procedure.

Procedure types:

E external procedure, unknown whether subroutine or function
F function

S subroutine

P procedure

Subcodes:

dummy
elemental
generic

intrinsic

module

interface
abstract interface
pure

pointer

T Y B 2 K H O H O

52 CHAPTER 4. ANALYSIS

R recursive
s statement
T internal

For the type of functions see the section on entries. Only when the -shsngl opfion is in
effect, unreferenced procedures which have been specified in an include file or module,
are listed.

When flagged as unreferenced the external declaration can be removed from the
subprogram, except when it declares a block data subprogram to be included by the
linker.

Operators

The cross-reference table of operators displays the following information:

e The name of the operator.

¢ The line or statement numbers of all occurrences of the operator.

When flagged as unreferenced the definition of the operator can be removed from
the subprogram.

Common blocks

The cross-reference table of common blocks displays the following information:

e The name of the common block.
e The type.
e The size of the common block.

e The operation codes.
The or-ed operation code of all objects in each common block is presented.

¢ The line or statement numbers of all occurrences of the name of the common block.

Common-block types:

CH character
N numeric

If both character and numeric variables are stored in a common block the type will be left
blank.

The size of the common block is presented in bytes. If the name table is full, or if the
common block has too many objects to check, or if an array is too long., the size cannot
be determined and will be left blank.

When none of the objects of a common block have been used, the common block
will be flagged as unreferenced unless is has been specified in an include file or a ref-
erenced module. When flagged as unreferenced the common block declaration can

4.2. REFERENCE STRUCTURE (CALL TREE) 53

be removed from the subprogram, except when this subprogram is the root of those sub-
programs which use this common block and the common-block does not have the SAVE
attribute in each of the occurrences. In that case the declaration may be necessary to
save the data and the linker may need it to build correct overlay structures.

External files

The usage of external files is shown as a list of unit-identifiers with access types and opero-

tion codes. The unit-identifier is the name or expression as specified in the I/O statement.
The value of the unit-identifier is not known to Coverity Fortran Syntax Analysis. There-

fore 1/O references may be placed incorrectly together or separately. By using consistent

names for all unit-identifiers throughout the program the 1/O reference tables will concise

and valuable.

type of I/O:

D direct access

0 sequential access
S stream access

F formatted

U unformatted

When the access type or format type is unknown to Coverity Fortran Syntax Analysis, the
access type field or format type field will be left blank.
I/O operation codes:

auxiliary: REWIND, BACKSPACE, ENDFILE, DELETE, UNLOCK, Of LOCKING
CLOSE

FIND

INQUIRE

OPEN, Or DEFINE FILE

READ, Or ACCEPT

WRITE, REWRITE, PRINT, Or TYPE

s %W O H = o W

Include files

Include files which contain only definitions of constants, variables, and common blocks
which are not referenced outside the include file are marked as unreferenced except
in the specification part of a module. Then the INCLUDE line can be removed from this
program unit, except when common blocks, which are in the root of those subprograms
which use these common blocks and do not have the SAVE attribute, have been declared
in the include file concerned. In that case the declaration may be necessary to save the
data and for your linker to build correct overlay structures.

4.2 Reference structure (Call free)

The reference structure (call tree) is analysed if the —anre £ optionis in effect. The reference
structure is presented in the listing file if a listing file has been requested and the -shref

54 CHAPTER 4. ANALYSIS

option is in effect. The reference structure is stored in XML format in the reference-structure
file if the —refstruct file option has been specified.

4.2.1 Analysis of the reference structure

If the —anref opfion and the —rigorous isin effect the call tree will be traversed to detect
unsaved common blocks and modules with unsaved public data which are not specified
in the root of referencing program units.

Recursive references are traced, also if one of the entries of a procedure in the chain
is being referenced. If recursive reference is not supported, or the procedures in the chain
are not specified RECURSIVE, these procedures are flagged. Moreover, if the —ancmpl
option has been specified and a procedure is specified RECURSIVE but is not recursively
referenced, it is flagged.

4.2.2 Display of the reference structure

All referenced procedures are presented in a call tree. For each program unit or procedure
each referenced procedure is presented only once and in order of occurrence in the
source code. The reference structure is static only and does not show the actual sequence
of calls during program execution. Module procedures are “qualified” with the name of
the module from which they are referred. Renamed procedures are presented by their
“use” name.

The lines are being numbered and when a sub tree has already been presented, a
reference is made to the line at which the sub tree was presented, for example:

1 PROGRAM

2 SUBR1

3 SUB2

4 FUN1

5 FUN2

6 FUN21
3 SUBR2

4 SUB2 > 3

For the reference structure all entries of a procedure are equivalent, so if an entry with its
call free has been presented, all next entries referenced will refer to this sub tree.

Unreferenced entries with their call tree are presented as separate sub trees and are
numbered in a hierarchical way, for example:

PROGRAM
SUBR1
SUBR2

[N

1.1 MAIN2
SUBR3

4.3. DISPLAY OF MODULE DEPENDENCIES 55

1.3 SUBR4

When long names are being used and the nesting is too deep for the reference structure
to fit on the page, the tree is continued as a separate sub tree and a reference is made 1o
the line at which the continued tree starts, for example:

1 PROGRAM__LONG_NAME

2 SUBROUTINE1_LONG_NAME

3 SUBROUTINE11l_ LONG_NAME

4 SUBROUTINE111l_ LONG_NAME > 1.1
5 SUBROUTINE2_LONG_NAME

. >
1.2 SUBROUTINE1111_ LONG_NAME

When a procedure has more references than Coverity Fortran Syntax Analysis can
store in its tables a message will be printed and the remaining referenced procedures with
its references will be printed in separate sub trees.

4.2.3 Display of sub trees of the reference structure

One or more separate sub trees can be displayed by specifying the roots of the sub trees as
the root list in the —shref roof_list option. Now the referenced procedure tree is displayed
down from the procedures specified only.

4.2.4 Reference structure in XML format

The reference structure is stored in XML format in the reference-structure file fogether with
its data type definition (dtd). Reference is made to the XSL-stylesheet file _fck_free.xsl which
must be in the working directory. With a suitable browser you can browse through the ref-
erence structure. Suitable browsers are the one integerated in the Coverity Fortran Syntax
Analysis IDE, Mozilla Firefox, Microsoft Internet Explorer, Opera and Apple Safari. You can
also transform the XML file to an HTML file, using for example the Unicorn Enterprises SA XSLT
processor

(http://www.unicorn-enterprises.com/products_uxt.html)

the HTML file can then be explored using your internet browser. Because the data are
stored in xml format you also can write your own programs to analyse and visuadlize the
reference structure.

4.3 Display of module dependencies

The dependencies of modules is presented in the listing file as a free view if the —shmoddep
is in effect. The dependencies of modules is stored in XML format in the dependencies of
modules file if the —-moddep file option has been specified.

56 CHAPTER 4. ANALYSIS

4.3.1 Display of dependencies for specific modules

The dependencies of specific modules can be displayed by specifying these modules the
root list in the —shmoddep roof_list option. Now the module dependencies tree is displayed
down from the modules specified only.

4.3.2 Display of module dependencies in XML format

The module dependencies are stored in XML format in the module dependencies file to-
gether with its data type definition (dtd). See the section “Reference structure in XML
format” for information how to use this file.

4.4 Global program analysis

Global program analysis is carried out if the —anprg is in effect.

4.4.1 Verification of procedure references

Coverity Fortran Syntax Analysis verifies the type of all references, the type, the type length,
the rank and shape of referenced functions. Conflicts of user procedure names with in-
trinsic procedures are detected. When the -ancmpl has been enabled, unreferenced
procedures will be listed.

4.4.2 Verification of argument lists

The argument lists of each procedure reference is compared with the dummy (formal)
argument list of the analyzed procedure. When the referenced procedure has not been
analyzed, the argument lists will be compared with that of the interface definition provided,
or with that of the first reference. Verification is done as specified in the section “Program
unit analysis”.

Arguments are compared for type, and type parameters. If the —rigorous opfion
has been enabled and the rank or shape of array arguments differ, you are informed. If a
dummy array argument is longer than the actual an error is presented.

If an actual argument is a constant, expression, active Do variable, an active FORALL
index or if a variable is specified more than once in an actual argument list, then it is
invalid to modified the dummy argument in the procedure. In that case the message
“invalid modification” will be given with the reason. This check will only be performed one
reference level deep.

If the assigned dummy argument appears in more than one argument list of the entries
of a procedure, this verification is only carried out, as long as the entries are disjoint.

If a dummy argument is not defined, or referenced before defined, the corresponding
actual argument must be defined before each reference. Because Coverity Fortran Syntax
Analysis’s limited path-flow analysis, referenced-before-defined of dummy arguments will
only be flagged as long as statements are guaranteed to be executed sequentially, or if
the -rigorous option is in effect.

4.4. GLOBAL PROGRAM ANALYSIS 57

When the actual argument is a literal constant without a kind parameter or a constant
expression of primaries without a kind parameter the type length is supposed to be the
default type length of the type of the constant or constant expression.

4.4.3 Verification of common blocks

The type, size and list of objects of common blocks are compared with the occurrence in
the main program, if present, or with the first occurrence otherwise. The size of the largest
occurrence of the common block is presented in the cross-reference table. An occur-
rence of a common block with a different list of objects will be flagged with the message
“inconsistent list of objects”. If the -rigorous option has been enabled each inconsistent
object will be flagged separately. An object could differ in type, type parameters, array
length, array rank, or shape.

When the —ancmpl option is in effect and all occurrences of a common block are
identical, common-block objects which are not referenced, not defined, not associated,
or not defined before referenced will be listed. If the -rigorous option has been enabled
each common-block object which is only conditionally defined before referenced is listed
also.

When a common block has been specified in an include file, it should be included
from the same include file at all instances. If that is not the case an informational message
will be presented.

If the —anref option is also in effect the call tfree will traversed to detect unsaved
common blocks which are not specified in the root of referencing program units. See also
the section “Analysis of the reference structure”.

4.4.4 Verification of modules

When the —ancmp1 option is in effect each module which is analyzed but not referenced is
reported. All public module variables which are not referenced, not defined, not allocated
or not associated will be listed. All public constants and public derived types which are not
referenced are listed.

If the —anref option is also in effect the call tree will be traversed to detect modules
with unsaved public data which are not referenced in the root of referencing program
units. See also the sections “Analysis of the reference structure”.

4.4.5 Global program cross references

Global program cross references are generated if a listing file has been requested and
the —shprg option is in effect. If no global program cross references are presented, all
diagnostic messages are send to your screen or the log file. An “..."” after a list of namesin a
cross-reference table indicates that there are more references to that item than presented.

Module procedures are “qualified” with the name of the module from which they are
referenced. Renamed procedures are presented by their “use” name.

58 CHAPTER 4. ANALYSIS

Program units and procedures analyzed

In this table all program units and module procedures which have been analyzed are listed
with the page number of the listing and the filename in which the program unit or module
procedure resides. When you did not ask for a listing of a specific program unit its page
number will be left blank.

When you use Coverity Fortran Syntax Analysis’s liorary facility then a hierarchical page
number system will be applied. The library maintains a version number for each program
unit which has been stored and for which a listing has been made. This program unit
version number becomes the library version number at the moment you insert or replace
the program unit. The library version number will increase at each Coverity Fortran Syntax
Analysis run in which you update the library. In the table of analyzed program units and
procedures the version number and page number are shown as “version.page”.

Referenced procedures not analyzed

All referenced procedure entries which were not analyzed are listed here. Because a
program often references external procedures of which no Fortran source is available to
include in the Coverity Fortran Syntax Analysis analysis (for example system library routines),
no separate messages will be presented for these “undefined references”. To make the
analysis more complete see the section “Specification of procedure interfaces”.

Cross reference of program units and procedures

All names of the program, modules, block data program units, external and module pro-
cedures are listed with their fype and number of arguments. For functions the type with
nondefault kind and length will also be presented. For each procedure all program units
and procedures which reference that procedure are shown.

Program unit and procedure types:

B BLOCK DATA program unit

E external, unknown whether subroutine or function
F function

M module

P main program

S subroutine

Subcodes:

E elemental
M module

N interface
P pure

R recursive

Intrinsic types of functions and function entries:

c complex

4.4. GLOBAL PROGRAM ANALYSIS 59

CH character
I infeger

L logical
R redl

2 typeless

The total size of the local data of all program units and procedures is presented. Allocat-
able and automatic objects are not included.

Cross reference of common blocks

All common blocks referenced in the program are listed with all subprograms in which
the common blocks have been specified. A “#” in front of a subprogram name indicates
that the common block is modified directly in that program unit or procedure. Mind that
if a common-block object is used as an actual argument of a procedure reference, a
modification of the common block in that procedure will not be indicated.

The type of the data in each common block and the common-block size in bytes are
presented. When the common block has been saved this will be indicated.

Common-block types:

CH character
N numeric

When types have been mixed the common-block type will be left blank.

The size of the common block is presented in bytes. When the name table is full, or the
common block has too many objects to check, or when an array or record is too long, the
size cannot be determined and will be left blank. The largest size of all occurrences of the
common block is presented
The total size all common blocks will occupy is presented.

Cross reference of external files

All external files used in the program are shown as a list of unit-identifiers with all subpro-
grams in which the external files are referenced. The types and operation codes are pre-
sented.

The unit-identifier is the name or expression as specified in the 1/O statement. Because
the value of the unit-identifier is not known to Coverity Fortran Syntax Analysis I/O references
may be placed incorrectly together or separately. By using consistent names for all unit-
identifiers throughout the program the I/O reference tables will be valuable.

Type of I/O:

D direct access

F formatted

S sequential access
U unformatted

60 CHAPTER 4. ANALYSIS

When the access or format type is unknown to Coverity Fortran Syntax Analysis the access
or format type will be left blank.

I/O operation codes:

auxiliary: REWIND, BACKSPACE, ENDFILE, DELETE, UNLOCK, LOCKING
CLOSE

FIND

INQUIRE

OPEN, Of DEFINE FILE

READ, Of ACCEPT

WRITE, REWRITE, PRINT, Of TYPE

s W O H T oQ P

Cross reference of modules

For each module all subprograms which reference that module are presented.
Module type:

I module nature is infrinsic
N module nature is non-intrinsic
S submodule

Cross reference of include files

For each include file all program units which contain that include file are presented.

4.4.6 Cross references of common-block objects

Cross references of common-block objects are presented if a listing file has been requested
and the —shcom option is in effect.

All objects of each common block for which a cross-reference table is requested are
listed with all subprograms in which the common-block object is used. A “#” in front of a
subprogram name indicates that the common-block object is modified in that subprogram
directly or indirectly by an equivalenced object. Mind that if a common-block object
is used as an actual argument in a referenced subprogram and Coverity Fortran Syntax
Analysis has no knowledge of the usage, the common-block object may be modified even
if no “#” is presented.

A cross-reference of common-block objects is only meaningful if the lists of objects at
the various occurrences of that common block have identical characteristics. The names
of the objects may not be the same in the various occurrences. The name of the object in
main or the first occurrence is presented.

Variables that are equivalenced with objects in common are also listed. They are asso-
ciated by their offset in the common block. A “#” in front of a subprogram name indicates
in this part of the list that the common-block object is modified in that subprogram directly.

If a common-block object is defined and referenced in a single subprogram only, the
object could be replaced by a local variable, or record.

4.5. SPECIFICATION OF PROCEDURE INTERFACES 61

Because the amount of information can be huge if you have many common blocks
with many objects, Coverity Fortran Syntax Analysis’s internal tables can easily become full.
In that case you have to split up the process in several runs in which you request the cross
references of the objects of a limited number of common blocks at a time. The optimal
procedure is to compose a Coverity Fortran Syntax Analysis library file first and fo analyze
this library file repeatedly.

4.4.7 Cross references of public module derived types

Cross references of public module derived types are presented if a listing file has been
requested and the -shmodtyp is in effect.

All public derived types of each module for which a cross-reference table is requested
are listed with all subprograms in which the derived type is used. If a derived type is used
in one or more module procedures of the module in which the derived type is used, the
module name is listed instead of the these individual module procedures.

Because the amount of information can be huge if you have many modules with many
public derived types, Coverity Fortran Syntax Analysis’s internal tables can easily become
full. In that case you have to split up the process in several runs in which you request the
cross references of the derived types of a limited numiber of modules at a time. The optimal
procedure is to compose a Coverity Fortran Syntax Analysis library file first and to analyze
this library file repeatedly.

4.4.8 Cross references of public module data

Cross references of public module data are presented if a listing file has been requested
and the -shmodvar is in effect.

All public constants and variables of each module for which a cross-reference table
is requested are listed with all subprograms in which the module constant or variable is
used. If a module constant or variable is used in one or more module procedures of the
module in which the constant or variable is specified, the module name is listed instead of
the these individual module procedures.

A “#” in front of a subprogram name indicates that the variable is modified directly in
that subprogram. Mind that if a variable is used as an actual argument in a subprogram,
the variable may be modified indirectly.

Because the amount of information can be huge if you have many modules with
many public variables, Coverity Fortran Syntax Analysis’s internal tables can easily become
full. In that case you have to split up the process in several runs in which you request the
cross references of the variables of a limited number of modules at a time. The optimal
procedure is to compose a Coverity Fortran Syntax Analysis library file first and to analyze
this library file repeatedly.

4.5 Specification of procedure interfaces

You can make the analysis more complete by defining the interface for all procedures
which have not been included in the analysis, such as system procedures and third party

62 CHAPTER 4. ANALYSIS

procedure packages. There are two ways to specify procedure interfaces, namely apply-
ing the traditional FORTRAN 77 syntax or using the Fortran 90/95 syntax features.

4.5.1 Using FORTRAN 77 syntax

You can use FORTRAN 77 syntax to specify a procedure interface by constructing a tem-
plate for the procedure. Just specify the appropriate procedure statement (FUNCTION or
SUBROUTINE) with the dummy argument list, a type specification statement for the result
in case of a FUNCTION procedure and a type specification for each of the dummy argu-
ments. If an argument is an input argument, reference it, if it is an output argument provide
an assignment statement to define it, and if it is an input/output argument reference it first
and define it later on. Conclude the template procedure with an END statement. For
example:

FUNCTION MYFUN (ARG1)
REAL MYFUN, ARGl
MYFUN=ARG1

END

Include the templates in the Coverity Fortran Syntax Analysis analysis by specifying them as
an input source file or place the Coverity Fortran Syntax Analysis analysis result in a Coverity
Fortran Syntax Analysis liorary file.

4.5.2 Using Fortran 90 syntax

Fortran 90 and up provide the appropriate syntax to specify a procedure interface. You
create a module and define an interface block. In this interface block you create one
or more interface bodies to define the interfaces of procedures. Each interface body
should consist of the appropriate procedure statement (FUNCTION Or SUBROUTINE) with the
dummy argument list, a type specification statement for the result in case of a FUNCTION
procedure and a type specification for each of the dummy arguments. If an argument is
an input argument, supply the INTENT (IN) attribute, if it is an output argument supply the
INTENT (OUT) attribute, and if it is an input/output argument supply the INTENT (INOUT)
attribute, which is the default. For optional arguments specify the opPTIONAL aftribute.
Conclude the interface body with an END FUNCTION Or END SUBROUTINE statement. For
example:

MODULE PLOTLIB
INTERFACE
FUNCTION MYFUN (ARG1, ARG2)
REAL MYFUN
REAL, INTENT (IN) :: ARGl
REAL, INTENT (IN), OPTIONAL :: ARG2
END FUNCTION MYFUN
END INTERFACE
END MODULE PLOTLIB

4.5. SPECIFICATION OF PROCEDURE INTERFACES 63

Include this module in the Coverity Fortran Syntax Analysis analysis by specifying it as an
input source file or place it in a Coverity Fortran Syntax Analysis liorary file.

When using Fortran 90 or up you include the procedure interface in the program-unit
analysis by referring the module which defines the interface. You do this with the USE
statement, for example:

USE PLOTLIB

Even if you are sfill restricted to use FORTRAN 77 you can apply the Fortran 90 way for
the Coverity Fortran Syntax Analysis analysis! Just enable Fortran 90 or up syntax in the
Coverity Fortran Syntax Analysis configuration file to analyze the interface modules and
enable extension 217, modules, for the analysis of the other program units. Place the UsSE
statement in an INCLUDE file which you conditionally use for the Coverity Fortran Syntax
Analysis analysis. For compilation you replace this INCLUDE file by one with an EXTERNAL
statement specifying the procedure.

You can use the supplied utility interf to generate a module with intferface bodies
from a Coverity Fortran Syntax Analysis library file. See the chapter “Operation”.

4.5.3 Using Coverity Fortran Syntax Analysis attributes

To define the interface for C, or system procedures, Coverity Fortran Syntax Analysis has the
possibility to specify additional attributes for the procedure and dummy arguments. For
the global program analysis they can be specified in an external femplate procedure. For
the program-unit analysis you can specify procedure attributes in an EXTERNAL statement
which could be placed in an 1NCLUDE file which you conditionally use for the Coverity
Fortran Syntax Analysis analysis. For both the program-unit analysis and the global program
analysis you can specify the attributes in an interface body in a module.

These attributes have the form (attribute-list) in which attribute-list is a comma sepa-
rated list of attributes. You have to enable the () type attribute extension, nr 69, in your
configuration file to use this facility.

The following aftributes can be specified for dummy arguments:

e OMITTABLE
By specifying the OMITTABLE attribute for a dummy argument of a procedure tem-
plate you can tell Coverity Fortran Syntax Analysis to allow the actual argument to be
left empty.

e PLURI
By specifying the PLURI attribute for a dummy argument of a procedure template you
can tell Coverity Fortran Syntax Analysis not to verify the argument,

e PLURILKIND
By specifying the PLURIKIND attribute for a dummy argument of a procedure tem-
plate you can tell Coverity Fortran Syntax Analysis to allow any kind of the argument.

e POLY
You can specify the POLY attribute for a TYPE(*) argument of which the type must con-
form to the datatype as specified by the argument having the POLY_TYPE aftribute.

64

CHAPTER 4. ANALYSIS

POLY_TYPE

Specify the POLY_TYPE attribute for the argument which specifies the datatype of the
TYPE(*) argument(s). If one argument has the POLY_TYPE afttribute all the arguments
having the POLY attribute are being verified for conformance with the datatype spec-
ified. If two arguments have the POLY_TYPE attribute the first argument with a POLY
attribute is verified for conformance with the datatype specified by the first argument
having a POLY_TYPE attribute and the second argument with a POLY attribute is veri-
fied for conformance with the datatype specified by the second argument having a
POLY_TYPE attribute. The types that can be specified are:

MPI_INTEGER

MPI_REAL

MPI_COMPLEX

MPI_LOGICAL

MPI_CHARACTER

MPI_DOUBLE_PRECISION

MPI_DOUBLE_COMPLEX

As defined in the MPI module MPI_constants.

% VAL

By specifying the %VAL attribute for a dummy argument you specify that actual argu-
ments have to be passed by value using the %VAL built-in function (VMS). An example
of the specification of the %VAL attribute is:

SUBROUTINE SUB (ARG1[%VAL]).

The following afttributes can be specified for external procedure names:

INQUIRY

By specifying the INQUIRY attribute for a procedure template Coverity Fortran Syntax
Analysis can indicate that the arguments do not have to be defined or associated.
For example:

REAL FUNCTION FUN[INQUIRY] (Argl)

And within a subprogram: EXTERNAL FUN[INQUIRY].

PLURI

By specifying the PLURI aftribute for a procedure interface you can tell Coverity For-
tfran Syntax Analysis not to verify the number of arguments and the argument lists, for
example:

REAL FUNCTION FUN[PLURI] (Argl,Arg2)

And within a subprogram: EXTERNAL FUN[PLURI].

SUBREF

By specifying the SUBREF attribute for a procedure template you can allow a CALL to
a function procedure, for example:

REAL FUNCTION FUN[SUBREF] (Argl,Arg2).

And within a subprogram: EXTERNAL FUN[SUBREF].

VARYING
By specifying the VARYING attribute for a procedure template Coverity Fortran Syntax

4.6. MEIRICS 65

Analysis can allow a varying number of arguments. For example:
REAL FUNCTION FUN[VARYING] (Argl,Arg2)
And within a subprogram: EXTERNAL FUN[VARYING].

4.6 Metrics

If a listing file has been requested a table will be presented with some metrics of each
program unit and procedure. This table shows the number of (hon-comment) source lines,
(non-blank) comment lines, statements and maximum construct nesting. The number of
source lines, comment lines, and statements are split up info a total as read in, and the
number not read from include files.

In the totals the lines and statements of the include files are counted only once for
each include file.

The program metrics shows the number of program units, (subb)modules, subprograms,
module procedures, internal procedures and source files analyzed.

4.7 Final report

After completing the analysis, a final report will be presented with a message summary.
The message summary lists all messages presented and the number of messages in
each category. It will be stored in the report file and, when the listing device is not your
screen, it will both be included in the listing file and presented on your screen.
If the -10g option has been enabled, the usage of Coverity Fortran Syntax Analysis’s
intfernal tables will also be displayed.

66

CHAPTER 4. ANALYSIS

Appendix A

Supported Fortran syntax

Coverity Fortran Syntax Analysis supports the full Fortran 2015 syntax, which includes For-
tran 2008, Fortran 2003, Fortran 95, Fortran 90 and Fortran 77. Moreover Coverity Fortran
Syntax Analysis supports many of the Fortran 2015 features and language extensions of
various compilers. Not all the vendor specific Fortran language extensions which Cover-
ity Fortran Syntax Analysis can support are enabled for a compiler being emulated. The
reason is that some of the language extensions are only provided to be compatible with
earlier versions of that compiler or now have standard Fortran equivalents which you can
use preferably. Moreover some of the extensions make a program less secure, for example
less strict type checking, so enabling these extensions will weaken the possibilities of Cover-
ity Fortran Syntax Analysis to detect programming flaws. Coverity Fortran Syntax Analysis
has, by default, enabled only those Fortran language extensions which:

e Are generadlly accepted and have no standard Fortran equivalent, or are present in
a more recent Fortran standard,

e Impose no risk and can be easily converted to standard Fortran,

e Improve the readability or the maintainability.

