
Coverity Analysis 2020.12 User and Administrator
Guide
Coverity Analysis supports source code analyses and third-party extensions.

Copyright 2020 Synopsys, Inc. All rights reserved worldwide.

Table of Contents
1. Overview ... 1

1.1. Roles and Responsibilities ... 2
1.2. Use Cases ... 3
1.3. Language Support .. 4
1.4. Coverity analyses .. 8

1.4.1. The configuration ... 9
1.4.2. The capture ... 9
1.4.3. Buildless capture .. 17
1.4.4. The analysis .. 20
1.4.5. The commit .. 20
1.4.6. Tasks that support Coverity analyses .. 21

2. Analyzing source code from the command line ... 30
2.1. Getting started with Coverity analyses ... 31
2.2. Running Web application security analyses .. 42

2.2.1. Running a security analysis on a Java Web application 42
2.2.2. Running a security analysis on an ASP.NET Web application 43

2.3. Running mobile application security analyses ... 45
2.3.1. Running a security analysis on an Android mobile application 45
2.3.2. Running a security analysis on an iOS mobile application (written in Swift) 46

2.4. Running coding standard analyses .. 47
2.4.1. Coding standard analysis guidelines ... 47

2.5. Running Fortran Syntax Analysis ... 49
2.6. Using advanced analysis techniques .. 50

2.6.1. Incremental, parallel, and desktop analysis .. 50
2.6.2. Using cov-analyze options to tune the analysis .. 53
2.6.3. Using advanced analysis techniques ... 53

2.7. Configuring compilers for Coverity Analysis .. 63
2.7.1. Generating a standard configuration .. 66
2.7.2. Generating a template configuration .. 67
2.7.3. Compiler-specific configurations .. 69
2.7.4. Using predefined macros for Coverity Analysis-specific compilations 77
2.7.5. Modifying preprocessor behavior to improve compatibility 78

3. Setting up Coverity Analysis for use in a production environment ... 79
3.1. The Central Deployment Model ... 80
3.2. Coverity Analysis Deployment Considerations .. 81
3.3. Integrating Coverity Analysis into a build system .. 83

3.3.1. The intermediate directory .. 85
3.3.2. Integrating Coverity Analysis into the build environment — cov-build 85
3.3.3. Alternative build command: cov-translate ... 98
3.3.4. Running parallel builds ... 100

3.4. Using SSL with Coverity Analysis .. 103
3.4.1. Trust store overview ... 103
3.4.2. Configuring Coverity Analysis to use SSL .. 104
3.4.3. Working with the trust store .. 105

3.5. Using a Network File System (NFS) with Coverity Analysis ... 108
3.6. Coverity Analysis Updates ... 109

ii

Coverity Analysis 2020.12 User and Administrator Guide

4. Capturing specific build systems ... 110
4.1. Using IncrediBuild ... 111

4.1.1. Building code with IncrediBuild as part of the analysis process 111
4.1.2. Coverity Desktop Analysis .. 113

4.2. Building with Xcode .. 114
4.2.1. Building Xcode projects that use pre-compiled headers 114
4.2.2. Building projects that use Xcode 10's new build system 114

4.3. Building with Visual Studio 2015+ or .NET Core SDK (‘dotnet’) 116
4.4. Building with Cygwin ... 117

5. Using the Compiler Integration Toolkit (CIT) .. 118
5.1. Compiler Integration overview .. 119

5.1.1. Before you begin .. 119
5.1.2. Basic requirements ... 120

5.2. The Coverity Analysis build system .. 121
5.2.1. The cov-configure command ... 121
5.2.2. The cov-translate command .. 123
5.2.3. The cov-preprocess command .. 124
5.2.4. The cov-test-configuration command ... 125

5.3. Understanding the compiler configuration ... 126
5.3.1. The <compiler> tags .. 127
5.3.2. <options> tags in coverity_config.xml .. 129
5.3.3. Editing the Coverity configuration file - coverity_config.xml 145

5.4. Using the Compiler Integration Toolkit (CIT) ... 146
5.4.1. The Compiler Integration Toolkit (CIT) compiler configuration file 146
5.4.2. The compiler switch file .. 155
5.4.3. Compiler compatibility header files .. 161
5.4.4. Custom translation code ... 161
5.4.5. Creating a Compiler Integration Toolkit (CIT) configuration for a new compiler 163
5.4.6. Creating a compiler from an existing Compiler Integration Toolkit (CIT)
implementation .. 163

5.5. Troubleshooting the build integration .. 166
5.5.1. Why is no build log generated? .. 166
5.5.2. I see a header file error: expected an identifier .. 166
5.5.3. I see a header file error: expected a ';' .. 166
5.5.4. Why is the standard header file not found? .. 167
5.5.5. I see the message: #error No Architecture defined ... 168

6. Using the Third Party Integration Toolkit ... 169
6.1. Overview .. 170
6.2. Running the Third Party Integration Toolkit ... 171
6.3. Import file format and reference ... 174

6.3.1. Import file format examples .. 174
6.3.2. Import format reference .. 176

6.4. Capacity and performance ... 183
A. Coverity Analysis Reference .. 184

A.1. Troubleshooting Coverity Analysis ... 184
A.2. Using Cygwin to invoke cov-build .. 185
A.3. Finding Third-party Licenses ... 186
A.4. Incompatible #import Attributes ... 186

iii

Coverity Analysis 2020.12 User and Administrator Guide

B. Coverity Glossary .. 187
C. Coverity Legal Notice .. 199

C.1. Legal Notice ... 199

iv

Part 1. Overview
Coverity Analysis is built on top of a set of foundational technologies that support the use of Coverity
checkers to detect quality issues (also called quality defects), security issues (potential security
vulnerabilities), Test Advisor issues (test issues), and Java runtime defects (Dynamic Analysis issues).
Issues found by Coverity Analysis can cause data corruption, unpredictable behavior, application failure,
and other problems. Coverity Analysis analyzes code bases to help minimize the number of software
issues before your applications reach the customer.

After analyzing source code with Coverity Analysis, developers can view and manage the issues it finds
through Coverity Connect or Coverity Desktop. It is also possible to run local analyses of source code
using Coverity Desktop. See Coverity Platform 2020.12 User and Administrator Guide , Coverity
2020.12 for Eclipse, Wind River Workbench, and QNX Momentics: User Guide , Coverity Desktop
2020.12 for Microsoft Visual Studio: User Guide , and Coverity Desktop 2020.12 for IntelliJ IDEA and
Android Studio: User Guide for details.

Scope
This guide covers tasks for setting up and running static quality and security analyses in a centralized
(server-based) build system. To set up and run test analyses, see Test Advisor 2020.12 User and
Administrator Guide. To set up and run Java dynamic analyses, see Dynamic Analysis 2020.12
Administration Tutorial .

This guide also provides details on extending the set of compilers that are available to Coverity
Analysis (see Part 5, “Using the Compiler Integration Toolkit (CIT)”) and on using Coverity Analysis
to commit third-party bugs and issues to Coverity Connect (see Part 6, “Using the Third Party
Integration Toolkit ”),

Audience
The audience for this guide is administrators (including build engineers and tools specialists) and
power users who set up and run the Coverity analyses in an integrated build environment. For details,
see Chapter 1.1, Roles and Responsibilities.

For installation instructions and supported platform details, see Coverity 2020.12 Installation and
Deployment Guide . Coverity Analysis component accessibility varies by license .

To see how Coverity products work together, see Coverity Development Testing.

cov_platform_use_and_admin_guide.pdf
desktop_eclipse_user_guide.pdf
desktop_eclipse_user_guide.pdf
desktop_vs_user_guide.pdf
desktop_vs_user_guide.pdf
desktop_intellij_user_guide.pdf
desktop_intellij_user_guide.pdf
dynamic_analysis_administration_tutorial.pdf
dynamic_analysis_administration_tutorial.pdf
cov_deploy_install_guide.pdf
cov_deploy_install_guide.pdf
https://community.synopsys.com/s/
index.html#about_coverity

Chapter 1.1. Roles and Responsibilities

Coverity Analysis tasks and responsibilities vary based on the role you play in your organization:

Coverity Analysis Administrators
Coverity Analysis administrators install, provision, configure, and integrate Coverity Analysis into the
software build cycle. The Coverity Analysis administrator role has the following sub-roles:

• IT engineers ensure that Coverity Analysis has the hardware and software resources required to
run optimally. They add machines and other hardware, back up data, and install software.

• Build engineers automate and integrate Coverity Analysis into existing build processes. They set
up the system to automatically run Coverity Analysis over source code, generate defect reports,
and make reports available to the Coverity Analysis consumers. In some organizations, they might
also help developers to run Coverity Analysis on their local repositories.

Coverity Analysis Consumers
Coverity Analysis consumers use Coverity Analysis results to assess and improve software. The
Coverity Analysis consumer role has the following sub-roles:

• Developers and team leads are the primary consumers of Coverity Analysis analysis results. Both
examine and prioritize software issues in Coverity Connect or Coverity Desktop. Developers also
fix the issues by using the information that Coverity Connect provides about them. Sometimes
these consumers work with the Coverity Analysis administrator to optimize the effectiveness of
Coverity Analysis analyses, for example, by changing the set of checkers that is enabled.

Coverity Connect is a web-based application for examining and handling defect data. Coverity
Desktop is a plug-in to the Eclipse or Visual Studio Integrated Development Environment (IDE).
Coverity Desktop provides most of the same management capabilities as Coverity Connect and
allows you to modify source code to fix defects. A developer can examine, prioritize, triage, and
fix defects across related code bases, such as multiple development branches or different target
platforms.

• Managers monitor defect reports and trends, to determine the overall software quality and trends.
They might also monitor and manage the personnel responsible for fixing defects.

Coverity Analysis Power Users
Coverity Analysis power users are typically developers who understand both your software
development environment and Coverity Analysis. These power users help communicate needs and
requirements to consumers and administrators. Common tasks for this role include assessing the
need for custom models (see Section 1.4.6.2, “Using custom models to improve analysis results”)
and determining what checkers to enable (see Section 1.4.6.1, “Enabling Checkers”). Development
tasks that pertain to extending the functionality of Coverity Analysis in other ways also fit into this
role.

2

Chapter 1.2. Use Cases

Coverity Analysis supports a number of use cases:

Running analyses with Coverity Analysis

• Each Coverity Analysis analysis uses a set of commands that vary by programming language and
analysis type. To get started with Coverity Analysis, you can run Coverity Analysis analyses from the
command line or by using the GUI-based Coverity Wizard (see Coverity Wizard 2020.12 User Guide
for details). For information about common analysis tasks, see Chapter 1.4, Coverity analyses.

Once you are familiar with the basics of Coverity Analysis, you need to create a server-based script
that regularly runs the commands needed to analyze your code base (see Part 3, “Setting up Coverity
Analysis for use in a production environment”).

Enabling/Disabling Checkers

• Coverity Analysis uses checkers to analyze your code base for specific types of issues. By default,
Coverity Analysis enables a certain set of checkers. To control the depth and nature of the analysis,
you can work with Coverity Analysis power users (see Chapter 1.1, Roles and Responsibilities) to
determine whether to change the set of checkers that are enabled. For details, see Section 1.4.6.1,
“Enabling Checkers”.

Custom checkers

It is possible to extend the set of checkers that is available to Coverity Analysis. See the
document Learning to Write CodeXM Checkers .

Using Custom Models of Functions and/or Methods

• A model summarizes the behavior of a function or method. Coverity Analysis allows you to integrate
custom models into the analysis. For details, see Section 1.4.6.2, “Using custom models to improve
analysis results”.

Extending C/C++ compiler compatibility

• Coverity Analysis supports a number of C/C++ compilers (see Coverity 2020.12 Installation and
Deployment Guide). To extend the set of C/C++ compilers that are compatible with Coverity
Analysis, see Part 5, “Using the Compiler Integration Toolkit (CIT)”.

Using Coverity Analysis to commit third-party issues to the Coverity Connect database

• In addition to supporting the management of software issues found by Coverity Analysis, Coverity
Connect supports issues found by third-party tools. The Third Party Integration Toolkit (see Part 6,
“Using the Third Party Integration Toolkit ”) relies on Coverity Analysis to commit third-party defects to
the Coverity Connect database.

3

cov_wizard_usage_guide.pdf
Coverity_CodeXM_Learning_to_Write_CodeXM_Checkers.html
cov_deploy_install_guide.pdf#sa_compilers_c
cov_deploy_install_guide.pdf#sa_compilers_c

Chapter 1.3. Language Support
Coverity Analysis support can vary by programming language.

Table 1.3.1. Support by Language

Language Capture
Mode

Coverity
Desktop
Analysis

Coverity
Extend
SDK

CodeXM Churn Coding Standards &
Vulnerability Reports

Language
Versions

Notes

C/C++ Build
capture

Yes Yes Yes <5% AUTOSAR C++14 R19-03
ISO/IEC TS 17961:
 2013,
 Cor 1 2016
MISRA-C 2004:
 1st Ed 2004.10,
 2nd Ed with Tech Cor 1
 2008.07
MISRA-C 2012:
 1st Ed 2013.03,
 Amendment 1 2016.04,
 Tech Cor 1 2017.06,
 Amendment 2 2020.02
MISRA-C++ 2008:
 2008.06
SEI CERT C:
 2016 Ed,
 POSIX rules,
 L1 and some L2 recs
SEI CERT C++ 2016 Ed
CWE Top 25
CWE On the Cusp

C++98
C++03
C++11
C++14
C++17
C89
C99
C11

C# Build
capture

Yes Yes Yes <5% CWE Top 25
OWASP Top 10

Up to C# 8 Less than 5%
churn is expected
for build capture.

C# Buildless
capture

No Yes Yes No
bound

CWE Top 25
OWASP Top 10

Up to C# 8

CUDA Build
capture

Yes No Yes No
bound

AUTOSAR C++14 R19-03
ISO/IEC TS 17961:
 2013,
 Cor 1 2016
MISRA-C 2004:
 1st Ed 2004.10,
 2nd Ed with Tech Cor 1
 2008.07
MISRA-C 2012:
 1st Ed 2013.03,
 Amendment 1 2016.04,

4

Language Support

Language Capture
Mode

Coverity
Desktop
Analysis

Coverity
Extend
SDK

CodeXM Churn Coding Standards &
Vulnerability Reports

Language
Versions

Notes

 Tech Cor 1 2017.06,
 Amendment 2 2020.02
MISRA-C++ 2008:
 2008.06
SEI CERT C:
 2016 Ed,
 POSIX rules,
 L1 and some L2 recs
SEI CERT C++ 2016 Ed
CWE Top 25
CWE On the Cusp

Fortran Standalone No No No No
bound

 Fortran 77
Fortran 90
Fortran 95
Fortran 2003
Fortran 2008
Fortran 2018

Fortran Syntax
Analysis performs
filesystem capture
through the cov-
run-fortran
command.

Go Build
capture

Yes No Yes No
bound

OWASP Top 10 Go 1.13–
1.14.x

Support for
Go 1.13 is
deprecated as of
2020.12 and will
be removed in a
future release.

Java Build
capture

Yes Yes Yes <5% CWE Top 25
CWE On the Cusp
OWASP Top 10
OWASP Mobile Top 10
SEI CERT Java:
 L1 and some L2 rules

Up to Java
14

Less than 5%
churn is expected
for build capture.

Java Buildless
capture/
Filesystem
capture

No Yes Yes No
bound

CWE Top 25
CWE On the Cusp
OWASP Top 10
OWASP Mobile Top 10

Up to Java
14

JavaScript Buildless
capture/
Filesystem
capture

Yes Yes Yes <5% OWASP Top 10 ECMAScript
5–11

ECMAScript 11
is also known
as ECMAScript
2020.

Kotlin Build
capture

Yes No No No
bound

OWASP Mobile Top 10 Kotlin 1.3–
1.3.71

Objective-
C/C++

Build
capture

Yes No No No
bound

5

Language Support

Language Capture
Mode

Coverity
Desktop
Analysis

Coverity
Extend
SDK

CodeXM Churn Coding Standards &
Vulnerability Reports

Language
Versions

Notes

PHP Buildless
capture/
Filesystem
capture

Yes No No No
bound

OWASP Top 10 PHP 5.5.x
PHP 5.6.x
PHP 7.0.0

Support for PHP
5.x is deprecated
as of 2020.12 and
will be removed in
a future release.

Python Buildless
capture/
Filesystem
capture

Yes No Yes No
bound

OWASP Top 10 Python 2.7.x
and 3.x– 3.8

Support for
Python 2.7 is
deprecated as of
2020.12 and will
be removed in a
future release.

Ruby Buildless
capture/
Filesystem
capture

Yes No No No
bound

OWASP Top 10 Matz's
Reference
Impl. (MRI)
1.9.2–
2.5.1 and
equivalents

Scala Build
capture

Yes No No No
bound

 Scala 2.12.x

Swift Build
capture

Yes No No No
bound

OWASP Mobile Top 10 Swift 5.3

TypeScript Buildless
capture/
Filesystem
capture

Yes No No No
bound

OWASP Top 10 TypeScript
1.0–4.0

Visual
Basic

Build
capture

Yes No No No
bound

CWE Top 25
OWASP Top 10

Visual
Basic .NET

•

Note

The preceding table combines supported coding standards (AUTOSAR, MISRA, and CERT) and
supported vulnerability reports (CWE and OWASP) into one column in order to conserve space.

Not all rules and directives in the listed coding standards are supported. For information on how to
run a code analysis using one of the supported coding standards, see Chapter 2.4, Running coding
standard analyses.

Coverity Analysis automatically finds defects listed in the supported vulnerability reports when you
enable all security checkers.

For more information about:

6

Language Support

• Coverity Desktop Analysis, see Coverity Desktop Analysis 2020.12: User Guide .

• Checker development and the CodeXM language and libraries, see Learning to Write CodeXM
Checkers .

• Checker development and the Coverity Extend SDK, see Coverity Extend SDK 2020.12 Checker
Development Guide .

• Build capture mode, see Section 1.4.2.1, “Build capture (for compiled languages)”.

• Buildless capture mode, see Section 1.4.3, “Buildless capture”.

• Filesystem capture, see Section 1.4.2.2, “Filesystem capture”.

For checkers, see "Checkers by Programming Language" in the Coverity 2020.12 Checker Reference.
For deployment information, see the following table.

Table 1.3.2. Deployment Considerations

Build and target
platforms

Varies by language: See "Supported Platforms" for details.

Memory Requirements Varies by programming language: See "Coverity Analysis
hardware recommendations" for details.

Coverity
2020.12
Installation and
Deployment
Guide

7

desktop_analysis_user_guide.pdf
Coverity_CodeXM_Learning_to_Write_CodeXM_Checkers.html
Coverity_CodeXM_Learning_to_Write_CodeXM_Checkers.html
cov_extend_sdk_checker_dev_guide.pdf
cov_extend_sdk_checker_dev_guide.pdf
cov_checker_ref.pdf#checkers_by_language
cov_deploy_install_guide.pdf#ca_platform_support
cov_deploy_install_guide.pdf#sa_memory_requirements
cov_deploy_install_guide.pdf#sa_memory_requirements
cov_deploy_install_guide.pdf
cov_deploy_install_guide.pdf
cov_deploy_install_guide.pdf
cov_deploy_install_guide.pdf
cov_deploy_install_guide.pdf

Chapter 1.4. Coverity analyses

Table of Contents
1.4.1. The configuration ... 9
1.4.2. The capture ... 9
1.4.3. Buildless capture .. 17
1.4.4. The analysis .. 20
1.4.5. The commit .. 20
1.4.6. Tasks that support Coverity analyses .. 21

This section introduces you to the common sequence of tasks needed to complete an analysis that runs
in a central (server-based) build environment. For information about that environment, see Chapter 3.1,
The Central Deployment Model. For detailed analysis procedures, refer to Part 2, “Analyzing source code
from the command line ”

Prerequisites to completing an analysis

• To run an analysis, you must have a valid license to Coverity Analysis. If you have not yet set up
licensing (for example, during the installation process), you can refer to Setting up Coverity Analysis
licensing in the Coverity 2020.12 Installation and Deployment Guide.

• You need to have access to a Coverity Connect stream to which you can send your analysis results.
You also need to know your Coverity Connect username, password, and the Coverity Connect host or
dataport (for example, see Step 6 in Chapter 2.1, Getting started with Coverity analyses).

A Coverity Connect administrator is typically responsible for setting up the stream, giving you
permission to commit issues to it, and providing the other information you need. You can refer to
Configuring Projects and Streams if you need set up your own stream.

Note

Coverity Wizard (see for details) can create a stream in Coverity Connect, rather than through
the Coverity Connect UI. However, you still need to know your Coverity Connect login credentials
and host. Stream configuration requires administrative permissions to Coverity Connect.

For information about creating streams through the Coverity Connect UI, see "Configuring
Projects and Streams" in the Coverity Platform 2020.12 User and Administrator Guide.

• Make sure that you have adequate memory for the analysis. For details, see "Coverity Analysis
hardware recommendations" in the Coverity 2020.12 Installation and Deployment Guide.

See the Coverity 2020.12 Command Reference for descriptions of all the Coverity Analysis commands
that are available to you.

8

cov_deploy_install_guide.pdf#sa_license_config
cov_deploy_install_guide.pdf#sa_license_config
cov_platform_use_and_admin_guide.pdf#stream_projects_attrs
cov_platform_use_and_admin_guide.pdf#cim_streams_projects_comp
cov_platform_use_and_admin_guide.pdf#cim_streams_projects_comp
cov_deploy_install_guide.pdf#sa_memory_requirements
cov_deploy_install_guide.pdf#sa_memory_requirements
cov_command_ref.pdf#sa_commands

Coverity analyses

1.4.1. The configuration

Before running an analysis, you typically generate a one-time configuration for your native compiler and/
or scripting language (such as JavaScript) by using the cov-configure command. This configuration
is used when you perform the build step of the analysis process (see Section 1.4.2, “The capture”).

Note

You do not need to generate a configuration if you are using buildless capture, as described in the
next section.

The configuration provides information about the language of the source files to capture and analyze,
and provides settings that are used to emulate your native compiler, its options, definitions, and version.
A correct configuration allows the Coverity Analysis to properly translate the arguments of the native
compiler and to parse the source code into a form that is optimized for efficient analysis during the build
step of the analysis process.

1.4.2. The capture

After generating a configuration, you need to capture a binary representation of your source code to a
directory (the intermediate directory) where it can be analyzed. You have three options: build capture,
filesystem capture, or buildless capture.

• Use cov-build for build and filesystem capture.

• Use cov-capture for buildless capture.

Generally speaking, we recommend starting with buildless capture where possible. It requires no setup,
no knowledge about how to build your projects, no third party tools installed (in many cases), and will
give you satisfactory results quickly. Later, if it makes sense for you to invest more time configuring build
capture to get more accurate results, you can move to build capture. The build options you have might
also depend on the source language, as shown in the following table.

Language Build Options

C, C++, CUDA, Go,
Kotlin, Objective
C, Objective C++,
Scala, Swift

Use build capture.

PHP, Python, Ruby Use buildless capture or filesystem capture.

C#, Visual Basic • Use build capture if you are looking for the most accurate results and you are
okay with integrating it into your build.

• Use buildless capture if you are looking for the easiest option and your project
meets the conditions outlined in "Buildless capture for C#".

9

cov_command_ref.pdf#cov-configure
cov_command_ref.pdf#cov-build
cov_command_ref.pdf#cov-capture

Coverity analyses

Language Build Options
Note

On macOS,
C# support
is limited
to quality
analysis,
and Basic
analysis is
supported
only for
projects built
with the .NET
Compiler
Platform.

Java • Use build capture if you are looking for the most accurate results and you are
okay with integrating it into your build.

• Use buildless capture if you are looking for the easiest option and your project
meets the conditions outlined in "Buildless capture for Java".

• Use filesystem capture if buildless capture does not provide satisfactory results.

JavaScript,
TypeScript

• Use buildless capture if you are looking for the easiest option and your project
meets the conditions outlined in "Buildless capture for JavaScript/TypeScript".

• Use filesystem capture if buildless capture does not provide satisfactory results.

1.4.2.1. Build capture (for compiled languages)

Build capture is part of the overall analysis workflow for code that you need to compile, such as C/C+
+. The Coverity Analysis compiler builds your source code into an intermediate representation of your
software. The intermediate representation is a binary form of the source code that provides Coverity
Analysis with a view of the operation of your software that is optimized for the efficient analysis of
software issues. Compiling all of your source code with the Coverity Analysis compiler is often an iterative
process. Though Coverity Analysis makes every effort to parse the compiled code that each supported
compiler generates, the nuances of a particular code base sometimes introduce subtle incompatibilities.
Nevertheless, analyses of such code bases can still produce useful results.

The cov-build command wraps the native build to observe native compiler invocations and operations.
It invokes the regular build system, and it runs the cov-translate command to translate the native
compiler's command-line arguments to the Coverity Analysis compiler command-line arguments. For
each observed native compiler call, cov-translate runs the Coverity Analysis compiler on the same
files with the same arguments, which in turn invokes the cov-emit command to compile the file and
outputs the intermediate representation into the intermediate directory.

10

Coverity analyses

Figure 1.4.1. Example: Building source with the Coverity Analysis compiler (The Coverity Static
Analysis build)

The Coverity Analysis compiler requires information about build processes, dependencies, and build-
related programs that are only revealed during a native build. Because cov-build parses and compiles
each source file, first with the native compiler and then with the Coverity Analysis compiler, it takes longer
to complete the cov-build process than it does to compile your source code with your native compiler
alone.

Note that the simplest way to build source code is to use cov-build because you do not have to modify
your native build. However, the cov-build command does not allow you to specify which source
files to compile. Instead, it simply compiles everything the native build compiles (except for unchanged
source code). If you need to specify which source code to compile, you can invoke the cov-translate
command directly. This task is more complex and requires you to modify the native build process, but it
might also provide greater build efficiency. Running cov-translate is also the only supported way to
run the Coverity Analysis compiler on AIX systems. For more information, see Section 3.3.3, “Alternative
build command: cov-translate”.

1.4.2.2. Filesystem capture

Filesystem capture emits files directly from the disk. It does not require observing a build command.

Filesystem capture uses special cov-build options to gather or specify a list of the files that serve as
candidates for the analysis. The previous cov-configure step(s) determine which files are emitted to
the intermediate directory for analysis.

You can combine filesystem capture with build capture into a unified workflow. For an example on how
they are combined, see the build step in Chapter 2.1, Getting started with Coverity analyses .

1.4.2.2.1. Deployment recommendations

Your goal with filesystem capture is to emit all the files you want to analyze and none of the ones you
don't want to analyze. Typically, you'll want to analyze your source code, configuration files, and any

11

Coverity analyses

library code that your source code needs to compile or run. Typically, you don't want to emit or analyze
test cases for library code, or library code your code doesn't need to run. You may not wish to emit or
analyze test infrastructure, and test cases for your code.

To control which files to capture for analysis in your deployment, you should create a script or job that
emits the set of files that you need to analyze. The script should be robust enough to handle the addition,
deletion, and renaming of files or directories in your source repository. To specify the files, you should
take one or both of these steps:

• Carefully tune --fs-capture-search and --fs-capture-search-exclude-regex
options to capture the right set of files.

• Adjust your analysis job to generate the list (for example, with help from your SCM system), and use
the --fs-capture-list option. You should also regenerate the list before every analysis so that
changes to your file set are captured. For example:

> git ls-files > scm_files.lst
> cov-build --fs-capture-list scm_files.lst <other options>

During filesystem capture, the cov-build command attempts to emit library code to which your source
refers; the --fs-library-path option to either cov-configure or cov-build can help it find this
library code. See the sections below for language-specific advice.

1.4.2.2.2. Filesystem capture for JavaScript

The cov-build and cov-analyze steps are substantially faster if you don't emit library code that is
irrelevant to your source code. In particular, do not include your entire node_modules directories in the
scope of --fs-capture-search or --fs-capture-list. The cov-build command attempts to emit
any library code that your source code requires (Node.js), imports (ECMAScript 6, HANA XS JS), or
includes (HTML) by searching the filesystem relative to the source file; therefore, you should include
only source code for which you want analysis results in the scope of --fs-capture-search or --fs-
capture-list and let cov-build find the relevant third party library code. If your required/imported/
included library code is elsewhere, point the --fs-library-path option at the directory containing this
library code, for example specify --fs-library-path /usr/local/node_modules.

Emit non-minified versions of libraries. If you have both minified and non-minified versions of the
same library in your source, emit only the non-minified version. However, if only the minified version is
available, you should still emit it, but Coverity analysis will not report defects in it. If you concatenate
source files together or otherwise package them for deployment, emit the original source code and not
the packaged source code.

1.4.2.2.3. Filesystem capture for PHP

The cov-build command attempts to emit any library code that your source code includes or requires
by searching the filesystem relative to the source file; therefore, you should include only source code
for which you want analysis results in the scope of --fs-capture-search or --fs-capture-list,
and let cov-build find the relevant third party library code. If your imported library code is elsewhere
on the filesystem (for example, because you change the include_path), point the --fs-library-

12

cov_command_ref.pdf#javascript_fs_capture_search
cov_command_ref.pdf#javascript_fs_capture_search_exclude_regex
cov_command_ref.pdf#javascript_fs_capture_list

Coverity analyses

path option at the directory containing this library code such that the path in your include or require
statement resolves relative to the --fs-library-path).

1.4.2.2.4. Filesystem capture for Python

The cov-build command attempts to emit any library code that your source code imports by searching
the filesystem relative to the source file; therefore, you should include only source code for which
you want analysis results in the scope of --fs-capture-search or --fs-capture-list and
let cov-build find the relevant third party library code. If your imported library code is elsewhere on
the filesystem (for example, because you use a setup.py file or an environment variable such as
PYTHONPATH when deploying your code), point the --fs-library-path option at the package root
directory containing this library code.

The cov-build command determines the character encoding of a Python source file as follows:

• If the source file starts with a UTF-8 encoded Unicode Byte Order Mark (BOM), the source file will be
parsed, analyzed, and presented in Coverity Connect as a UTF-8 encoded source file.

• If the source file contains a Python encoding declaration, the source file will be parsed and analyzed
using the encoding specified by the declaration. If the encoding is supported by Coverity Connect, it will
be used to present the source file in Coverity Connect.

• If the source file contains neither a UTF-8 encoded Unicode BOM nor an encoding declaration, then
different character encoding types are used for parsing and analysis:

• For Python 2 source files, ISO-8859-1 is used.

• For Python 3 source files, UTF-8 character encoding is used.

If the cov-build --encoding option is specified, the encoding that it names is used to present the
source file in Coverity Connect. Otherwise, a Python 2 file will be presented as a US-ASCII encoded
source file, and a Python 3 source file is presented as a UTF-8 encoded source file.

Note

Source files that contain an encoding declaration that names the MBCS or DBCS encoding are not
supported.

1.4.2.2.5. Filesystem capture for Ruby

The cov-build command determines the character encoding of a Ruby source file as follows:

• If the source file starts with a UTF-8 encoded Unicode Byte Order Mark (BOM), then the source file will
be parsed, analyzed, and presented in Coverity Connect as a UTF-8 encoded source file.

• If the source file contains a Ruby encoding declaration, the source file will be parsed and analyzed
using the encoding specified by the declaration. If the encoding is one that is supported by Coverity
Connect, it will be used to present the source file in Coverity Connect.

If the cov-build --encoding option was specified, the encoding name will be used to present the
source file in Coverity Connect.

13

Coverity analyses

• If the source file contains neither a UTF-8 encoded Unicode BOM nor an encoding declaration, the
UTF-8 character encoding is used to parse and analyze the source file.

1.4.2.2.6. Filesystem capture for configuration and template files

The security analysis of web and mobile applications reads configuration data to understand the
application architecture. It also reports insecure configuration settings and cross-sites scripting
vulnerabilities that can occur with the supported template languages.

For Android and iOS applications, filesystem capture is the prescribed and recommended approach to
emit all configuration files. When using filesystem capture, it should point to (and be run on) the project
root directory. This is true even where the bulk of the application source code is emitted using build
capture.

For Java web applications, filesystem capture is an option to emit configuration files and JavaServer
Pages (JSPs). Alternatively, these files may be emitted as part of a web-application archive (WAR file)
by using cov-emit-java --webapp-archive. For more information about this command, see the --
webapp-archive option listed under cov-emit-java .

For ASP.NET web applications, filesystem capture is of limited use. See Section 2.2.2, “Running a
security analysis on an ASP.NET Web application”.

1.4.2.2.7. Filesystem capture for Java source

Filesystem capture is supported for Java in situations where build capture is not feasible. During
filesystem capture, the build command attempts to recover from any errors or warnings caused
by incomplete information. This ensures that most of the code is analyzed. Note that without build
information, however, a loss in analysis fidelity is to be expected with higher rates of false positives and
false negatives.

When you use filesystem capture mode, it prompts the cov-build command to search recursively for
Java source files in a specified directory. During this process, the cov-build command specifies and
retrieves dependencies for compiling the source code. The Java source files are then emitted to the
intermediate directory for later analysis.

Note

In general, build processes may specify and retrieve dependencies for compiling the source code.
They may make changes to the code base by generating or downloading new files. They may
also move or transform existing files. These changes are not visible to filesystem capture, since
this mode only performs a basic search for files that have pre-configured patterns. It also attempts
to resolve dependencies without considering build configurations. For this reason, differences in
analysis results may occur when running both build capture and filesystem capture on the same
code base.

There are three steps to analyzing code using Java filesystem capture:

1. Use the cov-configure command, which prompts the cov-build command to perform the Java
filesystem capture.

14

cov_command_ref.pdf#cov-emit-java

Coverity analyses

2. Once the Java filesystem capture is configured, run the cov-build command for the directory that
contains the Java source files.

3. Run the cov-analyze command to analyze the emitted files. This step is unchanged from analysis
using a regular build capture.

For more information on how to configure your build using the cov-build command, see Coverity
2020.12 Command Reference. .

1.4.2.2.8. Moving from filesystem capture to buildless capture

Now that filesystem capture is deprecated, you will want to start moving to using buildless capture, which
is the new preferred method. The primary difference is that for buildless capture we use the tool cov-
capture instead of cov-build. Buildless capture provides the equivalent functionality to filesystem
capture, but is easier to use. This section explains how to make the switch.

To take the simplest possible example, a filesystem capture invocation would look like this:

% cov-configure --javafs
% cov-build --dir idir --no-command --fs-capture-search src

The equivalent invocation using buildless capture looks like this:

% cov-capture --dir idir --source-dir src

As you can see, with buildless capture, you don't need to configure any compilers: this is all taken care of
automatically by cov-capture.