In the table in Section A.3 on page 73-81 the language extensions, relative to For-
tran 77, which are supported by Coverity Fortran Syntax Analysis are listed. In the table in
Section A.4 on page 83-93 the language extensions, relative to Fortran 90 and Fortran 95,
which are supported by Coverity Fortran Syntax Analysis are listed.

In the tables you can see which extensions are supported by Coverity Fortran Syntax
Analysis and the various compilers. A “+” denotes an extension which is by default enabled
by Coverity Fortran Syntax Analysis if the compiler emulation concerned has been chosen.
A “o” denotes an extension which is by default not enabled. A “@” means the support of
that partficular extension is explained in the text.

You can enable or disable each of the listed extensions by editing the appropriate
configuration file. For Fortran 90, Fortran 95, Fortran 2003, Fortran 2008 or Fortran 2015 com-
pilers you can use the respective default configuration file as a template. See the section
“Changing the configuration file”.

67

68 APPENDIX A. SUPPORTED FORTRAN SYNTAX

A.1 Compilers supported

Configuration files for the following Fortran 77 compilers are supplied. In the first column
the flename of the configuration file is listed (without the filename extension). The second
column presents the mnemonic used in the table of Fortran extensions.

Configuration file Mnemonic Compiler name

absoftf77.cnf AB Absoft FORTRAN 77 V4.3
cyber.cnf CBR Control Data Cyber NOS/VE Fortran Version 1, level 1.6,
PRS level 700
cd4000.cnf CD4 Control Data 4000 Fortran
convex.cnf CVX Convex Fortran, Version 6.0
crayf77.cnf CF77 Cray Fortran 77, V4
decvms.cnf DAV DEC Equipment FORTRAN for Open VMS Alpha
decux.cnf DEC Digital Equipment FORTRAN for Ultrix and DIGITAL UNIX
digres.cnf DR Digital Research Fortran-77
domain.cnf DM Apollo/Domain Fortran, SR 10
vax.cnf VAX Digital Equipment VAX Fortran, Version 5.0 and
VAX Fortran-HPO, Version 1.0
f2c.cnf F2C F2c Fortran 77
g77.cnf F77 GNU Fortran 77
hp77.cnf HP7 HP Fortran 77 for series 800
hpvms.cnf HPVMS HP Fortran for OpwnVMS 8.0
ibmvs2.cnf VSs2 IBM VS Fortran, Version 2, Release 2.5
ibmx1f.cnf XLF IBM AIX XL FORTRAN V14.1
laheyf77.cnf LH Lahey F77L, V5.00 and F77L-EM32 V5.00
msf5.cnf MS5 Microsoft Fortran, V5.1
Microsoft Fortran PowerStation, V 1.0
ndp.cnf NDP NDP Fortran, Release 2.0
pdpll.cnf PDP DEC Equipment PDP-11 Fortran-77, Version 5.0
prime.cnf PR Prime Fortran-77,T1.0-21.0
prospero.cnf PF Prospero Fortran, V2.12
rm.cnf RM Ryan-McFarland RM/Fortran V1.00
IBM Professional Fortran, V1.23
rm2.cnf RM2 Ryan-McFarland RM/Fortran, V2.40
rs6000.cnf XLF IBM AIX XL FORTRAN V6.1
sgif77.cnf SGI Silicon Graphics MIPSpro Fortran 77, Version 3.4.1
sunf77.cnf SUN Sun Fortran 77
ftn77.cnf FTN Salford FIN77, V3.62
unisys.cnf UNI Unisys 1100 Fortran-77, L10
watcom.cnf WAT WATCOM Fortran 77 V11.0

Not all of the compilers are listed in the table. The DEC FORTRAN for AXP/VMS (DAV)
extensions are equivalent to those of DEC; only the default file name extensions differ. For
the Digital Research compiler a configuration file with the supported types is supplied and
the $INCLUDE directive is supported. When you want Coverity Fortran Syntax Analysis 1o

A.1. COMPILERS SUPPORTED 69

accept the Digital Research compiler extensions you have to adapt the configuration file.

Configuration files for the following Fortran 90, Fortran 95, Fortran-2003, Fortran 2008 and
Fortran 2015 compilers are supplied:

70 APPENDIX A. SUPPORTED FORTRAN SYNTAX

Configuration file Mnemonic Compiler name

absoftf90.cnf AB90 Absoft FORTRAN 90 V6.0
absoftf95.cnf AB95 Absoft FORTRAN 95 V6

crayf90.cnf CF90 Cray Fortran 90, V2

crayf03.cnf Cray Cray Fortran, V7

crayf08.cnf Cray Fortran 2008, V8.1

cvf.cnf CVF Compag Visual Fortran V6.6
decf90.cnf DEC90 DEC Fortran 90

decf95.cnf DEC95 DEC Fortran 95

fujitsu.cnf FUJ Fujitsu Fortran 90

gfortran.cnf gfort GNU Fortran 95

g95.cnf g95 Open source Fortran 95 based on GNU
hpf95.cnf HPO95 Fortran for HP-UX

hp9000.cnf HP9 HP-UX FORTRAN/900QO for series 300/400/700 and 800
hpux.cnf HP95 HP Fortran 95 for HP-UX

intel7.cnf Intel Visual Fortran V7.0

intel9.cnf Intel Visual Fortran V9.0

intel0.cnf Intel Visual Fortran V10.0

intelll.cnf Intel Visual Fortran V11.0

intell2.cnf Intel Visual Fortran V12.0

intell3.cnf Intel Visual Fortran V13.0

intell4.cnf Intel Visual Fortran V14.0

intell5.cnf INT Intel Visual Fortran V15.0

intell6.cnf INT Intel Visual Fortran V16.0

intell7.cnf INT Intel Visual Fortran V17.0

ibmx1f.cnf XLF IBM AIX XL Fortran

laheyf90.cnf LF90 Lahey Fortran 90

laheyf95.cnf LF95 Lahey Fortran 95

msfps.cnf MSF Microsoft Fortran PowerStation V4.0
nagf90.cnf NAG90 NagWare f90 Compiler

nagfor.cnf NAG NagWare f95 Compiler

nasf95.cnf NAS NASoftware Fortran Plus Compiler
oraclel2.5.cnf OF95 Oracle Developer Studio Fortran 95 V12.5
pathscale.cnf PATH PathScale EKOPath Compiler
pgif90.cnf PGIY0 The Portland Group Fortran 90 Compiler
Pgif95.cnf PGI95 The Portland Group Fortran 95 Compiler
pgif03.cnf PGIO3 The Portland Group Fortran 2003 Compiler
ftn90.cnf FTN9O0 Salford FTNQO

ftn95.cnf FTN95 Silverfrost FTN9S

sgif90.cnf SG90 Silicon Graphics MIPSpro Fortran 90, Version 7.3
sgif95.cnf SG95 Silicon Graphics MIPSpro Fortran 95
sunf90.cnf SF90 Sun Fortran 90

sunf95.cnf SF95 Sun Fortran 95

The Fortran 90/95 extensions marked in the column F2003 of the table are included in
the Fortran 2003 standard. The Fortran 90/95 extensions marked in the column F2008 of the

A2

GENERAL LANGUAGE EXTENSIONS SUPPORTED 71

table are included in the Fortran 2008 standard. The Fortran 90/95 extensions marked in
the column F2015 of the table are included in the Fortran 2015 standard.

A.2 General language extensions supported

Tab formatting is supported when fixed form source is enabled. If the first column
of a fixed form input record consists of a tab succeeded by a digit as continuation
character, then the continuation character will be located at column 6 and the next
characters from column 7 on. If this tab is not followed by a digit the next characters
are placed from column 7 on. Subsequent tabs, or tabs in columns past the contin-
uation field are expanded to blanks to columns 9, 17, 25, etc. before processing the
statement.

This is different from the way some compilers will treat tabs. Some compilers consider
tabs after column 6 as one blank character or discard tabs at these positions. Be-
cause of this difference Coverity Fortran Syntax Analysis may locate characters past
column 72, discarding them, while the compiler will not.

This way has been chosen because an expansion of tabs will generally be used when
source code is transformed to standard Fortran 77, or when sending your program
to a different computer system. Moreover the compiler will probably expand talbs
in the source listing. In the Coverity Fortran Syntax Analysis way you can see which
characters will be interpreted by any compiler and which may not.

Though some compilers accept longer source records (e.g. in free form), the max-
imum record size Coverity Fortran Syntax Analysis can read is 512 characters, after
expansion of tabs and of cpp macros.

Though some compilers support an unlimited number of continuation lines Coverity
Fortran Syntax Analysis can read up to 999 continuation lines.

LOGICAL«1 data are freated as logicals. BYTE data as integers.

The nonstandard form of the PARAMETER statement (without parentheses) is not equiv-
alent to the standard Fortran PARAMETER statement. In the nonstandard form the type
of the named constant takes the type of the literal constant, which may be different
from that of the implicit or specified type of the name using the Fortran 77 syntax.

Though a specific compiler may support longer names, Coverity Fortran Syntax Anal-
ysis supports names of up to 64 characters only.

Some compilers support directives which are identified by a key in the first columns
followed by a keyword. These compiler directive strings can be specified in the con-
figuration file. Some of these directives will not only be accepted, but also interpreted
by Coverity Fortran Syntax Analysis: see the notes on each specific compiler emula-
tion.

Some compilers support directives using keywords in column 7-72. Detection of these
keywords can be enabled if the keyword is present in the tables of Fortran language
extensions.

72 APPENDIX A. SUPPORTED FORTRAN SYNTAX

e Coverity Fortran Syntax Analysis can handle cpp preprocessor directives. cpp pre-
processing is enabled by enabling extension 7 in the configuration file. You can also
enable or disable cpp preprocessing using the enable cpp command line option or
by sefting this option in the IDE. Parameterized macro expansion is supported with
some limitations. The macro must be on a single line and variadic macros are not
supported. Macro expansion must be used with great care because it can cause
significant characters be placed beyond character position 72 in fixed source format
and change character constants. If a file includes another file with the Fortran IN-
CLUDE statement, the included file is not preprocessed. Files included using the cpp
directive #include are preprocessed.

The usage of language extensions will be flagged when the -standard, the -£77, the
-£90, the —-£95, the -£03, the —-£08 or the —f150ption has been specified. By specifying
the -obsolescent option all language features which are marked as obsolescent in the
Fortran standard which is in effect will be flagged.

A.3. TABLE WITH FORTRAN 77 LANGUAGE EXTENSIONS

A.3 Table with Fortran 77 language extensions

73

74

APPENDIX A. SUPPORTED FORTRAN SYNTAX

no

PDP

VAX

VS22

UNI

CBR

PR

CF77

CVX

— O 0O NO O N~NWON —

PR —

13
14
15
16
17
18

maxima in lay-out:

max. number of characters per line
max. number of continuation lines
max. length of names

max. length of subprogram names
max. length of commmon-block names
type length modifiers:

INTEGER *1

INTEGER *2

INTEGER x4

INTEGER *8

REAL *4

REAL *8

REAL *16

COMPLEX =8

COMPLEX %16

COMPLEX %32

LOGICAL =1

LOGICAL *2

LOGICAL «4

LOGICAL +8

maximum length of type CHARACTER:
CHARACTER %255

CHARACTER %511

CHARACTER %16384

CHARACTER %32767

CHARACTER %65280

CHARACTER %65535

CHARACTER %2147483647

default source file name extension
default include file name extension
include list option delimiter
compiler directive string

free form continuation character
free form 1st column comment char.
lay-out:

lower case characters

debug lines (D)

debug lines (a-7)

tabs

formfeeds

in-line comment after !

Cpp preprocessing

in-line comment after @

statement separator ;

any character allowed as continuation character
names:

names with $

names with _

names beginning with $

built-in functions beginning with &
names with @

names beginning with _

FTN
FTN

132

31
31
31

+ 4+ + 4+ +

FOR
FOR

80
99

+ ~

o+ 4+ o+ A+ o+ 4

oo o ®3

O

NN

80

32
32
32

+ o+ + o+ o+ +

+ +

96
99
31
31

(CNCNCNONONONONONE)

®e®®

+ + + + + + ®® 0 3%

+ +

+ o+ o+ o+

A.3. TABLE WITH FORTRAN 77 LANGUAGE EXTENSIONS

Nno. | SGI | SUN | HP9 | DEC | CD4 | RM | RM2 | MS5 | LH PF | NDP | FIN | WAT | AB | F2C
132 | 132 80 132 | 132 80 80 80 80 80 @ 80 132 @
99 @ 99 19 19 @ @ @ @ 19 99 19 61 99 @
32 32 @ 31 32 31 31 31 31 31 31 32 32 31 @
32 32 @ 31 32 8 8 31 31 31 31 32 32 31 @
32 32 @ 31 32 8 8 31 31 31 31 32 32 31 @
+ + + + + + + + + + +
+ + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + +
+
+ + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + +
@ + + @
+ + + + + + + + + + + + + + +
+ + + + + + + + + + + + + +
+
+ + + + + + + + + + + + + + +
+ + + + + + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + + + + +
+ + + + +
+ +
£ £ £ £ £ FOR | FOR | FOR | FOR | FOR £ FOR | FOR £
FOR FOR
$ # $ $ $ % $
- & &
" . ! !
1 + + + + + + + + + + + + + + +
2 + + + + + + + +
3 +
4 + + + + + + + + + + + + + +
5 + + + + + + + + + + +
6 + + + + + + + + + + + + +
7
8 +
10 +
11 +
13 + + + + + + + + + + + + +
14 + + + + + + + + + + + + + +
15 + + + +
16 + + + + +
17 +
18 + + + +

75

76

APPENDIX A. SUPPORTED FORTRAN SYNTAX

no. PDP | VAX | VS2 | UNI | CBR | PR | CF77 | CVX
constants:
20 | character constants between "" + +
21 | REAL*16 with g-exponent + + +
22 | named constants in complex constants + + + +
23 | Hollerith + + + + + + +
24 | B'Xxx’, B“xxx" binary
25 | o'xxx’, 0"xxx" octal + + +
26 | x'xxx’, x"xxx" hexadecimal +
27 | z'xxx’, z"xxx” hexadecimal + + +
28 | ‘xxx'B, “xxx”B binary
29 | ‘xxx'0, “xxx"0 octal + +
30 | xxx'x, “xxx“x hexadecimal + +
31 | ‘xxx'z, “xxx"z hexadecimal
32 | oxxx octal o o +
33 | zxxx hexadecimal o o +
34 | xxxB octal +
35 | ():xxx hexadecimal +
36 | "xxx octal + + +
37 | $ xxx hexadecimal
38 | (radix)#value
39 | nRxxx radix 50 + +
40 | C-string: "‘xxx'c*
41 | Length modifier suffix: B,S.L (FTN77)
42 | C-string: \ editing*
specification statements:
43 | ALLOCATABLE
44 | STATIC
45 | (DE)ALLOCATE, deferred dimension spec.
46 | AUTOMATIC
47 | BOOLEAN +
48 | BYTE + + +
49 | C EXTERNAL
50 | DOUBLE COMPLEX
51 IMPLICIT NONE + + + + +
52 | IMPLICIT UNDEFINED
53 | IMPLICIT AUTOMATIC/STATIC
54 | OPTIONAL, INTENT
55 | integer (Cray) POINTER +
56 | Lc, BC, HC, MS, MSC EXTERNAL
57 | NAMELIST + + + + + +
58 | F90 extended NAMELIST features
59 | STRUCTURE, RECORD + +
60 | F90 derived type
61 | VIRTUAL + o
62 | VOLATILE +
63 | F9O POINTER, TARGET
64 | DEFINE +
65 | automatic arrays +
66 | DLL_IMPORT, DLL_EXPORT
67 | C_EXTERNAL, Salford STDCALL
68 | specif. functions in specif. expressions
69 | (..) type attributes
70 | /../init. of var. in type specif.stmnt. + + + + +
107 | FQOinit. of var. in type specif.stmnt.
71 | length modifier affer dimension
72 | PARAMETER symbol=constant + + + + +

*If extensions 40 and 42 are both enabled backslash editing is only applied for “xxx’c-strings.

77

A.3. TABLE WITH FORTRAN 77 LANGUAGE EXTENSIONS

F2C

+ + + o+

AB

WAT

FTN

NDP

PF

LH

MS5

RM2

RM

CD4

DEC

HP9

SUN

SGI

(¢]

no.

20
2]
22
23
24
25
26
27

28
29
30
3

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

61

62
63
64
65
66
67
68
69
70
107
71

72

78 APPENDIX A. SUPPORTED FORTRAN SYNTAX
no. PDP | VAX | VS2 | UNI | CBR | PR | CF77 | CVX
73 | /../ initialization of structure components + +
74 | infrinsic functions in PARAMETER + + +
75 | infrinsic functions in dimension spec. + +
76 | DATA statements mixed with spec. stmnts. o o o o o
77 | IMPLICIT mixed with specification stmnts. l¢)
78 | F9O k1ND and Character selectors
79 | F9O attributes and entity oriented decl.
80 | F9O specification expressions
81 | Record fields and records in DATA
82 | Subobject of constant in DATA
83 | infrinsic functions in DATA
84 | pointers can be inifialized in a DATA stmnt
subprograms:
119 | END program unit (name)
215 | INTERFACE TO
216 | RECURSIVE +
217 | MODULE
220 | argument list in PROGRAM statement +
221 | (type(*len)) FUNCTION hame + + + +
222 | (type) FUNCTION name (*len) o o + + + o
223 | F9O interface block
224 | FQO internal subprograms
225 | Unisys internal subprograms +
226 | array valued functions
227 | END INTERFACE name
228 | STDCALL*
229 | recursive subprograms o
commons:
85 | inifialization of blank comMmmon e} [} o} o o
86 | differing lengths for a named coMMon o o o o o
87 | inifialization of coMMON not in BLOCK DATA o)) o) o) o) o)
88 | mixing of numeric and character in coMMON o o o e} o
executable statements:
93 | WHERE
Q4 | FORALL
95 | EXIT,CYCLE
96 | Do (label) (WHILE) .. ENDDO + + + @ +
Q7 | SELECT CASE
98 | debug packet statements + +
100 | named constructs
101 | Watcom constructs
102 | REMOTE BLOCK, EXECUTE
general syntax:
109 | (...) array constructor
110 | .XOR. exclusive or as .NEQV. o} o o o o e}
111 | alternate relational operators <, ==, efc. +
112 | alternate return label slabel o o)
113 | alternate return label slabel o
114 | RETURN in main as STOP o
115 | null-arguments + +

*When extension 67 is enabled, the Salford variant of SIDCALL is accepted.

A.3. TABLE WITH FORTRAN 77 LANGUAGE EXTENSIONS

no.

SGI

SUN

HP9

DEC

CD4

RM

RM2

MS5

LH

PF

NDP

FTN

WAT

AB

F2C

73
74
75
76
77
78
79
80
81
82
83
84

119
215
216
217
220
221
222
223
224
225
226
227
228
229

85
86
87
88

93
94
95
96
97
98
100
101
102

109
110
111
112
113
114
115

O O O O

O O O O

o

79

80

APPENDIX A. SUPPORTED FORTRAN SYNTAX

no. PDP | VAX | VS2 | UNI | CBR | PR | CF77 | CVX
116 | array expressions, but no dummy or alloc.
117 | FQO array expressions and sections +
118 | constant arrays,constructors and substr.
120 | keyword actual arguments
121 | zero sized data objects
type checking:
125 | mixing of DP and COMPLEX in expressions + + + + + + +
126 | string argument compatible with Hollerith o o o o
127 | strings can be assighed o INT/REAL/LOG o (¢}
128 | strings can be ass. fo BYTE and LOGICAL*1 o o
129 | boz constants can be used in expressions + + + + +
130 | boz constants in PARAMETER statement + +
131 | equivalence of numeric and character o o o o o)
132 | real array indices and substring expressions o o o o
133 | i and 1 const. comp. with shorter dummy + +
1/O statements:
140 | ACCEPT, TYPE + + +
141 | INPUT
142 | ENCODE, DECODE ¢} o o o
143 | FIND, DEFINE FILE e} o
144 | direct access (lun‘record) o o o
145 | READ, PRINT, INPUT without format
146 | READ (KEY=) REWRITE, DELETE + +
147 | LOCKING
148 | UNLOCK +
1/0:
165 | NUM=in READ +
156 | list directed on internal file + + +
1567 | F90 nonadvancing I/O
158 | Formatted derived type I/O
OPEN/CLOSE/INQUIRE specifiers:
165 | rECL= for sequential files + + + + + +
166 | RECL= not required if STATUS="’ OLD + + +
format specifiers and edit descriptors:
175 | noncharacter array name allowed o o o o o o
176 | variable length fields <...> + +
177 | aEw.dDe double precision exponent +
178 | aQw(.d) quadruple precision mantissa + +
179 | aOw(.m) octal edit descriptor + + + + + +
180 | aZw hex edit descriptor +
181 | aZw(.m) hexadecimal edit descriptor + + + + + + +
182 | aR(w) char edit descriptor o
183 | \ edit descriptor
184 | @ edit descriptor + + +
185 | $ edit descriptor + + + +
186 | aBw(.m) binary edit descriptor +
189 | Zero field width in edit descriptor
compiler directives:
200 | INCLUDE + + + + + + +
201 | OPTIONS + +
203 | OPTION [N]BREAK
204 | EJECT + +
205 | (NO)LIST +
206 | COMPILER(. .. +

A.3. TABLE WITH FORTRAN 77 LANGUAGE EXTENSIONS

no.

SGI

SUN

HP9

DEC

CD4

RM

RM2

MS5

LH

PF

NDP

FTN

WAT

AB

F2C

116
117
118
120
121

125
126
127
128
129
130
131
132
133

140
141
142
143
144
145
146
147
148

155
156
157
158

165
166

175
176
177
178
179
180
181
182
183
184
185
186
189

200
201
203
204
205
206

+ O O O +

o

+ O O O +

o

O

o

o

O O O +

o +

+ o+ + o+

81

82

APPENDIX A. SUPPORTED FORTRAN SYNTAX

A.4. TABLE WITH FORTRAN 90/95/2003/2008/2015 LANGUAGE EXTENSIONS 83

A.4 Table with Fortran 90/95/2003/2008/2015 language exten-
sions

84

APPENDIX A. SUPPORTED FORTRAN SYNTAX

no.

F2003

F2008

F2015

Cray

NAG

XLF

DEC95

FTNO95

LF95

— 0 00 N O~ WN

j—

12

13
15
16
17
18

maxima in lay-out:

max. number of characters per line
max. number of cont. lines (fixed)
max. number of cont. lines (free)
max. length of names

max. length of subprogram names
max. length of common-block names
type length modifiers:

INTEGER *1

INTEGER *2

INTEGER *4

INTEGER *8

REAL x4

REAL *8

REAL *10

REAL %16

COMPLEX 8

COMPLEX %16

COMPLEX %20

COMPLEX %32

LOGICAL «1

LOGICAL *2

LOGICAL «4

LOGICAL +8

maximum length of type CHARACTER:
CHARACTER %255

CHARACTER %511

CHARACTER %16384

CHARACTER *32767

CHARACTER %65280

CHARACTER %65535

CHARACTER %2147483647

default source file name extension
default include file name extension
include list option delimiter
compiler directive string

free form continuation character
free form 1st column comment char.
lay-out:

debug lines (D)

debug lines (a-2)

tabs

formfeeds

Cpp preprocessing

in-line comment after @

in-line comment {...}

any character allowed as continuation charac-

ter

line may start with ;

names:

names with $

names beginning with $

built-in functions beginning with &
names with @

names beginning with _

132

255

255
63
63
63

132

255

255
63
63
63

132

255

255
63
63
63

132
@
@
63
63
63

+ o+ o+ o+ o+ o+

+ o+ 4+

+ o+ o+ o+ o+

132
255
255

+ o+ + + + o+

+ + +

+ o+ + + +

132
255
255
250
250
250

+ o+ 4+ o+ o+ o+

+ o+ 4+

+ o+ o+ o+ 4+

132
99
99
31
31

+ o+ + o+ + o+

+ o+ +

+ o+ + o+ +

132
19
39
63
63

+ o+ + o+ o+ o+

+ o+

132
19
39

240

240

240

+ o+ + o+ o+ o+

+ + +

+ o+ + + +

85

A.4. TABLE WITH FORTRAN 90/95/2003/2008/2015 LANGUAGE EXTENSIONS
Nno. | MSF | FUJ | SG95 | SF95 | OF95 | HP95 INT CVF | AB95 | gfort | g95 | PATH | PGIO3
132 | 255 132 132 132 254 132 132 132 132 132 132 132
99 @ 99 99 999 255 511 511 99 @ Q 255 @
99 @ Q9 99 999 255 511 511 99 @ d 255 d
31 31 32 31 127 255 255 63 31 63 63
31 31 32 31 127 255 255 63 31 63 63
31 31 32 31 127 255 255 63 31 63 63
+ + + + + + + + + + + + +
+ + + + + + + + + + + + +
+ + + + + + + + + + + + +
+ + + + + + + + +
+ + + + + + + + + + + + +
+ + + + + + + + + + + + +
+ + + +
+ + + + + + +
+ + + + + + + + + + + + +
+ + + + + + + + + + + + +
+ + + +
+ + + + +
+ + + + + + + + + + + + +
+ + + + + + + + + + + + +
+ + + + + + + + + + + + +
+ + + + + + + +
+ + + + + + +
+
+ + + +
FOR f f f f f f f f
$ $ IDIRS $ $ # # # #
2 + + + + + +
3 +
4 + + + + + + + + + + +
5 + + + + + + + + +
7 + + + + + + +
8
9
11 + +
12 + +
13 + + + + + + + + +
15 + + + + +
16 + + + + + + + + +
17

18

86

APPENDIX A. SUPPORTED FORTRAN SYNTAX

no. F2003 | F2008 | F2015 | Cray | NAG | XLF | DEC95 | FTN95 | LF95
constants:
21 | REAL«16 with g-exponent +
22 | named constants in complex constants + + + + + + + + +
23 | Hollerith + + +
26 | x'xxx’, X"xxx" hex + + +
28 | ‘xxx’B, “xxx"B binary + +
29 | ‘xxx'0, "xxx"0 octal + + +
30 | "xxx'X, “xxx"X hex + + +
31 | xxx'z, “xxx“z hex + +
32 | oxxx octal
33 | zxxx hex +
34 | xxxB octal +
35 | (-):xxx hex
36 | "xxx octal
37 | sxxx hex
38 | (radix)#value
39 | nRxxx radix 50
40 | C-string: "xxx'c*
41 | Length modifier suffix: B,S,| (FIN77)
42 | C-string: \ editing* +
specification statements:
44 | STATIC + +
46 | AUTOMATIC + +
47 | BOOLEAN
48 | BYTE + + +
49 | C EXTERNAL
50 | DOUBLE COMPLEX + + + + + +
52 | IMPLICIT UNDEFINED +
53 | IMPLICIT AUTOMATIC/STATIC +
331 | IMPLICIT (EXTERNAL, TYPE) +
55 | integer (Cray) POINTER + + +
56 | LC, BC, HC, MS, MSC EXTERNAL
61 | VIRTUAL o o
62 | VOLATILE + + + + + + + +
64 | DEFINE
66 | DLL_IMPORT, DLL_EXPORT +
67 | C_EXTERNAL, Salford STDCALL +
68 | specif.functions in specif.expressions + + +
69 | (..) type attributes
70 | init. of var. in type spec.stmnt /../ + + +
71 | length modifier affer dimension
72 | PARAMETER symbol=constant +
77 | IMPLICIT mixed with specification stmnts.
81 | Record fields and records in DATA
82 | Subobjects of constants in DATA + + + +
83 | infrinsic functions in DATA + + + +
84 | pointers can be initialized in a DATA stmnt. + + + +
239 | PROTECTED + + + + + +
240 | C-binding and enumerators + + + + + +
241 | vALUE for scalars + + + + + +
242 | VALUE for arrays + +

*Extensions 40 and 42 are mutually dependent. If both are enabled backslash editing is only applied for “xxx’'c-

string

A.4. TABLE WITH FORTRAN 90/95/2003/2008/2015 LANGUAGE EXTENSIONS

no.

MSF

FUJ

SG95

SF95

OF95

HP95

INT

CVF

AB95

gfort

g95

PATH

PGIO3

21
22
23
26
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

44
46
47
48
49
50
52
53
331
55
56
61
62
64
66
67
68
69
70
71
72
77
81
82
83
84
239
240
241
242

+ + + + + +

+ + + + + +

+ o+ + o+

+ o+ o+ o+ o+ o+ o+

+ o+ o+ o+ o+ o+

+ o+ + o+

+ + + + + +

87

88

APPENDIX A. SUPPORTED FORTRAN SYNTAX

no. F2003 | F2008 | F2015 | Cray | NAG | XLF | DEC95 | FTIN95 | LF95

243 | type parameter enquiry + + + + + +

244 | TS 29113, further interop of Fortran with C + + + +

251 | IMPORT statement + + + + + +

333 | IMPORT, ONLY/NONE/ALL statement + + + +

252 | pointer INTENT aftribute + + + + + +

257 | renaming of operators in USE statement + + + + + +

259 | allocatable scalars + + + + + +

260 | deferred character length + + + + + +

261 | F2003 specification and initialization expressions + + + + + +

262 | PROCEDURE + + + + + +

263 | mixing of subroutines and functions in generic

264 | allocatable dummy arguments (TR 15581) + + + + + +

265 | CONTIGUOUS attribute + +

266 | implied-shape array + +

267 | initialization of pointer with target + +

268 | maximum rank 15 + +

269 | : affer PROCEDURE allowed + +

313 | F2003 extended NAMELIST + + + + + +
derived types:

59 | STRUCTURE, RECORD +
270 | type extension + + + + + +
271 | parameterized derived type + + + + + +
272 | deferred binding and abstract type + + + + + +
273 | polymorphic entities, cLASS statement + + + + + +
274 | TYPE statement for intrinsic type + +

derived-type components:

73 | /../ initialization of structure components +
108 | F95 initialization of structure components + + + + + + +
245 | allocatable structure components (TR 15581) + + + + + +
247 | access spec. of components + + + + + +
249 | procedure components + + + + + +
250 | type bound procedures + + + + + +
275 | empty type-bound-procedure-part + +
276 | list of type-bound-procedures + +
277 | omitting an all. comp. in a structure constructor + +
324 | public entities of private type + + +
328 | GENERIC statement (outfside derived-type +

spec.)

program units, subprograms, interfaces:
214 | IMPURE + +
215 | INTERFACE TO
218 | PURE + + +
219 | ELEMENTAL + + +
334 | NON_RECURSIVE +
220 | argument list in PROGRAM statement
221 | (type(*len)) FUNCTION name + + +
222 | (type) FUNCTION name (*len) o o
225 | Unisys internal subprograms
227 | END INTERFACE hame + +
228 | STDCALL
229 | recursive reference of all procedures allowed
230 | intfrinsic modules: USE, [NON_] INTRINSIC :: + + + + + +
231 | procedure poinfers + + + + + +
232 | SUBMODULE + +
233 | ABSTRACT INTERFACE + + + + + +
234 | Datain main or module are saved implicitly + +
235 | allocatable function result (TR 15581) + + + + + +
236 | defining interface of containing procedure + + + + + +
237 | empty contains section + + +
238 | END statement for internal and module proce- + +

dure

A.4. TABLE WITH FORTRAN 90/95/2003/2008/2015 LANGUAGE EXTENSIONS

no.

MSF

FUJ

SG95

SF95

OF95

HP95

INT

CVF

AB95

gfort

g95

PATH

PGIO3

243
244
251
333
252
257
259
260
261
262
263
264
265
266
267
268
269
313

59
270
271
272
273
274

73
108
245
247
249
250
275
276
277
324
328

214
215
218
219
334
220
221
222
225
227
228
229
230
231
232
233
234
235
236
237
238
335

+ + + +

+ + + + + +

+

+ o+ o+ o+ o+ o+

+ o+ 4+ o+ 4+ o+ +

+

+ o+ + o+ 4

+ o+ o+ o+

89

%0

APPENDIX A. SUPPORTED FORTRAN SYNTAX

no. F2003 | F2008 | F2015 | Cray | NAG | XLF | DEC95 | FTIN95 | LF95
arguments:
112 | alternate return label slabel o
113 | alternate return label slabel
115 | null-arguments +
320 | internal procedure as actual argument + +
321 | unall. actual arg. allowed for optional dummy + + +
322 | target actual arg. assoc. with dummy pointer + +
commons:
85 | inifialization of blank comMmmon o)
86 | differing lengths for a named coMmmon + + + o o o
87 | inifialization of coMMON not in BLOCK DATA o o
executable statements:
94 | FORALL + + + + +
98 | debug packet statements
99 | SELECT TYPE construct + + + + +
101 | Watcom constructs
102 | REMOTE BLOCK, EXECUTE
105 | ASSOCIATE + + + + + +
106 | ERRMSG=in (DE) ALLOCATE + + + + + +
299 | EXEC
300 | bounds/remapping in pointer assignment + + + + + +
301 | transfering an allocation; typed allocation + + + + + +
302 | SOURCE= specifier on ALLOCATE + + + + + +
303 | MOLD= on ALLOCATE + +
304 | copy bounds and values from SOURCE and + +
MOLD
314 | allocation at assignment o an allocatable + + + + +
305 | DO (label)(,) (CONCURRENT) .. ENDDO + +
306 | FORALL index kind specification + +
307 | BLOCK construct + +
308 | EXIT any constfruct + +
309 | STOP and ERROR STOP with constant expression + +
327 | SELECT RANK construct +
329 | STOP and ERROR STOP with QUIET option +
330 | STOP and ERROR STOP with variable stop code +
332 | TS18508, Additional parallel features (TEAM) +
general syntax:
310 | F2003 array constructor enhancements + + + + + +
311 | co-array + +
312 | real and imag part-ref + +
315 | intrinsic assignment of def., ascii and iso char + + + + +
323 | reference of pointer function + +
109 | F2003 array constructor syntax: (..) + + + + + + +
110 | .XOR. exclusive or as .NEQV. o o ¢}
114 | RETURN in mMain as STOP o
124 | F2003 structure constructors: comp. keywords + + + + + +
type checking:
126 | string argument compatible with Hollerith o o
127 | strings can be assighed o INT/REAL/LOG e} e}
128 | strings can be ass. to BYTE and LOGICAL*1 o
129 | typeless (BOZ) can be used in expressions + + + + +
131 | equivalence of numeric and character o o o
132 | real array indices and substring expressions o o
133 | i and 1 const. comp. with shorter dummy +
134 | passing character scalar actual to dummy array + + + + + +
135 | BOZ constants as arg. in some infr. procedures + + + + + +
136 | intr. assignment of characters of different kinds + + +

A.4. TABLE WITH FORTRAN 90/95/2003/2008/2015 LANGUAGE EXTENSIONS

no.

MSF

FUJ

SG95

SF95

OF95

HP95

INT

CVF

AB95

gfort

g95

PATH

PGIO3

112
113
115
320
321
322

85
86
87

94

98

99
101
102
105
106
299
300
301
302
303
304
314
305
306
307
308
309
327
329
330
332

310
311
312
315
323
109
110
114
124

126
127
128
129
131
132
133
134
135
136

+ + + + + +

+ o+ o+ o+ +

+

91

92 APPENDIX A. SUPPORTED FORTRAN SYNTAX
no. F2003 | F2008 | F2015 | Cray | NAG | XLF | DEC95 | FTIN95 | LF95
1/O statements:
140 | ACCEPT, TYPE statement +
141 INPUT statement
142 | ENCODE, DECODE statement l¢) o
143 | FIND, DEFINE FILE statement o
144 | direct access (lun‘record)
145 | READ, PRINT, INPUT without format
146 | READ (KEY=) REWRITE, DELETE +
147 | LOCKING statement
148 | uNLOCK statement +
149 | rLUSH statement + + + + + +
185 | NUM= in READ +
156 | list directed on internal file + +
157 | non-advancing i/o + +
168 | formatted derived type i/o + +
159 | asynchronous i/o + + + + + +
160 | stream accessi/o + + + + + +
161 | temporary i/o mode + + + + + +
162 | 10MSG= specifier in all i/o statements + + + + + +
163 | namelist i/o on internal file + + + + + +
164 | recursive i/o + + + + + +
OPEN/CLOSE/INQUIRE specifiers:
165 | rECL= for sequential files + + +
166 | RECL= not required if STATUS="0OLD
format specifiers and edit descriptors:
175 | noncharacter array name allowed l¢) o
176 | variable length fields <...> + +
177 | aEw.dDe double precision exponent +
178 | aQw(.d) quadruple precision mantissa +
182 | aR(w) char edit descriptor +
183 | \ edit descriptor
184 | ¢ edit descriptor + + +
185 | $ edit descriptor + + + +
189 | zero field width in edit descriptors + +
190 | derived type (DT) edit descriptor + + + + + +
191 | RU .. round edit descriptors + + + + + +
192 | pc, Dp decimal edit descriptors + + + + + +
193 | comma after P optiona, if followed by repeat + + + + + +
194 | g0 edit descriptor + +
195 | unlimited repeat of format list + +
196 | EXw.d, EXw.dEe edit descriptor +
compiler directives:
201 | opTIONS statement +
203 | OPTION BREAK statement
204 | eJECT statement +
205 | (No)LIsT compiler directive

206

COMPILER(...

A.4. TABLE WITH FORTRAN 90/95/2003/2008/2015 LANGUAGE EXTENSIONS

no. MSF FUJ SG95 SF95 OF95 HP95 INT CVF AB95 gfort g95 PATH PGIO3

140 + + + + +
141
142 o o o
143 o o
144 o
145
146 + +
147
148 + +
149 + + + + +
155 +
156 +
157
158
159
160 +
161
162 +
163
164

+ o+ + o+

+ 4+ + + + +
+ + + + + +

165
166

175 o o
176 + + + +
177 + +
178 + +
182 +
183 +
184 + +
185 + + +
189 + + + + +
190
191 + +
192 + + +
193 +
194
195
196

+ + + 4+ +
+
+
+

+ o+ o+ o+ +
+
+

201 + + + +
203
204
205 +
206

94

APPENDIX A. SUPPORTED FORTRAN SYNTAX

A.5. ABSOFT FORTRAN 77 EXTENSIONS 95

In the following sections some of the extensions are elucidated and the limitatfions of the
Coverity Fortran Syntax Analysis implementation of these extensions described.

A.5 Absoft Fortran 77 extensions

e Coverity Fortran Syntax Analysis folds all input to uppercase. The Absoft compiler
supports folding to uppercase, 1o lowercase or freat input case sensitive.

o Absoft has compiler options to specify the kind of free form source code. Coverity
Fortran Syntax Analysis also supports various kinds of free form input but you have to
specify this in the configuration file. Default is the Fortran 90 format.

e Absoft has a compiler option to support C-string backslash editing. For Coverity For-
tfran Syntax Analysis you have to enable extension 42 in the configuration file.

e Absoft has compiler options to support conditional compilation lines beginning with
‘DY, d’, X', or ‘X' In the supplied configuration file for Coverity Fortran Syntax Analysis
only conditional lines beginning with ‘D’, or ‘d” are enabled. To accept also lines
beginning with X', or 'x” you must enable extension 3 in the configuration file which,
however, accepts conditional lines beginning with any letter.

o Coverity Fortran Syntax Analysis supports DO WHILE .. ENDDO, but not WHILE .. ENDDO.

e Coverity Fortran Syntax Analysis does not support the following keywords: GLOBAL,
INLINE, VALUE, GLOBAL DEFINE, REPEAT.

A.6 Apollo/Domain Fortran extensions

e The Apollo/Domain compiler can read source records up to 1023 characters in free-
form mode, Coverity Fortran Syntax Analysis reads a maximum of 512 characters.

e The number of continuation lines is unlimited for the Apollo/Domain compiler, Coverity
Fortran Syntax Analysis can read a maximum of 999 continuation lines.

e The Apollo/Domain SR10 Fortran compiler accept names up to 4096 significant char-
acters, Coverity Fortran Syntax Analysis considers only the first 64 characters as signifi-
cant.

e The Apollo/Domain compiler accepts by default in-line comment between curly brack-
ets ({ }). Coverity Fortran Syntax Analysis no longer supports this form of comment. For
the Apollo/Domain compiler you can specify the in-line comment character using the
—-inline option. In Coverity Fortran Syntax Analysis you can enable the exclamation
mark as the start of in-line comment by enabling extension 6 in the configuration file.

e Apollo Domain Fortran supports C-string backslash editing when the —uc compiler
option has been enabled. Coverity Fortran Syntax Analysis supports backslash editing
if extension 42 has been enabled in the configuration file.

96 APPENDIX A. SUPPORTED FORTRAN SYNTAX

e The INCLUDE line and the compiler directives $include, $eject, $1ist, $nolist Are
supported.

o Conditional source input lines can be specified starting with “D”, or “Debug”.

A.7 Compaq Fortran extensions

Compagq Visiual Fortran, formaly Digital Visual Fortran, supports most DEC Fortran and Mi-
crosoft Fortran Powerstation Fortran extensions.

e The compiler directive opTIONS WIll be recognized but the specified qualifiers will
have no effect,

e Cpp preprocessing is supported.
e The keyword VIRTUAL is supported but the limitations in usage will not be checked.

e DEC FORTRAN 4+ synonyms for Fortran 77 keywords in OPEN and CLOSE dre supported,
and are flagged.

o Type attributes are skipped, except for ALLOCATABLE, which is processed to allow for
allocatable arrays. The limitations and consistency in usage of the attributes are not
verified.

A.8 Convex Fortran extensions

The vAX-FORTRAN extensions are enabled by default (Convex Fortran -v£c option). To
disable these options, or enable the Sun Fortran extensions, adapt the configuration
file.

The INCLUDE line and the #include preprocessor directive are supported.

The opT10ONS directive is accepted, but the options specified will have no effect.

The csDIRrR compiler directive is treated as comment,

A.9 Cray Fortran 77 extensions

e The Cray Fortran 77 compiler accepts type specifications with length modifiers but
inferprets INTEGERx*2, x4, 8 As 64 bit integers, LOGICAL«2, x4, =8 as 64 bit logicals,
REALx4, x8 as 64 bit reals. They occupy a full 64 bit word. REAL*16, COMPLEX*8 and
COMPLEX«16 data occupy two words (128 bits).

e The CDIRS directives are treated as comment and have no effect.

e Though Fortran 90 and Coverity Fortran Syntax Analysis do, Cray Fortran 77 does not
allow an ENDDO statement to be labeled.

A.10. CYBER NOS/VE FORTRAN EXTENSIONS 97

e Cray Fortran 77 allows recursion in subprograms either by using the prefix RECURSIVE
in the subprogram header or by specifying the recursive option in the command line
when compiling. In Coverity Fortran Syntax Analysis the RECURSIVE prefix is accepted
for Cray Fortran 77 (extension 216). Recursive reference without the RECURSIVE prefix
can be enabled by specifying extension 229 in the configuration file.

A.10 Cyber NOS/VE Fortran extensions

e The compiler directives are treated as comment. You can use the NOS/VE source
code utility to prepare the source code to be analyzed by Coverity Fortran Syntax
Analysis.

A.11 DEC PDP-11 Fortran-77 extensions

e DEC PDP-11 Fortran-77 does not support the full language, but an extended subset.
Coverity Fortran Syntax Analysis does not signal the usage of unsupported full lan-
guage Fortran 77 features, but optionally signals extensions to the full stfandard.

e The keyword VIRTUAL is supported but the limitations in usage will not be checked.

e DEC FORTRAN 4+ synonyms for Fortran 77 keywords in OPEN and CLOSE dre supported,
and are flagged.

A.12 DEC FORTRAN and VAX Foriran extensions

e VAX Forfran accepts more than 19 continuation lines as long as the records fit in the
statement buffer. Only when the statement buffer becomes full you have to spec-
ify the /cONTINUATIONS qudlifier. Coverity Fortran Syntax Analysis accepts a maxi-
mum of 999 continuation lines for the VAX Fortran emulation. You can specify the
/CONTINUATIONS qualifier to change this number, or use the /#77 qualifier to allow 19
continuation lines.

e The compiler directive opTIONS will be recognized but the specified qualifiers will
have no effect.

e The keyword VIRTUAL is supported but the limitations in usage will not be checked.

e DEC FORTRAN 4+ synonyms for Fortran 77 keywords in OPEN and CLOSE are supported,
and are flagged.

A.13 Digital Research Fortran-77 extensions

e The $INCLUDE compiler directive is supported.

98

APPENDIX A. SUPPORTED FORTRAN SYNTAX

A.14 F2c Fortran 77 extensions

¢ The tab is supported but does not imply the analysis of characters beyond column 72,

e By default f2c Fortran supports C-string backslash editing. This can be disabled using

the compiler option - !bs. Coverity Fortran Syntax Analysis supports backslash editing
if extension 42 has been enabled in the configuration file, which is the default for the
f2c Fortran 77 compiler emulation.

A.15 GNU Fortran 77 extensions

The GNU Fortran 77 compiler has many options to enable or disable certain language ex-
tensions. The configuration file supplied should therefore be considered as a skeleton. You
can easily adapt this configuration file to your needs when using certain optional exten-
sions, when migrating to Fortran 90. The compiler is now succeeded by gfortran.

Cpp preprocessing is supported.
The tab is supported but does not imply the analysis of characters beyond column 72.

The length of symbolic names is unlimited in GNU Fortran 77. Coverity Fortran Syntax
Analysis considers only the first 64 characters as significant.

By default GNU Fortran supports C-string backslash editing. This can be disabled using
the compiler option - !bs. Coverity Fortran Syntax Analysis supports backslash editing
if extension 42 has been enabled in the configuration file, which is the default for the
GNU Fortran 77 compiler emulation.

GNU Fortran accepts a statement label after a statement separator (;). Coverity
Fortran Syntax Analysis does not support this feature.

GNU Fortran accepts continuation lines of INCLUDE directives and more than one IN-
CLUDE directive can be placed on a single line using statement separators (;). Cover-
ity Fortran Syntax Analysis does not support these extensions.

A.16 HP-UX FORTRAN/9000 and HP Fortran 77 extensions

There are minor differences between the HP-UX FORTRAN/Q000 compiler of the HP 9000/300
and 9000/700 series and the HP Fortran 77 compiler of the HP 9000/800 series.

Though the HP Fortran compilers accept names up to 255 significant characters,
Coverity Fortran Syntax Analysis considers only the first 64 characters as significant.

HP compilers interpret a | as end of line comment when in column 1 orin column 7 to
72. Coverity Fortran Syntax Analysis inferprets a ! in all columns but column 6 as end
of line comment (as in Fortran 90). In Coverity Fortran Syntax Analysis the ~ 1. character
is always processed as a formfeed. In HP-UX FORTRAN/Q000 "1, is only accepted when
found in column 1 of an input record.

A.17. IBM AIX XL FORTRAN EXTENSIONS 99

¢ The INCLUDE line and the $sinclude compiler directive are both supported.

¢ All compiler directives are accepted. Some of them are processed and have the
expected effect, such as $L.IST, SPAGE, $ANSI. Others have no effect on the Coverity
Fortran Syntax Analysis analysis, such as $ALIAS, SINLINE etc.

e Cpp preprocessing is supported.

A.17 IBM AIX XL FORTRAN extensions

e The XL Fortran compiler has no limit on the length of source records in free-form mode,
Coverity Fortran Syntax Analysis only reads a maximum of 512 characters.

e Though the XL compiler accepts tabs, a tab before a continuation character is not
supported. Coverity Fortran Syntax Analysis accepts a tab before a continuation
character.

e The XL Fortran compiler accepts names up to 250 significant characters, Coverity
Fortran Syntax Analysis considers only the first 64 characters as significant.

¢ By default in Coverity Fortran Syntax Analysis the maximum length for type character is
set to 32767 for the XL compiler emulation. The default for the XL Fortran Fortran com-
piler, however, is 500. A larger length for type character for the XL Fortran compiler is
allowed by specifying the CHARLEN (len) compiler option or the gcharlen=num com-
mand line flag. You also can adapt the Coverity Fortran Syntax Analysis configuration
file used to have Coverity Fortran Syntax Analysis flag the usage of character lengths
larger than 500.

¢ The free form source syntax is not fully supported. A continuation character in front of
the on-line comment character (1) is not always detected.

e Cpp preprocessing is supported.

e The PROCESS directive will be accepted, but the compiler options specified have no
effect.

e The INCLUDE line is supported, but not conditional.

A.18 IBM VS Fortran V2 extensions

e In Coverity Fortran Syntax Analysis the maximum length for type character is set by
default to 32767 for the VS Fortran emulation. The default for the VS Fortran com-
piler, however, is 500. A larger length for type character for the VS Fortran compiler
is allowed when specifying the CHARLEN (len) compiler option. You also can adapt
the Coverity Fortran Syntax Analysis configuration file used to have Coverity Fortran
Syntax Analysis flag the usage of character lengths larger than 500.

¢ The free form source syntax is not fully supported. A continuation character in front of
the on-line comment character (1) is not always detected.

100 APPENDIX A. SUPPORTED FORTRAN SYNTAX

¢ The PROCESS directive will be accepted, but the compiler options specified have no
effect.

e The INCLUDE line is supported, but not conditional.

e DEBUG packets are supported, but with restrictions. Within debug packets all vari-
ables are supposed to have the implicit type, and no array-element references are
allowed. Moreover, invalid transfer of control from and into debug packets will not be
signaled.

o Asynchronous I/O and double byte characters are not supported.

A.19 Intel Foriran extensions

e Cpp preprocessing is supported (fpp).

e The compiler directive opTI0NS Will be recognized but the specified options will have
no effect.

e The keyword VIRTUAL is supported but the limitations in usage will not be checked.

e DEC FORTRAN 4+ synonyms for Fortran 77 keywords in 0PEN and CLOSE are supported
and are flagged.

o Type attributes are skipped, except for ALLOCATABLE, which is processed to allow for
allocatable arrays. The limitations and consistency in usage of the attributes are not
verified.

A.20 Lahey F77L Fortran-77 extensions

¢ The number of continuation lines is unlimited for the Lahey compilers. Coverity Fortran
Syntax Analysis can read a maximum of 999 continuation lines.

A.21 Microsoft Fortran extensions

The syntax extensions listed apply for both Microsoft Fortran V5.1 and Microsoft Fortran
PowerStation V1.0

o The compiler directives are supported.

o Type attributes are skipped, except for ALLOCATABLE, which is processed to allow for
allocatable arrays. The limitations and consistency in usage of the attributes are not
verified.

Most extensions of Microsoft Fortran PowerStation V4.0 are supported. However, only
simple logical expressions (hame oper const) in the if and elsif directives are supported.

A.22. NDP FORTRAN EXTENSIONS 101

A.22 NDP Fortran extensions

e The NDP compiler can read source records up to 132 characters in fixed-form mode
and 13200 in free-form mode, Coverity Fortran Syntax Analysis only reads a maximum
of 512 characters.

e NDP Fortran supports C-string backslash editing if the compiler option -£6 is specified.
Coverity Fortran Syntax Analysis can support backslash editing by enabling extension
number 42 in the configuration file.

A.23 Oracle Fortran extensions

e The Oracle compiler has a data type UNSIGNED and accompanying intrinsic func-
tions. Coverity Fortran Syntax Analysis does not support this.

e The module SUN_IO_HANDLERS is not supplied and the usage of the Oracle I/O Error
handling routines is not verified.

e The IDIRS FREE and IDIRS FIXED directives are supported.