The following sections provide additional examples of differences between filesystem capture and
buildless capture. For detailed information, see the cov-capture --help output

1.4.2.2.8.1. Specifying custom file patterns

If you previously specified custom file matching patterns with --file-glob or --file-regex, these
are now specified to cov-capture. For example if you previously ran the following command:

% cov-configure --comptype javascript --file-glob '*.js'

Using buildless capture you would instead add a similar argument to your cov-capture invocation:

% cov-capture --dir idir --source-dir src --file-glob javascript='*.js'

1.4.2.2.8.2. Specifying additional library paths

If you previously configured your compiler with additional library paths as shown next:

% cov-configure --javafs --fs-library-path path/to/classes
 --fs-library-path path/to/my.jar

Using buildless capture, these additional library paths are simply added to your cov-capture
invocation:

% cov-capture --dir idir --source-dir src --library-dir java=path/to/classes
 --library-file java=path/to/my.jar

15

cov_command_ref.pdf
cov_command_ref.pdf

Coverity analyses

1.4.2.2.8.3. Specifying the search directory

Using filesystem capture, you specified the search directory with --fs-capture-search:

% cov-build --dir idir --no-command --fs-capture-search <dir>

Using buildless capture, you use the better named --source-dir argument:

% cov-capture --dir idir --source-dir <dir>

1.4.2.2.8.4. Specifying a list of source files

Using filesystem capture, you could specify a list of source files with --fs-capture-list:

% cov-build --dir idir --no-command --fs-capture-list <file-list>

Using buildless capture, there is a similar argument --source-list:

% cov-capture --dir idir --source-list <file-list>

1.4.2.2.8.5. Listing matched files

Using filesystem capture, you could display what files would be captured without actually capturing them
with this command:

% cov-build --dir idir --no-command --fs-capture-search <src> --fs-capture-just-print-
matches

You can also do this with buildless capture:

% cov-capture --dir idir --source-dir <src> --just-print-matches

1.4.2.2.8.6. Excluding files

Using filesystem capture, you could exclude files from the capture as follows:

% cov-build --dir idir --no-command --fs-capture-search <src>
 --fs-capture-search-exclude-regex <regex>

Using buildless capture, you would do it like this:

% cov-capture --dir idir --source-dir <src> --exclude-regex java="<regex>"

The main differences for buildless capture are the following:

• Regexes are per language. The above example applies to java.

• You can use globs with --exclude-glob.

• The regex/glob is matched relative to the specified --source-dir.

1.4.2.2.8.7. Controlling what languages are captured

Filesystem capture would only capture the languages you had configured. So if you only configured --
javafs, it would only capture Java.

16

Coverity analyses

By default, buildless capture tries to capture all languages. You can control what languages are captured
by explicitly specifying them. For example, the following invocation captures only Java and JavaScript
files.:

% cov-capture --dir idir --source-dir src --language java --language javascript

Additionally, many languages have other languages automatically associated with them. For example,
configuring --javafs also selects --jsp. To disable some of these associated languages, use the --
no-friend-language argument. This prevents buildless capture from automatically configuring the
capture of JSP files along with Java.

% cov-capture --dir idir --source-dir src --language java --no-friend-language jsp

1.4.2.2.8.8. Emit failures and parse error threshold

The --return-emit-failures and --parse-error-threshold options are the same for
filesystem and buildless capture. The following command for filesystem capture:

% cov-build --dir idir --no-command --fs-capture-search src
 --return-emit-failures --parse-error-threshold 50

Looks like this for buildless capture:

% cov-capture --dir idir --source-dir src --return-emit-failures --parse-error-
threshold 50

1.4.2.2.8.9. Build and filesystem capture in a single invocation

Using filesystem capture it was possible to run a build capture and a filesystem capture in a single step
like so:

% cov-build --dir idir --fs-capture-search <dir> ./mybuild.sh

This is not currently possible with buildless capture. Instead, you will need to invoke cov-build then
cov-capture:

Build Capture
% cov-configure --swift
% cov-build --dir idir ./mybuild.sh

Buildless Capture
% cov-capture --dir idir --config-dir config-dir

1.4.3. Buildless capture

Buildless capture is the easiest to use of the three capture mechanisms (build, buildless and filesystem).

• It imposes minimal user and environment requirements:

• No build is required or executed.

• Third party tools are provided in many cases (maven, npm, etc.) so you don't have to install them.

17

Coverity analyses

• It requires minimal user knowledge.

• You need to supply only the location of the project on disk or in a git repository.

• You do not need to know how to build your project, how to check a project out, how to download
project dependencies, which source files to include or exclude from the analysis, or which language
the project uses.

• It eliminates steps and automates processes: source code is automatically checked out, Coverity
configuration is not needed, project dependencies are automatically calculated and downloaded,
source file inclusion/exclusion lists are automatically calculated, and source code for supported
languages is detected and processed.

Buildless capture has four primary modes of operation: Project Mode, SCM Mode, Source Mode, and
Config Mode.

• Project Mode and SCM Mode

In these modes, buildless capture works by recursively searching for project files under a specific
project directory (after optionally checking out your repository). It recognizes Java (Maven/Gradle),
JavaScript/TypeScript (yarn/npm/bower) and C# .NET Core (.NET Core Command-Line Interface)
projects. Information is gathered from each project file. This information is then used to capture each
project.

• Source Mode and Config Mode

In these modes buildless capture works by recursively searching for source files based on the file
extension.

Follow these steps to analyze code using buildless capture:

1. Run the cov-capture command for the repository/directory that contains your project(s).

2. Run the cov-analyze command to analyze the emitted files. This step is unchanged from analysis
using a regular build or filesystem capture.

The following sections discuss requirements for each language analysis that supports buildless capture.

1.4.3.1. Buildless capture for C#

For C#, buildless capture is only supported on Windows and for projects that make use of the .NET Core
SDK.

C# projects can be configured to be built using two different SDK types: either .NET Core SDK, or
the .NET Framework SDK. To tell whether a given project uses the .NET Core SDK, open one of the
project’s .csproj files, and at or near the top of the file, look for lines similar to the following:

Table 1.4.1. Supported frameworks for C# projects

<Project Sdk="Microsoft.NET.Sdk”>Supported

<Project Sdk="Microsoft.NET.Sdk.Web">

18

Coverity analyses

Not supported <Project DefaultTargets="Build"
ToolsVersion="4.0" xmlns="http://
schemas.microsoft.com/[...]">

Important

A project can consist of multiple .csproj files (C# projects). If this is the case, only those C#
projects identified as supported will be captured.

In addition, for C# buildless capture requires .NET Core SDK version 2.0, 2.1, or 2.2.

To make sure that a compatible .NET Core SDK is available, either you can install a system .NET Core
SDK yourself, or you can run the Coverity installer and choose the .NET Core SDKs component.

Caution

Some C# projects specify that a particular SDK version be used, so the .NET Core SDKs
component installed by the Coverity installer might not be suitable for capturing such a project. In
these cases, you should manually install a .NET Core SDK of the version that the project specifies.

A C# project can also target one or more target frameworks that indicate where the project author intends
the project to run. There are two different types of target frameworks: NuGet package-based frameworks,
and non-NuGet package-based frameworks. The .NET Framework is a non NuGet package-based
framework. This means that you need to install the appropriate .NET Framework targeting pack before
you run buildless capture. For NuGet package-based frameworks, the relevant framework is downloaded
automatically, just like any other NuGet package.

Note

Buildless capture for C# downloads the dependencies for each project being captured. Because
of this, typically an Internet connection that allows access to the relevant NuGet repositories is
required. As an alternative, you can download the dependencies in advance.

Caution

Build processes might make changes to the code base by generating or downloading new files.
They might also move or transform existing files. These changes are not visible to buildless
capture. For this reason, differences in analysis results might occur when running both build
capture and buildless capture on the same code base.

Caution

Microsoft regularly releases new versions of the .NET Core SDK. Buildless capture might work with
these versions, but no testing will have been done to guarantee support.

For documentation on .NET Core from Microsoft see: https://docs.microsoft.com/en-us/dotnet/core/.

1.4.3.2. Buildless capture for Java

The following conditions must be met for buildless capture for Java:

19

https://docs.microsoft.com/en-us/dotnet/core/

Coverity analyses

• Your Java code is part of a Maven or Gradle project with the following properties:

• Maven: Can be built with Maven 2.x or newer

• Gradle: Can be built with Gradle 1.2 or newer

If your project does not meet these requirements you may not use Project or SCM mode, however you
can use Source mode to capture such projects.

Buildless capture for Java also captures JSPs.

Note

Build processes might make changes to the code base by generating or downloading new files.
They might also move or transform existing files. These changes are not visible to buildless
capture. For this reason, differences in analysis results might occur when running both build
capture and buildless capture on the same code base.

1.4.3.3. Buildless capture for JavaScript/TypeScript

The following conditions must be met for buildless capture for JavaScript/TypeScript:

• Your JavaScript/TypeScript code is part of a yarn, npm or bower project.

• You have git installed to capture a bower project (bower, npm, and yarn don’t need to be installed
because they are bundled with Coverity).

If your project does not meet these requirements you may not use Project or SCM mode, however you
can use Source mode to capture such projects.

Note

When you capture JavaScript, TypeScript source code will also be captured.

1.4.3.4. Buildless capture for PHP, Ruby, and Python

You can use project mode or source mode to capture these languages. Both modes work the same for
these languages. Buildless capture simply searches for any source files for these languages; nothing is
done with project files or dependency downloading.

1.4.4. The analysis

After building your source with or without cov-build (for the former build process, see Section 1.4.2,
“The capture”), you run Coverity analysis on your source code to find software issues. You use cov-
analyze to analyze code and scripts written in all supported programming languages.

1.4.5. The commit

After completing the analysis (see Section 1.4.4, “The analysis”), you commit (or push) the analysis
results to Coverity Connect so that developers and team leads can view, manage, and fix software issues
they own in an efficient way.

20

cov_command_ref.pdf#cov-analyze
cov_command_ref.pdf#cov-analyze

Coverity analyses

You send the results to a stream in the Coverity Connect database using the cov-commit-defects
 command. Before you can commit analysis results to Coverity Connect, some Coverity Connect

configuration tasks must take place (see Prerequisites to completing an analysis) so that developers can
view the issues they own in Coverity Connect (and, if set up, Coverity Desktop). See Understanding the
primary Coverity Connect workflows for information about using Coverity Connect to view and manage
issues.

1.4.6. Tasks that support Coverity analyses

To support the procedures described in Chapter 1.4, Coverity analyses, Coverity Analysis administrators
sometimes decide to perform one or more of the tasks described in this section.

1.4.6.1. Enabling Checkers

Coverity Analysis runs checkers that are enabled and covered by your license. Many Coverity checkers
are enabled by default, so they will run unless you explicitly disable them. Each checker detects specific
types of issues in your source code. For example, the RESOURCE_LEAK checker looks for cases in which
your program does not release system resources as soon as possible.

For details on checker enablement, refer to the Enabling Checkers section of the Coverity Checker
Reference

1.4.6.2. Using custom models to improve analysis results

A custom model is a piece of source code that is written by a developer to replace the actual
implementation of a function or method. Custom models can lead to a more accurate analysis by helping
Coverity Analysis find more issues and eliminate false positive results. Candidates for modeling include
functions and methods in your source code that the analysis interprets in an unexpected way (see
Section 1.4.6.2.2, “Using models to tune the interprocedural analysis”) and/or functions and methods in
third-party libraries that Coverity does not model (Section 1.4.6.2.1, “Using models to mimic functions or
methods that lack source code”).

After a developer writes a custom model (for details, see Models, Annotations, and Primitives in
the Coverity 2020.12 Checker Reference), you (the administrator) need to include it in the analysis
configuration by running the cov-make-library command (see Section 2.6.3.2, “Adding custom
models with cov-make-library” and/or Section 2.6.3.3.2, “Using cov-make-library”). For C#, see Models
and Annotations in C# in the Coverity 2020.12 Checker Reference. For Swift, see Models and
Annotations in Swift in the Coverity 2020.12 Checker Reference. The cov-make-library command
creates a file called user_db that you need to include in the script that runs the Coverity Analysis
analysis.

1.4.6.2.1. Using models to mimic functions or methods that lack source code

Most project code bases include a number of library functions or methods without including their source
code. Coverity Analysis cannot always analyze a function or method if its source code is not in the code
base.

21

cov_command_ref.pdf#cov-commit-defects
cov_command_ref.pdf#cov-commit-defects
cov_platform_use_and_admin_guide.pdf#basic_workflow
cov_platform_use_and_admin_guide.pdf#basic_workflow
cov_checker_ref.pdf#enabling_checkers
cov_checker_ref.pdf#enabling_checkers
cov_checker_ref.pdf#models
cov_checker_ref.pdf#static_checker_csharp_add_models
cov_checker_ref.pdf#static_checker_csharp_add_models
cov_checker_ref.pdf#swift_models_annotations
cov_checker_ref.pdf#swift_models_annotations

Coverity analyses

For example, Coverity Analysis cannot analyze certain third-party binary libraries that are linked to a
program. Coverity Analysis can analyze Java Virtual Machine (JVM) and .NET bytecode. In either case,
it does not report defects in binary libraries, but analyzing or modeling libraries improves the accuracy of
the source code analysis.

Coverity Analysis ships with models for most standard libraries that pertain to the languages and
platforms that Coverity Analysis supports. You do not have to model these libraries and in general you
should not alter the models provided. (You can the examine source code for these models to learn more
about writing your own custom models.) Due to the limitations of interprocedural analysis, you might need
to perform some tuning: See Section 1.4.6.2.2, “Using models to tune the interprocedural analysis”.

To improve the analysis of code that uses functions or methods from nonstandard libraries, you can add
custom models that emulate these functions.

Tip

The most common and useful custom models are allocators/deallocators and killpaths (functions
that terminate execution). Resource leaks cannot be found without allocation models. If Coverity
Analysis does not find any resource leaks, you probably need to create allocation models for every
function that behaves as an allocator and deallocator.

If Coverity Analysis generates many false positives, it might mean that there are missing killpath
models. For more information, see Adding a Killpath to a Function to Abort Execution in the
Coverity 2020.12 Checker Reference.

1.4.6.2.2. Using models to tune the interprocedural analysis

For its cross-procedure source code analysis, Coverity Analysis infers a model of each function, whether
from the actual source code or from a handwritten model. The engine automatically detects those cases
where a constant is returned, a variable holding a constant is returned, or a comparison between the
return code and a constant indicates the return value.

If the contextual behavior involves operations that are more complex than assignments to constants,
comparisons with constants, and simple arithmetic, Coverity Analysis might not correctly infer the abstract
behavior of the function or method without additional assistance. In such a case, it is necessary to create
models that provide directions to Coverity Analysis.

Examples: C/C++ interprocedural contexts detected by the Coverity Analysis analysis

• In the following example, Coverity Analysis automatically infers that this function returns 0 when
memory is not allocated.

// Basic return value dependence:
void* malloc(size_t sz)
{
 void* allocated_ptr;
 if (<detect out of memory condition>) {
 return 0;
 }
 allocated_ptr = <get pointer from Operating System>;

22

cov_checker_ref.pdf#killpath

Coverity analyses

 return allocated_ptr;
}

• In the following function, ptr is only dereferenced when flag is equal to 9. In general, whenever
Coverity Analysis sees a constant directly or can, through assignments or comparisons, determine that
a variable is compared against a constant, it will note the constant and the comparison type (equal to,
not equal to, less than, or greater than) in the function's behavioral model.

// Basic argument dependency
void dereference_pointer(int* ptr, int flag)
{
 if (flag == 9)
 *ptr = 9;
 return;
}

Coverity Analysis does not track context based on the value of global or static, file-scope variables.
It makes very conservative assumptions about when those variables can be modified, rendering their
analysis relatively ineffective. If the behavior of a function contextually depends on a global variable's
value, it is best to conservatively model that function. For example, if you're modeling a deallocation
function, then make that function always deallocate the supplied pointer regardless of the global
variable's value. This eliminates the numerous false positives that function may produce. While it will
also eliminate bugs due to incorrect usage of that function, the tradeoff between bugs and false positives
favors the conservative solution.

Note

To avoid unexpected results, do not move derived model files from one platform to another.

1.4.6.3. Using Coverity Analysis configuration files in the analysis

As discussed in Section 1.4.1, “The configuration”, the cov-configure command generates a
compiler configuration file. Though not typically recommended without the help of Coverity support
(software-integrity-support@synopsys.com), you can modify the file in following ways to
support your analyses:

Using the <include> tag set to include additional configuration files

• You might do so to partition your configuration by organization, project, individual, or other
classification. For information about this tag set, see Section 1.4.1, “The configuration”.

Specifying command line options

• You can specify Coverity Analysis command line options explicitly on the command line or through
one or more XML-based configuration files. See Section 1.4.6.3.2, “Specifying command line options
in the configuration file”. Coverity Analysis searches for coverity_config.xml in all configuration
directories that are specified in the <include> tags. See Section 1.4.6.3.2.2, “Using the prevent tag to
specify directories and emit options”.

Specifying Coverity Analysis directories and emit options

23

Coverity analyses

• You can specify the temporary and intermediate directory and emit options (for example, to cov-emit
and cov-emit-java)) within the <prevent> tag set. For details, see Section 1.4.6.3.2.2, “Using the
prevent tag to specify directories and emit options”.

Specifying options used to commit analysis results to Coverity Connect

• You can specify options to cov-commit-defects within the <commit> tag set. The tags go in the
master configuration file. For details, see Section 1.4.6.3.2.1, “Using the <cim> tag to specify commit
options”.

Changing the name and/or location of coverity_config.xml

• By default, Coverity Analysis creates coverity_config.xml file in the following location:
<install_dir>/config. If you need to change the file name or location, see Section 1.4.6.3.1,
“Using alternative configuration file names and directories”.

Note that if you modify configuration files in ways that violate the DTD description (found in
coverity_config.dtd), most Coverity Analysis commands will issue a warning.

Also note that COVLKTMPDIR and environment variable names starting with COV_ or COVERITY are
reserved. Users should not set them unless directed to do so by Coverity support staff.

1.4.6.3.1. Using alternative configuration file names and directories

If you install Coverity Analysis in a read-only location, Coverity Analysis will not be able to use the
<install_dir>/config directory. To specify an alternative configuration file directory (or configuration
file name), you can use the --config option to the cov-configure command. For example:

> cov-configure --config /var/coverity/config/coverity_config.xml \
 --comptype gcc --compiler gcc

You need to be able to create sub-directories relative to the directory that contains
coverity_config.xml.

To use an alternative name for the configuration file (for example, coverity_foobar.xml) and then
use that file name for each step in the analysis, you need to complete one of the following tasks:

• Use the --config option when running Coverity Analysis commands.

• If recommended by Coverity support, set the COVERITY_CONFIG environment variable to point to the
directory that contains the configuration file.

• Move coverity_config.xml and any other directories generated by the configuration to
~/.coverity. (Note that this is a local configuration that applies only to you.)

Note

If you need to move the configuration after it is generated, you must move the entire configuration
file directory and all of its sub-directories.

1.4.6.3.2. Specifying command line options in the configuration file

24

Coverity analyses

Instead of passing command line options to Coverity Analysis on the command line, it is possible to pass
command line options to Coverity Analysis through a Coverity Analysis configuration file. However, note
that the options that you specify on the command line take precedence over those that you specify in a
configuration file.

Coverity Analysis commands point to a Coverity Analysis configuration file by using the following
command line option:

--config <path/to/XML/config/file>

A number of Coverity Analysis commands (including cov-configure, cov-build, cov-analyze,
cov-commit, and cov-make-library) support this option. For others, check Coverity 2020.12
Command Reference .

To construct the option tags in the configuration file, refer to the following general rules:

1.4.6.3.2.1. Using the <cim> tag to specify commit options

You use the cov-commit-defects command to send analysis results to Coverity Connect. You can
use its --config option to pass many Coverity Connect-specific options that are specified in the master
configuration file (typically, coverity_config.xml). Note, however, that if the same option is specified
both on the command line and in an XML configuration file, the command line takes precedence.

Note

For an example of the master configuration file, see Section 1.4.1, “The configuration”.

The following <cim> tags are available. The <cim> tag is nested under the <coverity> and <config>
elements (see example [p. 26]).

Table 1.4.2. Options under the <cim> tag in coverity_config.xml

Tag Description Equivalent cov-commit-
defects option

<certs/> Set of CA certificates specified
in the given filename
that are in addition to CA
certificates obtained from other
trust stores. A child of the
<client_security> tag.

--certs <filename>

<host/> Name of the Coverity Connect
server host to which you are
sending the results of the
analysis. Used along with the
<port> tag. A child of the <cim>
tag.

--host <server_name>

<password/> The password for the
user specified with the
<user> tag. A child of the
<client_security> tag.

--password <password>

25

cov_command_ref.pdf
cov_command_ref.pdf

Coverity analyses

Tag Description Equivalent cov-commit-
defects option

If you put your password into this
file, consider taking precautions
to set the file permissions so that
it is readable only by you.

<port/> The HTTP port on the Coverity
Connect host. Used along with
the <host> tag. A child of the
<cim> tag.

• <cim>/<port> is equivalent
to --port

• <cim>/<commit>/<port> is
equivalent to --dataport

--port <port_number>

<user/> The user name that is shown
in Coverity Connect as having
committed the analysis
results (in a Coverity Connect
snapshot). A child of the
<client_security> tag.

--user <user_name>

<source-stream/> The Coverity Connect stream
name into which you intend to
commit these defects. A child of
the <commit> tag.

The stream must exist in Coverity
Connect before you can commit
data to it.

--stream <stream_name>

<ssl/> Indicator that SSL is to be used
for both HTTPS port and dataport
connections. A child of the
<client_security> tag.

--ssl

The following example shows how to use the tags described in Table 1.4.2, “Options under the cim tag in
coverity_config.xml”:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE coverity SYSTEM "coverity_config.dtd">
<coverity>
 <cit_version>1</cit_version>
 <config>
 <cim>
 <host>cim.company.com</host>
 <port>8443</port>
 <client_security>
 <user>admin</user>

26

Coverity analyses

 <password>1256</password>
 <ssl>yes</ssl>
 <certs>/path/to/.certs</certs>
 </client_security>
 <commit>
 <source-stream>myStream</source-stream>
 </commit>
 </cim>
 </config>
</coverity>

1.4.6.3.2.2. Using the <prevent> tag to specify directories and emit options

You can use the <coverity><config><prevent> tag to specify directories and certain build options
in the configuration file instead of specifying them on the command line. Options that are specific to
the build process reside under the <emit_options> tag. Table 1.4.3, “Options under the prevent tag
in coverity_config.xml” describes some common configuration options and the equivalent command
line option for each. If an option is specified both on the command line to a command and also in
coverity_config.xml, the command line takes precedence.

Table 1.4.3. Options under the <prevent> tag in coverity_config.xml

Tag Description Overriding command line
option

<tmp_dir> The directory in which to place
temporary files.

tmpdir <dir>

-t <dir>

<dir> The top-level directory that
Coverity Analysis uses to
determine the emit and output
directories.

dir <dir>

The tags described in Table 1.4.3, “Options under the prevent tag in coverity_config.xml” require a
matching closing tag.

Note

For cov-analyze, only the following XML tags are supported:

• <tmp_dir>

• <dir>

Note

It is important to keep tags and their values on the same line. For example:

<tmp_dir>/home/user/tmp/data</tmp_dir>

Using line breaks (as shown in the following example) can create pathnames with unintended
characters (such as carriage returns) or cause other problems.

27

Coverity analyses

<tmp_dir>/home/user/tmp/
data</tmp_dir>

1.4.6.4. Changing a configuration for a compiler

If you have already configured a particular compiler, you cannot create a new configuration for that
compiler by re-invoking cov-configure. When you invoke cov-configure, Coverity Analysis simply
inserts the <include> directive that references a new compiler configuration file below any other
<include> directives that are already in the file. When you invoke cov-build, Coverity Analysis
uses the first configuration it finds that matches the compiler you specify. So the existing configuration
(which precedes the new configuration) always takes precedence over the new configuration of the same
compiler.

The following example shows a master configuration file. The file includes other
coverity_config.xml files that are configured for the compilers that belong to the gcc and g++
compiler types:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE coverity SYSTEM "coverity_config.dtd">
<coverity>
<!-- Coverity Version Information -->
<cit_version>1</cit_version>
<config>
<include>$CONFIGDIR$/template-gcc-config-0/coverity_config.xml</include>
<include>$CONFIGDIR$/template-g++-config-0/coverity_config.xml</include>
</config>
</coverity>

In the example, the configuration file references compiler-specific configuration files through
relative paths of the following form: $CONFIGDIR$/<comptype>-config-<number>/
coverity_config.xml, where $CONFIGDIR$ is expanded to the absolute path name of the directory
that contains the top-level configuration file, <comptype> is the compiler type specified by cov-
configure, and <number> is a numerical designation used to separate multiple compilers of the same
type.

If you need to change an existing compiler configuration (for example, because the current one does not
work), you can delete it. For example, if you ran cov-configure --compiler cl --comptype gcc
and wanted to remove the erroneous cl as GCC configuration, you could run one of the following to
remove those configurations:

cov-configure --delete-compiler-config gcc-config-0

cov-configure --delete-compiler-config g++-config-0

Once the configuration works correctly in a local directory, you can run cov-configure once more
without --config to create the configuration. Be sure to save the exact cov-configure command that
worked and any additional customization, just as you would save any essential source code.

Sample commands using a test configuration file:

> cov-configure --config cfg/test-cfg.xml --gcc

28

Coverity analyses

> cov-build --config cfg/test-cfg.xml --dir intdir gcc hello.c

29

Part 2. Analyzing source code from the command line
Coverity Analysis can analyze applications that are written in a number of programming languages (see
Chapter 1.3, Language Support).

After installing and deploying Coverity Analysis, you can run an analysis and commit a snapshot of
the resulting defects to Coverity Connect. This section covers post-installation procedures. For more
information about deployment and analysis options for a production environment, see Part 1, “Overview”.

Chapter 2.1. 1Getting started with Coverity analyses
This section provides common steps (configure, build, analyze, commit) for running analyses from the
command line. Alternatively, you can run analyses with the GUI-based Coverity Wizard application (see
Coverity Wizard 2020.12 User Guide for details), which uses commands described in this section.

Note

For information about compatibility between different versions of Coverity Connect and Coverity
Analysis, see the section, "Compatibility between Coverity product components" in the Coverity
2020.12 Installation and Deployment Guide.

For more information about the steps presented here, see Chapter 1.4, Coverity analyses. For analysis
tasks that are outside the scope of this section, see Chapter 2.6, Using advanced analysis techniques.

To get started from the command line:

1. Complete the prerequisites to this procedure.

See Prerequisites to completing an analysis.

2. [Onetime step [p. 33]] Generate a configuration for your compiler or your scripting
language.

Note

This step is not required if you are using buildless capture.

Run the cov-configure command with the appropriate option.

Note that you need to run the command separately for each compiler or scripting language that
applies.

Table 2.1.1. Commonly used options to cov-configurea

Language Configuration Option

C/C++ (for GNU GCC and G++)b --gcc

CUDA --cuda (for all CUDA compilers)

Go --go

Java build capture (for java, javac,
javaw, apt) and JSPs

--java

Java filesystem capture and JSPs --javafs

JavaScript --javascript

Kotlin --kotlin

Microsoft C and C++ (for cl.exe) --msvc

For Java analyses of Android applications, see

31

cov_wizard_usage_guide.pdf
cov_command_ref.pdf#cov-configure

Getting started with Coverity analyses

Language Configuration Option

Microsoft C# (for csc.exe)c --cs

C, C++, Objective-C, and Objective-C+
+ (for clang and clang++)d

--clang

PHP --php

Python --python

Ruby --ruby

Scala --scala

Swift --swift

--swiftce

aTo create configuration for compilers that are not listed here and to understand configuration for a production environment,
see Chapter 2.7, Configuring compilers for Coverity Analysis.
bTo perform a configuration for gcc and g++, you can use the --gcc command option.

The console output for a successful configuration looks something like the following:

Generated coverity_config.xml at location
/my_install_dir/config/coverity_config.xml
Successfully generated configuration for the compilers: g++ gcc

cThe console output for a successful configuration for C# looks something like the following:

Generated coverity_config.xml at location
/my_install_dir/config/coverity_config.xml
Successfully generated configuration for the compilers: csc

dSee also, Section 2.7.3.19, “Clang compilers”
eWhen using xcodebuild, the -UseModernBuildSystem=NO option must be added to use Swiftc Driver. For additional
details, refer to the section "Building projects that use Xcode 10's new build system".

Note

On some Windows platforms, you might need to use Windows administrative privileges when
you run cov-configure.

Typically, you can set the administrative permission through an option in the right-click menu
of the executable for the command interpreter (for example, Cmd.exe or Cygwin) or Windows
Explorer.

Important!

• You must run cov-configure in exactly the same environment that you run your native
compiler. If you run the command without configuring the operating environment exactly as it is in
your native build environment, the configuration will be inaccurate. (Note that for C/C++ compilers,
this command invokes the native compiler to determine its built-in macro definitions and the
system include directories.)

32

Getting started with Coverity analyses

• Note that you typically run cov-configure only once per installation (or upgrade) and compiler
type or scripting language because the configuration process stores the configuration values for
the compiler in coverity_config.xml file. However, if you need to perform a reconfiguration
(for example, because the native compiler, build environment, or hardware changes), see
Section 1.4.6.4, “Changing a configuration for a compiler”.

3. Capture your source code into the intermediate directory.

From the source code directory, run the cov-build command:

• For compiled languages (build capture), including Java build capture:

> cov-build --dir <intermediate_directory> <BUILD_COMMAND>

• For scripts and interpreted code (filesystem capture), and Java filesystem capture:

> cov-build --dir <intermediate_directory> --no-command \
 --fs-capture-search <path/to/source/code>

If you are only performing a filesystem capture and not also performing a build capture, you need
to pass the --no-command command.

• For JavaScript filesystem capture: In addition to the guidelines for scripts and interpreted
code, Coverity also recommends that you create a list of files to capture, including the JavaScript
libraries (preferably non-minified versions) that you use, and pass that list to cov-build.

If you have both minified and non-minified versions of the same library in your source, you should
capture only the non-minified version. However, if only the minified version is available, you should
capture it. You can use --fs-capture options for this purpose. Although defects will be reported
in third party code when it is not minified, and those defects might not be actionable, supporting
evidence for defects in your code can only be shown in non-minified code. See also, Deployment
recommendations.

This example creates a list of files in a git repository, then passes it through --fs-capture-
list:

> git ls-files > scm_files.lst
> cov-build --dir <intermediate_directory> --no-command \
--fs-capture-list scm_files.lst

• For a combined source code capture (build and filesystem capture):

> cov-build --dir <intermediate_directory> \
 --fs-capture-search <path/to/source/code> <BUILD_COMMAND>

Builds of Android applications that are written in Java require the combined capture command if
the Java build capture is used.

Here is an example that uses --fs-capture-list:

> git ls-files > scm_files.lst

33

cov_command_ref.pdf#cov-build
https://build-sig.internal.synopsys.com/view/doc/job/DOC/job/doc-othello/lastSuccessfulBuild/artifact/build/release_covdocset/doc/en/cov_analysis_administration_guide.html#rec_fs_capture_deployment
https://build-sig.internal.synopsys.com/view/doc/job/DOC/job/doc-othello/lastSuccessfulBuild/artifact/build/release_covdocset/doc/en/cov_analysis_administration_guide.html#rec_fs_capture_deployment

Getting started with Coverity analyses

> cov-build --dir <intermediate_directory> --no-command \
 --fs-capture-list scm_files.lst <BUILD_COMMAND>

Note that the build command must be specified last.

• For buildless capture of C#, Java, JavaScript, TypeScript, PHP, Python, and Ruby:

This example captures all C#, Java, or JavaScript/TypeScript projects under a directory

> cov-capture --project-dir /path/to/my/projects
> cov-capture --project-dir C:\path\to\my\projects

This example captures all C#, Java, or JavaScript/TypeScript projects in a git repository:

> cov-capture --scm-url git@mygit.internal.company.com:myrepo.git

The examples use the following notation for values to command options:

• <BUILD_COMMAND> is the command you use to invoke your compiler (for example, gcc or
javac) on source code, such as Java and C++. For important recommendations, see the build
notes.

• <intermediate_directory> specifies a name that you designate for the directory that will
store an intermediate representation of the code base that you are building or emitting. The
command will create an intermediate directory with the name you specify if it does not exist
already. This directory can contain data for all the supported programming languages.

Note

A single invocation of cov-build can perform filesystem capture and build capture for all
applicable languages, including interpreted languages, such as JavaScript, PHP, Python, and
Ruby.

Table 2.1.2. Build and filesystem capture notes

Topic Notes

Java code capture
(including for
Android and Web
application security
analyses)

• For Java, if the Java build capture is used, the build command should compile all
class files. If you plan to analyze a Java EE, servlet-based application, the build
command should also package the Web Archive (WAR, .war) file (alternatively,
you can simply specify a directory with the unpacked contents of the WAR file
when you reach the next step in this procedure).

• For Java, if the filesystem capture is used, JSPs are (by default) also
captured. Java filesystem capture also enables the filesystem capture of
Java Android files that are needed by the analysis, including the manifest
(AndroidManifest.xml) and layout resource files.

• For Java analyses of Android applications, see Section 2.3.1, “Running a security
analysis on an Android mobile application”.

34

Getting started with Coverity analyses

Topic Notes
• Example that uses Ant:

> cov-build --dir /foo/xalan_j_2_7_0_analysis ant

This UNIX-based example assumes you have previously changed the directory to
a Xalan build directory that uses the standard Ant build.xml file.

• Using the cov-build command with Java requires a supported Sun/Oracle JDK.
For information about supported JDKs, see the Coverity 2020.12 Installation and
Deployment Guide.

• If you cannot use cov-build, see the procedure described in Section 2.6.3.1,
“Running an analysis without cov-build”.

ASP.NET Web
application capture

See Build capture (cov-build) notes for ASP.NET 4 and earlier.

ASP.NET Core
Web application
capture

See Build capture (cov-build) notes for ASP.NET Core 2.0 and later.

Interpreted
code base
capture (including
JavaScript,
Python, PHP, and
Ruby files)

For interpreted languages, see "Filesystem capture for interpreted languages" in
the cov-build documentation.

Non-ASCII code
capture

For C and C++ builds, if you are building non-ASCII code, you need to add the --
encoding <character_encoding> option to the cov-build command.

Builds on the IBM
AIX operating
system

AIX installations do not include the cov-build or commands. To complete the AIX
build and analysis tasks, see Section 3.3.2.8.5, “AIX”.

Cygwin If you intend to use Cygwin, see Section A.2, “Using Cygwin to invoke cov-build”.

Example: Building sample C code

• To analyze the sample C file (<install_dir>/doc/examples/test.c), type the following
command from the <install_dir>/doc/examples directory:

> cov-build --dir analysis_dir make test

For a successful build, the command-line output should look like the following:

gcc -c test.c -o test.out
1 C/C++ compilation units (100%) are ready for analysis

35

cov_deploy_install_guide.pdf
cov_deploy_install_guide.pdf
cov_command_ref.pdf#filesystem_capture_options
cov_command_ref.pdf#cov_build_encoding
cov_command_ref.pdf#cov_build_encoding

Getting started with Coverity analyses

The cov-build utility completed successfully.

The sample makefile uses the gcc compiler and works on UNIX-like systems or on Windows
with Cygwin. The intermediate data is stored in the <install_dir>/doc/examples/
analysis_dir directory.

Build log file: The log file that contains the cov-build command results is
<intermediate_directory>/build-log.txt.

4. For Java Web application security analyses with build capture only, emit all Web application
archives or directories.

Before analyzing a Java EE servlet-based Web application emitted using build capture, it is first
necessary to emit any non-source files, such as JavaServer Pages (JSPs) or those in a packaged
Web application archive. This is in addition to any compiled Java source that might have been
captured already. Additional defects can be reported based on these files.

Note

Unlike build capture, Java filesystem capture enables the capture of JSPs (by default),
therefore it would be redundant to manually emit any JSPs or archives.

Packaged and deployable Java Web applications might take the form of WAR or EAR archive files,
directories containing a WEB-INF/web.xml file (equivalent to an unpacked WAR file), or directories
containing a META-INF/application.xml file (equivalent to an unpacked EAR file).