A.24 Prime Fortran-77 extensions

¢ In-line comment between /* and */ is not supported anymore.

e The maximum number of continuation lines allowed depends for Prime Fortran on how
many language elements each line contains. Coverity Fortran Syntax Analysis allows
19 continuation lines by default,

e Both the INCLUDE line and the $INSERT directive are supported.
¢ The B-field edit descriptor is not supported.
e The SHORTCALL statement is not supported.

e The FULL LIST compiler directive is not supported.

A.25 Salford Fortran extensions

Most FTIN77/386 extensions are supported but a number of the newer FTN extensions are
not.

e Though the maximum number of continuation lines supported is 19 for fixed format
and 39 for free format, the FTN compilers allow more continuation lines depending of
the length of the lines. FTN95 allows 19 in fixed format, 39 in free format and 99 in free
format in .NET configuration or if the Fortran 2003 switch /FO3 has been specified.

e The compiler directive opTIONS WIll be recognized but the specified qualifiers will
have no effect.

102 APPENDIX A. SUPPORTED FORTRAN SYNTAX

Internal procedures are not supported.

INTERRUPT SUBROUTINE, SPECIAL SUBROUTINE and SPECIAL ENTRY are not supported.

Conditional compilation (CIF, CELSE, CENDIF) is not supported.

The % prefix to denote an address in a DATA statement is not supported.

Business editing is not supported.

A.26 Silicon Graphics MIPSpro Fortran 77 extensions

e Cpp preprocessing is supported.

e By default the SGI Fortran 77 compiler supports C-string backslash editing. This can
be disabled using the compiler option -backslash. Coverity Fortran Syntax Analysis
supports backslash editing if extension 42 has been enabled in the configuration file,
which is the default for the SGI compiler emulation.

e SGI Fortran 77 supports recursive subprogram references when the -automatic com-
piler option is specified during compilation. In Coverity Fortran Syntax Analysis exten-
sion 229 is enabled in the compiler emulation file to allow for recursion.

A.27 Sun Foriran 77 extensions

e Cpp preprocessing is supported.
¢ The tab is supported but does not imply the analysis of characters beyond column 72.

e The default maximum number of continuation lines for the Sun compiler is 19. This
maximum can be increased using the -N1n option. Coverity Fortran Syntax Analysis
also allows a maximum of 19 continuation lines by default. Coverity Fortran Syntax
Analysis§ maximum can be increased up to 999, using the —cont n option.

e By default Sun Fortran supports C-string backslash editing. This can be disabled using
the compiler option -x1. Coverity Forfran Syntax Analysis supports backslash editing
if extension 42 has been enabled in the configuration file, which is the default for the
SUN compiler emulation.

A.28 Unisys 1100 Fortran-77 extensions

e Records beginning with “#” or “@” are skipped.

e Though the number of contfinuation lines is unlimited for the Unisys Fortran compiler
Coverity Fortran Syntax Analysis can read a maximum of 999 continuation lines.

e DEBUG packets are supported with the restrictions as described for IBM VS Fortran.

A.29. WATCOM FORTRAN 77 EXTENSIONS 103

A.29 Watcom Fortran 77 extensions

e The Watcom compiler interprets a | as end of line comment in any column. Coverity
Fortran Syntax Analysis interprets a ! in column 6 as a continuation character (as in
Fortran 90).

e Coverity Fortran Syntax Analysis does not support the Watcom x$include compiler
directive.

A.30 The configuration file

The configuration file is composed of the following sections:

Sections of the configuration file

o GENERAL

EXTENSIONS

INTRINSICS

e OCI

MESSAGES

VARIOUS

The sections are identified by a header with the section name within brackets. In the
folowing sections each configuration file section is described. Lines beginning with “1” are
treated as comment. To enable a specific configuration file, see the section “The usage of
language extensions” of the chapter “Operation”.

Mnemonic of the emulated compiler, Fortran conformance level

The first line specifies the lowest Coverity Fortran Syntax Analysis version number which can
read this configuration file. The next line “Mnemonic of the emulated compiler, Fortran
conformance level” specifies the following:

1. Mnemonic of the emulated compiler. This is a eight character string which will be
presented at program startup and in the headers of the list file. It has no effect on the
analysis.

2. Fortran conformance level. This is a three character string and can be: “F77”, “Fo0”,
“"FQ5”, “FO3”, or “FO8”. All extensions are relative to the language level specified and
all syntax of this language level will be enabled.

104 APPENDIX A. SUPPORTED FORTRAN SYNTAX

Type information

The next subsection “Type information” specifies the types and kinds supported, and the
limits of the types.

1. Number of bits, difference between ABS(min) and max value of default integer.
2. Number of bits for an address as used for integer POINTER (extension 55).
3. Number of bits for the various integer types.
4. Number of significant binary digits of reals.
5. Decimal exponent range of reals.
6. Maximum exponent of reals.
7. Minimum exponent of reals.
8. Minimum real which is not zero.
9. The maximum length of character constants and variables.
10. Type mnemonics.
11. Default byte-lengths of the various types
12. Byte-lengths with short-length option enabled.
13. Byte-lengths with short-length option disabled.
14. Supported types
15. Supported types for generic procedures.
16. Table of available kinds and byte lengths for non-character types (4 lines).

17. Available character set names, kinds and byte lengths for type character.

Miscellanious
The next subsection “Miscellanious” is composed of the following lines:
1. Default file name extensions: source, include. List-option delimiter for INCLUDE line.

2. Maximum number of confinuation lines in fixed source form, and free source form, O:
unlimited, so accept the maximum Coverity Fortran Syntax Analysis can handle.

3. Maximum length of identifiers: local names, entry names, common-block names, O:
unlimited, so accept the maximum Coverity Fortran Syntax Analysis can handle.

4. Compiler directive strings. Two strings can be specified with a maximum length of 10
characters each. For cpp preprocessing one of these strings must be “#'.

A.30. THE CONFIGURATION FILE 105

5. Free-form continuation characters. The first character specified is the character which
indicates the current line will be continued. Except in character context, if the last
nonblank character before a ! is this character, the line will be continued. The sec-
ond character is a character which can be used to indicate a continuation line.

6. First column free-form comment characters. Two characters can be specified which
indicate for free-form input a comment line when placed in the first column.

A.30.1 EXTENSIONS

In this section you can include the numbers of the syntax extensions you like to enable.
Each number must be specified on a single record, optionally followed by comment within
apostrophes.

A.30.2 [INTRINSICS

Coverity Fortran Syntax Analysis recognizes all standard Fortran infrinsic procedures. More-
over the addifional intrinsic procedures as specified in the configuration file will be recog-
nized. You can modify the configuration file and remove, add, or change the nonstandard
intrinsic procedures 1o be recognized. Not all specific names of each generic procedure
are specified in the various configuration files, because in general there is no need to use
these names.

Coverity Fortran Syntax Analysis can accept added intrinsic functions which are stan-
dardized in a higher Fortran standard level than the Fortran conformance level as specified
in this configuration file without reporting. You can group the added intrinsic functions for
each language level. Each group must have one of the following headers:

IFortran 90 additions

IFortran 95 additions

IFortran 2003 additions

IFortran 2008 additions

IFortran 2015 additions

The nonstandard compiler specific additions must be in a group with the following header:

INonstandard additions
If you specify e.g. —£03 only the intrinsic functions which are not in the Fortran 2003
standard are reported.

In the next paragraphs we describe the way intrinsic procedures can be specified
in the configuration file. The properties of intrinsic procedures are very divers and hard
to specify in a general way, covering all implementations. Moreover the various Fortran
language reference manuals describe the infrinsic functions each in their own way from
which it is offen hard to discover the system behind the generation of specific functions
from generic functions. Therefore it is not an easy task to specify additional intrinsic proce-
dures in the configuration file. However, if you follow the rules described below and use the
configuration files supplied as examples you will be able to fulfill the job.

106 APPENDIX A. SUPPORTED FORTRAN SYNTAX

In the record “allowed type lengths for generic procedures” of the configuration file
you can specify which argument type lengths will be accepted by a generic function to
generate a specific function. To allow the BYTE type as argument, specify it s INTEGER*1.

Each specific intrinsic procedure is specified by a header record and a record for
each of its arguments.

The header record is composed of the following fields:

1. Generic procedure name, string.
If blank, the procedure is specific only. If non-blank, and if the procedure does not
exist already, it is added to the list of generic procedures.

2. Specific procedure name, string.

If the specific procedure name already exists, the specific procedure specified over-
rules the existing one. Otherwise the specific procedure name is added to the list of
specific procedures.

If the generic procedure name is non-blank, the procedure is added to the chain of
specific procedures which can be generated from the generic procedure.

If the specific name is left blank the generic name is used as the specific name.

Specific procedures must have different names if they can be generated from a single
generic procedure and have different resulting types or type lengths.

If the intrinsic procedure is a subroutine, the procedure type must be specified as ’s’,
the type length and rank are not relevant and can be set to zero.

3. Procedure type, character.

" same as the type of the argument(s)

27 typeless
‘c’ complex
‘CH’ character
‘1’ integer
‘. logical

‘R’ readl

‘X’ result of MATMUL or DOT_PRODUCT
‘s’ subroutine

4. Procedure type kind/length, integer. Special codes:

¢0 type length
0 same as the type kind/length of the argument(s)
-1 default type kind/length of the function type
-2 default type kind/length of type double precision
-3 same as the type kind of the argument(s); half the type length of the type length
of the arguments
-4 unknown
-5 type kind of an address (or infeger POINTER)

A.30. THE CONFIGURATION FILE 107

5. Procedure rank and shape code, integer. Special codes:

0 scalar

1 rank 1

2 rank 2

-1 take shape of argument with largest rank
-2 rank N+1

-3 scalar or rank 1

-4 scalar or rank N-1

-5 rank 1 or N-1

-6 shape of second array argument

-7 follow the rules of matrix multiplication

In which N is the highest rank of all arguments.

6. Number of arguments, integer. Special codes:

-1 one or two arguments allowed, one argument line must follow

-2 two or more arguments allowed, one argument line must follow

-3 one or none arguments allowed, three argument lines must follow

-4 two or three arguments allowed, two if first argument is complex; three argument
lines must follow

-5 any number of arguments allowed, no argument lines must follow

7. Procedure name allowed as actual argument, logical.

8. Infrinsic procedure class, string:

‘A" atomic subroutine

‘C’ collective subroutine

‘E’ elemental function

I’ inquiry function

‘P’ procedure (can be referenced as function or subroutine)
'S" subroutine

T" transformational function

9. Compile-time inquiry, or transformational function, logical.

10. Optional comment, string.

Each record for an argument is composed of the following fields:

1. Argument name, character.

2. Argument type, character.

" v any type allowed (but all arguments must have the same type)
27 typeless

‘cr complex

‘cH’ character

108

APPENDIX A. SUPPORTED FORTRAN SYNTAX

‘1’ infeger

‘L.’ logical

‘N’ numeric: integer, real, complex
‘R’ real

‘T’ derived type
‘U’ intfrinsic type
‘X’ any type allowed, don’t check

3. Argument type kind/length, integer.

¢0 type length

0 any kind/length allowed which is allowed for the generic procedure
-1 default kind/length of the argument type

-2 double precision

. Argument rank, integer. Special codes:

0 argument must be scalar

1 argument must be array of rank 1

2 argument must be array of rank 2
-1 array argument required
-2 argument can be scalar or array, even in Fortran 77
-3 argument can be scalar or array
-4 argument can be scalar or rank N-1
-5 argument can be rank 1 or 2
-6 argument must be a dummy argument
-7 argument must be the name of a variable or external procedure
-8 argument must be a pointer or pointer procedure

In which N is the highest rank of all arguments.

Argument must have the same type and type parameters as the previous ones (if
any) of which this flag has been set, logical. If the resulting type kind of the infrinsic
procedure depends on the type kind of this argument, this flag must be set true.

Argument is optional, logical.

Argument must be defined on entry, logical.

. Argument will be defined, logical.

Optional comment, string.

A.30.3 OCI (OPEN/CLOSE/INQUIRE) specifiers

Coverity Fortran Syntax Analysis recognizes all standard Fortran specifiers. Moreover the
additional specifiers as specified in the configuration file will be recognized. You can mod-
ify the configuration file and remove, add, or change the nonstandard specifiers to be
recognized.

A.30. THE CONFIGURATION FILE 109

Coverity Fortran Syntax Analysiscan accept added specifiers which are standardized
in a higher Fortran standard level than the Fortran conformance level as specified in this
configuration file without reporting. You can group the added specifiers for each language
level. Each group must have one of the following headers:

IFortran 90 additions

IFortran 95 additions

IFortran 2003 additions

IFortran 2008 additions

IFortran 2015 additions

The nonstandard compiler specific additions must be in a group with the following header:

INonstandard additions
If you specify e.g. —£03 only the specifiers which are not in the Fortran 2003 standard
are reported.

In the next paragraphs we describe the way specifiers can be specified in the config-
uration file.

Each OPEN, CLOSE or INQUIRE keyword or combination of keyword and value must be
specified on a single record of the configuration file. The list is delimited by a record with a
zero. Each record has the following format:

1. Keyword, string.

If a keyword starts with the characters of another keyword, the longest keyword has
to be specified first, or the “=" must be included in the name of the shortest keyword.
Specify a blank before the “=" to allow non-significant blanks between the keyword
and the “=". If a keyword may be split up in more than one part, separated by blanks
(Fortran 90 free form input), include a blank in the specification at these positions.

2. OPEN/CLOSE/INQUIRE indicator, character.

‘0" can be used in OPEN statement
‘c’ can be used in CLOSE statement
‘I’ can be used in INQUIRE statement

Specify additional records with the same keyword for each statement type in which
the keyword can be specified.

3. Value or value type, string.

This field can either denote a value keyword (character constant), or the type of a
variable value.

If a value can be a value keyword, specify a value keyword in the value type field.
Each keyword and value combination must be specified in a separate record. A
value keyword cannot be shorter than two characters. If it has a length of two char-
acters, it cannot end with an ‘R” oran ‘A’ If a value keyword starts with the characters
of another value keyword, this value keyword has to be specified first. If a value key-
word may be split up in more than one part, separated by blanks, include a blank

110 APPENDIX A. SUPPORTED FORTRAN SYNTAX

in the specification at these positions. A specific value keyword can be specified for
two different open keywords and one close keyword.

If the value can be a variable, the first character of the value type field denotes the
type of the value.

‘N’ no value expected

" any type allowed

external expected

infeger datum expected

key description expected

label or logical expected

character

unit specifier expected
scalar-default-char-variable expected

<da R e

The second character of the value type field denotes reference or assignment.

‘R" reference
‘A" assignment

For OPEN and CLOSE 'R’ is the default, for INQUIRE ’A’ is the default. Note that the
value type and reference/assignment character are to be specified in a single string
field, for example "1a’ to denote an integer assignment.

4. Synonym keyword, string.

Here you can specify for which keyword the keyword is a synonym. If the keyword
is no synonym specify a blank string. If nonblank the value type field is not relevant.
Synonyms will be flagged as nonstandard.

5. Standard Fortran specifier, logical.

T The keyword is a standard Fortran specifier
F The keyword is no standard Fortran specifier

A.30.4 MESSAGES

In the section “messages” you can redefine messages. You specify the numbers of the
messages which you want to suppress or of which you want to change the severity. Each
message number, followed by the severity level flag within apostrophes, must be specified
on a single record. See the section “The usage of language extensions” of the chapter
“Operation” for a precise description. You also can specify suppress=’all’ o suppress
all diagnostic messages.

A.30.5 OUTPUT

In this section you can specify what information is sent to stdout, is stored in the listing file
and in the report file. See the section “Tuning the output” of the chapter “Operations”.

A.30. THE CONFIGURATION FILE 111

A.30.6 VARIOUS

In this section you can specify the count mode, the format of the message reporting and
the date/time format. See the corresponding sections of the chapter “Operations”.

112 APPENDIX A. SUPPORTED FORTRAN SYNTAX

Appendix B

Limitations

Coverity Fortran Syntax Analysis is a static analyzer, therefore it cannot detect any errors
which manifest themselves at run time only. For example, a variable array index, or variable
character substring expression which is out of bounds, cannot be detected. Likewise, the
detection of operations on external files can hardly be checked without executing the
program. For example a file which has not been opened before usage, or a variable
logical unit not being used consistently, cannot be detected.

Coverity Fortran Syntax Analysis warns you, if possible, when a variable has not been
defined in a program unit, when a common-block object has not been defined in the
program (use the —ancmpl option to enable this feature), when an allocatable variable
has never been allocated , or when a pointer has never been associated to a target or
procedure. However, if an object is used as an input/output actual argument Coverity For-
tran Syntax Analysis cannot verify this. In a limited number of cases Coverity Fortran Syntax
Analysis reports when an item has been referenced, before it was defined, allocated, or
associated. However the path flow analysis to detect this is limited. As soon as a labeled
executable statement has been encountered and either a forward reference to a label
has been made, or we are in a construct, Coverity Fortran Syntax Analysis cannot signal
this kind of errors any more. So avoid labels and goto’s. This is another good reason 1o use
IF and SELECT CASE constructs as much as possible! By specifying the —-rigorous op-
tion Coverity Forfran Syntax Analysis will detect more occurrences of “referenced before
defined” at the cost of more false alarms

Arrays, character variables and variables of derived type are treated as a single en-
tity. The individual array elements, substring elements or structure components are not
checked for unreferenced, undefined, or not allocated. This is not only to reduce the
storage and processing time requirements, but also because most array and substring el-
ements are referenced using variable array indices or substring values which cannot be
verified statically.

Recursive 1/O attempts will only be detected in a limited number of cases. Coverity
Fortran Syntax Analysis does not compare the consistency of format strings with the actual
I/O list. This is because many 1/O lists have implied Do loops which generate a variable
number of elements. Future versions of Coverity Fortran Syntax Analysis may check format
strings as far as possible.

113

114 APPENDIX B. LIMITATIONS

B.1 Configuration determined limits

The tables used in Coverity Fortran Syntax Analysis to store all information have limited sizes.
The sizes of all internal tables will be specified in the following table.

These limits cannot be changed by the user. When a limit has been exceeded a
system message will be given. Analysis will proceed, but will no longer be complete.

value | description
255 | max. length of a file specification
255 | max. length of an include filename
512 | max. number of characters in an input record
512 | max. number of characters in an output record
25 | max. nesting of include files
100 | max. nesting of modules
50 | max. nesting of references in call-tree
200 | max. number of library files
1000 | max. number of (non-comment) lines in a statement
25000 | max. number of characters in a statement
8000000 | length of name table
20000 | max. number of contexts in a program unit
100 | max. nesting of structures + unions + maps
16 | max. number of parameters of a derived type
10000 | max. nesting of DO + IF + ELSEIF + ELSE + SELECTCASE + CASE
7 | max. nesting of implied Do loops in DATA statement
50 | max. nesting level in an expression
2000 | max. number of objects being checked in an argument list, or equivalence list
4000 | max. number of shape, bound, or vector values in an argument list, equivalence list,
or common-block list
16 | max. number of derived-type parameters for a derived type
20000 | length of argument key list
4000 | max. number of objects in a common-block list, or data list
200000 | max. number of entries in the symbol table
1000 | max. number of references in a cross-reference table presented
1000000 | max. total number of references in the cross-reference tables
1000 | max. number of non-analyzed procedures presented
100 | max. number of messages that can be redefined
25 | max. number of common blocks specified with the —shcom com_list option
25 | max. number of modules specified with the —shmodtyp mod_list option
25 | max. number of modules specified with the —shmodvar mod_list option
25 | max. number of roofs specified with the —shref root.list option
25 | max. number of roots specified with the —shmoddep root_list option
25 | max. number of program units specified with the —include option
50 | max. number of include directories specified with the -1 option
500 | max. maximum number of infrinsic procedures
100 | max. maximum number of OPEN/CLOSE/INQUIRE keywords
100 | max. maximum number of OPEN/CLOSE/INQUIRE value keywords

Appendix C

History of changes

See the supplied file history.txt for all relevant changes that have been made to Coverity
Fortran Syntax Analysis since the introduction of version 14,

115

116 APPENDIX C. HISTORY OF CHANGES

Appendix D

Message summary

In this appendix all system and analysis messages are listed. The messages which are not
self-explaining are elucidated.
1 | (MESSAGE LIMIT REACHED FOR THIS STATEMENT OR ARGUMENT LIST)
e Only the first 5 messages in a statement or argument list are displayed.
2 E (OPEN ERROR ON INCLUDE FILE)
e Aninclude file could not be located or opened.
3 E (INCLUDE NESTING TOO DEEP)
¢ The nesting of include files is too deep.
4 O (NEXT SOURCE RECORD TOO LONG, REMAINDER NOT PROCESSED)
e The source input record exceeds the input buffer size.
5 O (TOO MANY (COMMENT) RECORDS IN STATEMENT, REMAINDER NOT PROCESSED)
e The number of (comment) lines in the statement is too large.
6 O (STATEMENT TOO LONG, REMAINDER NOT PROCESSED)
e The number of characters in the statement is too large.
7 O (TOO MANY STATEMENTS, REMAINDER NOT PROCESSED)
e The number of statements in the program unit is foo large.
8 O (NAME TOO LONG, TRUNCATED)
¢ The identifier is foo long.
9 O (ARRAY TOO LONG, LENGTH NOT VERIFIED)

e The length of the array is too long.

117

118

10

11

12

13

14

15

16

17

18

19

20
2]
22
23

APPENDIX D. MESSAGE SUMMARY

O (CHARACTER ENTITY TOO LONG, LENGTH NOT VERIFIED)
e The character constant or type length is too large.
O (NUMBER CANNOT BE CONVERTED)

e The number concerned is too large for the system being used.

e The format of the number is not available on the system being used.
O (NAME TABLE FULL, REMAINDER NOT PROCESSED)

e The table with identifiers is full. When using many long names the name table
can become full before the symbol table is full.

O (SYMBOL TABLE FULL, REMAINDER NOT PROCESSED)

¢ The table with information concerning named entifies is full.
O (CONTEXT TABLE FULL)

e The number of contexts is too large.
O (NESTING TOO DEEP)

e The nesting of array subscripts, function-, and subroutfine argument lists is too
deep.

e The nesting of implied DO loops in a DATA statement is too deep.
e The context nesting is too deep
O (EXPRESSION STACK OVERFLOW)
e The expression is to complex to analyze.
E (EXPRESSION STACK UNDERFLOW)
e Internal error, please report.
O (CONSTRUCT STACK OVERFLOW)
¢ The nesting of constfructs, is too deep.
O (DERIVED-TYPE/STRUCTURE NESTING TOO DEEP)
e The stack for nesting of derived-types and structures is full.
O (TOO MANY OBJECTS IN DATA STATEMENT, REMAINDER NOT VERIFIED)
O (TOO MANY EQUIVALENCE LISTS, REMAINDER NOT PROCESSED)
O (TOO MANY ARGUMENTS, REMAINDER NOT VERIFIED)
O (TOO MANY ARGUMENT SHAPES, REMAINDER NOT VERIFIED)

24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
40
41

42

43

44
45

119

W (ROQOT ENTRY NOT FOUND)

O (TOO MANY REFERENCES, REMAINDER PRINTED IN SEPARATE SUB-TREES)
O (OO MANY PROGRAM UNITS, REMAINDER NOT PROCESSED)

O (CROSS-REFERENCE TABLE FULL, REMAINDER NOT PRESENTED)

O (TOO MANY COMMON-BLOCK OBJECTS TO CROSS-REFERENCE)

W (LIBRARY ENTRY NOT FOUND)

O (TOO MANY LIBRARY ENTRIES, REMAINDER NOT PROCESSED)

O (ARGUMENT-KEY STACK FULL, REMAINDER NOT PROCESSED)

e The stack with argument keys is full. When using many long argument keys the
argument key stack can overflow before the argument stack overflows.

O (CONDITIONAL-COMPILATION SYMBOL TABLE FULL)

O (CONDITIONAL-COMPILATION NESTING TOO DEEP)

O (INVALID NESTING OF CONDITIONAL-COMPILATION META COMMANDS)
O (EXPRESSION COULD NOT BE EVALUATED)

O (STACK OVERFLOW WHILE PROCESSING REFERENCE STRUCTURE)

O (SOURCE POSSIBLY IN FREE FORM. SPECIFY THE FREE-FORM OPTION)

O (TOO MANY MESSAGES SUPPRESSED, REMAINDER IGNORED)

O (NAME AND REFERENCE DO NOT FIT ON A LINE, ENLARGE PAGE WIDTH)
E a’;” must not be the first nonblank character on a line

E invalid line

¢ A non-comment, non-compiler directive line with less than 6 characters has
been read.

E first ine must not be a continuation line

e The line is the first line encountered in the statement and has not a zero or blank
in column 6.

E invalid characters in front of continuation line
o Characters have been found in column 1-5 of a fixed form continuation line.

W first line after an INCLUDE line must not be a confinuation line

W too many continuation lines

e The statement has more continuation lines than the emulated compiler can
handle.

120

46

47
48

49
50
51
52
53
54
55
56
57
58
59

60
61

62

63

APPENDIX D. MESSAGE SUMMARY

e The statement has more than 19 continuation lines and the Fortran 77 standard
option has been specified.

e The statement has more than 19 confinuation lines and the Fortran 90 or 95
standard option has been specified and the source is in fixed form.

e The statement has more than 39 continuation lines and the Fortran 90 or 95
standard option has been specified and the source is in free form.

E unrecognized characters at end of statement

o After processing the statement there were characters left in the statement buffer.
W statement field empty, CONTINUE assumed
E invalid characters in label field of statement

e Only alabelin column 1-5, and a zero or blank in column 6 are allowed in front
of a statement,

W continuation character not in Fortran character set
W lower case character(s) used
W nonstandard Fortran comment used
W conditional compilation or D_line(s) used
W tab(s) used
W formfeed(s) used
W include line(s) used
E unbalanced delimiters
E invalid flename specification
| none of the entities, declared in the include file, is used
| character constant split over more than one line
e This may be non-portable.
W fixed source form used
| no statement found in program unit
e Only comment lines or non-included conditional source lines were read.
W continuation character missing

e In freeform input the first nonblank character of a confinuation line in a charac-
ter context should be an &.

| unrecognized characters after compiler directive

64
65
66
69

70

71
72
73

74
75
76
77
78
79

80

81

82

121

e the cpp preprocessor does not allow characters after directives without argu-
ments.