If the build does not generate any WAR or EAR file but the project does contain JavaServer
Pages (JSPs), these can also be emitted using filesystem capture. See "Filesystem capture for
interpreted languages" in the cov-build documentation. If the JSPs are emitted as part of a
Web application archive, it is not necessary (and is redundant) to emit them using filesystem capture.

a. [Recommended] Prior to emitting the JSP files, you can pre-compile JSP files to ensure that the
JSP files will compile and that the classpath is specified appropriately.

b. If the previous step is successful, emit the JSPs in preparation for the analysis.

To capture a single Web application archive, use the following command:

> cov-emit-java --dir <intermediate_directory> \
 --webapp-archive path/to/archive_file_or_dir

For details about this command line, see the --webapp-archive option documentation.

Important!

You need to emit the JSP files so that the analysis can find and report issues it finds in
them. If these files are not present in the WAR file, false negatives will occur, particularly in
XSS defect reports.

36

cov_command_ref.pdf#filesystem_capture_options
cov_command_ref.pdf#filesystem_capture_options
cov_command_ref.pdf#option_webapp-archive_cov-emit-java

Getting started with Coverity analyses

It is also important to emit the original JSP source, even in cases where the build normally
pre-compiles the JSP files into classes and packages those into the WAR file.

The Web application archive or directory should not contain obfuscated classes.

To emit multiple WAR or EAR files, you can run cov-emit-java multiple times, use
multiple instances of the --webapp-archive command option, or use one of the
following command options: --findwars, --findwars-unpacked, --findears, or --
findears-unpacked.

If you run into issues at this stage, see the JSP-related troubleshooting information in Section 2.2.1,
“Running a security analysis on a Java Web application”.

5. Analyze the source code.

• Run the cov-analyze command to analyze the intermediate data:

> cov-analyze --dir <intermediate_directory> --strip-path <path/to/source/code>

• For Web application analyses, pass Web application options:

> cov-analyze --dir <intermediate_directory> --strip-path <path/to/source/code>
 \
 --webapp-security

For troubleshooting information and important details about Web application security analyses for
Java and ASP.NET, see Chapter 2.2, Running Web application security analyses.

• For Android applications that are written in Java, use the --android-security option. See
Section 2.3.1, “Running a security analysis on an Android mobile application”.

• If you intend to run JSHint analysis, see --enable-jshint in the Coverity 2020.12 Command
Reference. Otherwise, the JavaScript analysis does not require additional command options.

• If you intend to run a MISRA analysis, see Chapter 2.4, Running coding standard analyses.

By default, the cov-analyze command analyzes all code in the specified intermediate directory
through a single invocation of the cov-analyze command. The command runs a series of default
checkers. You can add or remove checkers from the analysis. For information about which checkers
are enabled by default and how to enable additional checkers, see Enabling and Disabling Checkers
in the Coverity 2020.12 Checker Reference.

Recommended

Coverity highly recommends using the --strip-path option with cov-analyze to specify
the root directory of the source code tree. This shortens paths that Coverity Connect displays.
It also allows your deployment to be more portable if you need to move it to a new machine in
the future.

37

cov_command_ref.pdf#cov-analyze
cov_command_ref.pdf#enable-jshint_option

Getting started with Coverity analyses

Using this option with cov-analyze (instead of cov-commit-defects, when you commit
the analysis results to Coverity Connect) can enhance end-to-end performance of the path
stripping process.

Example: Analyzing a sample build

• To analyze the sample intermediate data, enter the following command:

> cov-analyze --dir <install_dir>/doc/examples/analysis_dir --strip-path <path>

The cov-analyze command puts analysis results into the intermediate directory.

If you get a fatal No license found error when you attempt to run this command, you need to
make sure that license.dat was copied correctly to <install_dir>/bin.

To correct this issue, see .Setting up Coverity Analysis licensing.

Understanding the Analysis Summary Report

• The output of the cov-analyze command is an analysis summary report. Depending on your
platform, the following output might differ:

[Looking for translation units
|0----------25-----------50----------75---------100|
**
[STATUS] Computing links for 1 translation unit
|0----------25-----------50----------75---------100|
**
[STATUS] Computing virtual overrides
|0----------25-----------50----------75---------100|
**
[STATUS] Computing callgraph
|0----------25-----------50----------75---------100|
**
[STATUS] Topologically sorting 12 functions
|0----------25-----------50----------75---------100|
**
[STATUS] Computing node costs
|0----------25-----------50----------75---------100|
**
[STATUS] Starting analysis run
|0----------25-----------50----------75---------100|
**
2013-10-11 21:29:02 UTC - Calculating 34 cross-reference bundles...
|0----------25-----------50----------75---------100|
**
Analysis summary report:

Files analyzed : 1
Total LoC input to cov-analyze : 8584
Functions analyzed : 12

38

cov_deploy_install_guide.pdf#sa_license_config

Getting started with Coverity analyses

Paths analyzed : 49
Time taken by analysis : 00:00:02
Defect occurrences found : 18 Total
 1 DEADCODE
 1 FORWARD_NULL
 1 NEGATIVE_RETURNS
 1 OVERRUN
 7 RESOURCE_LEAK
 1 REVERSE_INULL
 1 REVERSE_NEGATIVE
 1 SIZECHECK
 1 SIZEOF_MISMATCH
 1 UNINIT
 1 UNUSED_VALUE
 1 USE_AFTER_FREE

The analysis summary report contains the following information:

• Files analyzed: The total number of files having classes/structs or functions requiring analysis
on this run of cov-analyze. Files that do not contain classes/structs or functions (such as a
header file with only macro definitions) are not reflected in this total.

• Total LoC input to cov-analyze: The total number of lines of code analyzed.

• Functions analyzed: The total number of functions actually requiring analysis or re-analysis. If
the count is 0, this output field is not displayed.

• Paths analyzed: The sum of paths traversed for all analyzed functions. (Note that there is some
complexity to the calculation that is used to produce this sum.)

• Time taken by analysis: The amount of time taken (in hours, minutes, and seconds) for the
analysis to complete.

• Defect occurrences found: The number of defect occurrences found by the analysis, followed
by a breakdown by checker. When the snapshot is committed to Coverity Connect, it merges
similar defects from a given stream into a single CID, so the number of CIDs will likely differ from
the number shown in the analysis summary.

A log file with information about the analysis is created in <intermediate_directory>/
output/analysis-log.txt

6. Commit the analysis results to a Coverity Connect stream.

Run cov-commit-defects to add the defect reports to the Coverity Connect database.

> cov-commit-defects --host <server_hostname> \
 --dataport <port_number> \
 --stream <stream_name> \
 --user admin --dir <intermediate_directory>

Example:

39

cov_command_ref.pdf#cov-commit-defects

Getting started with Coverity analyses

> cov-commit-defects --host coverity_server1 \
 --dataport 9090 --stream apache --dir apache_int_dir \
 --user admin --password 1256

A successful commit looks something like the following:

Connecting to server 10.9.9.99:9090
2013-10-11 23:47:49 UTC - Committing 34 file descriptions...
|0----------25-----------50----------75---------100|
**
2013-10-11 23:47:49 UTC - Committing 34 source files...
|0----------25-----------50----------75---------100|
**
2013-10-11 23:47:49 UTC - Calculating 34 cross-reference bundles...
|0----------25-----------50----------75---------100|
**
2013-10-11 23:47:50 UTC - Committing 34 cross-reference bundles...
|0----------25-----------50----------75---------100|
**
2013-10-11 23:47:51 UTC - Committing 12 functions...
|0----------25-----------50----------75---------100|
**
2013-10-11 23:47:51 UTC - Committing 12 defect files...
|0----------25-----------50----------75---------100|
**
2013-10-11 23:47:53 UTC - Committing 3 output files...
|0----------25-----------50----------75---------100|
**
New snapshot ID 10001 added.
Elapsed time: 00:00:05

• --dataport and --port: When you run cov-commit-defects, you have a choice of
specifying --dataport (the default is 9090) or --port (the default is 8080). The Coverity
Connect installer refers to the dataport as the commit port.

Note

If you are committing to a TLS/SSL-enabled instance of Coverity Connect, use the --
https-port option instead of --port. For more information, see Coverity 2020.12
Command Reference.

• --host: On a Linux OS, you must enter the full host and domain name or IP address for the --
host option, for example:

--host <server_hostname.domain.com>

• --stream: The <stream_name> value specifies an existing Coverity Connect stream (see
analysis prerequisites).

• <intermediate_directory> is the directory that contains the defect reports.

40

cov_command_ref.pdf
cov_command_ref.pdf

Getting started with Coverity analyses

7. View the resulting issues in Coverity Connect.

For an example, see "Managing Issues."

41

cov_platform_use_and_admin_guide.pdf#managing_issues

Chapter 2.2. Running Web application security analyses

Table of Contents
2.2.1. Running a security analysis on a Java Web application .. 42
2.2.2. Running a security analysis on an ASP.NET Web application ... 43

Coverity Analysis can find security vulnerabilities such as cross-site scripting (XSS) and SQL injection
in a wide variety of web applications. To enable web application security analysis, pass the --webapp-
security option to cov-analyze. See Software Issues and Impacts by Security Checker in the
Coverity 2020.12 Checker Reference for details on which kinds of vulnerabilities Coverity can find for
each programming language. For memory requirements and other prerequisites to the analysis, see
Prerequisites to completing an analysis.

This section adds recommendations and troubleshooting information to supplement the basic analysis
steps in Chapter 2.1, Getting started with Coverity analyses for some kinds of web applications.
Languages or environments that are not mentioned in this section do not require additional steps.

2.2.1. Running a security analysis on a Java Web application

You can perform a security analysis on Java Enterprise Edition (Java EE), servlet-based Web
applications. The workflow for the Java Web application security analysis mostly follows the typical
pattern. The main differences (detailed in Chapter 2.1, Getting started with Coverity analyses) follow:

• If you use Java build capture, you should use cov-emit-java to make the contents of any WAR or
EAR files available for analysis. If the project contains JSP files that are not packaged into a WAR or
EAR, filesystem capture can be used to emit the JSPs. Note that it is necessary to emit JSP files so
that Coverity Analysis can analyze them and report issues on them.

• Unlike Java build capture, both Java filesystem and buildless capture enable the capture of JSPs by
default, therefore manually emitting JSPs or archives would be redundant.

Troubleshooting failures to compile or emit JSP files

• Failure can occur because the dependencies are not available on the classpath. This issue can be
resolved by finding the dependencies and adding them to the classpath.

• Failure can occur because the JSP file is not valid and would never compile in any reasonable
application server. Such JSP files should be fixed, removed, or ignored depending on whether they
are needed.

Note that you can pre-compile JSP files as part of the build step to ensure that the JSP files will
compile and that the classpath is specified appropriately.

• Failure to emit can occur because the JSP file is a fragment and is only meant to be included as
part of another JSP. Coverity Analysis attempts to identify such JSPs and log the files it is unable
to emit.

42

cov_checker_ref.pdf#issues_by_checker

Running Web application security analyses

• If you encounter another sort of issue related to compiling or emitting JSP files, report it to
software-integrity-support@synopsys.com.

Troubleshooting Web application security analyses for Java: Using COVERITY_DA_BLACKLIST to
prevent certain fatal JRE errors

When Web application security checkers analyze Java code, cov-analyze runs a sanitizer fuzzer
to execute string manipulation code in your application. The sanitizer fuzzer runs in a JRE. If the
JRE crashes at the analysis step called Running dynamic analysis for Java Webapp
Security, followed by messages such as A fatal error has been detected by the
Java Runtime Environment or [WARNING] Failure in security DA, you can set the
COVERITY_DA_BLACKLIST environment variable to prevent the Coverity analysis from executing
the string manipulation code in your application that caused the problem.

The value of this variable should be a comma-separated list of prefixes, which you set to prevent
the direct loading of classes that start with any of those prefixes. For example, you might set the
following:

COVERITY_DA_BLACKLIST=com.acme.util,com.acme.text.util

2.2.2. Running a security analysis on an ASP.NET Web application

The security analysis of ASP.NET Web applications is capable of reporting defects in Razor view
templates (such as *.cshtml files) and WebForms (such as *.aspx files). In most cases, these files
are captured automatically by cov-build. If Web application template files are captured, the following
message will be displayed in your console output and in build-log.txt (see “Build log file”):

140 compiled C# template files captured:
 42 ascx files
 33 aspx files
 65 cshtml files

In cases where cov-build fails to capture the expected number of template files, please consult the
following sections.

2.2.2.1. Capturing an ASP.NET Core (2.0 or later) Web application

To include Web application template files in the analysis, cov-build must capture a compilation of
your Web applications that has View Precompilation enabled. Typically, View Precompilation is enabled
by default. However, if cov-build is failing to capture Razor template files, take care to ensure that
View Precompilation has not been disabled. This is most commonly controlled by the following MSBuild
properties:

• RazorCompileOnBuild

• RazorCompileOnPublish

• MvcRazorCompileOnBuild

43

Running Web application security analyses

• MvcRazorCompileOnPublish

2.2.2.2. Capturing an ASP.NET (4.0 or earlier) Web application

By default, cov-build attempts to find and emit any Web application template file (Razor and
WebForms) contained in the same folder or sub-folder of every project file (*.csproj or *.vbproj
file) that is being compiled. To properly emit template files, cov-build also relies on web.config
files being present in the directory that contains the project file. If the Web application being compiled
is not structured this way, the automatic capture of the template files might not capture all of the Web
application’s template files.

To manually include these files in the analysis, you should first disable the automatic capture of Web
application template files by passing the --disable-aspnetcompiler option to cov-build. Then,
cov-build must capture an invocation of Aspnet_compiler.exe on the published Web application.
Publishing the Web application and running Aspnet_compiler.exe might not be part of your source
build process. Following is an example command line for running Aspnet_compiler.exe:

Aspnet_compiler.exe -p C:\path\to\MyWebApplicationRoot -v root -d -f -c C:\path\to
\TargetDir

The physical path, specified with the -p option, should point to the Web-application root path—that is, the
directory the Web application was published to.

The virtual path, specified with the -v option, is required but does not affect the analysis.

The final command-line option, -c, names the output directory for the compiler outputs.

Note

Buildless capture (cov-capture) does not support ASP.NET Web applications. Buildless capture
only supports ASP.NET Core Web applications. Buildless capture only guarantees support for
ASP.NET Core Web applications built with .NET Core SDK version 2.0 through 2.2, though it might
also work with newer versions of the .NET Core SDK.

44

Chapter 2.3. Running mobile application security analyses

Table of Contents
2.3.1. Running a security analysis on an Android mobile application ... 45
2.3.2. Running a security analysis on an iOS mobile application (written in Swift) 46

2.3.1. Running a security analysis on an Android mobile application

You can perform a security analysis on Android applications that are written in Java and Kotlin. This
analysis runs the Android application security checkers. For details, see Security Checkers in the
Coverity 2020.12 Checker Reference.

The workflow for the Android application security analysis mostly follows the typical pattern (see
Chapter 2.1, Getting started with Coverity analyses for that pattern). The main differences are the
following:

2.3.1.1. For Java Android applications

• Run the cov-configure --java command to enable the build capture of Java Android source and
the filesystem capture of Android configuration files. (Note that Java filesystem capture can be used as
a fallback.)

• You need to pass --fs-capture-search to the cov-build command. Coverity captures Java
Android files that are needed by the analysis, including the manifest (AndroidManifest.xml) and
the layout resource files.

• You need to pass --android-security to the cov-analyze command.

2.3.1.2. For Kotlin Android applications

• Run the cov-configure --kotlin command to enable the build capture of Kotlin Android source
and the filesystem capture of Android configuration files.

• You need to pass --fs-capture-search to the cov-build command. Coverity captures Kotlin
Android files that are needed by the analysis, including the manifest (AndroidManifest.xml) and
the layout resource files.

• No special flags are needed for the cov-analyze command, because Kotlin checkers are enabled by
default.

2.3.1.3. For hybrid (Java and Kotlin) Android applications

• Run the cov-configure --java command and the cov-configure --kotlin command to
enable the build capture of both Java and Kotlin Android source and the filesystem capture of Android
configuration files. (Note that filesystem capture can be used as a fallback only for Java.)

45

cov_checker_ref.pdf#security_checker_overview
cov_command_ref.pdf#cov-configure
cov_command_ref.pdf#cov-build
cov_command_ref.pdf#cov-analyze
cov_command_ref.pdf#cov-configure
cov_command_ref.pdf#cov-build

Running mobile application security analyses

• You need to pass --fs-capture-search to the cov-build command. Coverity captures Java and
Kotlin Android files that are needed by the analysis, including the manifest (AndroidManifest.xml)
and the layout resource files.

• You need to pass --android-security to the cov-analyze command.

Note

Java and Kotlin source code are analyzed separately.

2.3.2. Running a security analysis on an iOS mobile application
(written in Swift)

Coverity can perform a security analysis of iOS applications that are written in Swift.

Use the cov-configure --swift command to enable the build capture of Swift source code, as well
as the filesystem capture of important configuration files. Filesystem capture is strongly recommended
when emitting any important configuration files (such as property list files and project files). For more
information about Swift build capture, see the cov-build command.

The cov-analyze command does not require any additional command line options to enable Swift
security analyses. The Swift iOS security checkers are enabled by default. For details on the checkers
and defects that are found, see the Swift checkers in the Coverity 2020.12 Checker Reference

The security analysis workflow follows the typical Coverity analyses workflow. (See Chapter 2.1, Getting
started with Coverity analyses .) .

46

cov_command_ref.pdf#cov-build
cov_command_ref.pdf#cov-analyze
cov_command_ref.pdf#cov-build
cov_checker_ref.pdf

Chapter 2.4. Running coding standard analyses

Table of Contents
2.4.1. Coding standard analysis guidelines .. 47

Coverity Analysis enables you to run code analyses using the supported coding standards listed in
Table 1.3.1, “Support by Language”.

You can run multiple coding standards analyses in a single run.

HIS metric analysis is available when running any of the supported MISRA C or C++ coding standards.
However, it is not possible to specify multiple HIS configurations in a single analysis run. If multiple
configurations are specified, the last one on the command line is used.

For each analysis run, only one configuration can be specified per coding standard. You can use the
same intermediate directory for coding standards analyses as you do for regular builds, commits, and
other types of analysis.

The coding standard analysis works on files with the following file extensions:

.C, .c, .cc, .cpp, .cu, .cxx, .h, .hh, .hpp, .hxx, .ipp, .java

The coding standard analysis workflow follows the typical pattern described in Chapter 2.1, Getting
started with Coverity analyses . The main difference is the use of the --coding-standard-config
option:

To run the coding standard analysis for C/C++, you must pass the --coding-standard-config
option to cov-analyze.

--coding-standard-config [Required]

This option is described in the Coverity 2020.12 Command Reference .

2.4.1. Coding standard analysis guidelines

To avoid problems, follow these guidelines in running coding standard analyses:

• If you want to run both coding-standard and non-coding-standard analysis on the same source, we
recommend that you perform separate analyses that you commit to separate streams. Follow these
steps:

1. Run cov-build once.

2. Run cov-analyze and cov-commit-defects for the non-coding-standard analysis.

3. Run cov-analyze again with the --force option for the coding standard analysis, followed by
cov-commit-defects to the coding standard stream.

47

cov_command_ref.pdf#option_codingstandard-config
cov_command_ref.pdf

Running coding standard analyses

• For coding standard analysis only, use the --emit-complementary-info option to the cov-
build command. Othewise, cov-analyze will silently run the build again to capture the additional
information it needs.

• Coding standard analysis can report an overwhelming number of issues. We recommend you apply
Mandatory rules first, then apply Required rules, and then Advisory rules. These categories and the
rules are listed in one of the following directories:

• <install_dir>/config/coding-standards/misrac2004

• <install_dir>/config/coding-standards/misrac2012

• <install_dir>/config/coding-standards/misracpp2008

• <install_dir>/config/coding-standards/autosarcpp14

• <install_dir>/config/coding-standards/cert-c

• <install_dir>/config/coding-standards/cert-cpp

• <install_dir>/config/coding-standards/cert-c-recommendation

• <install_dir>/config/coding-standards/cert-java

• <install_dir>/config/coding-standards/iso-ts17961

48

Chapter 2.5. Running Fortran Syntax Analysis

Coverity Fortran Syntax Analysis provides Fortran syntax analysis and portability checking. It can emulate
the parsing behavior of many current and legacy compilers. In addition, it can verify compliance of the
source code with supported Fortran language standards.

Fortran syntax analysis is a standalone tool that performs the file capture and analysis in one
step. Source files to be analyzed, include paths and symbol definitions must be listed on the cov-
run-fortran command line. The analysis expands INCLUDE statements and performs limited C
preprocessor cpp emulation to interpret the sources.

Note:

Fortran Syntax Analysis will attempt to analyze all of the files listed as sources on the command
line. Only valid Fortran sources should be listed.

Note:

Fortran Syntax Analysis is sensitive to the compiler emulation and language level chosen. Make
sure to select these appropriately. Valid syntax may be flagged as invalid if either the free-form -ff
option or fixed-form -nff option is specified incorrectly.

Once the Fortran Syntax Analysis has completed, the results can be uploaded to Coverity Connect, using
the cov-commit-defects command.

For more information, see the cov-run-fortran command entry in the Coverity 2020.12 Command
Reference. .

Fortran analysis workflow example

• Analyze all files in the current working directory:

> cov-run-fortran --dir=idir --vendor=intel --version=14 -- *.f
> cov-commit-defects --dir=idir ...

49

cov_command_ref.pdf
cov_command_ref.pdf

Chapter 2.6. Using advanced analysis techniques

Table of Contents
2.6.1. Incremental, parallel, and desktop analysis .. 50
2.6.2. Using cov-analyze options to tune the analysis .. 53
2.6.3. Using advanced analysis techniques ... 53

This section describes general analysis techniques for improving performance.

2.6.1. Incremental, parallel, and desktop analysis

This section describes three analysis modes that you can use to improve performance. For best results,
you should be familiar with how these modes work and how they affect Coverity performance:

• Incremental analysis speeds up analysis by relying on data stored in the intermediate directory from
previous analyses.

• Parallel analysis spawns a number of analysis worker processes to carry out the analyses in parallel.
The number of workers you can use is related to the number of CPUs and available RAM.

• Desktop analysis produces a fast desktop or IDE-based analysis. Results might differ slightly from a
full analysis because only changed files are analyzed.

2.6.1.1. Incremental analysis

By default, cov-analyze caches build and analysis results in the intermediate directory. Once you
create an intermediate directory with cov-build and analyze it with cov-analyze, you can speed up
subsequent build and analysis using incremental analysis mode.

To use incremental analysis mode:

1. Pass your analyzed intermediate directory to subsequent cov-build runs on the same code base.

2. Run cov-analyze on this same intermediate directory with the same command-line options as your
previous cov-analyze run.

As long as you reuse your intermediate directory in this way, cov-build and cov-analyze
automatically run in incremental mode. In this mode, cov-build only re-emits files that have changed
since your last cov-build. Likewise, cov-analyze is able to reuse some of its work on the files and
functions that have not changed since the previous cov-analyze run. Incremental mode is often faster
than a build and analysis using a fresh intermediate directory.

Incremental analysis always produces the same analysis results as building and analyzing the same code
from scratch with a fresh intermediate directory.

Note

Not all Coverity checkers speed up in incremental mode. Many Java, C#, and Visual Basic
checkers enabled by --webapp-security or --android-security do not run any faster in
incremental mode.

50

Using advanced analysis techniques

Caution

Be aware that when you run in incremental mode, the build and analysis cannot tell when you’ve
deleted a file or removed it from your build. Rather, it appears to cov-analyze as if you haven’t
recompiled or re-emitted the file and that it should use the version it has cached. Therefore, if you
do use incremental mode, it’s a good idea to periodically start from scratch with a fresh intermediate
directory—particularly if you’ve moved or deleted files from your source tree or build.

2.6.1.2. Parallel analysis

By default, cov-analyze takes advantage of extra CPU cores to speed up analysis. It spawns a number
of analysis worker processes according to the number of CPU cores and the amount of physical memory
on the machine. Because each worker requires a certain amount of RAM, cov-analyze only spawns
workers when there is enough RAM to support them.

Important

Prior to running a parallel analysis, make sure that you have the appropriate hardware and
enough free memory for each worker that you start. For details, see the Coverity Analysis memory
requirements listed in the Coverity 2020.12 Installation and Deployment Guide.

There might be times when you need to adjust the number of workers: for example, because cov-
analyze runs on a shared machine that also runs other jobs. You can use the cov-analyze command
with the --jobs option set to the number of workers that you want to run.

For example, the following command starts six workers:

> cov-analyze --dir my_intermediate_dir --jobs 6

The following guidelines provide scalability recommendations for different languages and platforms:

• Scalability of a combined C and C++ analysis on Linux (64-bit) and Windows (64-bit) operating
systems:

• Typically, running eight workers yields about a 4x increase in speed over running one worker.

• Typically, running three workers yields a 2.5x increase in the overall speed of the analysis.

• Running more than eight workers might not decrease the overall analysis time significantly.

• Scalability of C# analysis on Windows (64-bit) operating systems:

• Typically, running four workers on C# code yields about a 2.5x increase in speed over running one
worker.

• Typically, running two workers on C# code yields a 1.75x increase in the overall speed of the
analysis.

• Running more than four workers on C# code might not decrease the overall analysis time
significantly.

51

cov_deploy_install_guide.pdf#sa_memory_requirements

Using advanced analysis techniques

• Scalability of combined C, C++, and C# analysis

The time for a combined analysis of C, C++, and C# code is close to the time to analyze one after the
other with the same settings, but combined analysis usually shows a small advantage when four or
more workers are used.

2.6.1.3. Desktop analysis

Desktop analysis is a mode of operation that relies on the results of a previous full analysis. You run
desktop analysis using the cov-run-desktop command or your IDE rather than using cov-analyze;
desktop analysis runs very quickly because it only re-analyzes the set of files that have changed since
the last central analysis rather than your entire code base.

Unlike incremental analysis, desktop analysis is not guaranteed to produce exactly the same results
as a full analysis from scratch. Many checkers report close to the same results. But some checkers are
disabled because they only work well with full analysis. Therefore do not assume that a defect that does
not show up in desktop analysis was actually fixed.

Fast desktop mode is especially useful for CI/CD deployments, as described in the next section.

2.6.1.4. Running analysis as part of a CI/CD pipeline

Deploying Coverity analysis to a continuous integration / continuous delivery (CI/CD) pipeline involves
many trade-offs that must balance analysis speed versus thoroughness of coverage, and which issues
you do or do not want to stop your pipeline.

These are complex topics, and they are largely beyond the scope of this document. However, as a
starting point, consider a deployment that includes at least the first two of the following types of jobs:

1. An incremental build and analysis job that runs continuously in the background, and that uploads
scan summaries to Coverity Platform. This setup matches the Desktop use case.

If this job finds any defects that the following job type (#2) misses, you can deal with those defects
without blocking delivery.

2. A continuous integration job that runs a cov-run-desktop analysis on whatever changed since
the last run. This job breaks the CI pipeline if any new defects are reported.

This job will run quickly because it relies on summaries from the previous job.

3. An incremental full build and analysis that doesn’t block your pipeline but that runs a
comprehensive set of checkers.

As with the incremental job, #1, you can deal with the results from job #3 without blocking delivery.

The incremental job, #1, enables the continuous integration job, #2. As a rule, job #2 should run at an
early stage of the CI/CD pipeline—for example, during the build phase or the early test phase.

Both job #1 and job #2 should run exactly the same analysis configuration: that is, the same set of
checkers using the same options. The client might choose this configuration so that analysis runs more
quickly, or so that the logic of when a pipeline might break is easy to follow.

52

Using advanced analysis techniques

For example, the following analysis hones in on code that is liable to be attacked:

cov-analyze --disable-default -en SQLI -en XSS

Job #3 is optional. A job of this kind does not have to run quickly. Instead, it can run a comprehensive set
of checkers in order to detect as many defects as possible. Unlike job #2, the comprehensive job #3 is
likely to run at a later point in the pipeline: for example, as a last step before deployment to the staging
location.

The following sample invocation, in contrast to the previous one, scans for a wide range of security
issues:

cov-analyze --webapp-security --distrust-database -en SQL_NOT_CONSTANT

2.6.2. Using cov-analyze options to tune the analysis

The cov-analyze command accepts several options that tune the analysis, affecting both the results
and the speed.

Table 2.6.1. Tuning options to cov-analyze

Option Effect on Speed Effect on Results

--enable-virtual The analysis can take
significantly longer for C++ code.
This option does not affect C or
C# code.

This option enables virtual call
resolution to more precisely
analyze calls to virtual functions,
which can increase the number of
defects reported.

--enable-constraint-fpp The analysis can take 10% to
20% longer.

This option uses a false-
path pruner (FPP) to perform
additional defect filtering. It
can increase the analysis time
but decrease the number of
false positives occurring along
infeasible paths. Because this
FPP uses an approximate
method for pruning false
positives, it is possible that a very
small number of true positives will
also be pruned.

2.6.3. Using advanced analysis techniques

This section concerns advanced build and analysis techniques.

2.6.3.1. Running an analysis without cov-build

Sometimes it is difficult or impossible to build a complete code project. In this case, you can still analyze
source code: As an alternative to using the cov-build command, you can first compile your source in
debug mode, using the standard compiler for the language in question (for example, javac or vbc). After

53

Using advanced analysis techniques

you compile, use the language-specific version of cov-emit (for example, cov-emit-java or cov-
emit-vb) to parse the source. Finally, run cov-analyze to complete the analysis.

1. Compile your code base using debug information.

Building in debug mode (for example, with the -g option to javac, or with the debug="true" Ant
compile task) allows Coverity Analysis to analyze the compiled code. In the standard analysis flow
(see Chapter 2.1, Getting started with Coverity analyses), the cov-build command automatically
runs the compiler in debug mode.

2. For each time you invoke the compiler, run the appropriate version of emit as well, using the --
compiler-outputs option. This captures a build of your source code to the intermediate directory.

Important

You must run the emit command on the same source and class files (those class files
specified in the classpath) on which you ran the compiler. The --compiler-outputs must
point either to all of the possible parent directories of the compiler outputs, or to a common
parent directory for all of the compiler outputs.

For example:

> cov-emit-java --findsource src \
 --findjars lib;build-lib/ --dir my/intermediate/dir \
 --compiler-outputs build/classes/;build/junitclasses/

Note

On Windows systems, the semicolons (;) shown in the example serve as path separators. On
Unix-style platforms (including macOS and Linux), the path separators should be colons (:).

For more detailed information about this command, see the cov-emit-java section.

3. Run cov-analyze.

For guidance, see Step 5 in Chapter 2.1, Getting started with Coverity analyses .

4. Commit the defect data to the Coverity Connect database.

For guidance, see Step 6 in Chapter 2.1, Getting started with Coverity analyses .

2.6.3.2. Adding custom models with cov-make-library

 You can use the cov-make-library command to create custom models for methods. Adding
models has two benefits: finding more bugs and eliminating false positives.

For example, to analyze Java source you might write a method that models a third-party resource
allocator, allowing Coverity Analysis to detect and report defects if that allocator is called incorrectly or
is misused. To add models, you would begin by coding the methods in Java. A model for analysis can
use library methods that are already defined; it can also use methods that are custom-coded by invoking
primitives (see Models and Annotations in Java for details) or using the library.

54

cov_command_ref.pdf#cov-emit-java
cov_command_ref.pdf#cov-make-library
cov_checker_ref.pdf#java_models_annotations

Using advanced analysis techniques

When analyzing C or C++ source code, you can take advantage of interprocedural analysis. This is
described in the section that follows, “Adding custom C and C++ models with the cov-make-library
command”.

2.6.3.3. Adding custom C and C++ models with the cov-make-library command

Coverity Analysis can run interprocedural analyses on the code base.

2.6.3.3.1. Prerequisites for interprocedural analysis

To run a thorough interprocedural analysis, one of the following must be present:

• Code in the intermediate directory that is undergoing analysis.

• A user-defined model. See Section 1.4.6.2, “Using custom models to improve analysis results”.

• Models derived from a preceding analysis. See Section 2.6.3.4, “Running analyses that use derived
models for C and C++ source code”.

2.6.3.3.2. Using cov-make-library

 You can use the cov-make-library command to add custom models to Coverity Analysis. See
"Writing a Model: Finding New Defects" more information about modeling a specific behavior.

The cov-make-library command behaves as follows:

• Uses mangled function names for C++ models, but not for C models.

• Uses a C++ extension for C++ models: .cpp, .cc, or .cxx.

Note

Typically, cov-make-library expects header (.h) files to reside in same directory as the source
files that use them. If headers or other files to include reside in a different directory, use the cov-
make-library --compiler-opt flag to specify additional include directories.

C++ programs use extern "C" semantics to declare C functions, and those semantics apply to
the library models as well. Because library files are parsed only (rather than compiled and built into
executables), you can use external references to undefined functions or types. Rather than relying on
linkage, the analysis uses function names to determine which models to use.

To create the model files, specify the following arguments to the cov-make-library command:

• (Required) The list of source files that contain the stub library functions

• (Optional) The computed model’s output file name from the -of <modulefile> option of the cov-
make-library command

55

cov_command_ref.pdf#cov-make-library
cov_checker_ref.pdf#writing_a_model

Using advanced analysis techniques

Note

If you do not specify the -of <modulefile> option, the output file goes into the default
location.

• (Optional) The path to the XML configuration file (-c <path/to/coverity_config.xml>)

Note

In most cases, the default specifications for configuration and output files work correctly.

For more examples, see the following sections that describe how to override and add specific models for
allocators and panic functions.

The cov-make-library command creates either the file user_models.xmldb or the output file that
you specified with the -of option to the cov-make-library command. If the output file already exists,
the most current output is appended to it. The following order of precedence determines the directory
where the model file gets created:

1. The -of option, if you specified it

2. <install_dir_sa>/config

The coverity_config.xml file contains an encoded version of the models. The analysis reads these
models and gives them precedence over other models. If there is a conflict, the models the user explicitly
specifies are always used. To indicate to cov-analyze that it should read the <user_file>.xmldb
file, specify it on the command line by using the --user-model-file option.

2.6.3.3.2.1. Determining which functions are analyzed and called

 Knowing which functions are unimplemented is useful for determining which functions to model. The
file <intermediate_directory>/output/callgraph-metrics.txt lists which functions are
implemented and unimplemented, and how many callers each function has. This file is generated when
you add the --enable-callgraph-metrics option to the cov-analyze command.

Coverity Analysis uses the build process to model and analyze functions, in one of the two following
ways:

• If the build process captures a function’s definition, the function is treated as though it is implemented,
and Coverity Analysis analyzes the function to build a model for it.

• Otherwise, the function is treated as though it is unimplemented, and does not not have an
explicit model (as specified by the --model-file option). In this case, Coverity Analysis
makes assumptions about the function in a way that avoids reporting false positives in callers—
unless Coverity Analysis has been configured not to do so; for example, by using the option -co
RESOURCE_LEAK:allow_unimpl.

Coverity Analysis provides a model library of common unimplemented functions such as malloc().

Coverity Analysis also tracks how many times functions, both implemented and unimplemented,
are called. This number is the total number of callers that call a function, both directly and indirectly

56

cov_command_ref.pdf#option_model-file_cov-find-function

Using advanced analysis techniques

(through one or more other functions). The number of callers for an unimplemented function is useful for
determining which functions are a high priority to model. Looking at the number of callers of implemented
functions can be useful as well for understanding the code base’s architecture.

To find out which functions are analyzed and called:

1. When you run the cov-analyze command, add the --enable-callgraph-metrics option.

2. When the analysis completes, open the file <intermediate_directory>/output/callgraph-
metrics.txt. This file lists each function as implemented or unimplemented. The number next to
each function is the total number of direct and indirect callers for that function.

3. To see which functions might be good candidates for modeling, look for unimplemented functions
that have a high number of callers.

The following table describes columns in the file that can help you determine which functions are
analyzed and called.

Table 2.6.2. Important Data in Callgraph Metrics Files (CSV format)

CSV Column Details

call_count Number of calls of the function (see unmangled_name for the name of the function).
Count is important for recursive (R) functions.

TU Indicates whether the function has been implemented.

TU = -1
Function is not implemented.

TU ≠ -1
Function is implemented.

For additional detail about the values, you can run the following command:

cov-manage-emit --dir <dir> -tu N list

qualifiers C
Compiler-generated function

V
Virtual function

R
Recursive function

T
Templated function

cycle_id Important for recursive (R) functions.

module Helps identify the source of the model information.

model_type Indicates whether a model for the function was found and whether it is a built-in or
user-created model.

57

Using advanced analysis techniques

CSV Column Details
No_Model

The function is not modeled.

User_Model
The function was modeled by a user.

Builtin_Model
The function was modeled by Coverity developers.

Collected_Model
The function model was specified through --derived-model-file.

model_file Provides the path to a model file if the function is modeled.

• For unmodeled function (where model_type is No_Model): None

• For function modeled by a user (where model_type is User_Model): Filepath to
model.xmldb

• For a built-in model (where model_type is Builtin_Model): Filepath to
builtin-models.db

2.6.3.3.2.2. Suppressing macro expansion to improve modeling

Complex macros sometimes cause Coverity Analysis to misinterpret parts of the code. Most commonly,
this issue occurs when a model of a library function, such as strcpy, is incorrectly defined as a macro
by the native compiler. In this case, it is necessary to suppress macro expansion so that Coverity
Analysis can identify the model as a function call.

Macro expansion can be suppressed by using the #nodef syntax of the Coverity compiler:

• #nodef macroname

This form can be used, for example, to convert a macro implementation of a standard C library function
into a function call:

#nodef strcpy

For a more complete example, see Figure 2.6.1, “A sample ‘user_nodefs.h’ file”.

• #nodef macroname value

This form is useful if you need to model a macro using a function name that differs from the name of
the macro, thereby preventing your model function from conflicting with another function that might
exist in your code base. For example:

#nodef strcpy model_strcpy
char *model_strcpy(char *, const char *);

Note that the function declaration can appear in this file or elsewhere.

58

Using advanced analysis techniques

• #nodef macroname(x,...) value

In addition to allowing for a different function name, this form allows you to model a macro (such as
#define my_assert(int) { ... }). For example:

#nodef my_assert(x) my_assert_model(x);
void my_assert_model(int x);

Then you can provide a model for my_assert_model.

The last two examples suppress the definition of a macro, while providing an alternative definition of the
macro. The alternative overrides all future definitions of the macro.

Note

A commented, but otherwise empty template is provided at:

<install_dir_sa>/config/user_nodefs.h

If you insert company-specific #nodef directives in this file, the cov-configure command
ensures that compilations with the Coverity Analysis compiler (which is invoked when you run cov-
build) will include the configuration directives in user_nodefs.h.

59

Using advanced analysis techniques

Figure 2.6.1. A sample ‘user_nodefs.h’ file

#nodef strpbrk
#nodef memset
#nodef strstr
#nodef free
#nodef snprintf
#nodef memcpy
#nodef gets
#nodef fgets
#nodef strcpy
#nodef setjmp
#nodef strdup
#nodef memcmp
#nodef strrchr
#nodef sigsetjmp
#nodef strcmp
#nodef vsprintf
#nodef puts
#nodef vprintf
#nodef strcpy
#nodef freopen
#nodef printf
#nodef vfprintf
#nodef fread
#nodef realloc
#nodef fclose
#nodef fopen
#nodef sprintf
#nodef vsnprintf
#nodef fprintf
#nodef strncmp
#nodef fwrite
#nodef malloc
#nodef strchr
#nodef calloc
#nodef KASSERT
#nodef assert
#nodef BUG
#nodef BUG_ON

2.6.3.3.2.3. Adding a prototype for a function

Suppressing macro expansion (see Section 2.6.3.3.2.2, “Suppressing macro expansion to improve
modeling”) might require an additional step of adding a prototype for the function if a function of the
same name is not declared; otherwise, the function cannot be called in C++, and in C will cause
PW.IMPLICIT_FUNC_DECL warnings. The prototype can be placed in user_nodefs.h so that only
Coverity Analysis builds will see the prototype instead of the macro.

To increase the accuracy of the analysis, you might want to create a model for a prototype and register it
with Coverity Analysis. For example, if you have a macro assertion such as:

60

Using advanced analysis techniques

#nodef my_assert
 void my_assert(int x);

... then you can create a model in a separate source file, such as:

void my_assert(int x) {
 if (!x)
 __coverity_panic__();
}

... and use the cov-make-library command to build a model from this source. For more information
about models, see chapter 5 of the Coverity 2020.12 Checker Reference. .

2.6.3.4. Running analyses that use derived models for C and C++ source code

Coverity Analysis performs interprocedural analyses that generate models of all the source code that is
analyzed. Because the source code that you are developing often calls functions in libraries and other
peripheral source that are unlikely to change much (if at all), it can be time-consuming and unnecessary
to reanalyze them. To help address this issue, Coverity Analysis allows you to use the models that were
derived from the original analysis of such code.

After building and completing an analysis of all source code (which includes source code that is
undergoing development and the libraries and other peripheral code that it uses), you can continue to re-
run the analysis on the source code that is undergoing development. However, instead of always running
the analysis directly on the source for the libraries and other peripheral code, you can make analysis use
the models that were derived from the analysis of the full code base.

To use derived models:

1. Generate a derived_models.xmldb file through the --output-file option to the cov-
collect-models command.

This is a one-time step to perform only after running an analysis of the full code base, including the
libraries and other peripheral code. You will need to repeat the remaining steps according to your
internal build and analysis schedule.

2. Pass the file to cov-analyze through the --derived-model-file option.

3. Rebuild only the portion of the code base that is undergoing development, omitting the peripheral
code bases.

You typically use cov-build for this step.

4. Reanalyze the build along with the derived models in derived_models.xmldb.

The derived_models.xmldb file is not read by default. When you invoke cov-analyze, specify
the .xmldb file by using the --derived_model_file option.

For each analyzed function call, the model in the derived_models.xmldb file for that function
is used only if there are no other matching user models (or any other models) that are undergoing
analysis in the current intermediate directory. When developers modify their source files,

61

cov_checker_ref.pdf#models

Using advanced analysis techniques

models will be automatically generated for the functions in that code, and any models in the
derived_models.xmldb file for those functions will be ignored because they are outdated.

There will be no links into the details for derived models.

62

Chapter 2.7. Configuring compilers for Coverity Analysis

Table of Contents
2.7.1. Generating a standard configuration .. 66
2.7.2. Generating a template configuration .. 67
2.7.3. Compiler-specific configurations .. 69
2.7.4. Using predefined macros for Coverity Analysis-specific compilations 77
2.7.5. Modifying preprocessor behavior to improve compatibility ... 78

Before configuring compilers for your production environment, answer several basic questions to
determine your system's configuration:

1. Do I know which compilers and their versions I am using in my build and does Coverity support them?

Unsupported compilers can cause incompatibilities when the Coverity compiler attempts to
parse your code. Support for additional compilers is based on a variety of factors including
customer need, the compiler's availability, and how many customers are using it. To
request that Coverity extend support to your compiler you can send an email request to
software-integrity-support@synopsys.com.

Use the following command to list the supported compiler types and the values that are used for
identifying them for compiler configurations:

> cov-configure --list-compiler-types

The following example shows a small portion of the output:

csc,csc,C#,FAMILY HEAD,Microsoft C# Compiler
g++,g++,CXX,SINGLE,GNU C++ compiler
gcc,gcc,C,FAMILY HEAD,GNU C compiler
java,java,JAVA,SINGLE,Oracle Java compiler (java)
javac,javac,JAVA,FAMILY HEAD,Oracle Java compiler (javac)
msvc,cl,C,FAMILY HEAD,Microsoft Visual Studio

In the example, csc is the value used to identify the compiler, and Microsoft C# Compiler is the
name of the supported compiler. More generally, the output contains compiler configuration values
for the --comptype and --compiler options and related information. Note that FAMILY HEAD
values are used to configure a related family of compilers (for example, gcc for GNU gcc and g++
compilers), while SINGLE values are for single-compiler configurations (for example, g++ for the GNU
g++ compiler only).

For support documentation, see supported compiler information in the Coverity 2020.12 Installation
and Deployment Guide.

2. Do I use the same compilers and the same versions each time I do a build?

If all of your builds are done on the same machine and in a controlled environment, the likely answer is
yes.

63

cov_deploy_install_guide.pdf#static_analysis_platform_support

Configuring compilers for Coverity Analysis

If your builds are done on many different machines with different compiler versions, then the answer
might be no.

If you use different versions of the same compiler that have different binary names (such as different
versions of GCC with binary names such as mips-gcc or arm-gcc, or gcc32 or gcc29), the answer
is no.

If you use different compilers each time, such as GCC 4 one time, armcc 3 the next time, the answer is
no.

3. How many different machines do I intend to install Coverity Analysis on? If more than one, are my
compilers installed at the same hard disk location on all of them? Do multiple machines use the same
set of configuration files?

4. Am I using ccache or distcc?

If you are using either of these tools, you sometimes need to use the --comptype prefix setting
when configuring Coverity Analysis for your compiler, as shown in the examples below. This setting
can help avoid unexpected defect reports.

ccache configuration

• If you use ccache (for example, with gcc), your cov-configure command line should specify the
following:

> cov-configure --comptype prefix --compiler ccache

> cov-configure --comptype gcc --compiler gcc

distcc configuration

• If ccache is set up to execute distcc (for example, through the CCACHE_PREFIX variable), it is
only necessary to configure the prefix for ccache.

• If your distcc installation uses the name of the underlying compiler (for example, gcc -c foo.c,
where gcc is really distcc), your cov-configure command line should specify the following:

> cov-configure --comptype <comptype_of_real_compiler> \
 --compiler <distcc_executable_name>

• If you are prepending distcc to compiler command lines (for example, distcc gcc -c foo.c),
your cov-configure command line should specify the following:

> cov-configure --comptype prefix --compiler distcc

> cov-configure --comptype <comptype_of_real_compiler> \
 --compiler <first_argument_to_distcc>

The first argument to distcc is the name of executable for the real compiler, for example, gcc.

64

Configuring compilers for Coverity Analysis

• If distcc is used directly as a compiler (for example, distcc -c foo.c), your command line
should specify the following:

> cov-configure --comptype <comptype_of_real_compiler> \
 --compiler distcc

The answers to questions 2 and 3 help to determine whether you should generate a template
configuration or a standard configuration. A template configuration is a general configuration file that
specifies the name of a compiler executable that is used in the build. The compiler's location and version
are determined during the build. A standard configuration file specifies the compiler's full path, thus hard-
coding it to a specific version. Before deciding which configuration type to use, consider each type's costs
and benefits.

Table 2.7.1. Comparing template and standard configuration types

Template configuration Standard configuration

You specify the compiler name, without the
compiler's full path. Only requires one command
to configure per compiler executable name, for
example, all gcc compiler versions.

You must run cov-configure for each build
compiler to configure its full path name.

Benefit— Makes the Coverity Analysis installation
faster and easier. You can move the configuration
across machines, without re-running the cov-
configure command, even when the compilers
are in different locations on different machines.

Cost— If compilers are in different locations on
different machines, you must use the template
configuration.

Cost— Configuring the compilers at build time
incurs a cost each time a new compiler is
encountered during the build. When using cov-
build, that cost is only incurred once for each
unique compiler in the build. When using cov-
translate without cov-build, that cost is
incurred on every single invocation of the Coverity
compiler.

Benefit— All of the configuration is done once
before any builds are invoked. There is no
configuration cost each time a build is invoked.

Cost— In a build that has multiple versions of a
single compiler (for example, multiple versions
of gcc used in a single build), if one of those
versions of gcc allows a source code construct that
is incompatible with cov-emit, it is much more
complex to add a configuration targeted to a single
compiler version to resolve the issue.

Benefit— Each unique compiler configuration is
generated in a separate configuration file. If a
modification is required to improve compatibility
with a single compiler version, there is a unique
file and location available for making the required
modifications.

We recommend template configurations for the following compilers: gcc, g++, qnx, tmcc, Tensilica
Xtensa, Green Hills, and MetaWare. For information about creating template configurations, see
Section 2.7.2, “Generating a template configuration”.

65

Configuring compilers for Coverity Analysis

Note

A compiler configuration might be platform-specific. For example, if you configure a gcc or g++
compiler on a 32-bit system, you cannot use it for a build on a 64-bit system. Also, if you change
a compiler's default options after configuring it, or install a different version of the compiler, its
behavior might change and invalidate the configuration that you created earlier. Make sure that the
compiler that you configure exactly matches the compiler that your build uses.

2.7.1. Generating a standard configuration

Each standard configuration that is generated configures one specific compiler installation on the system.
Unlike a template configuration, which specifies the executables configured at build time, a standard
configuration is a completed configuration file that specifies exactly how cov-translate and cov-
emit are fully compatible with your native build's compilers. Since most common compiler types are
hard-coded into the cov-configure command, specifying the compiler executable name usually
provides enough information for cov-configure to determine the compiler's vendor, and whether the
vendor's installation package includes other compiler executables.

The following table shows sample cov-configure commands for known compilers where the
correspondence between executable name, vendor, and installation package is understood. You do not
need to specify the full path if the compiler executable's location is included in the PATH environment
variable. Before running these commands, see Section 2.7.3, “Compiler-specific configurations” to make
sure your compiler does not require additional instructions to successfully generate its configuration.

Table 2.7.2. Configuration commands with standard compiler names

Issued command Compiler description

cov-configure --compiler <full/path/
to>/gcc

GNU compilers

cov-configure --compiler <full/path/
to>/armcc

ARM/Thumb compilers

cov-configure --compiler <full/path/
to>/dcc

Wind River compiler (formerly Diab)

cov-configure --compiler <full/path/
to>/icc

Intel compiler for x86

cov-configure --compiler <full/path/
to>/cl

Microsoft Visual C and C++ compilers

cov-configure --compiler <full/path/
to>/cc

Sun Forte C and C++ compilers

cov-configure --compiler <full/path/
to>/cl470

TI Code Composer Studio C and C++ compilera

cov-configure --compiler <full/path/
to>/mcc

Synopsys MetaWare C and C++ compilers

66

Configuring compilers for Coverity Analysis

Issued command Compiler description

cov-configure --compiler <full/path/
to>/hcac

aNote that TI compilers require an environment variable to be set in order for cov-configure to properly probe compiler behavior.
The environment variable should point to the include directories, and is specific to the compiler (for example, C6X_C_DIR for the
C6000 compiler).

Because a standard configuration applies to a compiler installation, not a single compiler executable,
a single invocation of cov-configure attempts to configure both the C and C++ compilers in the
specified installation if the compiler names are not different than a standard installation.

Many C compilers can compile both C and C++ code depending on the compiler file's extension. The
cov-configure command creates a different configuration file for each combination of compiler
executable and language. Thus, > cov-configure --compiler gcc creates a configuration file for
each of the following compiler and language combinations:

• gcc as a C compiler

• gcc as a C++ compiler

• g++ as a C++ compiler

Additional usage instructions

• If you configure an ARM compiler, you must also configure its Thumb counterpart. Similarly, configuring
javac configures any java, apt, and javaw (Windows systems only) commands found in the same
JAVA_HOME directory tree.

• In the following cases, you must specify the --comptype <type> option to cov-configure:

• The compiler has a non-standard name (for example, i686-powerpc-gcc).

• The cov-configure command does not recognize the compiler name.

For example:

> cov-configure --compiler i686-powerpc-gcc --comptype gcc

All compilers that are not listed in Table 2.7.2, “Configuration commands with standard compiler
names” require the --comptype option.

• Some compilers require additional options. For example, GNU compiler installations that use a non-
standard preprocessor (cpp0) path require the GNU -B option that specifies it:

> cov-configure --compiler gcc -- -B/home/coverity/gcc-cpp0-location/bin

The double-hyphen (--) indicates the end of the cov-configure options.

2.7.2. Generating a template configuration

You can invoke cov-configure with the --template argument to generate a template configuration.

67

Configuring compilers for Coverity Analysis

Full template configuration for the gcc C/C++ compiler:

> cov-configure --template --compiler gcc --comptype gcc

Note that the full template configuration for Java and C# is not recommended.

The following alternatives generate a template configuration for the GNU GCC and G++ compilers (using
gcc), Microsoft C and C++ compilers (using msvc), Java compilers (using java, not javac), and C#
compilers (using).

Alternative template configuration for the gcc C/C++ compiler:

> cov-configure --gcc

[Recommended for C#] Alternative template configuration for the Microsoft C# compiler:

> cov-configure --cs

[Recommended for Java] Alternative template configuration for build capture with the Java compiler:

> cov-configure --java

[Recommended for Java] Alternative template configuration for Java filesystem capture:

> cov-configure --javafs

For more information about creating a template configuration, see the --template option in the cov-
configure documentation.

The previous commands generate:

• The <install_dir_sa>/config/coverity_config.xml configuration file.

• The <install_dir_sa>/config/template-gcc-config-0 sub-directory with its own
coverity_config.xml file.

The configuration file specifies that cov-build configure gcc executables as compilers and that cov-
translate treat them as compilers.

For Java programs, cov-build configures the executable and treats it as a Java compiler.

Creating a template configuration for one compiler also creates templates for any related compiler, just as
in a standard configuration.

For example:

• gcc implies g++ (cc links to gcc as well on some platforms).

• javac implies java, apt, and javaw (on Windows systems).

To see a full list of supported compiler types, run the cov-configure --list-compiler-types
option.

68

cov_command_ref.pdf#cov-configure
cov_command_ref.pdf#cov-configure

Configuring compilers for Coverity Analysis

2.7.3. Compiler-specific configurations

Some compilers have unique compilation environments that Coverity Analysis simulates to properly
parse the source code. Especially important are the predefined macros and include directories built
into the compiler. Predefined macros can be configured into nodefs.h, and pre-included directories
into coverity_config.xml. For more information about how to get cov-translate to add and
remove command-line arguments to pass to cov-emit, see Section 1.4.6.3, “Using Coverity Analysis
configuration files in the analysis”.

2.7.3.1. gcc/g++

Coverity Analysis is compatible with most gcc compiled code. This includes support for gcc-specific
extensions. For example, Coverity Analysis can compile virtually all of the Linux kernel, which heavily
uses many gcc extensions. Some known gcc incompatibilities include:

• Nested functions are not supported.

• Abbreviated function template syntax is not supported.

• Computed goto's are handled in a very approximate fashion.

• The -fpermissive compiler mode is not supported.

• The __fp16 builtin type is not supported.

For Mac OS X

Mac OS X users, see Chapter 4.2, Building with Xcode.

Coverity Analysis compatibility with modern g++ versions is also good. Older g++ versions (before 3.0)
are far more relaxed in their type checking and syntax, and their incompatibilities might be difficult to
solve. The --old_g++ option loosens Coverity Analysis's parsing and type checking enough to let many
older code bases compile. If you specify the compiler version when you run cov-configure, this option
is in coverity_config.xml.

Because cov-configure invokes the native compiler to determine built-in include paths and built-in
preprocessor defines, the GNU C and C++ compiler might require additional steps to configure correctly.

To invoke it properly from the command line, the GNU compiler might require additional cov-
configure options. In particular, GNU compiler installations that use a non-standard preprocessor
(cpp0) path require the GNU -B option that specifies it:

> cov-configure --compiler gcc -- -B/home/coverity/gcc-cpp0-location/bin

If your build explicitly uses the GNU compiler on the command line with either the -m32 or -64 option,
also supply the option to the cov-configure command. For example:

> cov-configure --compiler gcc -- -m32

69

Configuring compilers for Coverity Analysis

On some platforms, gcc allows multiple '-arch <architecture>' options to be specified in a single
compiler invocation. cov-analysis will only compile and analyze the source once, as though only
the last -arch option specified on the command line was present. If all compiler invocations are not
consistent regarding the last architecture specified on the command line, cov-analysis may produce
false positive or false negative results.

2.7.3.2. CEVA compilers

Use a template configuration for the CEVA-XC12 compiler:

cov-configure --template --compiler cevaxccc --comptype ceva:xc12

2.7.3.3. Freescale Codewarrior compiler

Some Codewarrior compilers require subtypes when you configure them. Use the following --comptype
values:

• Codewarrior for Starcore and SDMA: cw:sdma

• Codewarrior for Starcore DSP: cw:dsp

• Codewarrior for Starcore: codewarriorcc:starcore (for all targets of Codewarrior Starcore version
10.9 and later)

• Codewarrior for MPC55xx: cw:55xx

• Codewarrior for EPPC 5xx: cw:5xx

All other Codewarrior compilers require only the cw value for --comptype.

Note

Codewarrior HC12 beeps when it fails. While configuring this compiler, cov-configure will likely
cause several compilation failures while probing, resulting in the beeping sound. This is expected
behavior.

2.7.3.4. Green Hills compiler

Use a template configuration for the Green Hills C and C++ compiler. This is necessary because some
native compiler options like -bsp <my_hardwar_config> and -os_dir <dir> change the behavior
of the compiler and require different analysis configurations.

In this compiler's standard installation, the compiler executable names are cc<target name> (for C
code) and cx<target name> (for C++ code). For example, the C compiler for the Power PC target
is called ccppc. The compilers are located in an architecture-specific sub-directory of the Green Hills
installation, such as Linux-i86. Additionally, there are compilers named ccint<target name>, and
these should be configured as well if used.

Lastly, there is a binary called ecom<target name>. This is an undocumented internal binary that is
used by some tools. This should e configured using green_hills_ecom.

For example:

70

Configuring compilers for Coverity Analysis

cov-configure --template --compiler ccppc --comptype green_hills
cov-configure --template --compiler ccintppc --comptype green_hills
cov-configure --template compiler ecomppc --comptype green_hills_ecom

2.7.3.5. HighTec compiler

Use a template configuration for the HighTec Tricore compiler:

cov-configure --template --compiler tricore-gcc --comptype hightec:tricore

2.7.3.6. Keil compilers

The Keil compiler for the ARM target platform requires the device argument, and so you must pass the
device argument to the compiler when configuring it with the cov-configure command. After the cov-
configure options, specify the characters -- and then the --device option. For example:

> cov-configure --comptype keilcc --compiler armcc -- --device=<device_name>

Use a template configuration for the Keil MDK for ARM Compiler:

cov-configure --template --compiler armcc --comptype armcc
cov-configure --template --compiler armclang --comptype armcc

2.7.3.7. Microchip compilers

The following Microchip MPLAB compilers are supported:

• For 8-bit devices, use compile name xc8 and compile type microchip:xc8, or compile name xc8-
cc and compile type microchip:xc8cc

Note

Before version 2.00, the XC8 C compiler supports only PIC MCUs, and the documented driver
name is xc8. Starting with version 2.00, the XC8 C compiler supports both PIC and AVR MCUs,
and the documented driver name is xc8-cc.

• For 16-bit devices, use compile name xc16-gcc and compile type microchip:xc16

• For 32-bit devices, use compile name xc32-gcc and compile type microchipcc:xc32

Use a template configuration for the Microchip Compilers:

cov-configure --template --compiler xc8 --comptype microchip:xc8
cov-configure --template --compiler xc8-cc --comptype microchip:xc8cc
cov-configure --template --compiler xc16-gcc --comptype microchip:xc16
cov-configure --template --compiler xc32-gcc --comptype microchipcc:xc32

2.7.3.8. Microsoft Visual C and C++

Because cov-configure invokes the native compiler to determine built-in include paths and built-in
preprocessor defines, the Microsoft Visual C and C++ compiler might require additional steps to configure
correctly.

71

Configuring compilers for Coverity Analysis

The Microsoft Visual C and C++ compiler executable is named cl.exe. Generally, cl.exe requires that
the path settings include the location of all required DLLs.

Coverity Analysis can simulate parsing bugs that occur in some versions of Microsoft Visual C and C+
+. Supply the correct version of MSVC to the cov-configure command to get the correct cov-emit
arguments automatically. The --typeinfo_nostd option allows some codebases, which rely on the
typeinfo structure to not be in the std namespace, to compile.

The Coverity compiler supports cross compiling to 64-bit MSVC platforms.

2.7.3.9. PICC compiler

 The compiler executable name is pic1 and the ID is picc. Note the following:

• Coverity cannot compile PICC programs in which "@" occurs in either comments or quoted strings.

• PICC allows an extension of binary literals specified by a leading 0b, for example 0b00011111. This
is supported by passing the --allow_0b_binary_literals flag to cov-emit whenever cov-
configure is given --comptype picc or --compiler picl.

2.7.3.10. QNX compiler

Use a template configuration for the QNX compiler. The native compiler options -V and -Y change the
behavior of the compiler and require different Coverity Analysis configurations. For example:

cov-configure --template --compiler qcc --comptype qnxcc

2.7.3.11. Qualcomm Kalimba C compilers

Use a template configuration for the Qualcomm Kalimba C compilers:

cov-configure --template --compiler kcc --comptype kalimba:kcc
cov-configure --template --compiler kalcc --comptype kalimba:kalcc
cov-configure --template --compiler kalcc32 --comptype kalimba:kalcc32

2.7.3.12. Renesas compilers

Use a template configuration for the Renesas compilers:

cov-configure --template --compiler ch38 --comptype renesascc

2.7.3.13. STMicroelectronics compilers

Use a template configuration for the STMicroelectronics compilers:

cov-configure --template --compiler st20cc --comptype st20cc

2.7.3.14. Sun (Oracle) compilers

Use a template configuration for the Sun (Oracle) compilers:

72

Configuring compilers for Coverity Analysis

cov-configure --template --compiler cc --comptype suncc

2.7.3.15. Synopsys MetaWare compilers

Use a template configuration for the Synopsys MetaWare C and C++ compilers:

> cov-configure --template --compiler ccac --comptype metawarecc:ccac

> cov-configure --template --compiler hcac --comptype metawarecc:mcc

> cov-configure --template --compiler mcc --comptype metawarecc:mcc

Language Limitations
The following language extensions are not supported for the specified compilers:

• long long variants of the ISO/IEC TR 18037 fixed point _Accum and _Fract types are not
supported for the hcac and mcc compilers.

• Use of the ISO/IEC TR 18037 fixed point _Accum and _Fract types as the element type of vector
types is not supported for the ccac, hcac, and mcc compilers.

• Use of the ISO/IEC TR 18037 fixed point _Accum and _Fract types and fixed point literal
expressions in C++ code is not supported for the hcac and mcc compilers.

Functions and variable initializers that use these features will not be analyzed. However, other
functions and variable initializers within the same translation unit will still be analyzed.

2.7.3.16. Texas Instruments C and C++ compilers

Coverity supports 2.53 and later of a number of C and C++ TMS compilers. Use cov-configure
list-compiler-types for a complete list. The compiler's executable name in a TMS470R1x
installation, for example, is generally cl470.exe. To configure this compiler, you might specify the
command line as follows:

> cov-configure --compiler <TMS Installation>\cgtools\bin\cl470.exe \
 --comptype ti

Change the preceding example to match the version and installation path of the TMS compiler tools that
you are using.

When cov-build is launched for a project that uses the TMS compiler, all of the invocations of the
compiler will be accompanied with a call to cov-emit unless one of the following command-line
arguments is present:

1. -ppd (generate dependencies only)

2. -ppc (preprocess only)

3. -ppi (file inclusion only)

4. -ppo (preprocess only)

73

Configuring compilers for Coverity Analysis

There are currently a small number of unsupported options and keywords to the TMS compilers. These
keywords can be translated into nothing, when appropriate, or into a supported ANSI C and C++
equivalent using user_nodefs.h. Contact Coverity support regarding any parse errors that you see with
this compiler.

Use a template configuration for the Texas Instruments C7000 compiler:

cov-configure --template --compiler cl7x --comptype ti:cl7x

Language Limitations
The following language extension is not supported for the specified compiler:

• Operators and functions for vector data types are not supported for the Texas Instruments C7000
compiler.

Functions and variable initializers that use these features will not be analyzed. However, other
functions and variable initializers within the same translation unit will still be analyzed.

2.7.3.17. Trimedia C and C++ compilers

Use a template configuration for the Trimedia compilers:

cov-configure --template --compiler tmcc --comptype tmcc

2.7.3.18. Tensilica Xtensa C and C++ compiler

Use a template configuration for the Xtensa compiler:

cov-configure --template --compiler xt-xcc --comptype xtensacc

2.7.3.19. Clang compilers

Use a template configuration for the Clang compilers:

cov-configure --template --compiler clang --comptype clangcc

For Mac OS X

Mac OS X users, see Chapter 4.2, Building with Xcode.

2.7.3.19.1. Supported language extensions

Apple Blocks
Support for the Apple Blocks extensions is provided for C and C++ code, and is automatically
enabled when enabled in native compiler invocations. Interprocedural analysis of Block invocations
requires that cov-analyze be invoked with one of the --enable-single-virtual or --
enable-virtual options.

2.7.3.19.2. Supported compliance standards for Clang compilers

Coverity Analysis supports the following compliance standards for Clang compilers:

74

Configuring compilers for Coverity Analysis

• MISRA C 2004

• MISRA C 2012

• MISRA C++ 2008

• AUTOSAR C++14

• SEI CERT C

• SEI CERT C++ (only the following subset of rules):

CERT DCL50-CPP
CERT DCL52-CPP
CERT DCL53-CPP
CERT DCL54-CPP
CERT DCL55-CPP
CERT DCL56-CPP
CERT DCL57-CPP
CERT DCL58-CPP
CERT DCL59-CPP
CERT EXP52-CPP
CERT EXP57-CPP
CERT EXP59-CPP
CERT EXP61-CPP
CERT EXP62-CPP
CERT EXP63-CPP
CERT CTR51-CPP
CERT CTR56-CPP
CERT CTR58-CPP
CERT STR52-CPP
CERT STR53-CPP
CERT MEM50-CPP
CERT MEM52-CPP
CERT MEM53-CPP
CERT MEM54-CPP
CERT MEM56-CPP
CERT FIO50-CPP
CERT FIO51-CPP
CERT ERR52-CPP
CERT ERR53-CPP
CERT ERR54-CPP
CERT ERR55-CPP
CERT ERR56-CPP
CERT ERR57-CPP
CERT ERR58-CPP
CERT ERR61-CPP
CERT OOP50-CPP
CERT OOP53-CPP

75

Configuring compilers for Coverity Analysis

CERT OOP54-CPP
CERT OOP55-CPP
CERT OOP56-CPP
CERT OOP57-CPP
CERT OOP58-CPP
CERT CON50-CPP
CERT CON51-CPP
CERT CON52-CPP
CERT CON53-CPP
CERT CON54-CPP
CERT CON55-CPP
CERT CON56-CPP
CERT MSC50-CPP
CERT MSC51-CPP
CERT MSC53-CPP

For more information, refer to the Coverity Checker Reference.

2.7.3.19.3. Clang limitations

Clang compilers have various use limitations with Coverity products. These limitations are described in
this section.

Coverity features that are not supported (when using a Clang compiler)

• Coverity Architecture Analysis

• Test Advisor

• SEI CERT C++ rules not listed in the preceding section

• ISO TS 17961:2013

• The #pragma Coverity-compliance preprocessing directive and _Pragma Coverity-compliance
preprocessing operator

• Coverity parse warning checkers

• The --preprocess-next option for cov-build

• The --record-with-source (-rws) option for cov-build

Language limitations
The following language extensions are not supported. Functions and variable initializers that use
these features will not be analyzed. However, other functions and variable initializers within the same
translation unit will still be analyzed.

• Altivec vector types and expressions

• C++ coroutines TS language extensions

76

Configuring compilers for Coverity Analysis

• CUDA language extensions

• The Microsoft dependent exists statement

• The Microsoft __interface user defined type specifier

• Microsoft structured exception handling statements

• OpenMP language extensions

• The char8_t builtin type

• OpenCL language extensions

Compiler driver limitations

• Clang driver invocations that specify the '-cc1' option are not supported.

• Clang driver invocations that specify multiple '-arch <architecture>' options are not
supported.

• The Pre-Tokenized Header (PTH) feature available in Clang 7 and earlier is not supported.

cov-emit features that are not supported (with Clang)

• Macro expansion suppression (#nodef). See Coverity Analysis 2020.12 User and Administrator
Guide for more information.

2.7.4. Using predefined macros for Coverity Analysis-specific
compilations

The Coverity compiler defines several special preprocessor macros that you can use to conditionally
compile code. These are described in the table below. For example, a macro that does not normally
terminate execution can be redefined to act as though it does for the purpose of static analysis

#ifdef __COVERITY__
#define logical_assert(x) (assert(x);)
#else
#define logical_assert(x) (if (!x) printf("Variable is null!");)
#endif

Macro Meaning

__COVERITY__ Conditionally compile code.

__COVERITY_HOTFIX__ The current hotfix release level. For example, for release 1.2.3.4, the hotfix
is 4.

__COVERITY_MAINTENANCE__The current maintenance release level. For example, for release 1.2.3.4 the
maintenance level is 3.

__COVERITY_MAJOR__ The current major release level. For example, for release 1.2.3.4 the major
level is 1.

77

cov_analysis_administration_guide.pdf#nodefs
cov_analysis_administration_guide.pdf#nodefs

Configuring compilers for Coverity Analysis

Macro Meaning

__COVERITY_MINOR__ The current minor release level. For example, for release 1.2.3.4 the minor
level is 3.

__COVERITY_VERSION__ The current version encoded as a single integer, with each two digits
representing a single component of the version. For example, 1.2.3.4 yields
1020304.

2.7.5. Modifying preprocessor behavior to improve compatibility

Native compilers usually define some macros, built-in functions, and predefined data types. The
Coverity compiler does not automatically define all of these by default. Instead, it relies on the following
configuration files, which are generated by cov-configure:

• <install_dir_sa>/config/<comp_type>-config-<replaceable>number</
replaceable>/coverity-compiler-compat.h

• <install_dir_sa>/config/<comp_type-config-<number/coverity-macro-compat.h

These files are pre-included on the cov-emit command line before any other files. Once cov-emit
parses these files, the definitions should match the native compiler definitions.

Additionally, each time cov-emit runs a compilation process, it pre-includes a file called
user_nodefs.h, which is optional and might not exist. You can place directives in this file to correct
problems with the generated compiler compatibility headers. Because this file is shared by all compiler
configurations, the definitions that apply to a single compiler should be sectioned off using #if/#ifdef
and compiler specific macros.

One common cause of incompatibilities is an incomplete deduction of the list of built-in preprocessor
definitions by cov-configure. Adding these definitions to the user_nodefs.h can correct this issue.
See Part 5, “Using the Compiler Integration Toolkit (CIT)” for more information about working around
compiler incompatibilities.