W line too long

continued character constant has more than one leading blank
comment line(s) within statement

unrecognized statement

e The syntax is not recognized. This may be caused by a non- standard keyword
which is not part of the supported extensions.

ambiguous statement. Type statement assumed

e A function statement must have an (empty) argument list, so this statement is
freated as an explicit type statement.

nonstandard Forfran statement
statement not allowed in MAIN

statement not allowed in BLOCKDATA

¢ In a blockdata program unit only specification statements, and no executable
statements are allowed.

statement not allowed within the specification part of a (sub)module
this statement can only be used within a construct

this statement can only be used within a loop construct

statement not allowed within this context

statement out of order

type specification out of order

e The type specification must confirm the implicit type or be defined before the
declaration statement where it is used.

non-DATA specification statements must precede DATA statements

e In Fortran 77 any DATA statement should be placed after other specification
statements.

no shape specified, or statement function out of order

¢ An undeclared subscripted variable or function name with arguments is used
at the left side of an assignment statement.

this statement cannot have prefixes

122

83

84
85
86
87
88
89
90
91
92
Q3
94
95
96

97

98

99

100
101
102
103
104

m

E

APPENDIX D. MESSAGE SUMMARY

e Only a FUNCTION or SUBROUTINE statement can have prefixes.
internal or module procedure expected

o Affer a CONTAINS statement at least one internal or module procedure must
be specified.

no path to this statement

procedure END missing

program unit END missing

non-martching program unit or subprogram type in END
non-matching name in END

missing delimiter or separator

unmatched parentheses

missing parenthesis

)" expected

“/" expected

syntax error

W nonstandard Fortran syntax

W obsolescent Fortran feature

¢ This syntax is marked as obsolescent in the effective Fortran standard.
PARAMETER statement within STRUCTURE

e Defined named constants are not local to the structure, so they can better be
placed outside the structure definition.

W deleted Fortran feature

e This syntax is marked as deleted in the effective Fortran standard.

W DATA statement among executable statements

o This is marked as obsolescent in the Fortran 95 standard.

statement not allowed within a pure procedure

statement not allowed within an interface block

statement only allowed within an interface block

statement only allowed within the spec. part of a (sub)module

statement only allowed in interface block or spec. part of subprog.

105
106

107
108

109

110

111
112
113

114

115
116
117

118

123

statement not allowed within a BLOCK consfruct

lexical token contains blank(s)

e In free form source form blanks in a name, literal constant, operator, or keyword
are not allowed.

blank required in free source form
use a blank to delimit this token

¢ In fixed form source form of Forfran blanks are not significant but the absence
of a delimiter between these lexical fokens might indicate a syntax error.

lexical token contains non-significant blank(s)

¢ In fixed form source form blanks are not significant. However, a blank in a name,
literal constant, operator, or keyword might indicate a syntax error.

name or operator too long

e The name or is longer than 6 characters and the conformance to the Fortran
77 standard option has been specified.

e The name or operator is longer than 31 characters and the conformance to the
Fortran 90 standard option has been specified.

e The name or operator is longer than the maximum name length supported by
the emulated compiler.

operator name must consist of letters only
name is not unique if fruncated to six characters

invalid name

e The syntax of the name is in error. Invalid characters have been used in the
identifier.

statement label too long
e A statement label must consist of 1 1o 5 digits.

multiple definition of statement label, this one ignored
statement label already in use

statement label type conflict

e A label must either be used to identify a format statement, or a non-format
statement.

invalidly referenced

124

119
120
121
122
123

124

125
134

135

136
137

138
139
140

APPENDIX D. MESSAGE SUMMARY

invalid reference

referenced from outside entry block
statement label invalid

format statement label missing

undefined statement label

e A referenced statement label has not been defined.
statement label unreferenced

e A statement label has been defined but is never referenced (used).
format statement unreferenced
missing apostrophe or quote

¢ The closing apostrophe or quote of a character constant is missing.
zero length character constant

e In Fortran 77 a character constant must not be of zero length.

invalid binary, octal or hexadecimal constant

kind type parameter of real constant not allowed for this exponent
¢ If the kind is specified, only E is a valid exponent letter.
invalid complex constant
invalid Hollerith or Radix constant
missing character to escape in C-string
e The closing apostrophe or quote of the C-string is preceded by a """,
-A named constant is used in a context where a variable, or
e procedure name is expected.

¢ In standard Fortran no named constants are allowed to define the real orimag-
inary part of a complex constant.

142 E real or integer constant expected

143 W character length too large

e A character constant or variable is longer than the emulated compiler can
handle.

144 E number too large

145

146
147
148
149
150
1561
152

1563
154
155
156
157
158

159
160

161

162

163

125

implicit conversion of scalar to complex

e Aninteger orreal value is assigned to a complex variable. The imaginary part of
the complex becomes zero. If the real is zero this information is only presented
if the rigorous option has been specified.

unsigned nonzero infeger expected
unsigned intfeger expected
positive integer expected
infeger too large for its kind
infeger larger than default
invalid or unrecognized attribute
PRIVATE is already the default
e PRIVATE has already been specified.
PUBLIC is already the default
implicit type already used; type declaration must confirm this type
conflict with generic name
conflict with derived-type name
invalid usage of subscripts or substring
already specified PUBLIC
e PUBLIC has already been specified.
e PRIVATE has been specified but PUBLIC has been specified before.
name already in use

invalid usage of variable

e Because of the previous context the name appeared to be a variable but is
now used in a context where a procedure name is expected.

scalar variable name expected

e An array element, array name, constant, external, structure, derived-type name
or namelist name is not allowed in this context.

named scalar expected

e No array name, array section, array element, substring, or expression is allowed
in this context.

no array allowed

126

164
165
166
167

168

169

170

171

172
173

174

175

APPENDIX D. MESSAGE SUMMARY

e No array name or array section allowed.
missing array or shape specification
invalid shape specification
missing array subscripts

invalid usage of subscripts or bounds

e An array element is not allowed in this context.

e A scalar can not be subscripted or have bounds.
invalid number of subscripts or bounds

e The number of subscripts is larger than the maximum rank.
e The number of subscripts or bounds is different from the declared rank.

e The number of lower-bound expressions or bound remappings is different from
the declared rank.

invalid shape bounds

e The first bound of a specified shape is higher than the second bound.

e Array must not be zero sized in this context,
shape specification out of order
e The shape must be specified before first usage.
multiple specification of shape
e The shape of the array has been declared more than once.

invalid array or coarray specification

invalid usage of assumed-size array specification

e Only dummy array arguments can be specified with an assumed-size.

e The function name of an array-valued function must not be declared assumed-
size.

invalid usage of assumed-size array name

e An assumed-size array name can only be used as an actual argument in a
procedure reference for which the shape is not required.

invalid usage of adjustable-array dimension

e Only dummy-array arguments can be specified with adjustable dimensions.

127

176 E invalidly used in adjustable or automatic array declaration

e A variable which specifies an array dimension or character length must either
be a procedure argument (with intent(n)), in common, or a global module
variable.

177 E deferred- or assumed-shape array specification not allowed
178 E deferred-shape array specification required

e A POINTER or an ALLOCATABLE array must be specified as a deferred-shape
array.

179 E explicit-shape array specification required

e An array valued function result, without the POINTER or ALLOCATABLE aftribute,
must have an explicit shape.

180 E invalid usage of automatic-array specification
e An automatic array must not appear in the specification part of a (sub)module
181 E invalid usage of assumed length

e Only a dummy argument, function result, or named constant of type character
can be specified with assumed length.

e The type length of a statement-, intfernal-, or module function cannot be of
assumed length.

e The type length of a dummy statement function argument can not be of as-
sumed length.

e A function with pointer valued result cannot be of assumed length.
182 E invalid usage of adjustable-length specification

e Only dummy arguments or automatic objects can be specified with an ad-
justable length parameter.

e Statement functions and statement function arguments cannot be specified
with adjustable length

¢ If the length parameter of an elemental function is specified by an expression,
it must be a constant expression.

183 E invalid length or kind specification, default assumed

e A kind type parameter must be a nonnegative scalar infeger constant expres-
sion.

184 E multiple specification of attribute

128

185
186
187
188
189

190
191
192
193
194

195

196

197
198
199

APPENDIX D. MESSAGE SUMMARY

invalid combination of attributes

attribute not allowed in this context

invalid to (re)define type or attribute

OPTIONAL and INTENT only allowed for dummy arguments

already specified PRIVATE
e PUBLIC has been specified but PRIVATE has been specified before.
e PRIVATE has already been specified.

type parameter not allowed for this type

invalid specification of type parameters

invalid usage of type parameters

already specified in host context

unsupported type length, default assumed

e A type length specification of this type is not supported by the emulated com-
piler.

type length invalidly specified

¢ The type length cannot be specified in this context

e The emulated compiler does not support this nonstandard Fortran syntax.
initialization only allowed in attributed form of type spec.

e Use "i:" between statement keyword and list.
a named constant cannot have the POINTER, TARGET, or BIND attribute
constant expected
missing parentheses

¢ In standard Fortran the list of a PARAMETER statement must be enclosed in
parentheses. Be aware, however, that the syntax extension without parentheses
provided by some compilers uses a different assumption of the type of named
constant. In standard Fortran the type is the implicitly or explicitly defined type
of the name. In the syntax extension the type becomes the type of the named
constant.

200 E constant expression missing

o If the PARAMETER attribute has been specified, the named constant must be
given a value.

129

201 E entity must have been explicitly declared previously
202 E multiple specification of type, this one ignored
e The entity has already been typed by an explicit type statement.
203 E name invalidly typed
e The name must not appear in an explicit type statement,
204 | implicit type already used, change sequence

e An explicit type specification confirms the implicit type of a variable that has
already been used.

205 E implicit properties already used, statement out of order

e An explicit type specification defines the type of a variable that has already
been used.

e An implicit statement defines the type of an entity while the implicit type of the
entity has already been used.

e An IMPLICIT ALL compiler directive has been specified while the implicit type of
one or more entities has already been used.

e A shape specification defines the shape of a variable or function that has al-
ready be used as a scalar.

206 E invalid implicit range
e The first and second character in an IMPLICIT list must in lexicographic order.
207 E multiple implicit type declaration, this one ignored

e Animplicit type has been specified more than once for one or more characters
in the list.

o IMPLICIT NONE has been specified and another IMPLICIT statement has already
been specified.

o IMPLICIT NONE has been specified but an implicit type has already been used.
208 W name not explicitly typed, implicit type assumed

e The entity has not been explicitly typed and:

¢ IMPLICIT UNDEFINED has been specified for the first character of the symbol.

e The declare option has been specified.

209 W conflict with IMPLICIT NONE specification or DECLARE option

130 APPENDIX D. MESSAGE SUMMARY

e An IMPLICIT statement has been specified while IMPLICIT NONE has been spec-
ified or the DECLARE option is enabled.

210 E SAVE has already been specified for this entity
211 E SAVE and AUTOMATIC cannot be specified both
212 E invalid to save this entity
e Only named common blocks and variables can be saved.

e Thereis no need to save the blank common because the common-block values
in blank common do not become undefined after a RETURN or END.

e Common-block objects cannot be saved.
e Automatic and static arrays and pointees cannot be saved.

e Local variables of pure procedures must not be saved.
213 E SAVE or BIND specified but entity not declared

e A variable or common block has been specified in a SAVE or BIND statement
but has not been declared or used.

214 E not saved

e If a common block has been specified in a SAVE statement in a subprogram, it
must be specified in a SAVE statement in every subprogram in which the com-
mon block has been specified.

e If an object of a type for which component initialization is specified appears in
the specification part of a (sub)module and does not have the ALLOCATABLE
or POINTER attribute, the object must be saved.

e An object in an initial data target must be saved.
215 E dlready specified automatic, static or allocatable

e An object must only be specified automatic, static or allocatable once.

e AUTOMATIC and STATIC cannot be specified both.
216 E invalidly specified automatic, static or allocatable

e A dummy variable, a common-block object and a pointee must not be speci-
fied automatic, static or allocatable.

e An dllocatable array must not be specified automatic or static and must not be
a pointer.

e An automatic, static or allocatable object must not be equivalenced.

e Atarget in a pointer initialization must not be allocatable.

131

e An assumed-type object must not be allocatable.
217 E conflict with program unit or ENTRY name

e The name of a constant, as defined in a PARAMETER statement must not be the
same as a global name of the subprogram, such as the name of the program
unit, or an entry.

e The name of a common block must not be the same as the name of a program
unit or ENTRY.

218 E conflict with common-block name

e The name of a constant, as defined in a PARAMETER statement must not be the
same as the name of a common block specified in the current subprogram.

e A global name, such as the name in a PROGRAM, BLOCKDATA, SUBROUTINE,
FUNCTION or ENTRY statement, must not be the same as the name of a com-
mon block of the program.

219 E invalidly in COMMON, EQUIVALENCE, or NAMELIST

e A dummy procedure argument, automatic or allocatable variable and a pointee
cannot be stored in a common block, and must not be equivalenced.

e A pointer array cannot be stored in common.

e If a compiler supports NAMELIST as a FORTRAN 77 extension, a dummy argument
and a pointee can not be placed in a namelist.

e A dummy argument with non-constant bound, a variable with nonconstant
character length, an automatic object, a pointer, a variable of a type that
has a pointer, or allocatable variable, can not be placed in a namelist.

¢ An equivalence object must not have the TARGET attribute or be a pointee.

e An object, imported from a (sub)module, must not be in EQUIVALENCE or COM-
MON.

220 E invalid initialization of entity in DATA or type statement

¢ In a blockdata program unit, only common-block variables can be initialized.

A dummy procedure argument, automatic array, allocatable variable and pointee
cannot be initialized in a DATA or type statement.

In Fortran 90 a pointer can only be initialized with a pointer assignment, ALLO-
CATE or NULLIFY statement. From Fortran 95 pointer initialization is supported.

A component with the ALLOCATABLE aftribute can not be initialized by default.

A variable in a pure procedure must be initialized other than by default.

132 APPENDIX D. MESSAGE SUMMARY

221 E more than once in BLOCKDATA

e The common block has been specified in more than one block-data program
unit.

222 W mixing of character and numeric types in COMMON BLOCK

¢ In standard Fortran it is not allowed to store character and numeric data in the
same common block.

223 W inifialization of named COMMON should be in BLOCKDATA

e Variables in a named common block should only be initialized in a blockdata
program unit.

224 W invalid initialization of variable in blank COMMON
e Variables in blank common should not be initialized.

225 E more than once in COMMON

226 | objects not in descending order of type size
¢ This order could cause alignment problems on some processors.
227 | extension of COMMON

e This COMMON statement extends a previously declared common block with
the same name.

228 W size of commmon block inconsistent with first declaration

¢ Named common blocks must have the same length in every occurrence. The
length of the common block in this occurrence is different from that as specified
in the main program or as specified in the first occurrence encountered.

229 W type in COMMON inconsistent with first declaration

e Numeric and character objects must not be stored in the same common block.
The type of the objects in this occurrence of the common block is different from
that in main or in the first occurrence encountered.

230 W list of objects in named COMMON inconsistent with first declaration

e In this occurrence of the named common block objects with different types,
type lengths, or array sizes have been stored than in the main program or in the
first occurrence encountered.

231 W array bounds differ from first occurrence

232 | only specified once

¢ The common block has been specified in one subprogram only.

133

233 | common block inconsistently included from include file(s)

e The common block has been specified in an include file at one occurrence
and specified directly in another occurrence.

e The same common block has been specified in different include files.
234 E invalid equivalence with object in COMMON

¢ If more than one of the objects in an equivalence list is in a common block, the
objects cannot be equivalenced.

235 E equivalence of variable to itself
e The equivalence lists are such that you try to equivalence an object to itself.

236 E storage allocation conflict due to multiple equivalences

237 | equivalence of arrays with possibly different type lengths
¢ When using short infegers and/or logicals, this code may be highly non-portable.
238 E invalid storage association of object with a pointer component

e A variable of a derived type with pointer components must not be used in
EQUIVALENCE or COMMON.

239 E invalid extension of COMMON through EQUIVALENCE

e An object in a common block is in such a way equivalenced with an array that
storage must be allocated before the start of the common block.

240 W extension of COMMON through EQUIVALENCE

e An object in a common block is in such a way equivalenced with an array that
the common block has to be extended.

241 W nonstandard mixing of types in EQUIVALENCE
e Character and numeric data must not be equivalenced.
e Objects of type character must be of the same kind.
e Objects of an infrinsic, non default kind, must be of the same type and kind.

e Objects of a sequence derived type that is not a numeric sequence or charac-
ter sequence type, must be of the same type and have the same type param-
eter values.

242 E more constants than variables
o More constants than variables have been found in this data statement list.

243 E more variables than constants

134

244
245
246
247

248

249

250

251
252

253

254

255

APPENDIX D. MESSAGE SUMMARY

o More variable elements than constants have been found in this data statement
list.

E more than once initidlized in DATA or type statement
E no expression allowed
E invalid type or type length for an integer POINTER

W assumed-length character functions are obsolescent
e This is marked as obsolescent in the Fortran 95 standard.
| object already used, change statement sequence

e An explicit specification of an attribute confirms the attribute of an object that
has already been used.

W list of objects in blank COMMON inconsistent with first declaration

¢ In this occurrence of the blank common-block objects with different types, type
lengths, or array sizes have been stored than in main or in the first occurrence
encountered.

| when referencing modules implicit typing is potentially risky

e There is an increased potential for undetected errors in a scoping unit that uses
both implicit typing and the USE statement because module objects can be
typed differently from the implicit type.

E SAVE has already been specified for each entity in this scoping unit

E a private object must not be placed in a public namelist group

e If a namelist-group-name has the PUBLIC attribute, no object in the namelist-
group-object-list shall have the PRIVATE attribute or have private components.

W common-block data not retained: specify in root or save it

e The common block has not been SAVEd, has not been specified in the main
program or in the root procedure of the referencing program units so the data
become undefined after leaving the program unit.

W public module data not retained: specify in root or save it

e Noft all public module data has been SAVEd, the module was not referenced in
the main program or in the root procedure of the referencing program units so
the data become undefined after leaving the program unit.

E derived type or structure undefined

e A variable of derived type is declared but the derived type has not been de-
fined.

256

257

258
259
260
261
262

263

264

265
266
267
268
269

135

e Arecord is declared but the structure has not been defined.
e A parent type name shall be the name of a previously defined extensible type.
statement invalid within derived type or structure definition
e This statement is not allowed within the definition of a derived type or structure.
derived type or structure name missing
e The derived type name is missing in the type declaration
e The outer structure must have a name.
invalid structure nesting
missing END TYPE or END STRUCTURE
missing END UNION
missing END MAP
invalid usage of record or aggregate field hame

e A record must not be specified in an EQUIVALENCE, DATA, or NAMELIST state-
ment.

e An aggregate field name is not allowed in formatted I/O.
component or field name missing

e No derived type components or structure fields have been specified.

e A structure field which is a structure must have a field name.
unknown component, field name, or type parameter

e A component or type parameter has been referenced which has not been
declared in the derived type.

e A record field has been referenced which has not been declared in the struc-
ture.

derived type must be of sequence type
derived type or components must be PRIVATE
no fields specified in structure definition
incorrect number of component specs in structure-constructor
malformed structure component
e At most one of the parts of a structure-component can be an array.

e A part-name to the right of an array must not have the POINTER attribute.

136

270

271
272
273

274

275

276

277
279
280
281
282
283
284

APPENDIX D. MESSAGE SUMMARY

derived-type component(s) or binding(s) inaccessible

e The component(s) or binding(s) of the derived-type are declared private.
derived-type is inaccessible
an object of a PRIVATE type cannot be PUBLIC
invalid usage of structure-component or type-parameter

e A structure-component is not allowed in an EQUIVALENCE statement.

e The left side part of a structure must be of derived type.

e A type inquiry can not be defined.
initialization of component or field not allowed

¢ In Fortran 90 initialization of derived-type components is not supported.
derived-type of object must be sequence or have the BIND attribute

e The derived-type of an object in COMMON or EQUIVALENCE must be of se-
quence type or have the BIND attribute.

e The type of a dummy argument must be of sequence type or have the BIND
attribute if the type is defined in the local context.

¢ The type of an actual argument of an external procedure must be of sequence
type or have the BIND attribute

derived type or structure inconsistently included from include file

e The derived type or structure has been specified in an include file at one occur-
rence and specified directly in another occurrence.

e The same derived type or structure has been specified in different include files.

component must be allocatable

invalid usage of derived-type name

no type parameter, or inaccessible component
unknown type-bound procedure

the parent type must be extensible

invalid sequence of operators

not allocated

e A conditionally referenced or defined allocatable variable was not allocated.

e An INTENT(IN) argument was not allocated.

285
286
287
288

289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307

308

137

scalar integer constant expression expected
undefined when entered through ENTRY, specify SAVE to retain data
scalar integer constant name expected

scalar integer variable name expected

¢ Aninfeger which is not an array element, array name, constant, external, struc-
ture, derived-type name or namelist name is expected.

scalar integer variable expected

constant or scalar integer variable expected

unsigned nonzero integer expected

expression expected

constant expression expected

integer expression expected

scalar integer or real variable expected

NULLQ or target expected

integer, logical, or character expression expected
intfeger or character expression expected

logical expression expected

character constant or unsigned infeger constant expected
character expression expected

character substring must not be zero sized in this context
scalar logical expression expected

scalar integer expression expected

scalar integer or real expression expected

array expected

variable not defined

e The variable is referenced but has not been defined. No value has been as-
signed to the variable, o the elements of the array (if the variable is an array),
or to the components (if the variable is of derived type), or the fields of arecord.

no statement label assigned to this variable

e The variable has been referenced as a label but no label has been assigned 1o
the variable.

138

309

310

311

312

313

314

315

316

APPENDIX D. MESSAGE SUMMARY

possibly no statement label assigned to this variable

¢ The variable has been referenced as a label but, if statements are executed
seqguentially, no label has been assigned to the variable. There might be, how-
ever, a path through which the variable is assigned before referenced.

label assigned to dummy argument or variable in COMMON
e [t is unsafe and not functional to use a global variable to denote a label.
both a numeric value and label assigned to this variable

e The variable is used both to denote a label and a numeric value. This is poten-
fially unsafe.

no value assigned to this variable

e The variable is referenced but no value has been assigned to the variable, an
element of the array, a component of the structure, or a field of the record.

e The variable is a dummy output argument but no value has been assigned 1o
it.
possibly no value assigned to this variable

e The variable has been referenced in an expression but, if statements are exe-
cuted sequentially, no value has been assigned to the variable. There might
be, however, a path through which the variable is defined before referenced.

e A dummy argument is referenced but it is not a dummy argument in all entries
through which this statement can be reached.

possible change of inifial value

e A variable has been initialized in a DATA statement or explicit type specification
statement and a new value has been assigned to it. For a scalar of intrinsic type
this means that the initial value has been superseded permanently. For an array
or a variable of derived type this means that the value of one or more elements
or components might have been superseded.

redefined before referenced
e A new value was assigned to the variable before it was referenced.

e The dummy argument is apparently an output variable while the last operation
on the actual argument was an assignment.

W not locally defined, specify SAVE in the module to retain data

e The variable is not defined in this program unit or in the module where it is de-
clared. It could have been defined by another program unit using the module.
In that case you must save the data in the module to preserve the data. From
Fortran 2008 on module data are saved by default.

317
318

319

320
321
322
323

324

325

326

327
328

329
330
331
332

139

E entity imported fromn more than one module: do not use

E not allocated

e An dllocatable variable must be allocated before being defined or referenced.

W not locally allocated, specify SAVE in the module to retain data

e An dllocatable variable must be allocated before being defined or referenced.
The variable is not allocated in this program unit. It is use associated but not
saved. From Fortran 2008 on module data are saved by default.

E pointer not associated

pointer not associated
tfarget not associated with a pointer
variable unreferenced
e A variable has been defined but is not referenced.
variable unreferenced as statement label

e A label has been assigned to this variable but the variable has not been refer-
enced as a label.

input variable unreferenced

e A variable which is defined by a READ, INPUT, or DECODE statement is not refer-
enced.

entity, declared in include file, not used

o An external, namelist, or local variable has been declared in an include file but
is not used in the current subprogram.

subscript out of range

array, array extent, or character variable is zero sized
e The array extent is zero.
¢ The first bound of a specified shape is higher than the second bound.
¢ The first substring value is higher than the second.

substring expression out of range

invalid substring

invalid usage of substring

W referenced character elements defined

140

333
334

335
336

337

338
339
340

341

342

343

344

APPENDIX D. MESSAGE SUMMARY

e In Fortran 77 none of the character positions defined may be referenced in the
same statement.,

E division by zero

invalid power execution

e tisinvalid fo raise a negative number to a real exponent,

E types do not conform

W typeless data used in invalid context

e Octal, hexadecimal and Hollerith data should only be used in DATA or PARAM-
ETER statements

implicit conversion to shorter type

e The type length of the variable is shorter than the resulting type length of the
expression.

character variable padded with blanks
infeger overflow in expression
equadality or inequality comparison of floating point data

e Because of limited precision and different implementations of real and complex
numbers the result of this comparison may be unpredictable.

eq. or ineq. comparison of floating point data with integer

e Because of limited precision and different implementations of real and complex
numbers the result of this comparison may be unpredictable.

eq.or ineq. comparison of floating point data with zero constant

e Because of limited precision and different implementations of real and complex
numbers the result of this comparison may be unpredictable.

implicit conversion of complex to scalar
e Aninteger or readl is assigned to a complex variable.
implicit conversion of constant (expression) to higher accuracy

¢ In an assignment statement precision is lost if the variable is of a more accurate
type than the constant or constant expression.

e In a complex constant precision is lost if one of the components is of a less
accurate type than the other.

e In an expression precision is lost if a constant is specified in a less accurate type
than the resulting expression.