Note

In general, because using user_nodefs.h improperly in C++ can cause parse errors in every
file name in a build, Coverity recommends that you do not modify user_nodefs.h without help
from Coverity Support (software-integrity-support@synopsys.com). Given the correct
directions, this enhancement to the preprocessor of the Coverity Analysis compiler can be a
powerful aid in following tasks:

• Finding additional software issues by removing macro expansions that obscure the semantics of
the code (see Section 2.6.3.3.2.2, “Suppressing macro expansion to improve modeling”).

• Providing workarounds for compiler incompatibilities that might otherwise require comprehensive
changes to cov-emit or cov-translate and take some time to resolve.

78

cov_command_ref.pdf#cov-emit
cov_command_ref.pdf#cov-translate

Part 3. Setting up Coverity Analysis
for use in a production environment

You can deploy Coverity Analysis alone in a centralized (server-based) build system or in combination
with Coverity Desktop Analysis, which allows developers to run local analyses of source code from their
desktops or through their IDEs. This section covers the server-based deployment model. For information
about the combined deployment model, see Coverity Desktop Analysis 2020.12: User Guide .

desktop_analysis_user_guide.pdf

Chapter 3.1. The Central Deployment Model

The central deployment model separates administrative tasks from the tasks that developers perform.

• As an administrator, you check out the latest source to a platform that supports Coverity Analysis,
analyze the source code, and commit the analysis results to Coverity Connect. To deploy Coverity
Analysis based on this model, you need to write a script that automatically runs the Coverity Analysis
commands needed to analyze a given code base (see Chapter 1.4, Coverity analyses).

Tip

Completing an analysis of the code base in Coverity Wizard can help because the Coverity
Wizard console output (which you can save in a text file) lists all the Coverity Analysis commands
and options that it runs in a given analysis. See Coverity Wizard 2020.12 User Guide for
details.

You can integrate Coverity Analysis with the build process to provide Coverity Analysis consumers
with analysis results from snapshots of the latest source code (for details, see Chapter 3.3, Integrating
Coverity Analysis into a build system).

As mentioned in Part 3, “Setting up Coverity Analysis for use in a production environment”, you can
also combine this model with an IDE-based deployment model if your developers are using Coverity
Desktop for Eclipse or Visual Studio.

• After using Coverity Connect to discover, prioritize, and understand the software issues that they own,
developers check out the affected source code files from the source repository, fix one or more of
the issues locally, and then check in their fixes to the source repository. Coverity Connect will reflect
the fixes in the next round of analysis results (the next snapshot) of the code base that contained the
issues.

80

cov_wizard_usage_guide.pdf

Chapter 3.2. Coverity Analysis Deployment Considerations

Software organizations often produce several products, each of which typically consists of a number of
related code branches and targets for supported platforms, product versions, trunks, and development
branches. The Coverity Analysis deployment needs to analyze each code base on a regular basis so that
the issues that developers see in Coverity Connect reflect their changes to the code bases.

To plan for your deployment:

1. Determine which types of analyses to run:

• Code base analyses

• Incremental analyses, parallel analyses, or some other type of analysis process

For details about these topics, see Part 2, “Analyzing source code from the
command line ”.

As part of this process, you also need to perform the following tasks:

a. Determine which checkers to run.

By default, Coverity Analysis enables a set of checkers that are covered by your Coverity
Analysis license. You can work with development team leads and power users to determine
whether to enable additional checkers or disable other checkers (see Enabling/Disabling
Checkers), and, if necessary, to create custom checkers (see Learning to Write CodeXM
Checkers .).

b. Consider whether to model any functions or methods.

Modeling functions in third-party libraries, for example, can improve analysis results. For more
information, see Using Custom Models of Functions and/or Methods.

2. Plan Coverity Connect projects and streams for your analysis results:

To allow developers to view and manage their issues, administrators use Coverity Connect to define
streams and group them into projects. For example, a technical lead might define a project that
is composed of all the streams for a single software product. Such a project might include Linux,
MacOS, and Windows target builds, along with multiple versions of each. A manager might need to
see a project that consists of all the code streams in a given department.

For additional information about this topic, see Prerequisites to completing an analysis.

3. Consider whether to push third-party issues to Coverity Connect so that developers and team
leads can view and manage them along with their Coverity Analysis analysis issues.

For more information, see Using Coverity Analysis to commit third-party issues to the Coverity
Connect database.

81

Coverity_CodeXM_Learning_to_Write_CodeXM_Checkers.html
Coverity_CodeXM_Learning_to_Write_CodeXM_Checkers.html

Coverity Analysis Deployment Considerations

4. Consider whether to use Coverity Desktop in conjunction with Coverity Analysis:

For details, see Coverity 2020.12 for Eclipse, Wind River Workbench, and QNX Momentics: User
Guide and Coverity Desktop 2020.12 for Microsoft Visual Studio: User Guide.

5. Think about how to integrate Coverity Analysis into your build system:

See Chapter 3.3, Integrating Coverity Analysis into a build system.

As part of this process, you also need to complete the following tasks:

a. Check Coverity Analysis platform and compiler support:

Refer to "Supported Platforms" in the Coverity 2020.12 Installation and Deployment Guide. If
you are using a C/C++ compiler that is not supported, it is possible to extend the compatibility of
compilers with Coverity Analysis. For details, see Part 5, “Using the Compiler Integration Toolkit
(CIT)”.

Note

For performance reasons, the following directories should not reside on a network drive:

• The Coverity Analysis installation directory.

• The intermediate directory. Instead, to maximize the performance of the analysis, this
directory should reside on the build host.

• The analyzed code.

It is possible to run the analysis on a machine that is different from the one used for
the build, even one with a different operating system or architecture, so long as the
same version of Coverity Analysis is installed on both systems. This setup supports the
specialization of machines, distributed builds, and the AIX platform, which does not have
the cov-analyze command. To run an analysis on a different machine, you need to copy
the self-contained intermediate directory to a local disk on the chosen host.

Reminder: C# security analyses should run on Windows. Analyzing C# Web applications
on Linux is not supported.

b. Determine memory requirements for the analyses you intend to perform:

For details, "Coverity Analysis Hardware Requirements" in the Coverity 2020.12 Installation
and Deployment Guide.

c. Determine the analysis interval:

Because developers continually modify the code base, regularly scheduled Coverity Analysis
analyses are necessary to provide information about the introduction of new issues and the
elimination of existing ones. For example, you might run the analysis on a nightly basis.

82

desktop_eclipse_user_guide.html#eclipse_use_cases
desktop_eclipse_user_guide.html#eclipse_use_cases
desktop_vs_user_guide.pdf#vs_use_cases
cov_deploy_install_guide.pdf#compatibility_guide
cov_deploy_install_guide.pdf#sa_memory_requirements

Chapter 3.3. Integrating Coverity Analysis into a build system

Table of Contents
3.3.1. The intermediate directory .. 85
3.3.2. Integrating Coverity Analysis into the build environment — cov-build 85
3.3.3. Alternative build command: cov-translate ... 98
3.3.4. Running parallel builds ... 100

Using a C/C++ code base as an example, Figure 3.3.1, “A typical build system” shows how many build
systems interact with the compiler. The build system calls an exec-type function to run the compiler
process. The compiler process reads in the source files and produces binary object files.

Figure 3.3.1. A typical build system

There are two standard ways of integrating Coverity Analysis into this kind of build system. One way,
shown in Figure 3.3.2, “Coverity Analysis integration using the cov-build command”, uses the cov-build
command (described in Section 3.3.2, “Integrating Coverity Analysis into the build environment — cov-
build”) to automatically detect invocations of the compiler. This method usually requires no changes
to the build system itself. Instead, it relies on "wrapping" the build system so that Coverity Analysis
can piggyback on the compiler invocations. The regular build system is invoked by the cov-build
command, which sets up the operating environment such that calls to exec-type functions made by the
dynamically-linked build process are intercepted by the Coverity Analysis capture stub library. The
capture library calls the cov-translate command to translate the compiler command-line arguments
to the command line arguments of the Coverity analysis engine (also called the Coverity compiler). The
Coverity compiler then parses the file and outputs a binary form of the source file into the intermediate
directory, where it is read later by the analysis step. After the Coverity compiler finishes, the capture
library continues to run the normal compiler that generates the .o files. You must run the actual compiler
in addition to the Coverity compiler because many build processes build dependencies and build-related
programs during the build itself. The disadvantage of this method is that it requires a longer compile time
because each source file is parsed and compiled once with the regular compiler, and a second time by
the Coverity compiler. But, the build system itself does not change, and no Coverity Analysis related
changes need be maintained.

83

Integrating Coverity Analysis into a build system

Figure 3.3.2. Coverity Analysis integration using the cov-build command

Figure 3.3.3, “Coverity Analysis integration by modifying build targets” shows an alternative Coverity
Analysis integration method that relies on modifications to the build targets of the build system itself.
Most build systems have the notion of a debug build target and a production build target. Similarly,
another build target can be added to invoke the cov-translate command, or even the Coverity
compiler directly (with the cov-emit command), to parse the code and generate the intermediate data.
This method requires the build administrator to maintain the changes to ensure that they continue to
work when the build steps change. The common make utility makes it possible to perform this form
of integration by changing a single variable, such as CC. The Coverity Analysis translator can be
configured to understand the command-line arguments for a variety of compilers, so the arguments to
the compiler usually do not need to be changed. For more information about this integration method, see
Section 3.3.3, “Alternative build command: cov-translate”.

Figure 3.3.3. Coverity Analysis integration by modifying build targets

84

Integrating Coverity Analysis into a build system

The rest of this chapter describes how to use Coverity Analysis to perform these two types of integration.

3.3.1. The intermediate directory

The intermediate directory stores data produced by the Coverity compiler, before the data is committed to
a Coverity Connect database.

Caution

The intermediate directory might use a significant amount of space for large code bases.

The intermediate directory cannot be under Rational ClearCase dynamic views.

On Windows, the intermediate directory cannot be on a network drive, neither as a mapped drive
nor as a UNC path.

The intermediate directory is intended to be modified only by Coverity programs. Unless directed by
Coverity support, do not create or remove files anywhere in the intermediate directory.

You cannot use a VMware shared folder as a location to store the intermediate directory.

3.3.2. Integrating Coverity Analysis into the build environment — cov-
build

The cov-build command integrates Coverity Analysis with a build system, usually without any
modifications to the build system itself. Using cov-build is the preferred method of build integration.
Figure 3.3.2, “Coverity Analysis integration using the cov-build command” shows the basic process that
cov-build uses to piggyback on a build system to produce the intermediate data. This intermediate
data can then be analyzed to produce defect reports. For information about alternative build integration
commands, see Section 3.3.3, “Alternative build command: cov-translate”.

After the cov-config.xml file is created, you can run the cov-build command by placing it in front of
your usual build command. The required --dir option specifies the intermediate directory.

If the build command depends on features of the command shell that usually invoke it, such as certain
shell variables or non-alphanumeric arguments, invoke the build command with a wrapper script. This
method preserves the original behavior, since the build command is directly invoked by the type of shell
on which it depends.

For example, if the normal invocation of a Windows build is:

> build.bat Release"C:\Release Build Path\"

use:

> cov-build --dir <intermediate_directory> <wrapper.bat>

where <wrapper.bat> is an executable command script that contains the original and unmodified build
command.

85

Integrating Coverity Analysis into a build system

On Windows systems, specify both the file name and extension for the build command when using cov-
build.

For example:

> cov-build --dir <intermediate_directory> custombuild.cmd

Because cov-build uses the native Windows API to launch the build command, the appropriate
interpreter must be specified with any script that is not directly executable by the operating system. For
example, if the normal invocation of a build within Msys or Cygwin is:

> build.sh

prefix it with the name of the shell:

> cov-build --dir <intermediate_directory> sh build.sh

Similarly, if a Windows command file does not have Read and Execute permissions, invoke it as:

> cov-build --dir <intermediate_directory> cmd /c build.bat

The time that it takes to complete a build increases when you use cov-build because after the normal
build runs, the Coverity compiler parses the same files again to produce the intermediate data. Consider
the following factors that can increase build times with cov-build:

• The intermediate data directory is on a network mounted drive. Coverity Analysis creates many files
and subdirectories in the intermediate directory, and these operations can be slow on network file
systems. Using an intermediate directory on a local disk can eliminate this bottleneck. On Windows,
you must use a local drive for the intermediate directory (Windows shared network drives are not
supported for the intermediate directory).

• cov-emit does not take advantage of pre-compiled headers.

If the speed of cov-build is prohibitively slow when compared with your normal build time, one possible
solution is to use more processes to parallelize the build. To see how to do so without altering your build
scripts, see the section describing record/replay.

3.3.2.1. The output of cov-build: the build-log.txt log file

The cov-build command generates the log file in <intermediate_directory>/build-log.txt
that contains a line for every command executed by the build process. The contents of build-log.txt
are similar to:

EXECUTING 'make all '
EXECUTING '/bin/sh -c cd qmake && make '
EXECUTING 'make '
CWD = /export/home/acc/test-packages/qt-x11-free-3.3.2/qmake
COMPILING '/export/home/acc/prevent/bin/cov-translate g++ -c -o property.o \
-I. -Igenerators -Igenerators/unix \
-Igenerators/win32 -Igenerators/mac -I/export/home/acc/test-packages/qt-x11 \
-free-3.3.2/include/qmake \

86

Integrating Coverity Analysis into a build system

-I/export/home/acc/test-packages/qt-x11-free-3.3.2/include \
-I/export/home/acc/test-packages/qt-x11-free-3.3.2/include \
-DQT_NO_TEXTCODEC -DQT_NO_UNICODETABLES -DQT_NO_COMPONENT \
-DQT_NO_STL -DQT_NO_COMPRESS \
-I/export/home/acc/test-packages/qt-x11-free-3.3.2/mkspecs/solaris-g++ \
-DHAVE_QCONFIG_CPP property.cpp ' \
 /export/home/acc/prevent/bin/cov-emit --g++ -I. \
-Igenerators -Igenerators/unix \
 -Igenerators/win32 -Igenerators/mac \
-I/export/home/acc/test-packages/qt-x11-free-3.3.2/include/qmake \
-I/export/home/acc/test-packages/qt-x11 \
-free-3.3.2/include -I/export/home/acc/test-packages/qt-x11-free-3.3.2/ \
include \
-DQT_NO_TEXTCODEC -DQT_NO_UNICODETABLES -DQT_NO_COMPONENT \
-DQT_NO_STL -DQT_NO_COMPRESS \
-I/export/home/acc/test-packages/qt-x11-free-3.3.2/mkspecs/solaris-g++ \
-DHAVE_QCONFIG_CPP \
--emit=/export/home/acc/prevent/emit -w \
--preinclude /export/home/acc/prevent/config/nodefs.h \
--preinclude /export/home/acc/prevent/config/solaris-x86/nodefs-g++.h \
--sys_include /usr/local/include/c++/3.3.2 \
--sys_include /usr/local/include/c++/3.3.2/i386-pc-solaris2.9 \
--sys_include /usr/local/include/c++/3.3.2/backward \
--sys_include /usr/local/include \
--sys_include /usr/local/lib/gcc-lib/i386-pc-solaris2.9/3.3.2/include \
--sys_include /usr/include property.cpp \
Emit for file '/export/home/acc/test-packages/qt-x11 \
-free-3.3.2/qmake/property.cpp' complete.
Emit for file '/export/home/acc/test-packages/qt-x11-free-3.3.2 \
/src/tools/qsettings.h' complete.
EXECUTING '/usr/local/lib/gcc-lib/i386-pc-solaris2.9/3.3.2/cc1 \
plus -quiet -I. \
-Igenerators -Igenerators/unix \
-Igenerators/win32 -Igenerators/mac \
-I/export/home/acc/test-packages/qt-x11-free-3.3.2/include/qmake \
-I/export/home/acc/test-packages/qt-x11-free-3.3.2/include \
-I/export/home/acc/ \
test-packages/qt-x11 \
-free-3.3.2/include -I/export/home/acc/test-packages/qt-x11-free-3.3.2/ \
mkspecs/solaris-g++ \
-D__GNUC__=3 -D__GNUC_MINOR__=3 -D__GNUC_PATCHLEVEL__=2 \
-DQT_NO_TEXTCODEC \
-DQT_NO_UNICODETABLES -DQT_NO_COMPONENT \
-DQT_NO_STL -DQT_NO_COMPRESS \
-DHAVE_QCONFIG_CPP \
property.cpp -D__GNUG__=3 -quiet -dumpbase property.cpp \
-auxbase-strip property.o \
-o /var/tmp//cc2Wo7sG.s '
EXECUTING '/usr/ccs/bin/as -Qy -s -o property.o /var/tmp//cc2Wo7sG.s '

The lines beginning with EXECUTING are commands that are executed by your build system but do not
have any relation to compiling source code. For example, the commands executed by the build system
to recursively descend into subdirectories in the source tree should show up as EXECUTING. When a

87

Integrating Coverity Analysis into a build system

compile line is encountered, three lines are printed. The first line begins with CWD, and shows the current
working directory for the subsequent compile lines. The subsequent lines beginning with COMPILING
are lines that are recognized as compiler invocations. The cov-translate program is called with
the compiler command line arguments. The cov-translate command reads .xml and transforms
the command line into the following line, which invokes the Coverity front-end program (cov-emit) to
parse and emit the source file. The command line arguments to cov-emit are described in Chapter 2.7,
Configuring compilers for Coverity Analysis.

For each source file that contains at least one function, the Coverity compiler prints a message "Emit
for file '/path/to/file.c' complete." The presence of this message confirms that the file
exists in the intermediate directory and will be analyzed in the analysis step. The compiler can decide to
skip emitting a file if it decides that it cannot have changed since the last emit. This will only happen if the
timestamp for the file and all of the files included by it are the same as the previous emit.

If cov-emit produces error messages, it might be because of a misconfiguration or parsing compatibility
issue. For more information on how to resolve compilation issues, see Chapter 2.7, Configuring compilers
for Coverity Analysis. After cov-emit completes the emit, the compiler for the regular build runs.
This results in additional EXECUTING lines for the compiler proper (cc1plus in the example) and the
assembler (as in the example).

3.3.2.2. Building non-ASCII source code

Coverity Analysis supports non-ASCII encoding of source files. To use the cov-build command for
non-ASCII-encoded source code, add the --encoding <enc> option with the appropriate encoding
name. This option enables the following support:

• Appropriate display of the Unicode source code in Coverity Connect.

• Improved parsing of the source code, and reducing parse errors and warnings.

For example, the following command specifies that the source code is in Japanese:

cov-build --dir <intermediate_directory> --encoding Shift_JIS make my_build

The --encoding <enc> option is also available for the cov-translate and cov-emit commands.

3.3.2.3. Detecting parse warnings, parse errors, and build failures

Different incompatibilities can occur between differing dialects of C and especially C++, which result in
parse errors and the cov-build command compiling less than all of the source code. You do not need
all of the source code compiled to analyze the code for defects. However, the cov-analyze command
analyzes only the files that cov-build was able to compile successfully.

The cov-build command, by default, is considered to be successful if it compiles 95% or more of the
compilation units. You can change this percentage with the --parse-error-threshold option. For

88

Integrating Coverity Analysis into a build system

example, if you want cov-build to return without a warning only if 100% of the code compiles, add the
following option to the cov-build command:

cov-build --dir <intermediate_directory> --parse-error-threshold 100

The more compilation units that you can compile without parse errors, the more code you can analyze.
To improve the analysis, you can fix or work around many or all of the parse errors.

Sometimes the compiler can recover from a parse error. When the compiler recovers from an error, the
compilation unit is compiled successfully, but the function that has the parse error cannot be analyzed.
You can see these warnings (as RW.* checkers) in the Coverity Connect when you use the --enable-
parse-warnings option to the cov-analyze command. To see cases when the compiler could not
recover from errors, you should also specify the --enable PARSE_ERROR option to cov-analyze.

A variety of problems found by the Coverity compiler are called parse warnings, which you can see in
the Coverity Connect (as PW.* checkers) when parse warnings are enabled. Parse warnings can show
simple problems in the code, or can be signs of deeper defects. You can change which parse warnings
are exposed as defects by creating a configuration file. A sample file is provided at <install_dir>/
config/parse_warnings.conf.sample. For more information, see Coverity 2020.12 Checker
Reference.

If the compiler finds non-standard code, and it can infer what is intended by that code, the compiler
generates a semantic warning, which you an see in the Coverity Connect (as SW.* checkers) when parse
warnings are enabled.

The cov-build command returns a non-zero exit code when either there is a fatal error while attempting
to initialize the cov-build state before launching the command, or when there is a non-zero exit code
from the build command specified on the command line. In the case that there are build failures due to
incompatibilities between the Coverity Analysis compiler and the source code being analyzed, if the error
does not cause the native compiler to fail and the build to exit, cov-build will not exit with a non-zero
status code. You can change this behavior by using the option --return-emit-failures.

For details about how to handle and resolve parsing incompatibilities, see Section 2.7.3, “Compiler-
specific configurations”.

3.3.2.3.1. Viewing parse errors

You can see parse errors in the build-log.txt log file, and through Coverity Connect.

The build-log.txt file is the log of the cov-build command. It is in
<intermediate_directory>/build-log.txt. The build-log.txt file contains other error
messages in addition to parse errors, so finding the parse errors can be difficult.

To view parse errors in Coverity Connect:

1. Run the cov-build (or cov-translate) command.

2. Run the cov-analyze command with the --enable PARSE_ERROR option to include parse errors
in the analysis.

89

cov_checker_ref.pdf#static_checker_PARSE_WARNINGS
cov_checker_ref.pdf#static_checker_PARSE_WARNINGS

Integrating Coverity Analysis into a build system

3. Commit the defects to the Coverity Connect database with the cov-commit-defects command.

4. Log in to Coverity Connect and look for defects named PARSE_ERROR.

You can view these errors in the source code that caused the error, and the specific error message.

If the compiler is able to recover from a parse error, it is identified as a recovery warning, not a parse
error. Recovery warnings have the prefix RW. For more information, see Recovery Warnings in the
Coverity 2020.12 Checker Reference.

3.3.2.3.2. Preprocessing source files

The first step in debugging many parsing problems is to run the source file through the preprocessor
to expand macros and include files. This process reveals the text of the entire translation unit that the
compiler actually sees.

The cov-preprocess command can automatically preprocess an already emitted file. The syntax is:

> cov-preprocess [--diff] <file_to_preprocess>

The name of the file to preprocess can be a full path or just a file name. If you only specify a file name,
the command looks for it in the intermediate directory, and preprocesses it if it is unique. Otherwise,
it outputs a list of possible candidates. If the file name is an absolute path, the command will only
preprocess the given file if it exists. This can be much faster when there is a large amount of intermediate
data. The resulting preprocessed file is stored in:

<intermediate_directory>/output/preprocessed/file.i

If you use the --diff option, the program tries to preprocess the file with the compiler originally used to
compile it, by adding -E to the command line. After, it will try to identify if the files differ, and notably if the
order in which files are included is different.

If the preprocessing program does not work for you, you can also manually preprocess a source file
by looking in build-log.txt for the invocation of cov-emit for the file of interest. Above this line is
a line that includes CWD=<dir> which is the directory to change into when running the preprocessing
command. Take the cov-emit command line for the file and remove the --emit <dir> option. Next,
add the -E option before the source-file name; leave the source-file name as the last argument to cov-
emit. Run the command, with a redirect to a file that is to contain the preprocessed output:

> cd src_dir
> cov-emit <args...> -E file.c > file.i

Inspect the output file file.i to see if the location where the parse error occurs appears to be different
from the original source file.

3.3.2.3.3. Building with preprocessing first

Sometimes differences in preprocessed files are very difficult to diagnose or to solve. In this case, it is
possible to tell cov-build to preprocess files with the native compiler and use these preprocessed files
to emit code.

90

cov_checker_ref.pdf#static_checker_PARSE_WARNINGS

Integrating Coverity Analysis into a build system

To do so, you can either run the cov-build command with the --preprocess-first option,
or edit your .xml to add a <preprocess_first>yes</preprocess_first> tag in the
<coverity><config><prevent> section. If the section does not exist, create it.

3.3.2.3.4. Testing hypotheses

It is often useful to perform small experiments to determine the root cause of parse errors. For example,
copy the original source file into a temporary file and add the identifiers to macros whose value you wish
to test at the end of the temporary file. Next, preprocess the temporary file and look at the expansion of
the macros.

Another useful method is to reduce a preprocessed source file while preserving the parse error. If a
small enough example can be generated this way, it might be possible to send Coverity an example that
exhibits the problem. This greatly increases the chances that Coverity is able to find a workaround for the
problem in a timely manner.

3.3.2.3.5. Re-running failed compiles without re-running the build

When a compile failure occurs, it would be useful to re-run the Coverity compiler over just the file or files
that failed without incurring the overhead of re-running the entire build. The build might not work fast
incrementally, or there might be additional overhead to launching a complete build. As an alternative,
the --replay-failures option to cov-build uses information that is cached in the intermediate
directory from each failed compile to re-run the Coverity compiler on just those files that failed to compile.
If compilation failures are fixed, subsequent runs of cov-build --dir <intermediate_directory>
--replay-failures recognize that a previously failed compile is now fixed and the subsequent runs
do not attempt to re-compile the (now-fixed) compilation failure again.

Each time that cov-build --replay-failures finds a record of a compile failure in the intermediate
directory, it reads both the command line used to invoke the native compile of that file and the full
environment that was set when the native compile was attempted. After restoring this environment, it re-
invokes cov-translate <native_cmd>, where <native_cmd> is the original compile command
used in the build. The benefit of re-invoking cov-translate rather than calling cov-emit directly is
that you can test both configuration changes to the .xml files and patches to cov-translate supplied
by Coverity without re-running the build. These changes are applied when the compile failures are
replayed. There are some cases where you might not want to re-translate with cov-translate. To
avoid this step and have cov-build --replay-failures invoke cov-emit directly, specify the --
no-refilter option to cov-build.

To summarize the different options for replaying compile failures:

> cov-build --dir <intermediate_directory> --replay-failures

finds all compile failures and re-applies cov-translate to the compile command used in your build.
The build-time environment is restored before the re-translate is run.

> cov-build --dir <intermediate_directory> --replay-failures --no-refilter

finds all compile failures and re-applies cov-emit to the translated argument list. This option runs faster
than without --no-refilter, but it does not allow you to verify fixes to the Coverity configuration files
and it does not allow you to verify cov-translate patches supplied by Coverity.

91

Integrating Coverity Analysis into a build system

3.3.2.4. Linkage information

For C and C++ source code, the same file is sometimes compiled several times with different command-
line options. Due to the inherent difficulty of tracking linkage information, the cov-analyze command
cannot automatically determine which files are linked together. To avoid errors in function call resolution
(especially in C code, which does not have any name mangling), you can use the cov-link command
to get this information.

The following two examples cover common uses of this feature. For a complete list of command line
options and additional examples, see the cov-link documentation.

3.3.2.4.1. Example 1

Assume that you have a single project <productA> with two target architectures, ARM and MIPS. Each
function is compiled twice, possibly using different semantics. For example, arrays do not have the same
size, and you have OVERRUN false positives. Assume that the target architecture is specified to the
compiler by -march=<arch>. Use the following steps to resolve the duplicate function calls:

1. Run the build:

> cov-build --dir productA_dir

2. Collect linkage information and save it to a link file::

> cov-link --dir productA_dir -of all.link --collect

Working with link files is faster than collecting data from the intermediate directory multiple times.

3. Create a link file for each target architecture, using the link file created in the previous step as input:

> cov-link --dir productA_dir -a -march=arm -of arm.link all.link
> cov-link --dir productA_dir -a -march=mips -of mips.link all.link

4. Create separate intermediate directories for ARM and MIPS by using the target architecture link files:

> cov-link --dir productA_dir --output-dir arm-emit arm.link
> cov-link --dir productA_dir --output-dir mips-emit mips.link

Note that cov-link appends new files to an existing target intermediate directory repository, but
never removes files. If you want to remove files, first delete the intermediate directory completely.

Note

To allow incremental analysis to work, keep the intermediate directory intact.

5. Run the analysis and commit the errors for the arm-emit and mips-emit repositories:

> cov-analyze -dir arm-emit
> cov-commit-defects --dir arm-emit --target "ARM target" \
 --stream productA-ARM
> cov-analyze --dir mips-emit

92

cov_command_ref.pdf#cov-link

Integrating Coverity Analysis into a build system

> cov-commit-defects --dir mips-emit --target "MIPS target" \
 --stream productA-MIPS

This creates two separate runs with target attributes named ASM target and MIPS target. You
can run the commands to analyze and commit the arm-emit and mips-emit data concurrently, if
you specify a different intermediate directory for each. To do, use the --dir option to cov-commit-
defects.

3.3.2.4.2. Example 2

In this example, assume that you have two projects named proj1 and proj2 that share the library lib.
The two projects define the same functions with different semantics, so you need linkage information.
Assuming that the source files are located in directories named proj1, proj2, and lib, use the
following steps to resolve the duplicate function calls:

1. Run the build:

> cov-build --dir proj1_proj2

2. Collect linkage information and save it to a link file:

> cov-link --dir proj1_proj2 -of all.link --collect

Working with link files is faster than collecting data from an emit repository multiple times.

3. Generate a link file for the library, using the link file created in the previous step as input:

> cov-link --dir proj1_proj2 -s /lib/ -of lib.link all.link

4. Because the projects share the same library, make two copies of the link file (proj1.link and
proj2.link) for the library:

> mv lib.link proj1.link
> cp proj1.link proj2.link

5. Append the project linkage information to the project link files:

> cov-link --dir proj1_proj2 -s /proj1/ -of proj1.link all.link
> cov-link --dir proj1_proj2 -s /proj2/ -of proj2.link all.link

6. Create intermediate directories for proj1 and proj2 by using the project link files:

> cov-link --dir proj1_proj2 --output-dir proj1-emit proj1.link
> cov-link --dir proj1_proj2 --output-dir proj2-emit proj2.link

7. Run the analysis and commit the defects for proj1 and proj2 by using the project-specific
intermediate directories that were created in the previous step:

> cov-analyze --dir proj1-emit
> cov-commit-defects --dir proj1-emit --description "proj1" \
 --stream proj1
> cov-analyze --dir proj2-emit
> cov-commit-defects --dir proj2-emit --description "proj2" \

93

Integrating Coverity Analysis into a build system

 --stream proj2

3.3.2.5. Record/Replay - Deferred builds and parallelizing single process builds

3.3.2.5.1. Running cov-build with --record-only

Coverity Analysis has the ability (for C/C++ only) to record the environment, working directory, and
command line for each file in the build, and replay all of those recorded commands either with a single
process or multiple processes at a later time. The advantages of this approach are:

• If build-time is critical for the native build, you can allow the native build to complete with minimal
overhead (~10%), and run the Coverity build at a later time when the machines are idle or the build
timing is not as critical.

• If your build cannot be made parallel by default, using the record/replay mechanism allows you to at
least parallelize the Coverity portion of the build if you have more than one processor on the build
machine.

The required operations to record the environment, command line, and working directory are executed
during each invocation of cov-build. If you want to run cov-build with just the record step, either
specify the --record-only option of the cov-build command or the cov-translate command:

> cov-build --dir <intermediate_directory> --record-only <build command>

> cov-translate --record-only <compile command>

After a record-only build is complete, use the recorded information to run the Coverity compiler with the
--replay option:

> cov-build --dir <intermediate_directory> --replay

The --replay functionality can also be run using multiple processes on a single machine. To specify
more than one process on a single machine, use the -j <process count> option:

> cov-build --dir <intermediate_directory> --replay -j 4

This command line replays all of the recorded compilations using 4 processes. At the end of the replay
step, all of the information from the 4 replay processes is aggregated into a single replay-log.txt file,
which you can then use to discover and diagnose compilation failures.

Note

Only run one cov-build --replay command or cov-build --replay-failures command
with a given --dir <intermediate_directory> option at any one time.

3.3.2.5.2. Running cov-build with --record-with-source

You can use the --record-with-source option to run cov-build through the record step, and
also collect all of the necessary source files in the build (for C/C++ and Java only). Then you can then
complete the cov-build run at a later time using the replay-from-emit option:

> cov-build --dir <intermediate_directory> --record-with-source <build command>

94

Integrating Coverity Analysis into a build system

> cov-translate --record-with-source <compile command>

After a record-with-source build is complete, use the recorded information to run the Coverity compiler
with the --replay-from-emit option:

> cov-build --dir <intermediate_directory> --replay-from-emit

This is helpful if you need the ability to complete the replay build on a different platform than you started
from. For example, you could complete the cov-build --record-with-source step on a Windows
machine, then transfer the emit file and complete the cov-build --replay-from-emit step on a
Linux machine. The --record-with-source option is also beneficial for recording builds with transient
files, such as #import files; --record-only fails when attempting to record these builds.

Note

Running cov-build with the --record-with-source option takes significantly longer than
using --record-only.

Note

The recording of Java webapps needs to be done outside of the cov-build --record-
with-source command. Refer to the cov-record-source command in the Coverity 2020.12
Command Reference for details.

3.3.2.6. Error handling with commands

In general, commands return a non-zero exit code whenever there is a catastrophic failure that prevents
the command from proceeding. If a command appears to fail while still returning an exit code of zero,
there are two possibilities: either the failure that appears to be reported did not prevent the command
from continuing to run and is merely a warning, or the command is not behaving properly and you should
contact software-integrity-support@synopsys.com.

3.3.2.7. Troubleshooting build problems

The build-log.txt file is generated but there are no COMPILING lines and no "Emit for file complete"
messages.

Potential causes:

• The compiler is not configured properly in coverity_config.xml. Common problems include:

• A syntax error in the coverity_config.xml file. It must be a valid XML file according to the
DTD <install_dir_sa>/dtd/coverity_config.dtd. Look carefully at the initial output
to the terminal when cov-build is invoked. Consider using an XML syntax or schema validator
such as xmllint to make sure that the file is valid.

• The configured path name of a compiler is empty or missing, in the <comp_dir> tag. This
field should identify the actual path name for the configured compiler, although any executed
compilation with the same command name is analyzed as if it were the configured version. If
incompatible versions are in use, you can configure them with a template, or you can separately
configure each pathname that is in use.

95

cov_command_ref.pdf#sa_commands
cov_command_ref.pdf#sa_commands

Integrating Coverity Analysis into a build system

The build stops before all files have been compiled.
Potential causes:

• The native build is failing. The cov-build command relies on the native build to be able to
complete the compile. The cov-build command cannot proceed beyond the native build.
On many build systems, there is a way to keep compiling files even when an error occurs. For
example, the -i flag to make forces make to ignore any errors during the build. Coverity Analysis
does not require a 100% complete build to produce good results.

• The cov-build command could be interfering with the native build. Contact Coverity support for
assistance.

Some or all files give compiler error messages in build-log.txt.
Potential causes:

• The compiler translator or options are not configured properly. If you manually modified or
generated the coverity_config.xml file, reread Section 1.4.6.3, “Using Coverity Analysis
configuration files in the analysis”. The most common problem is a mismatch between the
predefined macros in nodefs.h and the predefined macros supplied by the build's compiler.
Consider using the cov-configure command to generate a configuration file automatically.
Make sure to specify the compiler version.

• Some of the macro suppressions in nodefs.h are causing parsing problems. Consider removing
the offending predefine in nodefs.h if the offending nodef is not required. For C++, a prototype
declaration might need to be added to nodefs.h.

• The pre-include directories are not set properly. The build compiler has a list of built-in
directories to search to find include files. The <include_dir> and <sysinclude_dir>
options in coverity_config.xml need to reflect these built-in search paths. Note that the
<include_dir> has precedence over <sysinclude_dir>, and that and parsing might change
in "system" headers. Both are searched whether "" or <> is used. The cov-configure command
automatically finds these search paths for most compilers.

• The cov-emit command is not able to parse the source code. There are some non-standard,
compiler-specific constructs that cov-emit might not be able to parse correctly. For a detailed
discussion of the potential problems and solutions, see Chapter 2.7, Configuring compilers for
Coverity Analysis.

I am using clearmake and the Coverity build only seems to compile a small subset of my source files.
Potential causes:

The clean command with clearmake generally does not cause a subsequent invocation to re-build
all of the source files in the build with the compiler. The Coverity build system looks for invocations
of the compiler to decide which source files to analyze, so any clearmake optimizations that
circumvent actually running the compiler will interfere with the Coverity build. In particular, you must:

1. Delete all of the object files that correspond to the source files that you want to compile.

2. Turn off winking by specifying the appropriate option to clearmake.

96

Integrating Coverity Analysis into a build system

3.3.2.8. Platform-specific cov-build issues

Some platforms have special issues that might interfere with the operation of cov-build.

3.3.2.8.1. Linux

No special issues.

3.3.2.8.2. Solaris

The cov-build command fails if the build command, such as make, is a setuid executable. To run the
cov-build command, you can turn off the setuid bit with the following command:

> chmod u-s <path>/<build_command>

3.3.2.8.3. Windows

The cov-build command uses a different mechanism to capture compiler process creation on Windows
than on UNIX platforms. The Windows version of cov-build runs the build command and its child
processes in debug mode. If your build system has problems running in debug mode, try using the
--instrument option with cov-build. This option might be useful is for capturing a 32-bit javac
compilation on 64-bit Windows.

Some build systems on Windows are invoked from an integrated development environment (IDE) such as
Visual Studio. There are several ways of integrating Coverity Analysis with an IDE:

• Invoke the IDE binary with the cov-build command wrapped around it. For Visual Studio 2005 and
2008, the IDE is typically invoked with the devenv command. For example:

> cov-build --dir intermDir devenv

After you run the command, perform the necessary actions in the IDE to perform the build and then exit
the IDE. Because the devenv command runs the compiles, cov-build can capture the build.

• For Visual Studio 2010 and subsequent releases, the devenv command builds applications in a
separate hosted instance of the msbuild tool.

Analysis support for Visual Basic was introduced with Visual Studio 2013.

• Use the command line to perform the build.

Example using devenv:

> cov-build --dir intermDir devenv solutionfile /build solutionconfig

Example using msbuild:

> cov-build --dir intermDir msbuild solutionfile /p:Configuration=Release

• Use the Visual C++ compiler directly (cl.exe) within a makefile and then run make or nmake with the
cov-build command. This is the same process you would use to build with a compiler, such as gcc,
on UNIX systems.

97

Integrating Coverity Analysis into a build system

3.3.2.8.4. FreeBSD

Many versions of FreeBSD have a statically linked sh and make. The cov-build command relies on
intercepting exec() at the shared library level and cannot intercept compiler invocations from static
build programs such as sh and make. The solution is to change the <comp_name> variable in the
coverity_config.xml file to recognize cc1 as the compiler. This works because gcc is usually
not statically linked, and gcc is a driver program that calls cc1 to actually perform the compile. Some
features of cov-build, such as automatic preprocessing of files to diagnose compile errors, might not
work in such case.

On FreeBSD 5.3 or later, Coverity Analysis can fail with a bad system call error and a core dump.
This is because Coverity Analysis is compiled for FreeBSD 4.x. To use Coverity Analysis on FreeBSD 5.3
or later, compile the system kernel with the with COMPAT_FREEBSD4 set.

3.3.2.8.5. AIX

The cov-build and cov-analyze commands are not provided on AIX. Instead, you need to manually
integrate the necessary cov-translate commands (see Section 3.3.3, “Alternative build command:
cov-translate”) into your build system. For example:

> CC="cov-translate --dir int-dir --run-compile cc" make

After running cov-translate, you need to copy the resulting intermediate directory to a different (non-
AIX) machine on which a compatible version of cov-analyze is installed and then run the following
commands to complete the analysis:

• cov-manage-emit with its non-filtered sub-command reset-host-name

• cov-analyze

3.3.3. Alternative build command: cov-translate

 The cov-translate command translates native compiler command-line arguments to arguments
appropriate for the Coverity compiler, and then calls the compiler with the cov-emit command. If you
use cov-build to integrate with the build, there is no need to deal explicitly with cov-translate. All
of the options that control how cov-translate works are in the coverity_config.xml file. You can
specify the intermediate directory, with an emit repository, on the cov-translate command line using
the --dir option.

To perform manual integration with a build system, the build system needs to be modified to have an
additional target that calls cov-translate instead of the usual compiler. For more information, see
Figure 3.3.3, “Coverity Analysis integration by modifying build targets”.

3.3.3.1. The cov-translate command in place of the native compiler

If the default method of build integration using the Coverity build utility (cov-build) is unsuitable for
any reason, you can use the cov-translate command as a replacement for any of the supported
compilers. In this mode, cov-translate can be prepended to any compile line and, when supplied the
appropriate arguments, can run both the native compile and the Coverity Analysis compile. For example,

98

Integrating Coverity Analysis into a build system

you need to follow this procedure to run the Coverity compiler on AIX, which does not support the cov-
build command.

The --run-compile option to cov-translate indicates that it runs both the native compile and the
Coverity Analysis compile. For example, the following command creates the object file test.o, and adds
the analysis intermediate form for test.c to the emit repository:

> cov-translate --dir <intermediate_directory> --run-compile gcc -c test.c

For most build systems, it is sufficient to prepend the compiler name with the command sequence
<install_dir_sa>/bin/cov-translate --run-compile command. For example, you can
specify the following to run make with its CC/CXX macro defined as a cov-translate command that is
configured to execute the appropriate native C/C++ compiler:

> CC="cov-translate --dir int-dir --run-compile cc" make

Manually integrating cov-translate into a Makefile becomes more complex when a build system
includes scripts that rely on the exact format of the output to stdout from the compilation. For example,
any build that invokes GNU autoconf configuration scripts during the build requires that the compilations
invoked within the autoconf scripts mirror the output of the native gcc compiler invocations exactly. To
address this issue, Coverity Analysis provides an argument translator, the --emulate-string option
to the cov-translate command. This option is used to specify a regular express that, if matched on
the command line, makes the command to run the native compiler command line only (that is, without
attempting to call cov-emit). The output from the native compiler invocation is printed verbatim to
stdout, and cov-translate does not make any attempt to run the Coverity compiler.

The regular expressions to the --emulate-string option are Perl regular expressions. For example, to
indicate that any option to gcc containing the word dump should cause the emulation behavior, the cov-
translate command line can be specified as follows:

> cov-translate --dir <intermediate_directory> --run-compile --emulate-string ^-dump.*
 gcc -dumpspecs

This command causes the verbatim output of gcc -dumpspecs to be printed to stdout. Note that
the ^ and $ elements of the Perl regular expression are implicitly added to the beginning and end of the
specified regular expression when they are not present. This addition means that the terminating .* at
the end of the option in the above example is required to ensure that any sequence of characters can
follow -dump.

For gcc in particular, the following arguments should be emulated using the emulate-string option
because they are commonly used by the GNU autoconf-generated configure scripts:

• -dumpspecs

• -dumpversion

• -dumpmachine

• -print-search-dirs

• -print-libgcc-file-name

99

Integrating Coverity Analysis into a build system

• -print-file-name=.*

• -print-prog-name=.*

• -print-multi-directory

• -print-multi-lib

• -E

3.3.4. Running parallel builds

Coverity Analysis for C/C++ supports multiple parallel build scenarios to provide integration with a native
build system with minimal or no system modifications. Because of I/O and synchronization costs, parallel
builds might not take place more quickly than the builds described in Section 3.3.2.5, “Record/Replay -
Deferred builds and parallelizing single process builds”.

3.3.4.1. Single build on a single machine

The cov-build command can capture parallel builds. Examples of commonly seen parallel build
commands would be make -j or xcodebuild -jobs. One problem with parallel builds is that the
build-log.txt log file contains interleaved output, which might make it difficult to determine if a given
source file has been parsed and output to the intermediate directory. In such case, the intermediate
directory is still created without problems.

3.3.4.2. Multiple builds on a single machine

A build on a single host can use a single build command to create multiple, concurrent compilation
processes. There are several ways to capture information for build and C/C++ analyses.

To capture information for a build, C/C++ analysis, or both, you can run a single cov-build command
with a make -j or similar command.

To capture information for a C/C++ analysis, you can use multiple cov-build commands sequentially:

cov-build --capture ... make [-j N] ...
cov-build --capture ... make [-j N] ...
cov-build --capture ... make [-j N] ...

To capture information for a C/C++ analysis, you can explicitly call cov-translate from the build
system:

make [-j N] CC="cov-translate ..." ...

If all cov-translate processes are concurrently running on the same machine, Coverity recommends
using a single intermediate directory. If cov-translate processes run on different machines, then
use multiple local intermediate directories and merge them using cov-manage-emit after the build is
finished. Running cov-translate in parallel on NFS is not recommended.

If you use multiple cov-build commands sequentially, the --capture flag is not needed.

100

Integrating Coverity Analysis into a build system

3.3.4.3. Multiple builds on multiple machines

Because the cov-build command relies on capturing calls to exec(), distributed builds that use
remote procedure calls or other network communication to invoke builds are not detected. Distributed
builds can be handled by modifying the build system to add an additional Coverity Analysis target
that uses the cov-translate program. For more information, see Section 3.3.3, “Alternative build
command: cov-translate”.

Distributed builds using a common intermediate directory on an NFS partition that is shared by all
contributing servers are supported on Linux and Solaris systems that have the same Coverity Analysis
distribution, version, and compiler configuration.

Note

The cov-emit command can either run by itself, or be invoked indirectly by cov-build or cov-
translate. You cannot directly or indirectly run cov-emit on one platform and cov-analyze on
another platform.

Build systems can explicitly call cov-translate in the following ways:

• Multiple build commands run on multiple machines, which each locally run cov-translate.

• A single make or similar command distributes individual compilations to multiple configured servers via
ssh or another remote job execution service.

3.3.4.3.1. Sharing a common intermediate directory on an NFS partition

To distribute a build:

1. Run cov-build once without a build command to initialize the intermediate directory:

cov-build --dir <intermediate_directory> --initialize

2. Run one or more cov-build, make, or equivalent command per host machine:

cov-build --dir <intermediate_directory> --capture make [-j N]
make [-j N] CC="cov-translate ..."

The --capture option ensures that cov-build log and metric files are merged and not replaced.

3. Combine the log and metrics files from all contributing hosts, and identify any commands that need
to be run on the machine that is used for subsequent analyses:

cov-build --dir <intermediate_directory> --finalize
cov-manage-emit --dir <intermediate_directory> add-other-hosts

After the build is finalized, and the indicated commands run, the <intermediate_directory>
is ready for analysis. The cov-manage-emit command must run after a distributed build to
aggregate the data captured on other hosts, and on the host machine that will run the cov-analyze
command.

101

Integrating Coverity Analysis into a build system

3.3.4.3.2. Copying intermediate directories from local disks

To distribute a build:

1. Run cov-build once on each server to initialize an intermediate directory on a local disk used only
by that build server:

cov-build --dir <intermediate_directory> --initialize

2. Run one or more cov-build, make, or equivalent command per build server:

cov-build --dir <intermediate_directory> --capture make [-j N]
make [-j N] CC="cov-translate ..."

The --capture option ensures that cov-build log and metric files are merged and not replaced.

3. Complete the build(s) on each build server:

cov-build --dir <intermediate_directory> --finalize

4. Copy the complete intermediate directory tree from each build server to a local disk on the machine
on which you will run cov-analyze.

For example:

• Use a remote-copy utility such as scp -r.

• Use an NFS partition or network file share.

5. Merge the intermediate directory that was copied from each build server with the intermediate
directory that you want to analyze:

cov-manage-emit --dir <copied_directory> reset-host-name

cov-manage-emit --dir <intermediate_directory> add <copied-directory>

After the build finalizes, and the indicated commands run, the <intermediate_directory> is
ready for analysis.

102

Chapter 3.4. Using SSL with Coverity Analysis

Table of Contents
3.4.1. Trust store overview ... 103
3.4.2. Configuring Coverity Analysis to use SSL .. 104
3.4.3. Working with the trust store .. 105

3.4.1. Trust store overview

This section describes the trust store, a storage location for certificates used by cov-commit-defects
and other Coverity Analysis applications that connect using SSL. This trust store is specific to the
Coverity Analysis client; for information on the server-side trust store, see the Coverity Platform 2020.12
User and Administrator Guide .

Note

This trust store is not the same as the one used by Java-based command line tools (cov-manage-
im, cov-integrity-report, and cov-security-report).

The discussion assumes a basic level of familiarity with SSL. Comprehensive information on SSL, can be
found at http://en.wikipedia.org/wiki/Transport_Layer_Security .

When connecting to a network peer (such as a Coverity Connect server, in the case of cov-commit-
defects), the SSL protocol must authenticate the peer, that is, it must prove that the peer has the
identity that it claims to have. The authentication step uses a digital certificate to identify the peer. To
authenticate, the application must find a digital certificate of a host that it trusts; that certificate must
vouch for the veracity of the peer’s certificate. Any number of certificates may be used to form a chain
of trust between the peer’s certificate and a certificate trusted by the application. If the application is
successful in finding such a chain of trust, it can then treat the peer as trusted and proceed with the data
exchange.

Coverity Analysis uses the trust store as the location for storing trusted certificates. When initially installed
the trust store directory (<install_dir_sa>/certs) contains one file, ca-certs.pem, which
contains a collection of certificates published by certificate authorities such as Verisign. (Coverity gets this
list from the corresponding list, cacerts, in the Java Runtime Environment.)

There are two trust modes for certificates in Coverity Analysis.

• fully authenticated mode - The application accepts a chain of trust only if it ends in a certificate in ca-
certs.pem.

• trust-first-time mode - The application uses a weaker standard, where it accepts a certificate as
trusted if either of the following is true:

• The same peer has sent the same certificate in the past.

• The certificate is self-signed (that is, the certificate’s next link in the chain of trust is itself) and
Coverity does not already have a certificate stored for that host/port combination.

103

cov_platform_use_and_admin_guide.pdf#cim_config_ssl
cov_platform_use_and_admin_guide.pdf#cim_config_ssl
http://en.wikipedia.org/wiki/Transport_Layer_Security

Using SSL with Coverity Analysis

In other words, when the application receives a self-signed certificate it has not encountered before from
that peer and port, it stores the certificate in the trust store in its own file. Subsequent connections to the
same peer and port verify that the peer’s certificate matches the certificate in the file.

Both trust modes result in an encrypted connection. The difference between them is that connections
secured using trust-first-time mode do not have the same level of assurance of the identity of the peer.
Specifically, the first time you use a certificate in trust-first-time mode, you need to take a leap of faith that
the peer your application contacted is not being impersonated by another peer.

Both trust modes are provided because there is an administrative cost involved in setting up fully
authenticated mode: the administrator must get the server’s certificate from a certificate authority and
install it in the server. If the certificate authority’s root certificate is not included in ca-certs.pem, then
the administrator must also add it to that file on every client. See the Coverity Platform 2020.12 User and
Administrator Guide for additional details. In contrast, trust-first-time mode requires no administrative
work to allow the application to encrypt its communications with the peer.

See the --authenticate-ssl option to cov-commit-defects for more discussion of the
difference between these trust modes.

3.4.2. Configuring Coverity Analysis to use SSL

This procedure allows you to use SSL with commands that send data to Coverity Connect, such as
cov-commit-defects, cov-run-desktop, and cov-manage-history. Note that it discusses
authentication modes described in Section 3.4.1, “Trust store overview”.

1. Make sure that Coverity Connect is configured to use SSL.

For the setup procedure, see "Configuring Coverity Connect to use SSL" in Coverity Platform
2020.12 User and Administrator Guide

2. Verify browser access to Coverity Connect over HTTPS.

Simply type the Coverity Connect URL, including the HTTPS port number into your browser, for
example:

https://connect.example.com:8443/

3. If necessary, install a certificate on each client, using one of the following modes:

• The fully authenticated mode: If your certification authority certificate is in ca-certs.pem (which
is typical if you paid an external certification authority entity, such as Verisign, for your certificate),
no action is needed. Otherwise, follow the instructions in Section 3.4.3.4, “Adding a certificate to
ca-certs.pem”.

• The trust-first-time mode: If you use the Coverity Connect self-signed certificate that was installed
with Coverity Connect and you commit using trust-first-time, no action is needed.

4. Use cov-commit-defects to test a commit using SSL.

5. Inspect the new certificate, if any, in the trust store.

104

cov_platform_use_and_admin_guide.pdf#cim_config_ssl
cov_platform_use_and_admin_guide.pdf#cim_config_ssl
cov_command_ref.pdf#cov-commit-defects
cov_platform_use_and_admin_guide.html#cim_config_ssl
cov_platform_use_and_admin_guide.html#cim_config_ssl

Using SSL with Coverity Analysis

For details on viewing certificates, see Section 3.4.3, “Working with the trust store”.

3.4.3. Working with the trust store

The trust store is implemented as a directory: <install-dir>/certs. There are two kinds of files
in the trust store. The first is the collection of certificate authority certificates mentioned above, ca-
certs.pem. Secondly, there may be single-certificate files with names like host-<host-name>,port-
<port-number>.der. These files store trust-first-time certificates. The file name tells which host and
port the certificate was seen on.

3.4.3.1. Viewing trust-first-time certificates

Trust-first-time certificates are stored in DER format. They can be read using the openssl command,
present on most linux systems, or using the keytool command, present in the Java Runtime
Environment at <install-dir>/jre/bin/keytool. For example,

openssl x509 -in host-d-linux64-07,port-9090.der -inform der -noout -text

or

keytool -printcert -file host-d-linux64-07,port-9090.der -v

3.4.3.2. Viewing certificate authority certificates

The certificate-authority certificates in ca-certs.pem are stored in PEM format, which encodes the
certificates as ASCII text. The file is a simple list of certificates. An example certificate is shown below:

-----BEGIN CERTIFICATE-----
MIIDGzCCAoSgAwIBAgIJAPWdpLX3StEzMA0GCSqGSIb3DQEBBQUAMGcxCzAJBgNV
BAYTAlVTMRAwDgYDVQQIEwdVbmtub3duMQ8wDQYDVQQHEwZVbmtvd24xEDAOBgNV
BAoTB1Vua25vd24xEDAOBgNVBAsTB1Vua25vd24xETAPBgNVBAMTCFFBVGVzdENB
MCAXDTEzMDIyNTIyMTA1MloYDzIxMTMwMjAxMjIxMDUyWjBnMQswCQYDVQQGEwJV
UzEQMA4GA1UECBMHVW5rbm93bjEPMA0GA1UEBxMGVW5rb3duMRAwDgYDVQQKEwdV
bmtub3duMRAwDgYDVQQLEwdVbmtub3duMREwDwYDVQQDEwhRQVRlc3RDQTCBnzAN
BgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEA196ZPKzj6LKVrR9iZeDrqmrv25Zv3+9/
itiRN6xbJW0FvU/cIz2zoZxTIvlCFInC6qZ0BQcNJRsYmtJQsr/ka6MFuneULh3g
cYNxDTBRCJ2Lbs5xDjYMfEg6XJSwyBo/iG3fxb6IBdiAnjPdUFT5THkNheUhh62f
rISUU9zwAWcCAwEAAaOBzDCByTAdBgNVHQ4EFgQUn3hosvIlr4Md80enOS/kC/p3
JL4wgZkGA1UdIwSBkTCBjoAUn3hosvIlr4Md80enOS/kC/p3JL6ha6RpMGcxCzAJ
BgNVBAYTAlVTMRAwDgYDVQQIEwdVbmtub3duMQ8wDQYDVQQHEwZVbmtvd24xEDAO
BgNVBAoTB1Vua25vd24xEDAOBgNVBAsTB1Vua25vd24xETAPBgNVBAMTCFFBVGVz
dENBggkA9Z2ktfdK0TMwDAYDVR0TBAUwAwEB/zANBgkqhkiG9w0BAQUFAAOBgQAY
97hV0EM2uMg/kg2bUllyDtCnQLFdbv/NJ5b+SlHyAQAhaTchM7WBW7OVY4fTS9xZ
Uh8k7uvKicBAd48kdkU6K4LF3SowwjWdOmyGvOnyUHSvCCfa/+G/rPzMReIVQo2H
HIUtgMWvzOtZh6nYLV4JDbQcYJ0d7eBcvebetFAxyA==
-----END CERTIFICATE-----

To view these certificates you need to split them into separate files, with one certificate per file. Then the
commands to read them are

105

Using SSL with Coverity Analysis

openssl x509 -in <certificate-file-name> -noout -text

or

keytool -printcert -file <certificate-file-name> -v

3.4.3.3. Interpreting a certificate file

You typically will not need to interpret an individual certificate file, but a sample certificate, as dumped by
keytool, is displayed below. Descriptions of the individual elements follow.

Owner: C=None, L=None, O=None, OU=None, CN=d-linux64-07
Issuer: C=None, L=None, O=None, OU=None, CN=d-linux64-07
Serial number: 555b70a6
Valid from: Fri Dec 20 16:21:15 PST 2013 until: Tue Dec 20 16:51:15 PST 2033
Certificate fingerprints:
 MD5: 78:0D:07:53:3E:BF:A2:76:B1:C2:9E:2C:86:A6:2C:5B
 SHA1: AD:66:3E:5C:40:FC:49:84:F6:21:3E:B2:37:9A:32:25:B2:33:38:4D
 Signature algorithm name: SHA256withRSA
 Version: 3

The Owner string identifies the peer. In particular the CN portion of the owner field contains the host name
of the peer. In SSL, the other fields of the owner string are ignored. The Issuer string identifies the
entity that created the certificate. In this case, the issuer matches the owner, which means the certificate
is self-signed. The Valid from and until fields show the dates on which the certificate will pass into
and out of validity. The fingerprints are MD5 and SHA1 hashes of the DER form of the certificate.

3.4.3.4. Adding a certificate to ca-certs.pem

You may want to add a certificate to ca-certs.pem if you want to tell the application (for example,
cov-commit-defects) that a certain certificate is trusted as a certificate authority certificate. This is
necessary if you want to use the fully authenticated mode, but your certificate authority is not among
those listed in ca-certs.pem. This will be the case if you use an internal certificate authority. To add
it, there are two steps. First, if the certificate is not already in PEM format, use openssl to convert it to
PEM format. For example, for a certificate in DER format, the openssl command is

openssl x509 -in <certificate-file-name> -inform der -outform PEM > cert.pem

Alternatively, to do this using keytool, you first have to import the certificate into a temporary keystore,
then export it as a PEM file:

keytool -keystore new.jks -storepass newnew -importcert -alias
new -file <certificate-file-name>
keytool -keystore new.jks -storepass newnew -exportcert -alias
new -file cert.pem -rfc

After getting your certificate as a PEM file, prepend it to the front of your ca-certs.pem file, or, if you
are not using an external certification authority, simply replace ca-certs.pem with your certificate in
PEM format.

On Linux:

> cat cert.pem ca-certs.pem > new-ca-certs.pem

106

Using SSL with Coverity Analysis

> mv new-ca-certs.pem ca-certs.pem

On Windows:

> type cert.pem ca-certs.pem > new-ca-certs.pem
> del ca-certs.pem
> ren new-ca-certs.pem ca-certs.pem

3.4.3.5. Removing a trust-first-time certificate from the trust store

To stop trusting a trust-first-time certificate, delete its file from the trust store.

3.4.3.6. Removing certificates from ca-certs.pem

To stop trusting a certificate authority certificate in ca-certs.pem, complete the following steps:

1. Split ca-certs.pem into separate certificates, as indicated in Section 3.4.3.2, “Viewing certificate
authority certificates”.

2. Rename ca-certs.pem to old-ca-certs.pem.

3. Use openssl or keytool on each certificate to find the ones you want to include in the new ca-
certs.pem.

4. Concatenate the certificates you want to include, and write the result to a new ca-certs.pem file.

5. Test with cov-commit-defects.

107

Chapter 3.5. Using a Network File System (NFS) with Coverity
Analysis

NFS is supported for use with Coverity Analysis in many cases. Support is the same for all Coverity
commands.

For all operating systems:

• Source code, native compilers, and native build system files (for example, Makefiles) may reside on
NFS.

• User and derived model files may reside on NFS.

See Coverity 2020.12 Checker Reference for details about models.

For Unix-like operating systems only (not Windows, no Windows clients):

• The Coverity intermediate directory can reside on NFS. However, for performance reasons, the local
disk is recommended (see Section 3.3.1, “The intermediate directory”).

For parallel builds, Coverity provides specific recommendations that involve the use of NFS (see
Section 3.3.4, “Running parallel builds”). See also the --capture option to cov-build in Coverity
2020.12 Command Reference for additional guidance.

• The Coverity Client tools (Coverity Analysis, Test Advisor, and the Coverity Desktop) may be installed
on NFS.

• Compiler configuration files in the <install_dir>/config directory (-c argument) may reside on
NFS.

108

cov_checker_ref.pdf
cov_command_ref.pdf
cov_command_ref.pdf

Chapter 3.6. Coverity Analysis Updates

Whether or not you can download Coverity Analysis updates from the command line depends on how
your Coverity administrator configures the Coverity Analysis update feature.

• Starting with the Coverity 2018.03 release, Synopsys allows you to download and install major or minor
release Coverity Analysis upgrades from the command line.

• Starting with the Coverity 2017.07-SP2 release, Synopsys allows you to download and install
incremental release Coverity Analysis updates from the command line.

If the Coverity Analysis update feature is turned on, then after a successful commit, cov-commit-
defects checks for any new Coverity Analysis updates. If there are updates, a message appears
with the number of updates that you can download. Coverity Connect determines which updates are
relevant based on the commit. Coverity Connect notifies you only about relevant updates and makes
them available to download. Any other updates are ignored.

The Coverity Analysis update files delivered in an incremental release are typically smaller than the
Coverity Analysis upgrade files you receive as part of a major or minor release. Typically, they do not
contain all of the files in a Coverity Analysis installation image, and they might or might not overwrite
configuration files. To ensure configuration files are not inadvertantly overwriten, the installer first checks
to see if the files to be overwritten have changed. If they have changed, the installer lists the modified
files and stops. (If you decide to overwite these changed files anyway, re-run the installer using the --
force option.

Use the cov-install-updates command with its sub-commands and options to query and list the
available updates, install the updates in order, and if required, rollback an undesired update. For more
information, see the Coverity 2020.12 Command Reference .

109

cov_command_ref.pdf

Part 4. Capturing specific build systems

Table of Contents
4.1. Using IncrediBuild ... 111

4.1.1. Building code with IncrediBuild as part of the analysis process 111
4.1.2. Coverity Desktop Analysis .. 113

4.2. Building with Xcode ... 114
4.2.1. Building Xcode projects that use pre-compiled headers .. 114
4.2.2. Building projects that use Xcode 10's new build system .. 114

4.3. Building with Visual Studio 2015+ or .NET Core SDK (‘dotnet’) .. 116
4.4. Building with Cygwin ... 117

Chapter 4.1. Using IncrediBuild

Table of Contents
4.1.1. Building code with IncrediBuild as part of the analysis process .. 111
4.1.2. Coverity Desktop Analysis .. 113

4.1.1. Building code with IncrediBuild as part of the analysis process

Coverity analysis tools allow you to use Xoreax Software IncrediBuild to accelerate the build of your
Windows-based code. IncrediBuild runs the build/capture separate from the Coverity build utilities (cov-
build/cov-translate/cov-emit) and produces a JSON script that can be replayed along with the
source. The basic workflow is as follows:

1. Perform the build using IncrediBuild.

2. IncrediBuild produces a JSON script that itemizes the compile commands and the environments for
the commands.

3. Specify the JSON script to cov-manage-emit replay-from-script which reads the JSON
script, builds a list of compile commands and executes each of the compile commands against cov-
translate.

4. Run Coverity analysis tools.

4.1.1.1. Using IncrediBuild to build your code

Important

Integration to Coverity depends on an optional extension package available from Incredibuild.
Contact Xoreax Software regarding the availability and licensing of such features.

4.1.1.1.1. Building from the command line

The following section describes the steps for building code with IncrediBuild on the command line.

1. Before you run the build, validate that IncrediBuild is successfully integrated with Coverity tools. For
example:

BuildConsole /nologo /QueryPackage="COVERITY"

If the integration is successful, you should receive a message similar to the following:

"Coverity" package is allocated to this Agent (exit code 0)

2. Perform your build using IncrediBuild with an option (/ca_file="<file>.json") to the
BuildConsole command. For example:

111

Using IncrediBuild

BuildConsole <existing_options> /ca_file="build-integration.json"

IncrediBuild produces an additional output of a JSON script that itemizes all the compile commands
complete with the environment for each command.

3. Specify the JSON script to cov-manage-emit replay-from-script. For example:

cov-manage-emit --dir <idir> replay-from-script -if build-integration.json \
 --compilation-log compile.log -j <num_cores_or_cpus>

The cov-manage-emit command reads the JSON script, builds a list of compile commands, and
executes each of the compile commands against cov-translate.

4. Run cov-analyze, specifying the intermediate directory produced by the previous step.

4.1.1.1.2. Building in Visual Studio

The following section describes the steps for building code with the IncrediBuild Visual Studio plug-in.

1. Before you run the build, validate that IncrediBuild is successfully integrated with Coverity tools. For
example:

BuildConsole /nologo /QueryPackage="COVERITY"

If the integration is successful, you should receive a message similar to the following:

"Coverity" package is allocated to this Agent (exit code 0)

2. Perform your build using the IncrediBuild Visual Studio plug-in.

IncrediBuild produces an additional output of a JSON script that itemizes all of the compile
commands complete with the environment for each command. The JSON script will be written to:

<Incredibuild install dir>\Temp\Ib_<solution name>_<date>.json

3. Specify the JSON script to cov-manage-emit replay-from-script. For example:

cov-manage-emit --dir <idir> replay-from-script -if <json script>.json \
 --compilation-log compile.log -j <num_cores_or_cpus>

The cov-manage-emit command reads the JSON script, builds a list of compile commands, and
executes each of the compile commands against cov-translate.

4. Run cov-analyze, specifying the intermediate directory produced by the previous step.

4.1.1.2. Important usage notes

The IncrediBuild build process has the following usage notes:

• Supports Microsoft Visual Studio response files to CL.exe.

• Supports Microsoft Visual Studio PCH files.

112

Using IncrediBuild

• Does NOT support source files or PCH files that are overwritten, deleted or moved during the build. The
source files must exist after the build at the same location at which they were compiled.

For example, a PCH file that is overwritten multiple times in the same build with different contents
cannot be used.

• Does NOT support #import.

4.1.2. Coverity Desktop Analysis

IncrediBuild can also be used to capture a build for Coverity Desktop Analysis. The steps are the same
as before, but use --record-only when importing the information into the emit.

cov-manage-emit --dir <intermediate_directory> replay-from-script --record-only \
 -if <json_script>.json --compilation-log compile.log -j <number_of_cores_or_cpus>

113

Chapter 4.2. Building with Xcode

Table of Contents
4.2.1. Building Xcode projects that use pre-compiled headers ... 114
4.2.2. Building projects that use Xcode 10's new build system .. 114

4.2.1. Building Xcode projects that use pre-compiled headers

By default, Xcode projects that utilize pre-compiled header (PCH) files will use a cache directory
for generated and referenced PCH files. When capturing an Xcode project based build using cov-
build, if the PCH cache directory contains PCH files that are used (but not generated) by the build,
then their generation will not be observed by cov-build. This may result in Coverity compilation
errors corresponding to native compiler invocations for source files that require use of the PCH files for
successful compilation. In particular, problems arise when compiling source files that depend on the
existence of a pre-compiled prefix header, but do not contain a #include directive to include the header.

The following techniques can be used to workaround this problem when building with the 'xcodebuild'
utility:

• Specify the 'clean' build action with the 'xcodebuild' invocation so that previously cached PCH files
are removed and re-generated.

> xcodebuild -project my-project.xcodeproj clean build

• Set the SHARED_PRECOMPS_DIR Xcode setting to the path to an empty temporary directory.

This setting may be specified in the 'xcodebuild' command line invocation or in an Xcode config file -
either in the default location (~/.xcconfig) or as specified by the '-xcconfig' command line option
or the XCODE_XCCONFIG_FILE environment variable.

> xcodebuild SHARED_PRECOMPS_DIR=/tmp/shared-precomps-dir -project my-
project.xcodeproj

• Set the GCC_PRECOMPILE_PREFIX_HEADER Xcode setting to disable use of pre-compiled prefix
headers. This is only an option if the source project is designed to build successfully without a prefix
header, or when the pre-compiled prefix header is not built.

This setting may be specified in the 'xcodebuild' command line invocation or in an Xcode config file -
either in the default location (~/.xcconfig) or as specified by the '-xcconfig' command line option
or the XCODE_XCCONFIG_FILE environment variable.

> xcodebuild GCC_PRECOMPILE_PREFIX_HEADER=no -project my-project.xcodeproj

4.2.2. Building projects that use Xcode 10's new build system

Apple introduced a new build system in Xcode 10 that is not yet supported by Coverity for C, C++, or
Objective-C code compiled with Clang. Attempting to capture such projects will result in a 0% capture
rate for C, C++, and Objective-C source code. To work around this issue, configure the project to use the

114

Building with Xcode

"Legacy Build System". You can do this within the Xcode IDE by selecting the File > Project Settings or
File > Workspace Settings menu option and selecting Legacy Build System from the drop down option
for Build System. Alternatively, you can select the legacy build system at build time by passing the -
UseModernBuildSystem=NO option to xcodebuild.

115

Chapter 4.3. Building with Visual Studio 2015+ or .NET Core
SDK (‘dotnet’)

Visual Studio 2015 (VS2015) introduced a mechanism called a shared compiler for builds of C# and
Visual Basic. VS2015, subsequent versions of Visual Studio, and the .NET Core SDK (dotnet), use a
shared compiler by default.

cov-build will not work when a shared compiler is used.

cov-build attempts to disable the use of a shared compiler by setting the UseSharedCompilation
environment variable to false. However, this does not always disable the use of a shared compiler. For
example, a user can override the environment variable in an MSBuild targets file or a project file.

If you are expecting to see C# or Visual Basic files emitted from your Visual Studio or .NET Core SDK
build and are not seeing them, you have the following options:

MSBuild
If you use MSBuild, you can use the command line to force it to not use the shared compiler line. This
will override all environment/project-specified values. For example, if your original command is:

> msbuild /t:rebuild myproject.sln

Change it to:

> msbuild /t:rebuild /p:UseSharedCompilation=false myproject.sln

.NET Core SDK (dotnet)
If you use dotnet, you can use the command line to force it to not use the shared compiler line. This
will override all environment/project-specified values. For example, if your original command is:

> dotnet build --no-incremental myproject.sln

Change it to:

> dotnet build --no-incremental -p:UseSharedCompilation=false myproject.sln

devenv
There is not currently a way to specify UseSharedCompilation=false for devenv-based build
commands on the command line. In the case of devenv, you have two options:

1. Use MSBuild instead of devenv. Then you can use the technique specified for MSBuild above.

2. Modify your .csproj files to not set UseSharedCompilation to true when attempting to
capture with cov-build. This allows cov-build to disable shared compilation using the
environment variable mentioned above.