345

346
347

348
349
350
351
3562
353
354

355

356
357
358
359
360
361
362
363

141

| implicit conversion to less accurate type
e Precision is lost due to conversion of real to real of less precision.

| implicit conversion of integer to real

| non-optimal explicit type conversion

¢ If the target of an expression is of type double precision real, best is to convert
the expression primaries to double precision real explicitly, e.g. by specifying
the kind type parameter.

o If the target of an expression is of type double precision complex, best is to
convert the expression primaries to double precision complex explicitly, e.g. by
specifying the kind type parameter.

E invalid usage of logical operator

E invalid usage of relational operator
E invalid mixed mode expression

E invalid usage of operator

W nonstandard operator

E undefined operator

E invalid concatenation with character variable of assumed length

e In Fortran 77 concatenation with a character variable of assumed length is only
allowed in a character assignment statement.

E array-section specification invalid for assumed-shape array

e The second subscript of a subscript triplet of an array section must not be omit-
ted for an assumed-shape array.

E array section specified incorrectly

E no array section allowed in this context

E invalid stride

E array has invalid rank

E each element in an array constructor must be of the same decl. type
E each element in an array constructor must have the same type length

E vector-valued subscript not allowed in this context

m

array does not conform to expression, other arguments or target

e The rank or shape of the argument differs from that of the other arguments of
the intrinsic procedure reference.

142

364

365
366
367
368
369
370

371
372
373
374
375

376

377
378

379

380

APPENDIX D. MESSAGE SUMMARY

e The rank or shape of the expression differs from that of the left-hand side of an
assignment statement,

E arrays do not conform
e The rank or shape of the operands in an expression differ.
E only nonproc.pointers and allocatable variables can be (de)allocated
E defined assignment not allowed in this context
E pointer assignment expected
E invalid usage of pointer assignment
E invalid assignment to pointer
E invalid target for a data pointer

e the Object must have the POINTER or TARGET attribute to be assigned to a data
pointer

E only pointers can be nullified
E target must have the same rank as the pointer
E shape of variable differs from the shape of the mask expression
E assignment of array expression to scalar
E infeger overflow in assignment
e The right-site expression yields a value which does not fit in the left-site target.
W scalar integer variable name expected

e Aninteger which is not an array element, array name, constant, external, struc-
ture, derived-type name or namelist name is expected.

W scalar integer expression expected
W pointer not locally associated, specify SAVE in the module

e A pointer must be associated before being referenced. The pointer is not asso-
ciated in this program unit. It is use associated but not saved. From Fortran 2008
on module data are saved by default.

E invalid operation on a non-local variable in a pure procedure

e A global variable must not be modified in a pure procedure.
e Allocation, deallocation of global variables is not allowed in a pure procedure.

e pointer operations on global variables are not allowed in a pure procedure.

E shape of mask expression differs from shape of outer WHERE construct

381

382

383

384

385
386
387

388
389

390
391
392
393
394
395
397
398

143

e |f a WHERE construct contains a WHERE statement, a masked ELSEWHERE state-
ment, or another WHERE construct then each mask expression shall have the
same shape.

E none of the equivalenced variables of the same type is defined

e The variable is referenced but the variable and none of the equivalenced vari-
ables with the same type are defined.

| none of the equivalenced variables of the same type referenced

e The variable is defined but the variable and none of the equivalenced objects
with the same type are referenced.

| tfruncation of character constant (expression)

e The type length of the variable is shorter than the resulting type length of the
expression.

| fruncation of character variable (expression)

e The type length of the variable is shorter than the resulting type length of the
expression.

E invalid usage of construct name
E construct name expected
E non-matching construct name
e The construct name does not match the name of a construct.

E invalid construct nesting

E invalid statement in logical IF

e A statement in a logical IF must be executable, but no IF, ELSEIF, ELSE, DO, or
END.

E statement not allowed within a construct
E foo many ENDIF's

E ELSE must be between IF and ENDIF

E missing ENDIF(’s)

E THEN missing

E invalid sequence of ELSEIF and ELSE

E more than one ELSE at this IF level

E invalid DO-loop incrementation parameter

144

399
400
401
402

403

404
405

406
407
408

409
410
411
412
413

414
415

APPENDIX D. MESSAGE SUMMARY

e The incrementation parameter of an (implied) DO loop is too small.
E invalid implied-DO specification
E invalid DO-loop specification
E terminal statement of loop at invalid IF level
E invalid terminal statement of DO construct

e A DO construct must end with an executable statement, but no IF, ELSEIF, ELSE,
ELSEIF, DO, STOP, RETURN, or END.

E invalid fransfer of control info construct

e A branch is detected which transfers control into a DO, an IF, CASE, WHERE, or
FORALL construct

E referenced from outside construct
E redefinition of DO variable or construct index within construct
e A DO variable of an active DO loop is modified.

o An index name of a FORALL statement is modified in the forall statement or
active FORALL construct.

e An index name of a DO CONCURRENT construct is modified in the active DO
CONCURRENT construct.

| no action statements in previous construct or construct block
E terminal statement of DO construct out of order
E missing terminal statement of DO construct

e No definition of the label of the terminal statement of the DO loop has been
found.

e END DO missing
E missing END LOOP or UNTIL
E missing END WHILE or UNTIL
E too many END DO’s, END LOOP’s, or END WHILE's
E terminal statement of DO construct at invalid CASE level

W shared DO termination
e This syntax is marked as obsolescent in Fortran 90 and up

E Incorrect usage of RANK()
E too many END BLOCKS

416
418
419
420

421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438

439
440
441
442
443

E

missing END BLOCK ('s)
type inconsistent with SELECT CASE expression type
kind inconsistent with SELECT CASE expression kind

invalid range of values specified
e A range of values of type logical cannot be specified

overlapping CASE range

CASE statement expected after a SELECT CASE statement
a CASE statement must be within a CASE construct

too many END SELECT's

missing END SELECT ('s)

only one CASE DEFAULT statement allowed in a CASE construct
statement at invalid DO level

statement at invalid IF level

statement at invalid CASE level

invalid statement after WHERE

rank out of range

too many END WHERE's

an ELSEWHERE must be within a WHERE construct

missing END WHERE(’s)

too many END FORALL's

missing END FORALL(’s)

reference of construct index in a concurrent control triplet

W obsolescent terminal statement of DO loop

145

e In Fortran 90 and up a terminal statement of a DO loop must be an END DO or

a CONTINUE statement

type already selected

too many END ASSOCIATES's

statement not allowed within SELECT TYPE constfruct
rank already selected

RANK, or RANK DEFAULT at invalid SELECT RANK level

146

444
445
446
447
448

449

450

451

452

453

454

455

456

APPENDIX D. MESSAGE SUMMARY

E only one RANK DEFAULT statement allowed in a SELECT RANK construct
E only one CLASS DEFAULT statement allowed in a SELECT TYPE construct
E missing output item list

E invalid input/output list

W " not allowed

e After a command-info list, no comma must be used.

e In an explicit type statement a comma may only be used in a CHARACTER
statement after the length specification.

W invalid usage of parentheses
e Redundant parentheses are not allowed in an /O list.
E invalid reference of standard unit

e OPEN, CLOSE, ENCODE, DECODE, BACKSPACE, REWIND is not possible on the
standard unit.

W list directed I/O not allowed
e List directed I/O is only allowed for sequential I/O, and not on infernal files.
E sequential formatted access expected

e Only sequential formatted /O is allowed for internal /O and |/O on the standard
unit.

E invalid reference of internal file

e Only read and write operations can be performed on an internal file.

e The unit identifier must be a character variable, but not a constant or expres-
sion.

| possible recursive /O attempt
e A function in which I/O may occur is referenced in an |/O statement.
W unrecognized or unsupported specifier

e An unsupported, nonstandard Fortran specifier has been detected.

e The specifier is not supported for this statement.
W nonstandard Fortran specifier

e One of the standard options is specified and the specifier is not in the Fortran
standard.

457

458

459
460
461
462

463

464
465
466

467

468
469
470

W

147

e The specifier is an old, obsolescent, synonym for a standard specifier.
more than once specified
e The specifier has already been specified in the list.
invalid usage of specifier
e POS= only allowed for an external unit that is not specified by an asterix.
e |ID= only allowed in combination with PENDING=
¢ If NEWUNIT= specified, FILE= or STATUS= must be present.
No unit specified
no unit or flename specified
unit and filename specified
invalid or missing io-unit identfifier

e A unit identifier must be an asterix (standard unit), a positive integer expression,
or a character variable.

missing or invalid format specifier

e A format specifier must be: a label of a format statement, an integer variable
to which a label of a format statement is assigned, a character expression con-
taining the format specification, a non-character array name (language exten-
sion).

e In Fortran 90 a namelist group name must be specified with the NML= specifier.

missing delimiter in format specification

E statement label expected

E

=

more than once in OPEN, CLOSE, or INQUIRE list

e A variable or array element, or any associated entity, must not be both refer-
enced and defined, or defined more than once in an OPEN, CLOSE or INQUIRE
statement.

“EMT=" or “NML=" expected

e When in a control-info list a keyword has been used, all specifiers from there on
must be specified using keywords.

“"END=" only allowed in a sequential READ or WAIT statement
“FILE=" not allowed for a scratch file

“"RECL=" only allowed for a direct access file

148

471
472

473

474
475

476

477

478

479
480
481

482
483

484
485

APPENDIX D. MESSAGE SUMMARY

E “"BLANK=" only allowed for a formatted file

E “ADVANCE=" only allowed for external formatfted sequential i/o

e The ADVANCE= specifier may be present only in a formatted sequential in-
put/output statement with explicit format specification and with no internal file
unit specifier.

E “"EOR=" only allowed in READ with “ADVANCE=NO" or WAIT

e The EOR= specifier is only allowed in an input statement that contains the AD-
VANCE= specifier with the value NO, or in a WAIT statement.

W no recordsize specified

E “SIZE=" only allowed in READ with “ADVANCE=NO"

e The SIZE= specifiers is only allowed in an input statement that contains the AD-
VANCE= specifier with the value NO.

E must be declared EXTERNAL

e The procedure name specified in “USEROPEN=" must have been declared EX-
TERNAL

E invalid combination of specifiers
e For namelist I/O no format must be specified.
e POS= and REC= must not be specified both.
E invalid usage of namelist name

e A namelist specifier is only allowed in sequential read and write statements on
an external file.

E namelist name expected
E namelisti/o only allowed on an external file

| extension of previously defined namelist

e This NAMELIST statement extends a previously declared namelist with the same
name.

E invalid type

W unrecognized value
e An unsupported, nonstandard Fortran value has been detected.

E invalid usage of value

W nonstandard Fortran value

486

487

488
489

490
491

492

493
494

495
496

497
498
499
500

501
502
503

149

invalid repeat

e A nonzero, unsigned, integer constant is required.
missing repeat

e A nonzero, unsigned, integer constant is required.

invalid usage of repeat

invalid usage of scale factor
¢ A scalefactor is only allowed for floating point edit descriptors.

nonstandard edit descriptor

missing or invalid width

e A nonzero, unsigned, infeger constant is required.
invalid edit descriptor

e No valid edit descriptor was detected.

external i/o not allowed in a pure procedure

namelist unreferenced
e A namelist has been specified but is never referenced (used).

more than once in namelist group
namelist group undefined

¢ A namelist group is referenced but it has not been specified.
stream and async i/o only allowed on ext. files and not on * units
namelist i/o only allowed for sequential i/o
accompanying subprogram statement missing or incorrect
no main program unit

e The complete option was specified but no main program is present.
recursive reference
possible recursive reference
more than one main program unit

e A main program is a program unit of which the first statement is not a BLOCK-
DATA, SUBROUTINE, or FUNCTION statement. Therefor, besides of a program unit
beginning with a PROGRAM statement, a main program will also be detected
when e.g. two consecutive END statements have been specified.

180

504

505

506

507
508

509

510
511
512

513

APPENDIX D. MESSAGE SUMMARY

more than one unnamed BLOCKDATA
e Only one unnamed blockdata program unit is allowed.
multiple declaration of BLOCKDATA

e The name of the blockdata program unit has already been declared as the
name of a blockdata program unit.

multiple declaration of program unit or entry

e The name has been defined already before as a PROGRAM, SUBROUTINE, FUNC-
TION or ENTRY name.

e The name of a program, subroutine, function, or entry name has already been
used.

multiple declaration of statement function
entries are not disjoint
e There could be transfer of control to the current or other entry blocks.
Nno name specified
e A procedure, (sub)module or type name is expected.
multiple declaration of interface, this one ignored
explicit interface required
invalid subroutine or function reference
e A procedure reference is not allowed in this context,

e The function needs an explicit interface and must not be referenced in this con-
text.

invalid usage of procedure name

e The name of the current subprogram or entry cannot be used as an actual
argument.

e An internal procedure name cannot be used as an actual argument.

e A procedure name must not be specified in a type-declaration-statement with
a language-binding.

514 E subroutine/function conflict

e The procedure is referenced as a subroutine but has been referenced or de-
fined as a function before.

e The procedure is referenced as a function but has been referenced or defined
as a subroutine before.

515
516

517

518
519
520
521

522
523
524

525
526
527
528
529

530

531

1561

E invalid subprogram type

E invalid usage of EXTERNAL

e A procedure name, as specified in an EXTERNAL statement, cannot be used at
the left side of an assignment statement or as a statement function.

E procedure actual argument must be declared EXTERNAL or INTRINSIC

e A procedure name, used as an actual argument, must be declared EXTERNAL
or INTRINSIC.

W referenced procedure not declared EXTERNAL

I name of external procedure is same as module procedure name
E referenced procedure not declared EXTERNAL

E invalid usage of generic name

e The generic name of a procedure cannot be used as an actual argument. Use
the appropriate specific name.

E an interface with (module) procedure statements must be generic
E procedure already in list of specific procedures of this interface
W mixing of subroutines and functions in generic interface not allowed

e The Fortran standard does not allow to combine specific functions and subrou-
fines in a generic procedure. Some compilers allow this as a syntax extension.

E defined operator procedure must be a function

E defined assignment procedure must be a subroutine
E no matching intrinsic or specific procedure found

| no procedure interfaces specified in interface block

E recursive reference

e A function is referenced recursively while recursive functions are not supported
in the Fortran language level specified.

e A function is referenced recursively while it is not specified to be recursive.

e A module is referenced circularly.
W possible recursive reference

e A path has been detected through which the procedure may reference itself.
| function is impure

¢ An argument and/or commmon-block object is being modified in this procedure.

1562

532

533

534

535

536

537
538
539

540
541

542

APPENDIX D. MESSAGE SUMMARY

e A local variable is saved.

e A non-local variable is modified in this procedure.

e A variable is inifialized in a type or data statement.
type conflict with type of function

e All entries within a character function must be of type character.

¢ The type specified when referencing the function differs from the specification
of the function.

type length conflict with type length of function

¢ All entries within function must have the same type length.

e The type length while referencing the function differs from the specification of
the function.

type of function inconsistent with first occurrence
e The type of the function differs from that at the first reference encountered.
function type length inconsistent with first occurrence

¢ The type length of the function differs from that at the first reference encoun-
tered.

function type length inconsistent with first occurrence

e The type length of the dummy function differs from that at the first reference
encountered.

shape of function reference differs from shape at first reference
shape of function reference differs from shape of function result

procedure must have private accessibility

e If one or more of the dummy arguments or the function result is of private type
the procedure must be private.

multiple specification of prefix specification

invalid combination of prefix specifications

e A procedure cannot be specified elemental and recursive.

e PURE and IMPURE cannot be specified both.
procedure must be pure

e Any procedure referenced in a pure subprogram, a forall statement, FORALL
construct, or DO CONCURRENT construct shall be pure.

543
544
545
546
547
548
549
550

551
552

553

554

555

556

557
558

1563

invalid usage of prefix specification

dummy argument of elemental procedure must be scalar

dummy arg. of elemental proc. must not be a pointer or allocatable
elemental procedure must be scalar

elemental procedure must not be a pointer or allocatable

dummy procedure argument not allowed in elemental procedure
referenced intrinsic procedure not declared INTRINSIC

invalid usage of alternate return
e An alternate return is only allowed in a subroutine which is not elemental.

invalid dummy argument list

invalid usage of arguments

¢ In an EXTERNAL or INTRINSIC specification a single procedure name without ar-
guments is required.

e In a dummy argument list a dummy procedure must not have arguments.

¢ In the reference of an external procedure in USEROPEN no arguments are al-
lowed.

invalid usage of dummy argument

e The name of a dummy procedure argument has been used as the name of a
statement function.

e A pointee cannot be a dummy argument.
invalid dummy argument

e A dummy procedure argument cannot be a constant or expression.
more than once in argument list

e A dummy argument is specified more than once in the dummy argument list.

¢ An argument keyword is specified more than once in the actual argument list.
argument unreferenced in statement function

e A dummy argument of a statement function is not referenced in the statement
function.

dummy argument not used

missing argument list

154

559

560
561
562
563

564

565

566

567
568

569

APPENDIX D. MESSAGE SUMMARY

e In an expression or in an output statement a function must have an actual ar-
gument list. This argument list can be empty.

e In a FUNCTION statement an argument list is required. This list can be empty.
argument missing, or no corresponding actual argument found
¢ A null argument is nonstandard Fortran.
e A non-optional actual argument is missing.
e No actual argument with the dummy argument keyword is found.
incorrect number of arguments
incorrect argument type
incorrect argument attributes
number of arguments inconsistent with first occurrence

e The number of actual arguments differs from that at the first reference encoun-
tered.

number of arguments inconsistent with first occurrence

e The number of arguments of the dummy procedure differs from that at the first
reference encountered.

number of arguments inconsistent with specification

e The number of actual arguments differs from that in the specification of the
procedure.

argument keyword missing in actual argument list

e When in an argument list a keyword has been used, all subsequent arguments
must be specified using keywords.

argument keyword does not match a dummy argument
argument class inconsistent with first occurrence

e The actual argument is a function, subroutine, external name, record, or label,
but at the first reference encountered, the argument is of a different class.

type inconsistent with first occurrence

e The actual argument of the dummy procedure is a function, subroutine, exter-
nal name, record, or label, but at the first reference encountered, the argument
is of a different class.

e The type of an actual argument of the dummy procedure differs from that at
the first reference encountered.

570

571

572

573

574

575

576

577

578

579

580

155

E argument class inconsistent with specification

e The actual argument is a function, subroutine, external name, or label, but in
the specification of the procedure the argument is of a different class.

E argument type inconsistent with first occurrence

¢ The type of an actual argument differs from that at the first reference encoun-
tered.

W type inconsistent with first occurrence
e The type of a common-block object differs from that in the first list encountered.
E argument type inconsistent with specification

e The type of an actual argument differs from that in the specification of the pro-
cedure.

E argument type inconsistent with first occurrence (int/loQ)

e The type of an actual argument differs from that at the first reference encoun-
tered. (Mixing of integer and logical types of equal lengths.)

W argument type inconsistent with first occurrence (int/loQ)

e The type of an actual argument of the dummy procedure differs from that at
the first reference encountered. (Mixing of infeger and logical types of equall
lengths.)

E argument type inconsistent with specification (int/log)

e The type of an actual argument differs from that in the specification of the pro-
cedure. (Mixing of infeger and logical types of equal lengths.)

E argument type inconsistent with first occurrence (int/real)

e The type of an actual argument differs from that at the first reference encoun-
tered. (Mixing of integer and real types of equal lengths.)

| argument type inconsistent with first occurrence (int/real)

e The type of an actual argument of the dummy procedure differs from that at
the first reference encountered. (Mixing of infeger and real types of equal
lengths.)

E argument type inconsistent with specification (int/real)

¢ The type of an actual argument differs from that in the specification of the pro-
cedure. (Mixing of infeger and real types of equal lengths.)

E argument type length inconsistent with first occurrence

156 APPENDIX D. MESSAGE SUMMARY

e The type length of an actual argument differs from that at the first reference
encountered.

581 | type length inconsistent with first occurrence

e The type length of an argument of a dummy procedure differs from that at the
first reference encountered.

e The type length of a common-block object differs from that in the first list en-
countered.

e The type length is explicit in one instance and implicit in another.
582 E argument type length inconsistent with specification

e The type length of an actual argument differs from that in the specification of
the procedure.

583 E type of function argument inconsistent with first occurrence

e The type of a function actual argument differs from that at the first reference
encountered.

584 | type of function argument inconsistent with first occurrence

e The type of a function actual argument of the dummy procedure differs from
that at the first reference encountered.

585 E argument type kind inconsistent with first occurrence

e The type kind of an actual argument differs from that at the first reference en-
countered.

586 | type kind inconsistent with first occurrence

e The type kind of an argument of a dummy procedure differs from that at the
first reference encountered.

e The type kind of a common-block object differs from that in the first list encoun-
tered.

e The type kind is explicit in one instfance and implicit in another.

e The type kind has been specified in one instance, the type length in the other.
587 E type of function argument inconsistent with specification

e The type of a function actual argument differs from that in the specification of
the procedure.

588 E argument type kind inconsistent with specification

157

e The type kind of an actual argument differs from that in the specification of the
procedure.

589 E shape of this argument must be supplied as argument

e Adjustable shapes must be specified in each entry in which the array occurs.

590 E array versus scalar conflict

591

592
593
594
595
596
597
598

599
600
601
602

604

E

¢ An actual argument is an array name while at a previous reference the argu-
ment is a scalar, or vice versa.

e An actual argument is an array name while the dummy argument is a scalar, or
vice versa.

¢ An actual argument is an array element of an assumed-shape or pointer array
while the dummy argument is an array.

array versus scalar conflict

e The argument of a dummy procedure is an array name, while at a previous
reference the argument was a scalar, or vice versa.

arg. is an array element while it was an array in the previous ref.

arg. is an array while it was an array element in the previous ref,

the actual argument is an array element while the dummy is an array
shape of argument differs from first occurrence

shape of argument differs from specification

shape of argument differs from specification

actual array or character variable shorter than dummy

e The array or character datum as specified in the procedure is longer than the
size specified the referencing program unit,

W array or character length differs form first occurrence

E
E

attributes of argument inconsistent with first occurrence
aftributes of actual argument inconsistent with specification

invalid modification: actual argument is constant or expression

e The dummy procedure argument is an outfput or input/output argument but
cannot modify the actual argument.

invalid modification: the actual argument is an active DO variable

e The dummy procedure argument is an output or input/output argument and
will modify the actual argument which is an active DO variable.

158 APPENDIX D. MESSAGE SUMMARY

605 | possible invalid modification: act.arg. is constant or expression
e The procedure might modify this argument.
607 | possible invalid modification: actual argument is active DO variable

e The actual argument is an active DO variable and might be modified during
the procedure reference.

608 | no INTENT specified, specify INTENT(IN) in the referenced subprogram
609 E dummy argument must not be OPTIONAL
610 E optional dummy argument unconditionally used

e An optional dummy argument may only be referenced, defined, allocated, or
deadllocated if it is present in the actual argument list of the referencing program
unit, unless as an actual argument of a procedure reference if the correspond-
ing dummy argument is also optional and not a pointer.

611 E actual argument is an optional dummy argument,the dummy argument not

e The procedure is unconditionally referenced while the actual argument is an
optional dummy argument of the referencing procedure which may not be
present.

612 E optional dummy argument expected
613 E INTENT not allowed for pointer arguments

614 E INTENT(N) or VALUE attribute required for this dummy argument

e The arguments of a defined operator function must be declared INTENT(IN) or
have the VALUE attribute.

e The second argument of a defined assignment subroutine must be declared
INTENT(IN) or have the value attribute.

e The arguments of a pure or elemental function must be declared INTENT(IN) or
have the VALUE attribute.

615 E INTENT(OUT) or INTENT(INOUT) required for this dummy argument

e The first argument of a defined assignment subroutine must be declared IN-
TENT(OUT) or INTENT(NOUT).

616 E referenced input or input/output argument is not defined

e The argument was not defined when the procedure was referenced and not
defined in the procedure before it was unconditionally referenced.

617 | conditionally referenced argument is not defined

618

622

623

624

625
626

627

628

629
630

159

e The argument was not unconditionally defined when the procedure was ref-
erenced and it was not defined in the procedure before it was conditionally
referenced.

| possibly ref. input or input/output argument is possibly not defined

e The argument was not unconditionally defined when the procedure was refer-
enced and not defined in the procedure before it was referenced.

e The argument was not defined when the procedure was referenced and was
possibly not defined in the procedure before it was referenced.

E dummy function must be specified as entry argument

e A dummy function must be specified in the argument list of each ENTRY state-
ment from where the function is referenced.

| infrinsic procedure is specific

e By referencing the generic intrinsic procedure instead, the code will be better
readable, portable and easier to adapt to different type parameters.

E conflict with intrinsic-procedure name

e A generic procedure has been referenced while the name of the generated
specific procedure is adlready in use as a user defined, dummy, or statement
function.

e The name of a common block must not be the name of an intrinsic procedure.

W nonstandard Fortran intrinsic procedure

E no intrinsic procedure
e A non-intfrinsic procedure has been specified in an INTRINSIC statement.
E this intrinsic function is not allowed as actual argument

e The intrinsic functions to determine the minimum and maximum and the type
conversion functions must not be passed as an argument.

E type conflict with intrinsic function of the same name

e An intrinsic function has been generated or referenced while an intrinsic func-
fion with the same name and different data type has already been declared
or used.

E invalid number of arguments for intrinsic procedure

E invalid argument type for intrinsic procedure

e The type of the argument of a specific procedure is incorrect.

160 APPENDIX D. MESSAGE SUMMARY

e No specific procedure could be generated of which the argument type matches
the actual argument type.

e Aspecific procedure has been generated with an argument type which matches
the argument type of the first argument, but the type of (one of) the other ar-
guments does not match.

631 E invalid argument type length for intrinsic procedure

e The type length of the argument of a specific procedure is incorrect.

¢ No specific procedure could be generated of which the argument type length
matches the actual argument type length.

e A specific procedure has been generated with an argument type length which
matches the argument type length of the first argument, but the type length of
(one of) the other arguments does not match.

632 | intrinsic function is explicitly typed

e Intrinsic functions are implicitly typed and need not to appear in a type state-
ment.

633 E invalid usage of built-in function
¢ This built-in function can only be used in an actual argument list.
634 E invalid modification, variable more than once in statement

e If a variable occurs more than once in a statement it must not be modified dur-
ing evaluation of the statement (Fortran 77). The dummy procedure argument
is an output, or inout argument and will modify the actual argument.

635 | possible invalid modification:variable more than once in statement

e The variable occurs more than once in the statement in which the procedure is
referenced and might be modified during the reference (Fortran 77).

636 E INTENT must be specified for this dummy argument

e The intent of the arguments of a pure subprogram must be specified.

¢ The infent of the arguments of an elemental subprogram that do not have the
VALUE aftribute must be specified.

637 E specific procedure has no unique argument list
638 E invalid redefinition of intrinsic operation or assignment
639 | type is not the type of the generic intrinsic function

e Specifying a type for a generic intrinsic function does not, in itself, remove the
generic property from that function.

640
641
642
643
644
645
646

647

648
649
650

651

652
653
654

665

666
667

161

generic procedure reference could not uniquely be solved
argument must be an allocatable variable
argument must have the POINTER afttribute
argument must have the POINTER or TARGET attribute
none of the entities, imported from the module, is used
module must not reference itself directly or indirectly
(MODULE OR SUBMODULE NOT FOUND)
¢ The (sub)module information is not found.
e The library entry found is not a module.
multiple specification of (sub)module
e A (sub)module with the same name has already been analyzed.
conflict between (sub)module and program unit or entry name
module already referenced without only or rename list
invalid rename clause
e NoO generic name, operator, or assignment expected.
e local_name=¢module_name expected.
entity already imported from host or same module

e The entity isin an ONLY list and has already been imported from the same mod-
ule in the same or host scoping unit.

e The entity is already imported from the host scoping unit
entity imported fromn more than one module: do not reference
entity is not a public entity of the imported module
(sub)module unused

e The complete option has been specified and the module is not imported in any
of the analysed program units, or a submodule is not used.

eq. or ineq. comparison of floating point data with constant

e Because of limited precision and different implementations of real and complex
numbers the result of this comparison may be unpredictable.

undefined operation

undefined: dummy argument not in entry argument list

162

668

669

670

671

672

673

674

675

676
677
678
679
680
681

APPENDIX D. MESSAGE SUMMARY

e The variable has been referenced but when entered through the previous EN-
TRY statement no value has been assigned to the variable.

possibly undefined: dummy argument not in entry argument list

e The variable has been conditionally referenced but when entered through the
previous ENTRY statement no value has been assigned to the variable.

not locally associated, specify SAVE in the module to retain data

e Atarget must be associated with a pointer before being defined or referenced.
The variable is not associated in this program unit and is use associated but not
saved. From Fortran 2008 on module data are saved by default.

actual argument must be a variable

e The dummy procedure argument is an output or input/output argument and
could modify the actual argument.

E variable more than once in actual argument list

e The dummy procedure argument is an output or input/output argument and
could modify the actual argument.

active DO variable invalid for this actual argument

e The dummy procedure argument is an output or input/output argument and
could modify the actual argument.

not locally referenced

e The variable is not referenced in this subprogram. It could have been refer-
enced by another subprogram using the module.

procedure, program unit, or entry not referenced

e A procedure or program unit (entry) has been explicitly specified but is not ref-
erenced.

named constant not used

¢ A named constant has been defined but is never referenced.
none of the objects of the common block is used
none of the objects of the common block is referenced
none of the entities stored in the library file is used
common-block object not used
common-block object unreferenced

not used

682

683

684

685

686

687

688

689 |

690 |

163

e An entity has been declared and possibly allocated, initialized or assigned, but
is never used.

procedure not defined
e The specified module procedure is not defined in the module.

common-block object not defined before referenced

common-block object possibly not defined before referenced
e The common-block object was conditionally defined.

generic name was not needed to generate a specific procedure

conflict with constant name

¢ The name of a common block must not be the same as the name of a constant.
type length must be specified by a constant expression

e The type length of this object must be known at compile time.
implicit characteristics are inconsistent with those in host context

e The type of the entity has been declared in the host scoping unit however, in the
current scoping unit it appears to be a statement function. You must declare
this entity locally.

e The type of the object has been declared in the host scoping unit however, in
the current scoping unit it appears to be an EXTERNAL or INTRINSIC procedure.
You must declare the entity in the host scoping unit as EXTERNAL or INTRINSIC.

type length inconsistent with type length of function

¢ All entries within a function must have the same type length. One has the de-
fault length, the other has an explicitly specified type length.

e The type length while referencing the function is inconsistently specified com-
pared to the specification of the function. One has the default length, the other
has an explicitly specified type length.

type length inconsistent with type length aft first reference

¢ The type length while referencing the function is inconsistently specified com-
pared to the first reference. One has the default length, the other has an ex-
plicitly specified type length.

e The type length of an actual argument is inconsistently specified compared to
the first reference encountered. One has the default length, the other has an
explicitly specified type length.

164

691

692
693

694

695

696
697

698
699

700

701

702

APPENDIX D. MESSAGE SUMMARY

e The type length of a common-block object is inconsistently specified compared
to the first reference encountered. One has the default length, the other has
an explicitly specified type length.

type length inconsistent with specification

e type length of an actual argument is inconsistently specified compared to the
specification of the procedure. One has the default type length, the other has
an explicitly specified type length.

result of procedure must be scalar
storage association conflict with object with the TARGET attribute

e An object with the TARGET attribute may become storage associated only with
another object that has the TARGET aftribute and the same type and type pa-
rameters.

explicitness of dummy proc. argument inconsistent with first occurr.

e If the interface of a dummy procedure argument is explicit in one instance it
must be explicit in each instance.

no defined assignment supplied for this type

e If a defined assignment for one or more of the derived type components is
present, you must supply a defined assignment for the type.

entity is not an accessible entity in the host scoping unit

name not explicitly typed, implicit type assumed

e The object has not been explicitly typed and:

e IMPLICIT NONE has been specified.

implicit conversion to more accurate type

implicit conversion of real or complex to integer

e Precision is lost due to conversion to integer.
object undeclared

e An attribute is specified for an object which has not been specified.
type length of element inconsistent with first element

e The type length of this array element is inconsistently specified compared 1o
that of the first element. One has the default length, the other has an explicitly
specified type length.

E scalar default character expression expected

703
704
705
706
707

708
709

710

711
712
713
714

715
716

717

718
719
720
721
722
723
724

165

a procedure cannot have the POINTER or TARGET aftribute
more than once in derived-type parameter list

the VALUE attribute can not be specified for this object

a protected object must not be modified outside its module
module procedure not referenced from outside its module

e The module procedure can be declared private.

END INTERFACE statement missing

source expression not allowed for a typed allocation
e type-spec and a source expression cannot be specified both.
only one source expression allowed in a sourced allocation
e SOURCE= and MOLD= cannot be specified both.
declared RECURSIVE but not recursively referenced
ancestor or parent (sub)module name missing
inferface name missing
abstract interface not referenced
e An abstract procedure interface has been specified but it is not used.
type-bound procedures not allowed in sequence or interoperable type
a component cannot have the name of a type parameter
e KIND or LEN must be specified for a derived-type parameter declaration.
e Only KIND and LEN are valid derived-type parameter attributes.
derived-type parameter not specified
e Each derived-type parameter must be declared with the KIND or LEN attribute.
a CLASS component must be allocatable or a pointer
a procedure component must be a pointer
no components specified in derived-type definition
no type-bound procedures specified
external or module procedure expected
type-bound procedure undefined

DEFERRED attribute required

166

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

APPENDIX D. MESSAGE SUMMARY

DEFERRED attribute not allowed

component keyword missing in structure-constructor

e When in a structure-constructor a keyword has been used, all subsequent com-
ponents must be specified using keywords.

keyword missing in type-param-spec-list

e When in a parameter list a keyword has been used, all subsequent parametes
must be specified using keywords.

incorrect, or missing language-binding-spec: BIND(C) expected
¢ the language-binding-spec must be BIND(C)

No enumerators in enumeration

END ENUM missing

inferface name not allowed in this context

procedure attributes not allowed in this context

delimiter not allowed in this confext

statement only allowed in a (non separate) interface body
explicit or abstract interface required

this intrinsic function not allowed as interface name

TYPE IS, CLASS IS, or CLASS DEFAULT expected after SELECT TYPE
associate name expected

association list missing

selector missing

invalid assignment

the selector must be polymorphic

passed-object dummy argument not found

incorrect number of derived-type parameters

invalid argument kind type parameter for intrinsic procedure

e The kind type parameter of the argument of a specific procedure is incorrect.

e No specific procedure could be generated of which the argument kind type
parameter matches the actual argument type kind.

746

747
748

749
750

751

752

753
754
755
756

757
758
759
760
761

E

167

e A specific procedure has been generated with an argument kind type param-
eter which matches the argument type kind of the first argument, but the type
kind of (one of) the other arguments do not match.

type kind or length inconsistently specified

e The type kind or length of the argument is explicit, the type kind or length of
others is default, or specified as DOUBLE PRECISION,

¢ The type kind or length of this object in one instance of the common block is
explicit, the type kind or length in the others is default, or specified as DOUBLE
PRECISION.

each element in an array constructor must be of the same kind

element kind inconsistent with kind of first element

e The kind of this array element is inconsistently specified compared to that of the
first element. One has the default kind, the other has an explicitly specified kind.

mixing of protected and non-protected objects in equivalence

W unsupported kind type parameter, default assumed

e The kind type parameter of this type is not supported by the emulated compiler.

W unsupported kind, default assumed

e No supported kind can be found that matches.

W unsupported character set, default kind assumed

E
E
E

¢ No supported kind can be found for this character set.
each element must have the same kind type parameters
no objects to allocate or to deallocate
unrecognized keyword
type-spec or source-expression required
e One or more of the allocate-objects have deferred-type parameters.
¢ The allocate-object is unlimited polymorphic or is of abstract type.
no entities imported from module
invalid target for a procedure pointer
procedure already in list of final subroutines of this derived type
final procedure has no unique argument list

type parameter specified more than once or unknown

168

762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781

782

783

784

APPENDIX D. MESSAGE SUMMARY

empty parameter list

deferred type parameter not allowed

assumed-type parameter not allowed

each length type parameter must be assumed
SEQUENCE type, or BIND aftribute not allowed

type must be an extension of the selector

NOPASS must be specified

passed-object argument required.

argument must be a data-object

derived type i/o procedure must be a subroutine

type must be abstract

argument must be scalar

argument must be polymorphic

argument must not be polymorphic

the accessibility of the generic spec must be the same as originaly
the accessibility is inconsistently specified

types are not compatible

a CLASS entity must be dummy, allocatable or a pointer
entity is not accessible

entity must be interoperable

type kind conflict with type kind of function

e All entries within a function must have the same type kind.

¢ The type kind while referencing the function differs from the specification of the
function.

function type kind inconsistent with first occurrence
e The type kind of the function differs from that at the first reference encountered.
type kind inconsistent with type kind of function

e All entries within a function must have the same type kind. One has the default
kind, the other has an explicitly specified kind.

785 1

786

787
788
789
790
791
792
793
794
795
796
797
798
799
800
801

169

e The type kind while referencing the function is inconsistently specified com-
pared to the specification of the function. One has the default kind, the other

has an explicitly specified kind.

type kind inconsistent with type kind at first reference

e The type kind while referencing the function is inconsistently specified com-
pared to the first reference. One has the default kind, the other has an explicitly

specified kind.

e The type kind of an actual argument is inconsistently specified compared to
the first reference encountered. One has the default kind, the other has an

explicitly specified kind.

e The type kind of a common-block object is inconsistently specified compared
to the first reference encountered. One has the default kind, the other has an

explicitly specified kind.

type kind inconsistent with specification

e The type kind of an actual argument is inconsistently specified compared to
the specification of the procedure. One has the default kind, the other has an

explicitly specified type kind.

e The type kind has been specified in one instance, the type length in the other.

invalid usage of abstract type

invalid overriding of binding

component name not unique

component not defined

the derived type must be extensible

entity cannot be an explicit-shape array

INTENT not allowed for nonpointer dummy procedure arguments
entity cannot have the POINTER attribute

entity cannot have the PROTECTED attribute

dummy argument with assumed-type parameter expected
dummy argument must not be an elemental procedure
invalid specification of shape

named language binding not allowed

multiple declaration of procedure

derived-type name expected

170 APPENDIX D. MESSAGE SUMMARY

802 E list of type-bound procedures not allowed

e In Fortan 2003 a list is not supported.
803 E invalid usage of unlimited format item
804 E scalar default integer or character constant expression expected
805 O could not determine type parameter, default assumed
806 E invalid coarray specification
807 E argument must not have a polymorphic allocatable component
808 E NULLQ expected
809 E NULLQO or procedure name expected
810 E TYPEIS, CLASS IS, or CLASS DEFAULT at invalid SELECT TYPE level
811 E invalid argument value
812 | derived-type component not used

e None of the objects of the type uses this component.
813 | derived-type component not referenced

e None of the objects of the type references this component.
814 | derived-type component not defined

e None of the objects of the type defines this component.
815 | derived-type component not allocated

e None of the objects of the type allocates this component.
816 | derived-type component not associated

e None of the objects of the type associates this component,
817 E incorrect type for a coarray
818 E cannot extend parent type
819 E nonpointer nonallocatable scalar expected
820 E array with the POINTER aftribute expected
821 E target must be contiguous
822 E missing coarray specification
823 E function result cannot be a coarray

824 E type of function result must not have a coarray ultimate component

825
826
827
828
829
830
831
832
833
834
835
836
837
838

839
840
841

842
843

844
845
846

171

a coarray must be a dummy argument, allocatable, in main, or saved
must be a dummy argument or saved

deferred-coshape specification not allowed

deferred-coshape specification required

array pointer, assumed-shape, or assumed-rank array expected
actual argument must be a contiguous array

entity cannot be a coarray

type not allowed for an INTENT(OUT) argument

a coarray cannot have the POINTER attribute

invalid usage of coindex or image selector

invalid number of cosubscripts

missing coshape specification

SAVE without entity list invalid in a BLOCK construct

input or input/output argument is not defined

e The argument was defined as an input or input/output argument and was not
defined when the procedure was referenced.

e The argument was not or conditionally referenced before defined in the proce-
dure and was not defined when the procedure was referenced.

invalid usage of coindexed object

target has invalid rank

module object not used outside the module
e The object can be decalred PRIVATE

component must have the POINTER and/or ALLOCATABLE attribute

statement not allowed within a CRITICAL or DO CONCURRENT constfruct

e A RETURN or an image control statement is not allowed within a CRITICAL or DO
CONCURRENT construct

no corresponding CRITICAL statement found
missing END CRITICAL
a coarray cannot not be (de)allocated within this construct

e A coarray cannot be (de)allocated within a CRITICAL or DO CONCURRENT con-
struct

172 APPENDIX D. MESSAGE SUMMARY

847 E invalid transfer of control out of construct

848 E invalid list of edit descriptors

849 E scalar character constant expression expected
850 E ancestor module must not be intrinsic

851 E module nature conflict

¢ An intrinsic module with this name is already used in this scoping unit
¢ A nonintrinsic module with this name is already used in this scoping unit
852 E statement not allowed within a CHANGE TEAM construct
854 E inconsistent attribute
855 E inconsistent dummy argument name
856 E inconsistent characteristics
857 | intrinsic module has the same name as a nonintrinsic module
858 | nonintrinsic module has the same name as an intrinsic module

859 | variable, used as actual argument, unreferenced

¢ The variable is defined by argument association in a referenced procedure but
not referenced in the referencing program unit,

860 E scalar default character constant expression expected

861 E inconsistent BIND(C) attribute or binding label

¢ When a common blockor external procedure has been specified with the BIND(C)
attribute in a certain subprogram, it must be specified with the BIND(C) attribute
and the same binding label in every subprogram in which the common block
or external procedure has been specified.

862 E binding label is not unique

863 E initialization expression expected

864 E an assumed-type entity must be a dummy variable

865 E an assumed-type variable name can only be used as an actual argument
866 E an assumed-rank variable name can only be used as an actual argument
867 E assumed-shape or assumed-rank argument expected

868 E assumed-rank entity must be a dummy data object

869 E invalid usage of procedure pointer result

870
871

872

873
874
875

876

877

878

879
880
881
882
883
884
885
886
887

888

173

e A function reference that returns a procedure pointer must not appear in an
expression.

dummy argument has no INTENT attribute
INTENT(N) dummy argument must not be modified

e The INTENT(N) attribute for a non pointer dummy argument specifies that it shalll
not be modified during the execution of the procedure.

INTENT(N) dummy argument pointer must not be modified

e The INTENT(N) attribute for a pointer dummy argument specifies that during the
execution of the procedure its association shall not be modified.

INTENT(OUT) dummy argument is not defined
INTENT(OUT) dummy argument pointer is not associated or nullified
INTENTUNOUT) dummy argument is not modified in this procedure
e The INTENT can be changed fo INTENT(N).
INTENT(UNOUT) pointer association is not modified in this procedure
e The INTENT can be changed to INTENT(N).
INTENT(INOUT) dummy argument is defined before referenced
e The INTENT can be changed to INTENT(OUT).
INTENT(INOUT) dummy argument pointer is modified before referenced
e The INTENT can be changed fo INTENT(OUT).
an explicit RESULT variable must be declared for direct recursion.
specification expression expected
missing END ASSOCIATE(’s)
pointer association is not defined
pointer association of one or more component(s) is not defined
(SOURCE POSSIBLY IN FIXED FORM. DO NOT SPECIFY THE FREE-FORM OPTION)
array element or scalar structure component expected
expression in CASE statement not in range of selector
array unreferenced
e An array has been defined but is not referenced.

array not used

174

889
890
891
892
893

894
895
896
897
898

899

900
Q01
902
903
904
905
Q06
Q07
908
909
Q10
911

APPENDIX D. MESSAGE SUMMARY

e An array has been declared and possibly allocated, initialized or assigned, but
is never used.

W shape differs from first occurrence

E
E

inquired characteristic must be specified in a prior specification
USE of ancester module is not permitted
mixing of volatile and non-volatile objects in equivalence

invalid modification: actual argument has a vector subscript

e The dummy procedure argument is an output or input/output argument but
cannot modify the actual argument.

decimal range of integer must be at least that of default integer
“ADVANCE=" specifier not allowed in a DO CONCURRENT construct
statement function cannot be of a parameterized derived type
ancestor declares no separate module procedures

variable not defined
e The variable is possibly referenced but has not been defined.
none of the equivalenced variables of the same type is defined

e The variable is possiby referenced but the variable and none of the equiva-
lenced variables with the same type are defined.

optional dummy argument used without verifying with PRESENT
IMPORT already specified

assumed-rank array expected

statement only allowed within derived type definition

scalar default integer or character expression expected

too many END TEAM's

missing END TEAMC('s)

an internal procedure must not appear in an interface block
multiple IMPLICIT NONE declaration

conflict with previous IMPORT statement

scalar expression expected

scalar variable expected

912
913
914
915
916
917
918

coarray expected

variable expected

variable must not be allocatable
incorrect usage of optional argument
incorrect usage of polymorphic entity
incorrect usage of finalizable object

locality not specified

175

176 APPENDIX D. MESSAGE SUMMARY

Appendix E

References

1. American National Standard Programming Language FORTRAN, American National
Standards Institute, Inc, X3.9-1978, New York, New York, 1978.

2. International Standard ISO/IEC 1539, Second edition 1991-07-01. Reference number
ISO/IEC 1839 : 1991 (E). International Standards Organization, Geneva, 1991.

3. American National Standard Language Fortran 90, American National Standards In-
stitute, Inc., X 3.198-1992, New York, 1992.

4. International Standard ISO/IEC 1539-1, Reference number ISO/IEC 1539-1 : 1997 (E),
International Standards Organization, Geneva, 1997.

5. International Standard ISO/IEC 1539-1, Reference number ISO/IEC 1539-1 : 2004 (B),
Intfernational Standards Organization, Geneva, 2004.

6. International Standard ISO/IEC 1539-1, Reference number ISO/IEC 1539-1 : 2010 (E),
International Standards Organization, Geneva, 2010.

7. CD 1539-1, Fortran 2015 Committee Draft (J3/17-007r1), ISO/IEC JTC 1/3C 22/WG5/N2123

8. E.W.Kruyt, Coverity Fortran Syntax Analysis, A Fortran 77 Programming Aid, Proceed-
ings of the Digital Equipment Users Society, pp 199-204, Hamburg, 1986.

9. PDP-11 FORTRAN, Language Reference Manual, Digital Equipment Corporation, AA-
1856D-TC, Maynard, Massachusetts, December 1979.

10. PDP-11 FORTRAN-77, Language Reference Manual, Digital Equipment Corporation,
AA-L979-TC, Maynard, Massachusetts, September 1981.

11. VAX FORTRAN, Language Reference Manual, Digital Equipment Corporation, AA-
DO34E-TE, Maynard, Massachusetts, June 1988.

12. VAX FORTRAN, User manual, Digital Equipment Corporation, AA-DO35D-TE, Maynard,
Massachusetts, June 1988.

13. FORTRAN for RISC, FORTRAN Language Reference Manual for RISC Processors, AA-
NA31TA-TE, Digital Equipment Corporation, 1989.

177

178 APPENDIX E. REFERENCES

14. FORTRAN for RISC, Guide to FORTRAN Language Programming for RISC Processors,
AA-NASOA-TE, Digital Equipment Corporation, 1989.

16. DEC Fortran, Language Reference Manual, AA-PU45A-TK, Digital Equipment Corpo-
ration, Maynard, Massachusetts, 1992,

16. DEC Fortran 90, Language Reference Manual, AA-Q66SB-TK, Digital Equipment Cor-
poration, Maynard, Massachusetts, 1995,

17. Digital Fortran, Language Reference Manual, AA-Q66SC-TK, Digital Equipment Cor-
poration, Maynard, Massachusetts, 1997.

18. Compagq Fortran, Language Reference Manual, AA-Q66SD-TK, Compaqg Computer
Corporation, Houston, Texas, 1999.

19. VS FORTRAN Version 2 Release 5: Language and Library Reference, IBM, fifth edition
(august 1989), SC26-4221-5.

20. VS FORTRAN Version 2 Release 4: Programming Guide, IBM, fifth edition (august 1989),
SC26-4222-4.

21. UNISYS OS1100 ASCII Fortran Programming Reference Manual Relative to Release
Level 11R2 UP-8244.4 and UP-8244.4A Unisys Corporation, St. Paul, MN, December
1987.

22. Camilla B. Haase and Jerry W. Ornstein, Fortran 77 Reference Guide, Translator Family
Release T1.0-21.0, DOC4029-5LA, Prime Computer Inc., January 1988.

23. CONVEX FORTRAN Language Reference Manual, Document No. 720-000050-203,
Seventh Edition, CONVEX Computer Corporation, October 1988.

24, CONVEX FORTRAN User’s Guide, Document No. 720-000030-203, Eighth Edition, CON-
VEX Computer Corporation, October 1988.

25. FORTRAN Version 1 for NOS/VE, Language Definition, Usage, Publication Number 60485913,
Revision J, Control Data Corporation, 1988.

26. Domain Fortran, Language Reference, Document No. 000530-A01, Hewlett Packard
Co., December 1990.

27. Sun FORTRAN Programmer’s Guide, Part No: 800-2163-10, Revision A, Sun Microsystems
Inc., 1988.

28. FORTRAN/9000 Reference, HP 9000 Series 300/400 Computers, HP Part Number B1688-
90600, Hewlett-Packard Company, 1990.

29. HP Fortran 77 /HP-UX Programmer’s Guide, HP Part Number 92430-9004, Hewlett-Packard
Company, 1988.

30. FORTRAN/9Q000 Reference, HP 9000 Series 700 Computers, HP Part Numiber B2408-
0001, Hewlett-Packard Company, 1991.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41,

42,

43.

44,

45,

46.

47.

48.

49,

179

Fortran 90 Programmer’s Reference, HP Document Number B3908-90002, Hewlett-
Packard Company, 1998.

RM/FORTRAN, Language Reference Manual (Version 2.4), Ryan-McFarland Corpora-
fion, 1987.

RM/FORTRAN, User’s Guide, Version 2.4 (DOS), Ryan-McFarland Corporation, 1987,

IBM Personal Computer Professional FORTRAN Reference Manual, International Busi-
ness Machines Corporation, first edition, 1984,

Microsoft FORTRAN Version 5.1 for MS OS/2 and MS-DOS Operating Systems, Refer-
ence, Document No. LN21013-0591, Microsoft Corporation, 1991,

Microsoft Fortran Power Station, Professional Development System, Version 1.0, for MS-
DOS and Windows Operating systems, Language Guide, document No. DB38033-
0293, Microsoft Corporation, 1993.

Microsoft Fortran Power Station, Version 4.0, Development System for Windows 95
and Windows NT workstation, Programmer’s Guide, document No. DD64081-0995,
Microsoft Corporation, 1995.

F77L, Fortfran Language System, Reference Manual, Revision E, Lahey Computer Sys-
tems, Inc, August 1989.

F77L-EM/32, Fortran Language System, Reference Manual, Revision B, Lahey Com-
puter Systems, Inc, June 1989.

Fortran 90, Language Reference, Revision B, Lahey Computer Systems, Inc, 1995.

Lahey/Fuijitsu Fortran 95 Language Reference, Revision D, Lahey Computer Systems,
Inc, 1998.