116

Chapter 4.4. Building with Cygwin

Observe the following guidelines and limitations when working with Cygwin. Cygwin 1.7 (32-bit) is
supported on all supported versions of Windows. The 64-bit version is not supported.

• Versions 1.7.1–1.7.9. of Cygwin have a bug that can cause cov-build to fail to print the native build's
output, and might cause build failures. You can fix this issue by upgrading your version of Cygwin. You
can work around this issue by using --instrument or by redirecting the output of cov-build.

• Due to a change in Cygwin, cov-build cannot capture builds for Cygwin versions 1.7.21 and 1.7.22.
Cygwin has provided a workaround in the form of an environment variable in versions 1.7.23 or later.
The cov-build command will now attempt to automatically set this environment variable if Cygwin
version 1.7.23 (or later) is detected. You can set the environment variable manually from a Cygwin
shell prompt as follows:

$ export CYGWIN=wincmdln

• Cygwin processes are known to be vulnerable to a Microsoft Windows defect (see Known Issue 58684
in the Coverity Release Notes Archive) and compiler mis-configurations might occur when using
Cygwin compilers. Upgrade to Cygwin version 1.7.18, which contains a workaround for this issue. If
you are using later versions of Cygwin, note that Coverity is unable to support Cygwin versions 1.7.21
and 1.7.22 (see above). Coverity recommends Cygwin 1.7.23 or later.

117

Part 5. Using the Compiler Integration Toolkit (CIT)

Table of Contents
5.1. Compiler Integration overview .. 119

5.1.1. Before you begin .. 119
5.1.2. Basic requirements ... 120

5.2. The Coverity Analysis build system .. 121
5.2.1. The cov-configure command ... 121
5.2.2. The cov-translate command .. 123
5.2.3. The cov-preprocess command .. 124
5.2.4. The cov-test-configuration command ... 125

5.3. Understanding the compiler configuration ... 126
5.3.1. The <compiler> tags ... 127
5.3.2. <options> tags in coverity_config.xml .. 129
5.3.3. Editing the Coverity configuration file - coverity_config.xml .. 145

5.4. Using the Compiler Integration Toolkit (CIT) ... 146
5.4.1. The Compiler Integration Toolkit (CIT) compiler configuration file 146
5.4.2. The compiler switch file .. 155
5.4.3. Compiler compatibility header files .. 161
5.4.4. Custom translation code ... 161
5.4.5. Creating a Compiler Integration Toolkit (CIT) configuration for a new compiler 163
5.4.6. Creating a compiler from an existing Compiler Integration Toolkit (CIT) implementation . 163

5.5. Troubleshooting the build integration .. 166
5.5.1. Why is no build log generated? ... 166
5.5.2. I see a header file error: expected an identifier .. 166
5.5.3. I see a header file error: expected a ';' .. 166
5.5.4. Why is the standard header file not found? .. 167
5.5.5. I see the message: #error No Architecture defined ... 168

Chapter 5.1. Compiler Integration overview

Table of Contents
5.1.1. Before you begin .. 119
5.1.2. Basic requirements ... 120

Coverity provides support for many native compilers. There are instances, however, when the native
compiler accepts non-standard code or has an option that the Coverity compiler misinterprets or does
not understand. Additionally, there are native compilers for which Coverity does not provide support.
The compiler integration for the Analysis build system is highly configurable and can be customized to
accommodate many different compilers and code bases. This document describes many of the compiler
integration options and how to use the options to configure native compilers.

This document assumes that as a user of the Coverity Analysis build system, you are familiar with cov-
configure and the coverity_config.xml configuration file. This configuration describes information
about a specific installation of a compiler, such as where the configuration should search for system
header files, what macros it defines, information about the dialect of C/C++ it accepts, and so forth. This
configuration tells the Coverity Analysis build system how it should try to emulate the native compiler. The
Coverity Analysis build system can then intercept the calls of the native compiler to facilitate the capture
and understanding of the code base that is going to be analyzed.

The Compiler Integration Toolkit (CIT) provides a mechanism for describing the general behavior of a
native compiler. A Compiler Integration Toolkit (CIT) configuration is essentially a meta-configuration; its
primary function is to tell the cov-configure command how to generate a coverity_config.xml
file for a specific compiler installation. The coverity_config.xml and the Compiler Integration Toolkit
(CIT) configuration XML use the same DTD and have much in common. Some of the other Compiler
Integration Toolkit (CIT) configuration files are passed through verbatim and will used by the cov-
translate command in addition to the coverity_config.xml file.

Most compilers that are supported by Coverity have that support implemented as a Compiler Integration
Toolkit (CIT) configuration. These integrations have the most options for customization and bug fixing.
Some of Coverity's earliest compiler integrations are not implemented using the Compiler Integration
Toolkit (CIT) and are hard-coded into the product. The customization of these implementations is limited
and is achieved by manipulating the coverity_config.xml file using the cov-configure --xml-
option option, or by editing the coverity_config.xml file directly after cov-configure runs.

The Coverity Analysis build system and the Compiler Integration Toolkit (CIT) provide the flexibility to
support many native compilers and code bases. For a list of native compilers with successful integrations,
see the Coverity 2020.12 Installation and Deployment Guide.

5.1.1. Before you begin

This manual assumes that you have a working knowledge of Coverity Analysis and have experience
configuring compilers for Coverity Analysis. For information, see Chapter 2.7, Configuring compilers for
Coverity Analysis.

For information about Coverity commands (cov-configure, cov-emit, cov-translate) including
their usage and options, see Coverity 2020.12 Command Reference.

119

cov_command_ref.pdf

Compiler Integration overview

5.1.2. Basic requirements

Compiler Integration Toolkit (CIT) configurations require the following:

• Coverity Analysis 6.0 or later

• A licensed copy of the native compiler

• (Not required, but highly recommended) Documentation about the native compiler, including all
command line options

120

Chapter 5.2. The Coverity Analysis build system

Table of Contents
5.2.1. The cov-configure command ... 121
5.2.2. The cov-translate command .. 123
5.2.3. The cov-preprocess command .. 124
5.2.4. The cov-test-configuration command ... 125

Before you attempt a native compiler integration, it is useful to understand the commands that are run
as part of the Coverity Analysis build process, and what type of information they need to successfully
complete. The Coverity Analysis build process has the following command binaries:

cov-configure
Probes the native compiler and creates the configuration used by the build system to emulate the
native compiler. See Section 5.2.1, “The cov-configure command”.

cov-build
Monitors the native build and invokes cov-translate for every invocation of the native compiler.
cov-build is not relevant to the discussion of the compiler configuration customization and is not
covered in this document. For more information, see cov-build in the Command Reference.

cov-translate
Emulates the native compiler by mapping the native compiler command line to the command line
used by the Coverity compiler. See Section 5.2.2, “The cov-translate command ”.

cov-emit (Coverity compiler)
Parses the code and stores it in the Coverity emit database. This command is not covered in this
document. See cov-emit in the Command Reference.

cov-preprocess
Produces preprocessed source using either the native compiler or the Coverity compiler. This is
useful for debugging parse errors. See Section 5.2.3, “The cov-preprocess command ”.

cov-manage-emit
Manipulates the Coverity emit database in many different ways. It can be used to call cov-
translate, cov-emit, or cov-preprocess on a previously captured code base. It can be
viewed as a wrapper for cov-translate, cov-emit, and cov-preprocess. This command is
not covered in this document. For more information, see cov-manage-emit in the Command
Reference.

5.2.1. The cov-configure command

The cov-configure can be used in two ways:

• template mode

• non-template mode

121

cov_command_ref.pdf#cov-build
cov_command_ref.pdf#cov-emit
cov_command_ref.pdf#cov-manage-emit

The Coverity Analysis build system

When used in template mode, the generation of a configuration for that compiler is deferred until the
compiler is used in the build. In either case, the following steps describe an overview of the configuration
generation process:

1. Determine required options.

Identify any arguments that must be specified for the configuration to be valid. Certain compilers
require that different configurations be generated depending on the presence of certain switches.

For example, the GCC -m32 switch will cause the compiler to target a 32-bit platform, while -
m64 will target a 64-bit platform. cov-configure will record these options in the configuration
so the generated configuration will only be used when those options are specified. When using a
compiler integration implementation using the Compiler Integration Toolkit (CIT), the required options
must have the oa_required flag included in the switch specification in the compiler switch file
(<compiler>_switches.dat). For more information, see Section 5.4.2, “The compiler switch file ”.

2. Test the compiler.

Runs tests against the compiler to determine its behavior, for example, to determine type sizes and
alignments. See Section 5.4.1.4.1, “Test tags” for descriptions of the testing tags that you can set in
the configuration file.

3. Determine include paths.

cov-configure determines the include path in three ways and each involves opening standard C
and C++ headers:

• strace - Look at system calls to see what directories are searched. This is not supported on
Windows systems.

• dry run - cov-configure can parse include paths from the output of a sample compiler invocation.
You can change this behavior with <dryrun_switch> and <dryrun_parse>.

• preprocess - The most general solution is to preprocess the file and look for the #line directives
which details where the files are located.

For a C compiler, the test gives the compiler these files: stdio.h, stdarg.h

For a C++ compiler the test gives the compiler these file stdio.h, stdarg.h, cstdio, typeinfo,
iostream, iostream.h, and limits. A Compiler Integration Toolkit (CIT) configuration can
add additional files to the list of headers. For more information, see Section 5.4.1.4.2, “Additional
configuration tags”.

4. Determine macros:

cov-configure determines macros in the following ways:

• dump - Native compilers can dump intrinsically defined macros when they are invoked with certain
switches. You can change this behavior with <dump_macros_arg>.

122

The Coverity Analysis build system

• preprocess - Candidate macros are inserted into a file and the file is preprocessed to determine the
macros value. Candidate macros are identified in two ways:

a. Specified as part of the compiler implementation. Additional macro candidates can be added
using the Compiler Integration Toolkit (CIT). For more information, see Section 5.4.1.4.2,
“Additional configuration tags”.

b. System headers are scanned for potential macros.

5. Test the configuration

Run tests against the configuration to see if it works correctly and then tailor them appropriately.
Currently, the only test that is performed is to determine if –no_stdarg_builtin should be used or
not.

5.2.2. The cov-translate command

The cov-translate process takes a single invocation of the native compiler and maps it into zero
or more invocations of the Coverity compiler. The following steps provide an overview of the cov-
translate command process:

1. Find the compiler configuration file that corresponds to the native compiler invocation. This involves
finding a configuration with the same compiler name, the same compiler path, and the same required
arguments. If such a configuration is not found, and the compiler was configured as a template, cov-
translate will generate an appropriate configuration.

2. The native command line is then transformed into the Coverity compiler commands. All compilers tend
to do similar things, so cov-translate is broken into phases. Each phase takes the command lines
produced in the previous phase as input and produces transformed commands as output. Each phase
has a default set of actions and will only appear in a configuration if needed by a particular compiler.

Expand
Expands the command line to contain all arguments. This usually means handling any text files
that expand to command line arguments, native compiler configuration files, and environment
variables. After this phase, all of the compiler switches should be on the command line.

Post Expand
If the results of transforming the command line in the Expand phase will result in a command line
that is not valid for the native compiler, that portion of the transformation should be deferred to
the Post Expand phase. The side effect of deferring transformation is that when preprocessing is
attempted, or if the replay of a build occurs later, all of the files or environment elements might no
longer be present.

Pre-translate
Maps the native compiler switches to the equivalent Coverity compiler switches, or drop the native
compiler switches if they do not affect compilation behavior.

123

The Coverity Analysis build system

Split
Removes source files from the command line, splitting them into language groups. The default
behavior performs the split based on the suffixes of the files.

Translate
This phase applies to actions that are not explicitly listed in any phases in the configuration XML.
For example, the presence of <append_arg>-DFOO</append_arg> outside of any phase tags
(such as <post_expand/>) appends -DFOO to the command line during the Translate phase. Also,
part of this phase is the decision to skip command lines with arguments that you do not want to be
emitted. For example, you might want to skip any invocations of the compiler that are only doing
preprocessing.

Post Translate
Applies Coverity compiler command transformation that cannot be performed in the Translate
phase.

Source Translate
Because the split phase removed source files from the command line, there is no opportunity to
do command line transformations that are dependent on the name of the source file. For C/C+
+, this phase will be executed once for each source file to be compiled. For example, for GCC
Precompiled header (PCH) file support, you can use this phase to append additional arguments if
the source file is a C/C++ header file.

Final Translate
This translation phase is the last one before the arguments are passed to the Coverity compiler.
This phase is reserved for the Coverity Support team to work around any command lines that are
improperly handled by their implementations.

3. For the command lines produced by the phases of transformation, the Coverity compiler is then
invoked unless cov-build --record-only is specified, in which case, Compiler Integration Toolkit
(CIT) simply records the Coverity compiler command line for a later invocation as part of cov-build
--replay.

5.2.3. The cov-preprocess command

The first step of the cov-preprocess process is to find the appropriate configuration, similar to cov-
translate. For cov-translate, however, a native compiler command line is mapped to what the
Coverity compiler expects. For native preprocessing, a native compiler compile command line must be
mapped into a native compiler pre-process command line. While it is not as complicated as the former
mapping, it is not as simple as adding an option for preprocessing. For example, the following is the
command to compile a file with GCC:

gcc -c src.cpp -o src.o

If it is simply transformed by adding the -E option for preprocessing as in the following example, the
result would be that the preprocessing would output to src.o:

gcc -E -c src.cpp -o src.o

124

The Coverity Analysis build system

The mechanism for transforming a native compile command into a native pre-process command is
described in Section 5.3.2.1, “Tags used for native preprocessing”.

5.2.4. The cov-test-configuration command

The cov-test-configuration command is used to test command-line translations of a
configuration by making assertions about the translations. It parses an input script and confirms that the
commands are true or false.

Example:

cov-configure --config myTest/coverity_config.xml --msvc
cov-test-configuration --config myTest/coverity_config.xml MyTests.json

Output of the cov-test-configuration example:

Section [0] My Section Label
Tests run: 1, Failures: 0, Errors: 0
Sections run: 1, Tests run: 1, Failures: 0, Errors: 0

Examples of the format to use are found at <install_dir>/config/templates/*/test-
configuration.*.json for the supported compilers.

125

cov_command_ref.pdf#cov-test-configuration

Chapter 5.3. Understanding the compiler configuration

Table of Contents
5.3.1. The <compiler> tags .. 127
5.3.2. <options> tags in coverity_config.xml .. 129
5.3.3. Editing the Coverity configuration file - coverity_config.xml ... 145

The cov-configure command will generate a compiler configuration for every compiler binary and two
configurations if the compiler binary can be used for C and C++. This configuration contains two sections,
<compiler> and <options>. The following is an example configuration:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE coverity SYSTEM "coverity_config.dtd">
<coverity>

<!-- THIS FILE IS AUTOMATICALLY GENERATED - YOU MAY ADD XML ENTITIES -->
<!-- TO UPDATE THE COMPILER CONFIGURATION AFTER THE begin_command_line_config ENTITY.
 -->
 <cit_version>1</cit_version>
 <config>
 <build>
 <compiler>
 <comp_name>gcc-4</comp_name>
 <comp_dir>C:\cygwin\bin</comp_dir>
 <comp_translator>g++</comp_translator>
 <comp_require>-m32</comp_require>
 <id>g++-gcc-4-4.3.4-0</id>
 <version>4.3.4</version>
 </compiler>
 <options>
 <id>g++-gcc-4-4.3.4-0</id>
 <sysinclude_dir>/usr/include</sysinclude_dir>
 <sysinclude_dir>/usr/include/w32api</sysinclude_dir>
 <preprocess_remove_arg>-o.+</preprocess_remove_arg>
 <preprocess_remove_arg>-c</preprocess_remove_arg>
 <preprocess_remove_next_arg>-o</preprocess_remove_next_arg>
 <preprocess_switch>-E</preprocess_switch>
 <preprocess_compile_switch>-C</preprocess_compile_switch>
 <cygwin>true</cygwin>
 <pre_preinclude_file>$CONFIGDIR$\coverity-macro-compat.h</pre_preinclude_file>
 <pre_preinclude_file>$CONFIGDIR$\coverity-compiler-compat.h</
pre_preinclude_file>
 <prepend_arg>--gnu_version=40304</prepend_arg>
 <prepend_arg>--no_stdarg_builtin</prepend_arg>
 <prepend_arg>--size_t_type=j</prepend_arg>
 <prepend_arg>--ptrdiff_t_type=i</prepend_arg>
 <prepend_arg>--type_sizes=w2x8li4s2e12d8fP4</prepend_arg>
 <prepend_arg>--type_alignments=w2x8li4s2e4d8fP4</prepend_arg>
 <prepend_arg>--ppp_translator</prepend_arg>
 <prepend_arg>replace/typedef(\s|\w)*\swchar_t\s*;/</prepend_arg>

126

Understanding the compiler configuration

 <skip_arg>-E</skip_arg>
 <skip_file>conftest\.cpp$</skip_file>
 <skip_file>\.y+\.c$</skip_file>
 <opt_preinclude_file>$CONFIGDIR$/../user_nodefs.h</opt_preinclude_file>
 <begin_command_line_config></begin_command_line_config>
 </options>
 </build>
 </config>
 <md5>7121697409837c393faad8ab755fff3b</md5>
</coverity>

5.3.1. The <compiler> tags

The <compiler> tag is used to identify which compiler invocations this configuration applies to using the
configuration matching rules in Section 5.2.2, “The cov-translate command ”. The possible tags in this
section include:

<comp_desc>
The optional description of this compiler. This information is provided by cov-configure for
Compiler Integration Toolkit (CIT) implementations.

<comp_dir>
Specifies the directory name for this compiler.

<comp_generic>
Provides the name of the directory where Compiler Integration Toolkit (CIT) files (for example, the
switch table, compatibility headers, and configuration XML) for a given compiler are stored. For
example,

<comp_generic>csc</comp_generic>

means that the Compiler Integration Toolkit (CIT) files for the compiler are stored under the following
directory:

<template_dir>/csc

The default value of <template_dir> is <install_dir>/config/templates. You can change
this default with <template_dir>.

<comp_name>
Specifies the binary name for this compiler.

<comp_next_type>
Gives the comptype for another possible configuration if the language of this configuration is not
appropriate after the source is split between C and C++.

<comp_require>
Defines the parameters that are required before the compiler matches a particular <compiler> tag.

<comp_translator>
The command-line translator to use for this compiler. This specifies which compiler command line the
cov-translate program should imitate. You can get a list of supported translators by running cov-

127

Understanding the compiler configuration

configure --list-compiler-types. The translators are the first, comma-separated entries on
each line in the list. (See sample command output in Chapter 2.7, Configuring compilers for Coverity
Analysis.) Required.

<could_require_regen>
Indicates cov-translate needs to invoke the native compiler to re-generate files (such as .TLH files)
needed by compilation when it replays a compilation command.

<file_exclude_pattern>
Use only with filesystem capture. Files and subdirectories that match the specified regular expression
are excluded from the search results and are not included in the analysis. For example, the following
tag excludes all paths that contain a directory named node_modules.

<file_exclude_pattern>[/\\]node_modules[/\\]</file_exclude_pattern>

Contents of excluded directories are not searched for further matches.

<file_include_pattern>
Use only with filesystem capture. Specify a regular expression pattern to match source files to be
passed to the associated compiler. For example, the following tags comprise a configuration that
captures files with a .js extension that will be compiled as JavaScript:

<comp_generic>javascript</comp_generic>
<file_include_pattern>^.*\.js$</file_include_pattern>

Note that the regular expression matches only on filenames and not on directories or path
information.

<id>
A unique name for this compiler.

<is_ide>
Indicates the configured target is an IDE binary.

<target_platform_fn>
Specifies the internal function to be used to determine target platform for code instrumentation.

<use_mspch>
Indicates the compiler uses Microsoft style precompiled header (PCH).

<version>
Specifies a version string for the compiler. This tag is only descriptive.

<version_macro>
A macro that contains compiler version information.

gcc version macros:

• <version_macro>__GNUC__</version_macro>

• <version_macro>__GNUC_MINOR__</version_macro>

128

Understanding the compiler configuration

<version_output_stream>
By default, compiler version auto detection looks for output on stdout. This can be overridden with
the value 2, which specifies output to standard error (stderr).

<version_regex>
An arbitrary number of regular expressions can be specified in <version_regex> tags to form the
compiler output into the required format. The expressions are applied in the order they are given in
the configuration. For example:

<version_regex>replace/.*([0-9]+\.[0-9]+) \[Build .*/$1</version_regex>

The following example takes the result of version macros __GNUC__=3 and __GNUC_MINOR_=4 and
returns 3.4:

<version_regex>replace/(\d+)\s(\d+)/$1.$2</version_regex>

<version_switch>
Enables cov-configure to attempt to automatically detect the compiler's version number. The
value is the compiler switch that prints out the version. For example, for gcc:

<version_switch>--version</version_switch>

If a compiler prints out the version information when invoked with no arguments, you should add this
option with an empty value.

If the wrong version is being reported, you can override the result by manually providing the version
number to cov-configure. For example:

cov-configure --version 2.1 --comptype ...

<wchar_t_name>
Defines a custom identifier for the wchar_t type. During compiler probes, this type name is used in
place of wchar_t.

5.3.2. <options> tags in coverity_config.xml

The following options control how the command line from your compiler is translated by Coverity tools.

5.3.2.1. Tags used for native preprocessing

<fix_macro_regex>
Specifies a regex that describes how to transform a command line switch from the Coverity -
DMACRO=VALUE syntax, to the native compiler's format. This is required to add macros to the native
command line when it is used for preprocessing.

<preprocess_command>
Runs a command, if any, that replaces the real compiler, to preprocess a file.

Run cpp instead of gcc:

129

Understanding the compiler configuration

<preprocess_command>cpp</preprocess_command>

<preprocess_compile_switch>
Indicates options that are added to the native compiler command line when preprocessing a source
file. This is used in addition to <preprocess_switch>. This switch is not used during cov-configure
when the native compiler is probed.

<preprocess_output>
Indicates the output of the cov-preprocess command by using a value.

The value 1 or - specifies standard output; 2 specifies standard error; any other value is considered
a file name. A file name can contain the special values $FILE$ to indicate the name of the file,
$FILEBASE$ to indicate the name of the file without its extension, and $PPEXT$ to indicate i for a C
file, or ii for a C++ file.

Transform test.c into test.i and test.cc into test.ii:

<preprocess_output>$FILEBASE$.$PPEXT$</preprocess_output>

<preprocess_remove_arg>
A Perl regular expression that indicates arguments that should be removed from a compile line to
preprocess a file.

Remove output files and compile arguments:

<preprocess_remove_arg>-o.+</preprocess_remove_arg>
<preprocess_remove_arg>-c</preprocess_remove_arg>

<preprocess_remove_next_arg>
A Perl regular expression that indicates arguments that should be removed, as well as the argument
immediately following it, from a compile line to preprocess a file (e.g. -o).

Remove output files:

<preprocess_remove_next_arg>-o</preprocess_remove_next_arg>

<preprocess_switch>
Adds an argument to the compiler line to preprocess a file.

Use -E to preprocess files:

<preprocess_switch>-E</preprocess_switch>

<preprocess_response_file>
Instructs cov-translate to use a response file when invoking the native compiler to preprocess.
You can use <switch> to specify the native response file switch, <suffix> to specify response
file suffix, and <format> to specify how response files should be formatted. The following is an
example.

 <preprocess_response_file>
 <switch>@</switch>

130

Understanding the compiler configuration

 <suffix>.rsp</suffix>
 <format>default</format>
 </preprocess_response_file>

default is currently the only allowed value for <format>. It causes each compiler switch to be
written on a separate line in the response file.

<preprocess_output_dir_switch>
Specifies the native switch that instructs the native compiler to generate the preprocess output to a
particular directory.

<supports_pch>
Indicates that the compiler supports precompiled headers (PCH). By default, PCH support is disabled
unless this tag is provided with a value of true.

<trailing_preprocess_switch>
Similar to the <preprocess_switch> arguments. The <trailing_preprocess_switch> argument is added
near the end of the command line (that is, after the arguments and before the file name) rather than
at the beginning.

5.3.2.2. Tags for skipping compilations

<emulate_compile_arg>
Used in combination with cov-translate --run-compile. When the arg matches the native
command line, cov-emit will not be invoked and the output of the native compiler will be passed
through verbatim.

<skip_arg>
Skips compiles that contain the value given. This causes the translator to not call cov-emit
whenever this value is seen on the native compiler's command line as a separate, complete
argument.

Do not call cov-emit on compiler invocations with the "-G" argument:

<skip_arg>-G</skip_arg>

<skip_arg_icase>
Identical to <skip_arg>, except that this tag ignores the case of the expression. The following tag set
ignores command lines that contain arguments with the string '-HeLp', '-HELP', '-help', and so forth:

<skip_arg_icase>-help</skip_arg_icase>

<skip_arg_regex>
<skip_arg_regex> works the same as <skip_arg>, except it performs a regex match. This is similar to
<skip_substring> as well, however it provides for situations where a simple substring would not work.

The following example shows how to match --preprocess=cnl, --preprocess=nl, but not --
preprocess=cl or --preprocess.

<skip_arg_regex>--preprocess=.*n.*</skip_arg_regex>

131

Understanding the compiler configuration

<skip_arg_regex_icase>
Identical to <skip_arg_regex>, except that this tag ignores the case of the expression. The following
tag set ignores command lines that start with '-h' or '-H'.:

<skip_arg_regex_icase>-h.*</skip_arg_regex_icase>

<skip_substring>
Skips compiles that contain the value given as a substring of any argument. This causes the
translator to not call cov-emit whenever any argument on the native compiler's command line
contains the value as a substring.

Do not call cov-emit on compiler invocations with ".s" as a substring of any argument on the
command line:

<skip_substring>.s</skip_substring>

<skip_substring_icase>
The tag is identical to <skip_substring>, except that this tag ignores the case of the command
line when matching. In the following example, command lines will be ignored that have options or
arguments that contain "skipme", "SKIPME", "sKiPmE", and so forth. example:

<skip_substring_icase>skipme</skip_substring_icase>

<skip_file>
Do not compile files that match the given Perl regular expression. This only affects the compilation
of the given files, so if several files are on a single command line it will only skip those that actually
match (unlike <skip_arg> or <skip_substring>). The file being matched is the completed file name
(for example, the current directory is put in front of relative file names), with / as a directory separator
(even on windows). The match is partial: use ^ and $ to match boundaries.

Do not compile parser files ending with ".tab.c":

<skip_file>\.tab\.c$</skip_file>

Java limitation

Though this option removes matching files from the cov-emit-java command line, the
command will nevertheless emit files that it identifies as dependencies, even if they match the
<skip_file> value.

5.3.2.3. Tags that influence translation

<preprocess_first>
Specifies if the build fails because of errors in cov-emit's preprocessing. If this is specified, cov-
build tries to preprocess each file with the native compiler before sending it to cov-emit. This tag
does not take a value.

The command to run to preprocess a file is configured by the <preprocess_> options given next. It is
constructed based on the command line used to actually compile the file.

<cygwin>
Indicates that the given compiler supports Cygwin file processing.

132

Understanding the compiler configuration

5.3.2.4. Tags used for transforming the native command line to the Coverity
compiler

<id>
A string matching the compiler to which the options under the current <options> tag apply. If you do
not specify the <id> tag, the options will apply to all compilers. You can specify multiple compiler <id>
tags under a single <options> tag, and the options will apply to all specified compilers.

Make the current <options> tag apply to the compiler with the identifier gcc:

<id>gcc</id>

<native_pch_suffix>
Specifies the suffix of the native compiler's precompiled header (PCH).

<remove_arg>
Removes a single argument from the cov-emit command line. This is only needed if for some
reason the cov-translate program is putting something undesirable onto the cov-emit
command line.

Remove the -ansi argument from the cov-emit command line (only needed if -ansi appears and
is causing a parsing problem):

<remove_arg>-ansi</remove_arg>

<remove_args>
Removes several arguments from the cov-emit command line. This is only needed if for some
reason the cov-translate program is putting something undesirable onto the cov-emit
command line. This differs from <remove_arg> in that you can specify the additional number of
arguments after the matching <arg> to remove.

Remove -foo a b from the cov-emit command line, where a and b are the two arguments that
follow -foo:

<remove_args>
 <arg>-foo</arg>
 <num>2</num>
</remove_args>

<replace_arg> , <replace_arg_regex>
<replace_arg> replaces an argument from the original compiler command line with an argument that
should go into the cov-emit command line. <replace_arg_regex> replaces a regular expression
from the original compiler command line with a regular expression that should go onto the cov-emit
command line. These tags are useful if the translator does not understand a custom command line
option that can be handled by cov-emit.

For example for <replace_arg>, if the compiler command line contains -mrtp, add -D__RTP__ to
the cov-emit command line:

<replace_arg>
 <replace>-mrtp</replace>

133

Understanding the compiler configuration

 <with>-D__RTP__</with>
</replace_arg>

For example for <replace_arg_regex>, if the compiler command line contains -i<directory>, add
--include=<directory> to the cov-emit command line:

<replace_arg_regex>
 <replace>-i(.*)</replace>
 <with>--include=$1</with>
</replace_arg_regex>

Both <replace_arg> and <replace_arg_regex> accept multiple <with> tags, so it is possible to
translate a single argument to multiple output arguments. For example (using <replace_arg_regex>):

<replace_arg_regex>
 <replace>-foo=(.*)</replace>
 <with>-bar=$1</with>
 <with>-baz=$1</with>
</replace_arg_regex>

In this case, -foo=test will be replaced with -bar=test and baz=test.

When a <replace_arg> or <replace_arg_regex> tag is matched, the resulting output is inserted
in-place, meaning that the order of the resulting command line is unchanged. Furthermore,
<replace_arg> and <replace_arg_regex> tags are applied in the order they appear in the XML, and
the results of a given replacement are passed to the next possible replacement. For example:

<replace_arg>
 <replace>-foo</replace>
 <with>-bar</replace>
</replace_arg>
<replace_arg>
 <replace>-bar</replace>
 <with>-baz</replace>
</replace_arg>

In this case, -foo will be replaced by -baz, because the second <replace_arg> tag will match the
output of the first.

<replace_icase>
A child tag to <replace_arg> and <replace_arg_regex>. When this tag is used, the replacement is
applied in a case sensitive manner. For example:

<replace_arg>
 <replace_icase>-FOO</replace_icase>
 <with>-bar</with>
</replace_arg>

In this case, -FOO, -foo, -Foo, and all other combinations, will be replaced.

<extern_trans>
Invokes an external command. The syntax is:

134

Understanding the compiler configuration

<extern_trans>
 <extern_trans_path>path to your executable</extern_trans_path>
 <extern_trans_arg>…</extern_trans_arg>
 <extern_trans_arg>…</extern_trans_arg>
<extern_trans>

The path to the executable is required, but the arguments are optional and will depend on how the
executable works. If the path is relative to the Coverity Analysis installation directory, you can use
the $CONFIGDIR$ environment variable, which expands to the absolute path of the installation's /
config directory.

Example:

<extern_trans>
 <extern_trans_path>$CONFIGDIR$/../translator.exe</extern_trans_path>
<extern_trans>

In addition to whatever arguments you specify, the following additional arguments will be added:

• The filename containing all the command line arguments that need to be processed, one argument
per line.

• The filename of where you should write the new command line, one argument per line.

• After the first two arguments, there are the following optional arguments that are useful to locate
helpful files, such as the compiler switch table:

• --compiler_executable_dir <path> - Encodes the location of the native compiler
executable.

• --compiler_version <version> - Encodes the compiler version of the native compiler
being translated.

• --cov-home <path> - Encodes the location of the Coverity Analysis installation directory.

• --cov-type <comp_type> - Encodes the compiler type.

• --template_subdir <path> - Encodes the /template subdirectory for the compiler.

The native command line arguments are not put on the command line to avoid any command line
length issues and some instability in pipes on Windows.

<intern_trans>
Invokes a command that is built in to the product. For example:

<intern_trans>lintel_pre_translate</intern_trans>

This built-in command can be overridden by providing an external translator. The external translator
will be found in the same directory as the Compiler Integration Toolkit (CIT) configuration and will
have the same name as the built-in command. No user specified arguments are permitted. Only the
extra options that were previously described for <extern_trans> are passed. If no extra options are
required, specifying <extern_trans> is not necessary.

135

Understanding the compiler configuration

When a valid internal command is specified, and an external translator of the same name is present
in the same directory as the Coverity Compiler Integration Toolkit configuration, the external
translator is preferred over the internal command without requiring the presence of <extern_trans>.

It is also possible to specify an external translator within <intern_trans> that is not named the same
as any preexisting internal command. In that case, the configuration would then be completely
dependent upon the presence of the external translator.

<args_from_env_var>
Specifies an environment variable from which to extract options, in addition to the command
line. The <prepend> attribute specifies the name of the environment variable to be used, while
the optional <ignore> attribute specifies the name of another environment variable which may
or may not be defined. (Note: The <add> subtag may be used instead of the <prepend> subtag.
However, a warning will be issued if the <add> subtag is used.) Environment variables specified
within the <append> subtag will be appended to the command line. If the second environment
variable is specified in the <ignore> tag, and that variable is defined in the environment, then all other
environment variables contained in the <args_from_env_var> tag are ignored. For example:

<args_from_env_var>
 <append>CCTS_OPTIONS</append>
 <prepend>CCTS_OPTIONS</prepend>
 <ignore>CCTS_IGNORE_ENV</ignore>
</args_from_env_var>

A fifth subtag, <append_args_found_after_delimiter>, can also be used in conjunction with the above.
This tag allows specifying one delimiter, where any arguments found in the environment variable
following that delimiter will be appended, and any arguments preceding it will be prepended to the
command line. For example:

<args_from_env_var>
 <prepend>CCTS_OPTIONS</prepend>
 <append_args_found_after_delimiter>|</append_args_found_after_delimiter>
</args_from_env_var>

CCTS_OPTIONS="-prepended_arg_1 -prepended_arg_2 | -appended_arg_1 -appended_arg_2"

The <accept_quoted_delimiters> sub tag affects all of the delimiters specified by the
<append_args_found_after_delimiter> tag. For example:

<args_from_env_var>
 <append>FOO</append>
 <append_args_found_after_delimiter>|</append_args_found_after_delimiter>
 <accept_quoted_delimiters>true</accept_quoted_delimiters>
</args_from_env_var>

FOO="|-DBAR"

In the example above, -DBAR is added to the command line while the leading vertical bar | has been
removed because it is treated as a delimiter. The <accept_quoted_delimiters> tag prevents the value
|-DBAR from being treated as the additional command line switch. Note that the vertical bar isn't
removed because it is not being treated as a delimiter in this case.

136

Understanding the compiler configuration

<includes_from_env_var>
Specifies an environment variable that defines additional include directories that should be searched
during source parsing.

<version_includes_from_env_var>
Specifies a regex that is run against the compiler version to determine if the environment variable
should be used.

The specified environment variable is added to the includes if the given regex matches any part of
the version string after applying the substitution given by the version_regex tag.

The syntax is as follows:

<version_includes_from_env_var>
 <version_regex><regex></version_regex>
 <name><environment_variable_name></name>
</version_includes_from_env_var>

<native_pch_suffix>
Specifies the suffix of native precompiled header (PCH) files.