Lahey/Fuijitsu Fortran 95 User’s Guide, Lahey Computer Systems, Inc, 1998.

NDP Fortran, Reference Manual, MicroWay, Inc., Kingston, Massachusetts, USA, April
1990.

CF77 Compiling System, Volume 1: Fortran Reference Manual, SR-3071 4.0, Cray Re-
search, Inc., Mendota Heights, Main, USA, June 1990.

CF90 Fortran Language Reference Manual, 1995, SR-3902, SR-3903, and SR-3905 2.0.
Cray Research, Inc., Mendota Heights, Main, USA, June 1990,

David Bailey, David M. Vallance, Olga Vapenikova, Sara L. Pulford, FTN77/386 Refer-
ence Manual, The University of Salford, 1989.

FTN95 User’s Guide, Salford Software Ltd, 1998.
XL Fortran for AlX, Language Reference, SC09-2348-00, IBM Corporation, June 1996.

XL Fortran for AIX, User’s Guide, SC09-2349-00, IBM Corporation, June 1996.

180

50.

51.

52.

53.

54,

55.

56.

57.

58.

59.

APPENDIX E. REFERENCES

Watcom FORTRAN 77, Language Reference, 5rd Edition, WATCOM International Corp.,
Waterloo, Canada, 1995, ISBN 1-55094-104-6.

Control Data 4000 Series. FORTRAN Programmer’s Guide and Language Reference
Manual. Publication Number 62940786. Control Data Corporation, Minneapolis, 1990.

Fortran 77 Language Reference Manual, document No. 007-0710-040, Silicon Graph-
ics, Inc. Mountain View, California, 1991.

NagWare f90 Compiler (VMS), Release 2.0, The Numerical Algorithms Group Limited,
Oxford, UK, 1993, ISBN 1-85206-098-0.

FORTRAN 77 for Windows 95/Windows NT, Reference Manual, Absoft Corporation,
Rochester Hills, Ml, USA, 1995.

MIPSpro Fortran 77 Language Reference Manual, Document Number 007-2362-003,
Silicon Graphics, Inc., 1994-1996.

Fujitsu Fortran 90 User’s Guide, September 1995, Part No: J2Z0-0080-01-EN, Fujitsu Open
Systems Solutions, Inc, San Jose, CA, USA.

Intel Fortran, Programmer’s reference, Version Number: FWL-700-04, Intel Corporation,
USA, 2002

Using GNU Fortran for gcc version 6.1.0, The gfortran team, Published by the Free
Software Foundation, Boston, USA, 2016

Oracle Developer Studio 12.5: Fortran User’s Guide, Part Number: E60747, Oracle,
USA, June 2016

Appendix F

Glossary

active Do variable. A Do variable within the range of a bo loop.

actual argument. An expression, a variable, a procedure, or an alternate return specifier
that is specified in a procedure reference.

aggregate field. A composite, or structured, data item, that is, a (Fortran 77 extension)
record structure or a record substructure.

alphanumeric. A letter or a digit. As an extension the dollar sign is in some implementations
considered a letter.

analysis message. An information, warning, or error message concerning the syntax or
static semantics of the analyzed source program.

ANSI. American National Standards Institute.

argument. A parameter passed between a calling program unit and a procedure. It can
be an actual argument or a dummy argument,

argument association. The relationship between an actual argument and a dummy argu-
ment during the execution of a procedure reference.

argument keyword. A dummy argument name which may be used in a procedure refer-
ence.

array. A set of scalar data, all of the same type and type parameters, whose individual
elements are arranged in a rectangular pattern.

array element. One of the scalar data that make up an array. It is identified by the array
name followed by a subscript indicating the position in the array.

array section. A subobject of an array consisting of a set of array elements.
assignment statement. A statement of the form "variable = expression’.

association. Name association, pointer association, storage association, or inheritance as-
sociation.

181

182 APPENDIX - GLOSSARY

assumed-shape array A nonpointer dummy array that takes it shape from the associated
actual argument.

assumed-size array A dummy array whose size is assumed from the associated actual ar-
gument. Its last upper bound is specified by an asterisk.

attribute A property of a data object that may be specified in a type declaration state-
ment.

batch job. A number of commands placed in a file and submitted 1o be processed.
blank common. An unnamed common block.

block. A sequence of executable constructs embedded in another executable construct,
bounded by statements that are particular to the construct, and treated as an integral
unit.

block-data program unit. A program unit that provides initial values for data objects in
named common blocks.

bounds. For a named array, the limits within which the values of the subscripts of its array
elements must lie.

byte. A storage unit, generally consisting of eight bits, which can contain a single charac-
ter.

call tree. See “reference structure”.
character. A lefter, digit, or other symbol.

character length parameter. The type parameter that specifies the number of characters
for an enfity of type character.

character string. A sequence of characters.

character storage unit. The unit of storage for holding a scalar that is not a pointer and is
of type default character and character length one.

class. A set of types extended from a specific type.

collating sequence. An ordering of all the different characters of a particular kind type
parameter.

command input. The entry of commands to instruct a program to perform the required
actions.

command file. A file containing command input.
command file entry. The entry of commands through specification of a command file.
command line entry. The enfry of commands through typing command lines.

common block. A block of physical storage that may be accessed by any of the scoping

183

units in a program.

common-block object. An entity in a common block denoted by a name: a variable or
record (Fortran 77 extension).

common-block size. The number of bytes the common block will occupy.

compiler. A program that franslates a program, written in a higher programming language,
info code understood by the computer.

compiler directive. An instruction to the compiler to assist processing of source statements.
compile time. The time during which the compiler processes the source file.

complex constant. An ordered pair of signed or unsigned real or integer constants sepao-
rated by a comma and enclosed in parentheses. The first constant of the pair is the real
part of the complex constant, the second is the imaginary part.

complex type. An approximation of the value of a complex number, consisting of an or-
dered pair of real data items separated by a comma and enclosed in parentheses. The
first item represents the real part of the complex number, the second represents the imag-
inary part.

component. A constituent of a derived type.

conditional compilation. Source code lines can be either included in the compilation pro-
cess or be left out by applying a compiler directive and a command line option. The
simplest compiler directive to tag lines to compile conditionally is a D in the first column of
the source line.

configuration file. A file containing instructions to adapt a program to the user’s require-
ments.

conformable. Two arrays are said to be conformable if they have the same shape. A scalar
is conformable with any array.

conformance. A program conforms to the standard if it uses only those forms and rela-
tionships described therein, and if the program has an interpretation according to the
standard. A program unit conforms to the standard if it can be included in a program in a
manner that allows the program o be standard conforming.

constant. A data object whose value must not change during execution of a program. It
may be a named constant or a literal constant.

constant expression. An expression satisfying rules that ensure that its value does not vary
during program execution.

construct. A sequence of statements starting with an ASSOCIATE, DO, FORALL, IF, SELECT
CASE, SELECT TYPE, or WHERE statement and ending with the corresponding terminal state-
ment.

184 APPENDIX - GLOSSARY

construct entity. An entity defined by a lexical token whose scope is a construct.
cross-reference table. A table in which all references to certain entities are listed.

data entity. An entity that has or may have a data value. It may be a data object, the
result of the evaluation of an expression, or the result of a function reference.

data object. A data entity that is a constant, a variable, a record (Fortran 77 extension), or
a subobject of a constant,

data type. See type. debug line. A source code line containing a character denoting
conditional compilation in its first column.

default initialization. If initialization is specified in a type definition, an object of the type will
be automatically initialized.

defined. For a data object, the property of having or being given a valid value.

deleted feature. A feature in a previous Fortran standard that is considered to be redun-
dant and largely unused.

derived type. A type whose data have components, each of which is either of intrinsic
type or of another derived type.

designator. A name, followed by zero or more component selectors, array section selec-
tors, array element selectors, and substring selectors.

digit. One of the characters 0 to 9.
DO loop. A range of statements executed repeatedly by a Do statement.

double precision. The standard name for real data that is allocated two numeric storage
units (8 bytes).

DO variable. A variable, specified in a Do statement that is initialized or increased prior 1o
each execution of the statement or statements within the bo range.

dummy argument. An entity whose name appears in the parenthesized list following the
procedure name in a FUNCTION, SUBROUTINE, ENTRY, or statement function statement (for-
mal argument).

dummy array. A dummy argument that is an array.

dummy pointer. A dummy argument that is a pointer.

dummy data object. A dummy argument that is a data object.
dummy procedure. A dummy argument that is a procedure.

entity. The term entity is used for any of the following: a program unit, a procedure, an
abstract interface, an operator, a generic interface, a common block, an external unit,
a statement function, a type, a data entity, a statement label, a construct, or a namelist

group.

185

entry. The location in the subprogram where execution of the statements starts when the
entry name is referenced.

equivalence. The association of names referring to the same memory location.
equivalence list. A list of names to be associated.

executable statement. An instruction to perform or control one or more computational
actions.

exit status. The resulting error level of the execution of a program.

explicit interface. For a procedure referenced in a scoping unit, the property of being an
internal procedure, a module procedure, an intrinsic procedure, an external procedure
that has an interface body, a recursive procedure reference in its own scoping unit, or a
dummy procedure that has an interface body.

explicit type. The type of a name when specified by a type statement.

expression. A sequence of operands, operators, and parentheses. It may be a variable, a
constant, a function reference, or may represent a computation.

extension. See Filename extension.

extent. The size of one dimension of an array.

external file. A sequence of records that exists in a medium external to the program.
external i/o. |/O operations performed on an external file.

external procedure. A procedure that is defined by an external subprogram or by means
other than Fortran.

external subprogram. A subprogram that is not in a main program, module, or another
subprogram.

field. An atomic unit of a record (Fortran 77 extension). It corresponds to a substructure, a
variable or an array element.

file. An internal file or an external file.
file access type. The way an external file is accessed: sequential, direct, or stream.

file name extension. The denotation of a file type by extending the file name with a delim-
iter followed by a number of characters.

Coverity Fortran Syntax Analysis. A computer program to validate Fortran source programs
through stafic analysis.

format type. The way the data is stored in an external file: formatted or unformatted.
Formatted: stored as printable characters (e.g. ASCII or EBCDIC) Unformatted: stored in
internal computer representation.,

186 APPENDIX - GLOSSARY

FORTRAN. An acronym of “Formula Translation” denoting a higher computer language.

FORTRAN 77. The American National Standard Programming Language FORTRAN, as spec-
ified by the American National Standards Institute in document X3.9-1978.

fortran 90. The Standard Programming Language Fortran, as specified by the ISO-1539:1991(E)
document.

fortran 90. The Standard Programming Language Fortran, as specified by the 1SO-1539-
1:1997(E) document.

fortran-supplied procedure. See “intrinsic function”.
function. A procedure that is invoked in an expression.
function result. The data object that returns the value of a function.

function subprogram. A segquence of statements beginning with a FuNcTION statement
that is not an interface block and ending with the corresponding END statement.

generic identifier. A name that appears in an INTERFACE statement and is associated with
all the procedures in the inerface block or that appears in a GENERIC statement and is as-
sociated with the specific type-bound procedures.

global entity. An enftity identified with an identifier whose scope is a program.

global information. All information on global entities that is relevant to other program units
of the program.

global Program Analysis. The analysis across program unit boundaries to verify the global
entifies.

hexadecimal constant. A literal constant that is represented by a sequence of digits and
the letters A through F (base-16 notation).

hollerith constant. A string of any characters preceded by wH, where w is the number of
characters in the string.

host. Host scoping unit,

host association. The process by which a contained scoping unit accesses entities of its
host.

host scoping unit. A scoping unit that immediately surrounds another scoping unit.
identifier. See "Name”.

implicit interface. A procedure referenced in a scoping unit other than its own is said to
have an implicit interface if the procedure does not have an explicit interface there.

implicit Type. The default type of a name when no type has been specified by a type
specification statement.

187

implied Do. An indexing specification (similar to a bo statement, but without specifying the
word DO) with a list of data elements, rather than a set of statements, as its range.

include file. A file with statements that have 1o be included in the source code of the pro-
gram at the place of the include statement which references the include file.

include path. A file directory at which the system tries to locate include files.
input record. A record of the input source file.
input file. A sequence of input records.

inquiry function. An function that is either intrinsic or is defined in an intrinsic module and
whose result depends on properties of one or more of its arguments instead of their values.

intent. An attribute of a dummy data object that indicates whether it is used to transfer
data into the procedure, out of the procedure, or both.

interface block. A sequence of statements from an INTERFACE statement to the corre-
sponding END INTERFACE statement.

inter-subprogram information. All information on subprograms which is relevant o other
program units of the program (global information).

interactive entry. Specification of program commands and opftions through a query.
interface of a procedure. See “procedure interface”.

internal file. A character variable that is used to transfer and convert data from internal
storage to internal storage.

internal i/o. 1/O operations performed on an internal file.
internal procedure. A procedure that is defined by an internal subprogram.
internal subprogram. A subprogram in a main program or another subprogram.

intrinsic. An adjective applied to types, operations, assignment statements, procedures,
and modules that are defined in the standard and may be used in any scoping unit with-
out further definition or specification.

i/o. Pertaining to either input or output, or both.

i/o list. A list of items in an input or output statement specifying which data is to be read or
to be written.

i/o operation code. A symbol denoting the category of input/output operation performed.

keyword. An argument keyword or a word with a special, predefined, meaning for the
compiler.

kind type parameter. A parameter whose values label the available kinds of an intrinsic
type, or a derived-type parameter that is declared to have the KIND attribute.

188 APPENDIX - GLOSSARY

label. See “Statement label”.

label type. The syntactic construct in which the statement label is used determines its type:
end of a Do loop, identification of a FORMAT statement, or other.

labeled common. See “Named common”.

length. Array length, character string length, type length, or record length.

length specification. The specification of the type length.

lexical token. A sequence of one or more characters with a specified interpretation.

library file. An external file consisting of an index and the global information on program
units.

line. A sequence of characters containing (part of) Fortran statements, a comment, or an
INCLUDE line.

list file. A sequential formatted file in which the numbered statements are presented with
other information concerning the source code.

listing. See “List file”.

literal constant. A constant without a name.

local entity. An entity identified by a lexical token whose scope is a scoping unit.
logical constant. A constant that can have one of two values: true or false.

logical expression. A combination of logical primaries and logical operators. The result is
the value true or false.

logical operator. Any of the set of operators .NOT., .AND., .OR., .EQV., .NEQV., .XOR.
logical primary. A primary that can have the value true or false. See also “primary”.

main program. A program unit that is not a module, external subprogram, or block data
program unit.

module. A program unit that contains or accesses definitions to be accessed by other
program units.

module procedure. A procedure that is defined by a module subprogram.
module subprogram. A subprogram that is in a module but is not an internal subprogram.

name. A lexical token consisting of a letter followed by up to 62 alphanumeric characters
(letters, digits, and underscores). Note that in Fortran 77 this was called a symbolic name.

named. Having a name.

named constant. A constant that has a name. Note that in Fortran 77 this was called a
symbolic constant.,

189

nonexecutable statement. A statement that describes the characteristics of the program
unit, of data, of editing information, or of statement functions, but does not cause an ac-
tion to be taken by the program.

nonstandard syntax. Syntax which does not conform to the Fortran standard.

numeric constant. A constant that expresses an integer, real, double precision, or complex
number.

numeric type. Infeger, real, or complex type.

obsolescent feature. A feature that is considered to have become redundant but that is
still in frequent use.

operation code. A symbol denoting the kind of operation performed on a data object.

operational message. A message presented to signal a problem in the operation of the
program.

operand. An expression that precedes or succeeds an operator.

operation. A computation involving one or two operands.

operator. A lexical token that specifies an operation.

option. A sub-command to select program features.

output file. A sequential formatted file in which all information requested is stored.
parameter. See “argument”.

path. A full file specification.

pointer. An entity that has the POINTER afttribute.

pointer assignment. The pointer association of a pointer with a target by the execution of
a pointer assignment statement or the execution of an assignment statement for a data
object of derived type having the pointer as a subobject.

pointer associated. The relationship between a pointer and a target following a pointer
assignment or a valid execution of an ALLOCATE statement.

pointer association. The process by which a pointer becomes pointer associated with a
target.

primary. An irreducible unit of data; a constant, variable, function reference, or expression
enclosed in parentheses.

procedure. A computation that may be invoked during program execution. It may be a
function or a subroutine. It may be an intrinsic procedure, an internal procedure, an exter-
nal procedure, a module procedure, a dummy procedure, or a statement function.

procedure interface. The characteristics of a procedure, the name of the procedure, the

190 APPENDIX - GLOSSARY

name of each dummy argument, and the generic identfifiers (if any) by which it may be
referenced.

program. A set of program units that includes exactly one main program.
program interface. The way to instruct the program to perform the required actions.

program unit. The fundamental component of a program. A sequence of statements,
comments and INCLUDE lines. It may be a main program, a module, an external subpro-
gram, or a block data program unit.

qualifier. See “option”.
rank. The number of dimensions of an array. Zero for a scalar.
real type. An arithmetic type, capable of approximating the value of a real number.

record. 1) A sequence of values that is treated as a whole within a file. 2) A named data
entity, consisting of one or more fields, contained in the program (Fortran 77 extension).

record length. 1) The number of bytes or storage units that make up an entity in a file. 2)
The number of bytes a record (Fortran 77 extension) occupies.

recursive reference. A subprogram is recursively referenced when the subprogram is in-
voked from within that same subprogram, either directly or via other subprograms.

reference structure. The hierarchical call free in which all references of subprograms are
presented graphically.

reference. The appearance of an object designator in a context requiring the value at
that point during execution, the appearance of a procedure designator, its operator sym-
bol, or a defined assignment statement in a context requiring execution of the procedure
at that point, or the appearance of a module name in a USE statement.

relational expression. An expression that consists of an arithmetic expression, followed by
a relational operator, followed by another arithmetic expression or a character expression,
followed by a relational operator, followed by another character expression. The result is
value that is frue or false.

relational operator. Any of the set of operators: .GT., .GE., .LT., .LE., .EQ., .NE.

saved. Variables, records (Fortran 77 extension) and named common blocks can be saved
by specifying them in a save statement to prevent them from becoming undefined after
exit of a subprogram.

scalar. A single datum that is not an array and is not a record (Fortran 77 extension) or
aggregate field (Fortran 77 extension).

scale factor. A specification in a FORMAT statement, which changes the location of the
decimal point in a real number.

scope. That part of a program within which a lexical token has a single interpretation. It

191

may be a program, a scoping unit, a construct, a single statement, or a part of a state-
ment.

scoping unit. One of the following:
A program unit or subprogram, excluding any scoping units in it,
a derived-type definition, or an interface body, excluding any scoping units in it.

scratch file. An external file in which temporary information is stored.

size. The size of an array, record (Fortran extension), derived type, or common block is the
total number of bytes that make up the entity.

source code. The original fext which forms FORTRAN statements.
source code listing. See “list file”.

source file. A file containing the original text of a program.

source program. The original text which forms a FORTRAN program.

specific function. An Fortran supplied (intrinsic) function which can be referenced directly
or by referencing a generic function which invokes the specific function depending on the
type of the actual arguments.

specification statement. One of the set of statements that provides the compiler with infor-
mation about the data used in the source program. It supplies the information required to
allocate data storage.

standard conforming. See “conformance”.

statement. A sequence of lexical tokens. It may consist of a single line, but can be con-
tinued using a continuation character, or can be limited to occupy part of a line by a
separation character.

statement entity. An entity identified by a lexical foken whose scope is a single statement
or part of a statement.

statement function. A procedure specified by a single statement.

statement label. A lexical token consisting of up to five digits that precedes a statement
and may be used to refer to the statement,

static analysis. The analysis of the source code without execution of the program.
static analyzer. A tool to perform static analysis.

static semantics. The meaning of the code as far as it can be directly inferred from the
code without knowing the algorithm.

storage association. The relationship between two storage sequences if a storage unit of
one is the same as a storage unit of the other.

192 APPENDIX - GLOSSARY

string. A character literal constant.
stride. The increment specified in a subscript triplet.

structure. A scalar data object of derived type (Fortran 90, or 95), or a group of statements
that define the form of a record (Fortran 77 extension).

structure component. The part of an object of derived-type.

subobject. A portion of a data object that may be referenced or defined independently
of other portions.

subprogram. A function subprogram or a subroutine subprogram. Note that in Fortran 77
a block data program unit was called a subprogram.

subroutine. A procedure that is invoked by a cALL statement or by a defined assignment
statement.

subroutine subprogram. A sequence of statements beginning with a SUBROUTINE state-
ment that is not in an interface block and ending with the corresponding END statement.

subscript. One of the list of scalar integer expressions in an array element selector. Note
that in Fortran 77 the whole list was called the subscript.

subscript triplet. An item in the list of an array section selector that contains a colon and
specifies a regular sequence of integer values.

substring. A contiguous portion of a scalar character string.
suffix. See File name extension.

symbolic constant. See “Named constant”,

symbolic name. See “Name”.

syntax. The lexical structure of the language.

system Message. A message presented to inform the user of a problem during execution
of the program.

target. A data entity that has the TARGET attribute, or an entity that is associated with a
pointer.

tfruncation. The implicit conversion of a type to another type which occupies less storage,
or conversion of a representation of a real number to an integer.

type. A named category of data that is characterized by a set of values, together with a
way to denote these values and a collection of operators that interpret and manipulate
the values. The set of data values depends on the values of the type parameters.

type declaration. The specification of the type for the name of a constant, variable, or
function by use of an explicit type specification statement,

193

type length. The number of bytes an object of a specific type occupies.

type parameter. A parameter of a data type.

type statement. A statement to specify the type of a name.

unassighed. See “Undefined”.

undefined. The property of a data object of not having a determinate value.

unit identifier. A means of referring to a file in order to use input/output statements.
unreferenced. The condition of a data object that no reference is made to that object.

use association. The association of names in different scoping units specified by a USE
statement.

variable. A data object whose value can be defined and redefined during the execution
of a program. It may be a named data object, an array element, an array section, a
structure component, or a substring. Note that in Fortran 77 a variable was always scalar
and named.

vector subscript. A section subscript that is an integer expression of rank one.

whole array. A named array, or an array component of a structure with no subscript list.

194 APPENDIX - GLOSSARY

	Contents
	Introduction
	What does Coverity Fortran Syntax Analysis do?
	Why Use Coverity Fortran Syntax Analysis?
	Application Areas
	This manual

	Tutorial
	Basic Operation
	Analyzing a single source file
	Enabling Warning and Information Messages
	Producing a source listing with cross-references

	Analyzing more than one source file
	Analyzing all source files in one or more directories

	The program analysis
	The reference structure or call tree
	The module dependency tree
	Using library files
	Using modules
	Using third-party libraries

	Portability and conformance to standards
	Standard conformance
	Compiler emulation
	Setting your own, or company standard
	Cross-platform development
	Using include files
	Multi-platform development

	Operation
	Using Coverity Fortran Syntax Analysis
	Specifying a list file
	Specifying a library file
	Options
	Configuration selection options
	Other control options
	Program-unit analysis
	Global program analysis
	Output
	Library
	Miscellaneous
	Defaults
	The usage of analysis options

	Exit status
	The usage of include files
	Coverity Fortran Syntax Analysis library files
	The usage of modules
	Maintaining library files
	Maintaining library files in command mode
	Examples

	The usage of language extensions
	Compiler emulation and include files

	Generating Fortran 90 interfaces
	Operation of interf from the commandline

	Storing the Reference structure and dependency of modules
	Messages
	Operational messages
	Analysis messages
	System messages
	Redefinition and suppression of messages
	Temporary suppression of messages
	Reporting messages

	Tuning the output
	Line or statement numbering
	Date and time format

	Analysis
	Program unit analysis
	Interpretation of source code records
	Lay-out of source code listing
	Syntax analysis
	Type verification
	Local verification of argument lists
	Verification of procedure entries
	Intrinsic procedures
	Function procedure
	Program-unit cross references

	Reference structure (Call tree)
	Analysis of the reference structure
	Display of the reference structure
	Display of sub trees of the reference structure
	Reference structure in XML format

	Display of module dependencies
	Display of dependencies for specific modules
	Display of module dependencies in XML format

	Global program analysis
	Verification of procedure references
	Verification of argument lists
	Verification of common blocks
	Verification of modules
	Global program cross references
	Cross references of common-block objects
	Cross references of public module derived types
	Cross references of public module data

	Specification of procedure interfaces
	Using FORTRAN 77 syntax
	Using Fortran 90 syntax
	Using Coverity Fortran Syntax Analysis attributes

	Metrics
	Final report

	Supported Fortran syntax
	Compilers supported
	General language extensions supported
	Table with Fortran 77 language extensions
	Table with Fortran 90/95/2003/2008/2015 language extensions
	Absoft Fortran 77 extensions
	Apollo/Domain Fortran extensions
	Compaq Fortran extensions
	Convex Fortran extensions
	Cray Fortran 77 extensions
	Cyber NOS/VE Fortran extensions
	DEC PDP-11 Fortran-77 extensions
	DEC FORTRAN and VAX Fortran extensions
	Digital Research Fortran-77 extensions
	F2c Fortran 77 extensions
	GNU Fortran 77 extensions
	HP-UX FORTRAN/9000 and HP Fortran 77 extensions
	IBM AIX XL FORTRAN extensions
	IBM VS Fortran V2 extensions
	Intel Fortran extensions
	Lahey F77L Fortran-77 extensions
	Microsoft Fortran extensions
	NDP Fortran extensions
	Oracle Fortran extensions
	Prime Fortran-77 extensions
	Salford Fortran extensions
	Silicon Graphics MIPSpro Fortran 77 extensions
	Sun Fortran 77 extensions
	Unisys 1100 Fortran-77 extensions
	Watcom Fortran 77 extensions
	The configuration file
	EXTENSIONS
	INTRINSICS
	OCI (OPEN/CLOSE/INQUIRE) specifiers
	MESSAGES
	OUTPUT
	VARIOUS

	Limitations
	Configuration determined limits

	History of changes
	Message summary
	References
	Glossary