<include_dir>
This is the directory where user headers are located, to be used by the cov-emit command line.
The directory is appended with the cov-emit -I option .

<sysinclude_dir>
This is the directory where system headers are located, to be used by the cov-emit command line.
The directory is appended with the cov-emit --sys_include option .

<pre_prepend_arg>
Adds an argument to the beginning of the cov-emit command line, ensuring that arguments precede
arguments added by <prepend_arg>. Successive arguments will be placed in the order they are
declared, the last one being just before the arguments added by <prepend_arg>. Only use this to
force certain arguments to come first on the cov-emit command line.

<prepend_arg>
Adds an argument to the beginning of the cov-emit command line, preceding arguments put out
by cov-translate. Successive arguments will be placed in the order they are declared, the last
one being just before the arguments put out by cov-translate. Use <prepend_arg> unless a
compelling reason is present to use <pre_prepend_arg> or <append_arg>.

Add --ignore_std to the cov-emit command line to ignore the std namespace for C++
compiles:

<prepend_arg>--ignore_std</prepend_arg>

Add --ppp_translator <translator> to the cov-emit command line to translate files before
they are preprocessed.

<prepend_arg>--ppp_translator</prepend_arg>

137

cov_command_ref.pdf#cov_emit_minus_I
cov_command_ref.pdf#cov_emit_sys_include

Understanding the compiler configuration

<prepend_arg>replace/(int) (const)/$2 $1</prepend_arg>

Prepend "-DNDEBUG" to the cov-emit command line to add the NDEBUG define:

<prepend_arg>-DNDEBUG</prepend_arg>

<append_arg>
Adds an argument to the end of the cov-emit command line, after arguments put out by cov-
translate. Only use this to override erroneous arguments put out by cov-translate.

<drop_prefix> <drop_string>
The cov-translate command attempts to match the next argument (--foobar) after the
prefix with the <drop_string> value. If this argument matches, it is ignored. Each time an
argument is successfully matched and ignored, it tries to match the next argument against the list of
<drop_string> values. As soon as the next argument does not match one of the <drop_string>
values, it stops trying, and assumes the next argument after that is the compiler name. You can
also use the <drop_count> tag to specify the number of additional arguments after the matching
argument to unconditionally drop.

Skip the --skip_me_1 argument, and also the next two arguments:

<drop_prefix>
 <drop_string>--skip_me_1</drop_string>
 <drop_count>2</drop_count>
</drop_prefix>

<pre_preinclude_file>
Specifies a header file to be included before all other source and header files when you invoke cov-
emit. This is equivalent to the --pre_preinclude option of the cov-emit command. The header
files that you specify with this tag are processed with cov-emit before all other header or source
files. This tag is typically used to include the Coverity compiler and macro compatibility header files
that the cov-configure command generates.

<preinclude_file>
Specify <file.h> to be included before most of the source and header files except for those
specified with <pre_preinclude_file>, when you invoke cov-emit. This is equivalent to the --
preinclude option of the cov-emit command. Header files that you specify with this tag are
processed by cov-emit immediately after those that are specified with the <pre_preinclude_file> tag
and those passed to cov-emit via the --preinclude_macros option. This option is typically used
to include special nodef files that contain macro suppression directives and macros predefined by
the compiler.

Preinclude the /nfs/foo/PrefixHeaderForCoverity.h file:

<preinclude_file>
/nfs/foo/PrefixHeaderForCoverity.h
</preinclude_file>

<opt_preinclude_file>
Specify a file to preinclude during compilation. The file is optional. If no file is specified, this option is
ignored.

138

Understanding the compiler configuration

Add the nodefs.h file in the same directory as the current coverity_config.xml configuration
file to the cov-emit command line:

<opt_preinclude_file>$CONFIGDIR$/nodefs.h</opt_preinclude_file>

5.3.2.5. Tags for phases of command line transformations

All of the options for manipulating command lines (see Section 5.3.2.4, “Tags used for transforming the
native command line to the Coverity compiler”) can go directly into the <options> tag. For more control
over when the transformation occurs, they can be placed into one of the translation phases using one of
the following tags:

<expand>
The --coverity_resp_file option is processed during the expand phase. It takes the contents
of a text file and adds it to the command line. For example, to map from @file you would use the
following XML:

<expand>
 <options>
 <replace_arg_regex>
 <replace>@(.*)</replace>
 <with>--coverity_resp_file=$1</with>
 </replace_arg_regex>
 </options>
</expand>

During this phase, the following switches are processed:

• --coverity_config_file - Takes the form --coverity_config_file=<value> where
value is the name of a response file. Only the argument to the last --coverity_config_file
will be used.

• --coverity_resp_file_or_env_var - Takes the form --
coverity_resp_file_or_env_var=<value> where <value> is either a file name or an
envionment variable name. If the environment variable named <value> exists and is non-empty,
then its value will be added to the command line. Otherwise, <value> will be treated as the file
name of a response file, and this will be equivalent to --coverity_resp_file=<value>.

• --coverity_translate_config - Takes the form --
coverity_translate_config=<value> where <value> is a response file filter. <value>
should be a regular expression to be applied to response files before they are interpreted;
you might think of it as ppp_translator for response files. The swtich applies to a --
coverity_config_file specified earlier or later in the command line but only applies to --
coverity_resp_files specified later in the command line.

<post_expand>
Processes the same switches as <expand>.

• -coverity_create_pch - Creates a Coverity precompiled header (PCH) for the specified
header file.

139

Understanding the compiler configuration

• -coverity_use_pch - Searches for a Coverity precompiled header (PCH) to be used in
compiling the specified file.

<pre_trans>
During this phase, the compiler switch file will be processed.

<split>
During this phase, the following switches are processed:

• -coverity_no_default_suffixes - Only treats explicitly defined source file suffixes
(for example, those defined through switches such as -coverity_c_suffixes, -
coverity_cxx_suffixes, and so on) as source file name extensions. Default file name
extensions such as .c for C source files will be disabled. This option should be added during the
pre-translate phase and is not implemented for non-CIT (that is, non-Compiler Integration Toolkit
(CIT)) compilers.

• -coverity_c_suffixes - Takes the form -coverity_c_suffixes
<extension>[;<extension>;<extension...]. Treats the given file name extensions as C
source files. Example: -coverity_c_suffixes c;i treats files named src.c and src.i as
files that contain C code. See -coverity_no_default_suffixes.

• -coverity_c_header_suffixes - Treats the given file name extensions as C header files. See
-coverity_c_suffixes.

• -coverity_cxx_suffixes - Treats the given file name extensions as C++ source files. See -
coverity_c_suffixes.

• -coverity_cxx_header_suffixes - Treats the given file name extensions as C++ header
files. See -coverity_c_suffixes.

• -coverity_objc_suffixes - Treats the given file name extensions as Objective-C source files.
See -coverity_c_suffixes.

• -coverity_objc_header_suffixes - Treats the given file name extensions as Objective-C
header files. See -coverity_c_suffixes.

• -coverity_objcxx_suffixes - Treats the given file name extensions as Objective-C++ source
files. See -coverity_c_suffixes.

• -coverity_objcxx_header_suffixes - Treats the given file name extensions as Objective-C
++ header files. See -coverity_c_suffixes.

<trans>
Intended to add any additional prevent compiler switches that are specific to whether the source is
C or C++. You can avoid this phase in Compiler Integration Toolkit (CIT) implementations by using
the –coverity_cxx_switch and –coverity_c_switch options to specify language specific
switches.

• –coverity_c_switch - Takes the form -
coverity_c_switch,<switch>[,<switch>,switch...]. Specify the given switches for

140

Understanding the compiler configuration

compiling the C sources on the command line only. For example, -coverity_c_switch,-
DNOT_CPP src.c src.cpp will provide -DNOT_CPP for src.c but not src.cpp.

• –coverity_cxx_switch - Takes the form -
coverity_cxx_switch,<switch>[,<switch>,switch...]. Specify the given switches for
compiling the C++ sources on the command line only. See –coverity_c_switch.

The following options are processed in this phase to emulate the Microsoft-style precompiled header
(PCH). They shouldn't be used for any other purpose.

• -coverity_mspch_create

• -coverity_mspch_filename

• -coverity_mspch_headername

• -coverity_mspch_none

• -coverity_mspch_use

• -coverity_determine_dir_of_file

<post_trans>
Translates the command line after the trans phase. This is primarily useful for manipulating the
command line in the context of legacy compilers.

During this phase, the following switches are processed:

• -coverity_create_pch Creates a PCH TU.

• -coverity_use_pch: Searches for an existing PCH TU to be used in compiling the current TU.

<src_trans>
During this phase, the following switch is processed:

• --coverity_remove_preincludes - Erases all --preinclude and --pre_preinclude
switches from the command line that appear before --coverity_remove_preincludes.

Usage example:

--add-arg --preinclude --add-arg foo --add-arg --coverity_remove_preincludes

5.3.2.6. Tags used to internally pass information from cov-build

These XML tags are used internally by cov-build to pass information to cov-translate.

<cygpath>
Specifies the path in which Cygwin is installed. This does not appear in a configuration file.

<encoding>
Indicates what file encoding to use. This does not appear in a configuration file.

141

Understanding the compiler configuration

<encoding_rule>
Specifies file encodings on a per-file basis using regular expressions. Within <encoding_rule>, you
use <encoding> to specify an encoding for files with names that match the regular expression you
specify with <path_regex> or <path_regex_icase>, for example:

<encoding_rule>
 <encoding>UTF-8</encoding>
 <path_regex>someFile\.c</path_regex>
</encoding_rule>

For case-insensitive regular expressions, you use <path_regex_icase>, for example:

<encoding_rule>
 <encoding>Shift_JIS</encoding>
 <path_regex_icase>iregex</path_regex_icase>
</encoding_rule>

To use more than one regular expression to match multiple files that use a specific encoding, you can
specify more than one <path_regex> and/or <path_regex_icase> under the same <encoding_rule>,
for example:

<encoding_rule>
 <encoding>EUC_JP</encoding>
 <path_regex>regex.*\.c</path_regex>
 <path_regex>regex2.*\.c</path_regex>
 <path_regex_icase>iregex.*\.c</path_regex_icase>
 <path_regex_icase>iregex2.*\.c</path_regex_icase>
</encoding_rule>

For each <encoding_rule>, it is necessary to specify an <encoding> tag and at least one
<path_regex> or <path_regex_icase> tag.

Note

Currently, Coverity does not support <encoding_rule> for Java, C#, and the Clang C/C++
compiler.

<enable_pch>
Uses cov-emit PCH processing capability to speed up parsing. This does not appear in a
configuration file.

<no_caa_info>
Disables additional XREF information necessary for Coverity Architecture Analysis.

5.3.2.7. Tags used to handle response files

You can specify a function that should be used to split text found in response files into separate
arguments.

Similar to the <pre_translate> function the internal function can be overridden by an external
executable if necessary. The added configuration options are both located in the <options> section of
the <expand> tag are as follows:

142

Understanding the compiler configuration

<intern_split_response_file_fn>
Specify the function that should be used with the function name as the value. For example:

<expand>
 <options>
 <option>
 <intern_split_response_file_fn>foo</intern_split_response_file_fn>
 </option>
 </options>
</expand>

The choices for internal function:

• arm_split - Specifies ARM compilers. ARM compilers have a specific syntax, so they need a
different function.

• default_split - The default choice. Should handle most cases.

• line_split - Specifies that each full line in the response file is an argument (that is, not
separated by tabs or spaces). This value is currently set by Compiler Integration Toolkit (CIT) for
the Java configuration.

<extern_split_response_file_exe>
Specifies the function that should override the internal function, with the name of the executable that
should be used. For example:

<expand>
 <options>
 <option>
 <extern_split_response_file_exe>foo</extern_split_response_file_exe>
 </option>
 </options>
 </expand>

If both <intern_split_response_file_fn> and <extern_split_response_file_exe>
appear in the configuration, the external executable takes precedence.

<response_file_filter>
Allows regex filters to process the response file prior to parsing it for arguments. These filters are
cleared between phases in case different response file formats are used.

<response_file_extension>
Allows for an optional extension to apply to the response file. If the specified response file does not
exist, this extension is used to find the response file.

5.3.2.8. Tags to process commented lines in response files

You can specify tags to control whether or not comments should be removed for response files. If you do
not specify these tags, the compiler considers everything (including the comments) to be a switch.

These tags are child tags to <expand> and<post_expand>. Acceptable arguments are yes or no, where
yes enables the processing of the commented line.

143

Understanding the compiler configuration

<response_file_merge_lines>
Merges lines that end with backslashes in the response file.

<response_file_strip_comments>
Enables all of the comment filters.

<response_file_strip_poundsign_comments>
Strips a single commented line that begins with the pound sign (#). This filter respects line merges for
lines that end with a backslash (\).

<response_file_strip_semicolon_comments>
Strips a single commented line that begins with an unquoted, un-escaped semicolon (;). This filter
respects line merges for lines that end with a backslash (\).

<response_file_strip_slashslash_comments>
Strips a single commented line that begins with double slashes (//). This filter respects line merges for
lines that end with a backslash (\).

<response_file_strip_slashstar_comments>
Strips all commented lines that begin with a slash star (/*) and end with a star slash (*/).

For example:

<post_expand>
 <options>
 <response_file_strip_comments>yes</response_file_strip_comments>
 <response_file_merge_lines>yes</response_file_merge_lines>
 </options>
</post_expand>

Will strip the following (example) commented lines:

/*
* Add switches to compiler command line
*/
// This one is especially \
 important
-DDEFINE_ME=1
So is this one
-UUNDEFINE_ME

5.3.2.9. Tags to direct which groups the options are applied to

option_group
The options within this group are applied to the variants specified by the <applies_to> tag. Please
see the following example:

<options>
 <option_group>
 <applies_to>gcc,g++</applies_to>
 <compile_switch>-c</compile_switch>
 <preprocess_switch>-E</preprocess_switch>

144

Understanding the compiler configuration

 </option_group>
 </options>

5.3.3. Editing the Coverity configuration file - coverity_config.xml

If a compiler cannot be successfully configured and the issues cannot be fixed in the Compiler Integration
Toolkit (CIT) configuration, you can modify the Coverity configuration file, coverity_config.xml.
Use the cov-configure --xml-option option and add any of the transformation options. For
more information about cov-configure --xml-option, see cov-configure in the Command
Reference.

For the most part, if they are correct, you do not need to edit the cov-configure generated files. If
there is an incompatibility between your compiler and cov-emit, editing the configuration file can be a
short-term fix while Coverity improves compiler support in subsequent releases.

All command-line manipulations in the generated configuration are defined with an <option> tag. Each
<option> tag lists all of the automatically generated options, followed by an empty tag of the following
form:

<begin_command_line_config></begin_command_line_config>

You can add all additional command-line manipulations to the <option> tag on the lines
after the begin_command_line_config entity. Do not put modifications inside of the
begin_command_line_config entity. .

145

cov_command_ref.pdf#cov-configure

Chapter 5.4. Using the Compiler Integration Toolkit (CIT)

Table of Contents
5.4.1. The Compiler Integration Toolkit (CIT) compiler configuration file ... 146
5.4.2. The compiler switch file .. 155
5.4.3. Compiler compatibility header files .. 161
5.4.4. Custom translation code ... 161
5.4.5. Creating a Compiler Integration Toolkit (CIT) configuration for a new compiler 163
5.4.6. Creating a compiler from an existing Compiler Integration Toolkit (CIT) implementation 163

The Compiler Integration Toolkit (CIT) consists of the following files in order to construct a native compiler
configuration:

• The compiler configuration file

• A compiler switch file

• Compatibility header files

• Custom translator script

5.4.1. The Compiler Integration Toolkit (CIT) compiler configuration
file

Coverity Analysis detects Compiler Integration Toolkit (CIT) implementations in the
<compiler>_config.xml. The name of the compiler in the configuration does not have to match the
name of the file, but it must match the name of the template directory, as it is what cov-configure
looks for when it searches for a compiler type. For example, config/templates/qnx must have the
configuration and switch table named qnx_config.xml and qnx_switches.dat, respectively. The
compiler compatibility headers must match the comptype specified in the configuration file; one per
comptype and must be named compiler-compat-<comptype>.h.

The configuration file basically describes the following:

1. A high level description of the compiler, for example, compiler type, text description, and whether it is
C or C++. It also describes the next configuration if multiple configurations are generated for a single
binary.

2. Provides information to cov-configure that is useful for generating the configuration. For example,
should the compiler attempt to dynamically determine what the correct sizes are for types? Or, what
macros are actually defined so that you need not worry about adding a macro that is not present? You
can also specify macros that you do not want cov-configure to detect.

3. Provides information about the options that the compiler uses, the switches used for compiling and
preprocessing, and where the pre-process output is saved.

146

Using the Compiler Integration Toolkit (CIT)

The rest of the options section is copied verbatim into the generated compiler configuration and
consists of a series of actions cov-translate is to take during the translation process. For more
information, see Section 5.3.2.5, “Tags for phases of command line transformations”.

5.4.1.1. <cit_version> tag

The CIT version tag (<cit_version>) identifies the compatibility version used for a given template
or configuration. The CIT version is a single unsigned integer, with larger numbers representing newer
versions. This is used for backwards compatibility between releases.

Newer static analysis releases will be able to understand older CIT compatibility versions, but older
releases may not be able to understand newer compatibility versions. The current compatibility version is
1.

5.4.1.2. <compiler> and <variant> tags

The Compiler Integration Toolkit (CIT) allows you to generate multiple configurations for a single compiler
binary. This is done using the <variant> tags. Everything defined inside of the <variant> tags is
specific to a particular configuration. Everything that is not included in the <variant> tags is common to
all variants. For example, the following configuration will generate C and C++ configurations for a single
binary (note how the comp_next_type points to the next variant):

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE coverity SYSTEM "coverity_config.dtd">
<coverity>
 <cit_version>1</cit_version>
 <config>
 <build>
 <variant>
 <compiler>
 <comp_translator>multi</comp_translator>
 <comp_desc>UNIX like, standards compliant, C compiler</comp_desc>
 <comp_cxx>false</comp_cxx>
 <comp_next_type>multi_cxx</comp_next_type>
 </compiler>

 <options>
 <post_trans>
 <options> <prepend_arg>--c</prepend_arg> </options>
 </post_trans>
 </options>
 </variant>

 <variant>
 <compiler>
 <comp_translator>multi_cxx</comp_translator>
 <comp_desc>UNIX like, standards compliant, C compiler</comp_desc>
 <comp_cxx>true</comp_cxx>
 </compiler>
 </variant>

147

Using the Compiler Integration Toolkit (CIT)

 <config_gen_info>
 Same as simple XML …
 </config_gen_info>

 <options>
 <compile_switch>-c</compile_switch>
 <preprocess_switch>-E</preprocess_switch>
 <preprocess_output>-</preprocess_output>

 <pre_trans>
 <options>
 <remove_arg>-c</remove_arg> </options>
 </pre_trans>
 </options>
 </build>
 </config>
</coverity>

Multiple compiler names can be specified in a Compiler Integration Toolkit (CIT) compiler configuration
for the same compiler type. This allows for easier configuration for compilers with multiple names and are
of the same type.

The <compiler> tags are as follows:

<comp_translator>
The command-line translator to use for this compiler. This specifies which compiler command line the
cov-translate program should imitate. You can get a list of supported translators by running cov-
configure --list-compiler-types.

<comp_desc>
Descriptive text that is displayed in the configuration files, and when you use the dump_info option.

<could_require_regen>
Indicates cov-translate needs to invoke the native compiler to re-generate files (such as .TLH files)
needed by compilation when it replays a compilation command.

<is_ide>
Indicates the configured target is an IDE binary.

<target_platform_fn>
Specifies the internal function to be used to determine target platform for code instrumentation.

<comp_cxx>
Defines whether the compiler is a C++ compiler (true) or not (false). The cov-build command uses
this to identify which configuration to use for C files, separate from C++ files.

<comp_next_type>
For multiple <compiler> definitions, this tag tells cov-configure to scan the next
<comp_translator> section for more possible variants.

<comp_name> (optional)
Specifies the binary name that is expected for the compiler type. cov-configure uses
<comp_name> in two ways:

148

Using the Compiler Integration Toolkit (CIT)

1. If the compiler type is not specified with the cov-configure --comptype switch, cov-
configure attempts to find a compiler type by matching the binary name. Note that in this
scenario, cov-configure might get the wrong compiler type if more than one have the same
binary name.

2. If the binary name matches for the first occurrence of the compiler type AND the compiler type
specifies <comp_type_next> AND that <comp_type_next> has a different binary name, cov-
configure will search for that different binary and configure it as well, assuming that it is found.

Multiple <comp_name> tags are supported for scenario 1 above. For scenario 2, however, the search
is only performed if the first <comp_name> matches the binary name, and it only searches for the first
<comp_name> of the second compiler type.

5.4.1.3. <options> tags that are specific to the Compiler Integration Toolkit (CIT)

The following tags are specific to the Compiler Integration Toolkit (CIT) configuration. For a complete list
of compiler tags, see Section 5.3.1, “The <compiler> tags”.

5.4.1.3.1. Tags used for invoking the native compiler and probing

<dependency_switch>
Specifies which switch or switches to add to a compiler command line to get it to dump the list of
include files it is using. For example, gcc -M.

<dependency_output>
Indicates the output from the file dependency listing. If you do not specify a <dependency_output>
value, the default is the value set by <preprocessor_output>. The value 1 or - specifies
standard output; 2 specifies standard error; any other value is considered a file name.

See the <preprocess_output> tag.

<compile_switch>
Specifies which switch or switches to add to a compiler command line so it can compile a source file.
For example -c is the compile switch for gcc -c t.cpp.

<dryrun_switch>
Specifies which switch or switches to add to a compiler command line so it can dump its dryrun or
verbose output. This usually describes the internal processes that are invoked to support the native
compiler. By processing this, cov-emit can discover the include directories and predefined macros
used by the native compiler.

<dryrun_parse>
Indicates which format of the native compiler dryrun output. The supported formats are generic, gcc,
and qnx.

<dump_macros_arg>
Specifies which switch or switches to add to a compiler command line to get it to dump the macros
that are predefined by this compiler. For example, gcc -dM -E t.cpp. Not all compilers support
this option.

149

Using the Compiler Integration Toolkit (CIT)

<dump_macros_output>
Specifies where the compiler dumps the macros that are predefined by this compiler. The value 1 or
- specifies standard output. 2 specifies standard error, and any other value is considered a file name.
A file name can contain the special values $FILE$ to indicate the name of the file, $FILEBASE$ to
indicate the name of the file without its extension, and $PPEXT$ to indicate i for a C file, or ii for a
C++ file.

5.4.1.4. <config_generic_info> tags

5.4.1.4.1. Test tags

The following tags are used to configure basic test for your compiler through the
<compiler>_config.xml file. Not all of the tests are enabled by default. To ensure that the tests are
enabled or disabled, explicitly specify the test in the format, <test>true|false</test>.

<custom_test>
Probes for arbitrary switches using custom code. For example:

<custom_test>
 <source>
 int __global;
 </source>
 <prepend_arg>--no_sun_linker_scope</prepend_arg>
</custom_test>

<disable_comp_tests>
When set to true, all compiler probes are disabled by default, but may be individually enabled using
the other tags described in this section. Defaults to false when no setting is specified.

<test_128bit_ints>
Tests whether or not 128-bit ints are enabled. This test is disabled by default.

<test_alternative_tokens>
Tests whether or not alternative tokens are in use. This test is disabled by default.

<test_altivec>
Probes for altivec extension support and adds the appropriate compiler switches. This test is disabled
by default.

<test_arg_dependent_overload>
Tests whether or not function overloading is argument dependent. This test is disabled by default.

<test__Bool>
Determines whether or not _Bool is a keyword in GNU mode. This test is disabled by default.

<test_c99>
Tests to determine whether or not c99 mode is on by default. This test is disabled by default.

Note

This tag is deprecated, and will be removed in a future release. It is replaced by the
<test_c_version> tag.

150

Using the Compiler Integration Toolkit (CIT)

<test_c_version>
Tests to determine whether or not c99 mode is on by default. This test is disabled by default.

<test_char_bit_size>
Tests to determine the bit width of a single character. If the probe is disabled or the tests are
inconclusive, defaults to 8 bits. This test is enabled by default.

<test_const_string_literals>
Tests whether or not string literals are const char * or char *. This test is disabled by default.

<test_cr_term>
Test whether carriage return characters (\r) are treated as line terminators. This test is enabled by
default.

<test_csharp6>
Test whether the compiler supports C#6 features. This test is enabled by default.

<test_cygwin>
Test whether the compiler is Cygwin-aware and can understand Cygwin-style paths. Only applicable
on Windows platforms. This test is disabled by default.

<test_declspec>
Tests for the presence of __declspec is present in the native compiler, and whether it is as a macro
or a keyword. This test is enabled by default.

<test_exceptions>
Tests whether the native compiler supports exceptions by default in C++ modes. This test is disabled
by default.

<test_gnu_version>
Checks to see if GCC derived compilers support extensions added by GCC. This test is disabled by
default.

<test_ignore_std>
Tests whether the native compiler ignores the std:: namespace, that is, whether it can directly use
the names without specifying using namespace std;. This test is enabled by default.

<test_include_path>
Attempt to determine the compiler's include search paths by probing its behavior. This test is enabled
by default.

<test_include_paths_with_strace>
Attempt to determine the compiler's include search paths by probing its behavior with strace. This
test is enabled by default.

<test_incompat_proto>
Tests whether the compiler accepts incompatible prototypes. Incompatible prototypes still need to
have compatible return types. This test is disabled by default.

151

Using the Compiler Integration Toolkit (CIT)

test_inline_keyword
Tests for the presence of the ISO C99 inline keyword in the native compiler. Enabled by default.

<test_macro_stack_pragmas>
Tests whether or not the compiler supports macro stack pragmas. This test is enabled by default.

<test_multiline_string>
Tests whether the native compiler tolerates newlines within a string. For example:

char *c = "Hello
 World";

This test is disabled by default.

<test_new_for_init>
Tests whether the native compiler uses modern C++ for loop scoping rules, or the old Cfront-
compatible scoping rules. For example:

{
 for (int i = 0; i < a; ++i) { }
 for (int i = 0; i < a; ++i) { }
}

This code is valid in modern C++, since the scope of the 'i' in the first loop ends at the closing brace.
However, compilers that implement the old scoping rules will usually issue an error: 'i' is in scope for
the entire enclosing block after its declaration, and the second loop redeclares it. This test is disabled
by default.

<test_old_style_preprocessing>
Tests whether macros are checked for number of arguments before expansion. This test is disabled
by default.

<test_restrict_keyword>
Test whether the compiler supports the restrict keyword. This test is enabled by default.

<test_rtti>
Tests whether or not the native compiler supports RTTI by default. This test is disabled by default.

<test_size_t>
Test whether the compiler intrinsically supports the size_t type. This test is enabled by default.

<test_stdarg>
Test whether the compiler intrinsically supports types and functions from the <stdarg.h> header.
This test is enabled by default.

<test_target_platform>
Determines the code instrumentation target platform by examining the platform macros expanded by
the native compiler. This test is disabled by default. The allowed values for <platform> are x64,
x86, and all. For example, with the follow tags the code instrumentation target platform is set to x64
if the macro _M_AMD64 is defined by the native compiler.

152

Using the Compiler Integration Toolkit (CIT)

<platform_if_macro>
 <macro_name>_M_AMD64</macro_name>
 <platform>x64</platform>
</platform_if_macro>

<test_trigraphs>
Tests whether or not trigraphs are supported by the compiler. This test is disabled by default.

<test_type_size>
Runs tests for basic data types to determine their respective sizes and alignments. This test is
enabled by default.

<test_type_size_powers_of_two_only>
The same as test_type_size, but assumes power of two sizes. Makes cov-
configure finish the tests slightly faster. This test is disabled by default. If enabled,
test_type_size_powers_of_two_only will only take effect if test_type_size is also
enabled.

<test_type_traits_helpers>
Tests whether or not the native compiler has type traits helpers enabled by default. This test is
disabled by default.

<test_vector_intrinsics>
Tests whether the native compiler supports various vector type intrinsics, such as the __vector
keyword. This test is disabled by default.

<test_wchar_t>
Tests for the presence of the wchar_t keyword in the native compiler. This test is enabled by
default.

<test_x86_calling_conventions>
Enables or disables tests to determine whether the compiler supports and enforces x86 calling
convention specifications. When disabled, the compiler is assumed to enforce calling conventions.

These tests are disabled by default.

<use_gnu_version_macro>
When test_gnu_version is enabled, this tag determines how the compiler is probed to determine
the GNU compiler version. When set to true, the GNU intrinsic version macros are used (i.e.,
__GNUC__, __GNUC_MINOR__ and __GNUC_PATCHLEVEL__). When unset or explicitly set to false,
a heuristic approach is used to determine the GNU version.

5.4.1.4.2. Additional configuration tags

This section describes additional general tags that can have an impact on the Compiler Integration Toolkit
(CIT) configuration.

<macro_candidate>
Adds a macro to the list of macros that cov-configure should try to determine if it should be
defined.

153

Using the Compiler Integration Toolkit (CIT)

<excluded_macro_candidate>
Ensures that this macro is excluded from the list of macros that cov-configure tries to determine
if it should define. A macro is usually excluded if its definition will be controlled by the handling of a
command line option.

<excluded_macro_candidate_regex>
Ensures that any macros matching the given regex are excluded from the list of macros that cov-
configure tries to determine if it should define. A macro is usually excluded if its definition will be
controlled by the handling of a command line option.

<extra_header>
Specifies additional headers to be searched for when trying to determine the include path for a
compiler. This is necessary when the detected include path is incomplete.

<extra_compat_header>
Specifies additional compatibility headers that should be appended to the generated compatibility
headers by cov-configure. This can be useful for sharing compatibility header information
between different compiler configurations.

To specify the compatibility header in a different folder, you can either use a relative path or
$CONFIG_TEMPLATES_BASE_DIR$, which is expanded to the absolute path name of the directory
that contains the configuration files. For example, the following text, if used in a configuration file,
specifies that compiler-compat-clang-common.h in the clang folder will be appended to the
generated compatibility headers by cov-configure.

<extra_compat_header>$CONFIG_TEMPLATES_BASE_DIR$/clang/compiler-compat-clang-
common.h</extra_compat_header>

<function_like_macro_candidate>
Like <macro_candidate>, adds the macro specified via the <name> tag to the list of candidate
macros that cov-configure probes, in order to determine an appropriate definition.

The named macro is assumed to be a function-like macro that takes a single argument, and the set
of possible arguments is given by the <argument_candidate> tags that follow. For example:

<function_like_macro_candidate>
 <name>fcn_name</name>
 <argument_candidate>argument_the_1st</argument_candidate>
 <argument_candidate>argument_the_2nd</argument_candidate>
</function_like_macro_candiate>

<include_dependency>
Specifies that cov-configure should use dependency information instead of preprocessing to
determine include paths.

<intern_generate_headers>, <extern_generate_headers>
Experimental feature to allow external programs to generated extra compatibility headers during
cov-configure. These headers might be removed in a future release.

154

Using the Compiler Integration Toolkit (CIT)

<no_header_scan>
Disable performing a header scan for macro candidates during the probing of a compiler. Values are
True or False.

<platform_if_macro>
Specifies the <macro_name> and <platform> pairs used by the target platform probe. Please refer to
<test_target_platform> .

<set_env_var>
Sets the environment variable to the specified value before probing the native compiler. For example,
the following tags cause environment variable FOO to be set to value BAR before the native compiler
is probed. The value of this environment variable is restored after probing.

<set_env_var>
 <env_name>FOO</env_name>
 <env_value>BAR</env_value>
 </set_env_var>

<unset_env_var>
Unsets the specified environment variable before probing the native compiler. The value of this
environment variable is restored after probing.

5.4.2. The compiler switch file

The compiler switch file filters the compiler command line options that are useful to the process. The
file also removes and "cleans up" the options that cov-emit does not require. The compiler switch file
exists in the same directory as the Compiler Integration Toolkit (CIT) configuration and uses the following
naming convention:

<compiler>_switches.dat

A switch table can import switches from another switch table. For example, the following statement, if
used in a switch file, imports all the switches defined in gnu_switches.dat to the current switch table.
$CONFIG_TEMPLATES_BASE_DIR$ is expanded to the absolute path name of the directory that contains
the configuration files.

import $CONFIG_TEMPLATES_BASE_DIR$/gnu/gnu_switches.dat

The compiler switch file requires an entry for every option that can be used with the target compiler. If you
do not specify an entry and the switch is encountered on the command line, it is passed through to the
next phase. If the target compiler switch is never handled, it is only passed to cov-emit if cov-emit
understands the switch. Otherwise, the switch is dropped and a warning is issued. However, this method
of determining missing switches is not reliable, as cov-emit might understand a switch differently
than the native compiler does. So, your switch table should never be incomplete. If a switch has the
same meaning to both the Coverity compiler and the native compiler, specify the <oa_copy> flag in the
switch's description.

If you just have one subtype of a compiler, then just the one compiler switch file is read. The easiest
way to support multiple compiler subtypes is to create independent Compiler Integration Toolkit (CIT)
configurations, each with its own compiler switch file. If a compiler switch file exists in the subtype
directory and the parent directory, the two files will be appended together.

155

Using the Compiler Integration Toolkit (CIT)

For every option that a compiler generates, there should be a line in the compiler switch file that is in the
following format:

[<option>, option_type]

The option should be shown without any of the prefixes that the compiler might use. For example, -
I should be entered just as I without the dash. The option_type is a combination of possible (or
relevant) ways in which the option might be expressed. The following table lists possible switch options:

Table 5.4.1. Flag options

Flag Description

oa_abbrev_matchMay be abbreviated by any amount up to the short form in capitals.

oa_additional Indicates that there are two arguments that follow a switch, with the second one
always of the "unattached" variety. The first can be attached, unattached, or optional.

Here is a Sun compiler example where both arguments to Qoption are unattached:

-Qoption ccfe -features=bool,-features=iddollar

oa_alternate_tableDesignates that the switch is for specifying switches to another program, such as
the preprocessor, and to use an alternate switch table to interpret it. For example,
the following signifies that the value to Xpreprocessor should be interpreted by
<compiler>_preprocessor_switches.dat and the results should be appended
to the command line:

{"Xpreprocessor", oa_dash|oa_alternate_table, "preprocessor",
 oa_append},

oa_append Options interpreted by the alternate switch table should be appended to the end of the
command line. This flag is only valid in conjunction with oa_alternate_table. For
example:

{"Xpreprocessor", oa_dash|oa_alternate_table, "preprocessor",
 oa_append},

oa_attached Must have an argument attached to the switch, for example -DMACRO.

oa_case_insensitiveWill accept upper or lower case, for example: -D or -d

oa_copy Passes all instances to cov-emit, for example: -I. -I..

oa_copy_c_only Passes to cov-emit when compiling C file. This flag overrides oa_copy only when
language sensitivity is set to true in the translation routine. Otherwise, it behaves
identically to oa_copy. Most of the Compiler Integration Toolkit (CIT) compilers
default to no language sensitivity, but this generally does not cause a problem as a
language-sensitive argument only occurs when compiling that mode.

Alternatively, you can use oa_map instead and map to –
coverity_c_switch,<original switch>.

oa_copy_cxx_onlyPasses to cov-emit when compiling C++ file. This flag overrides oa_copy only
when language sensitivity is set to true in the translation routine. Otherwise, it
behaves identically to oa_copy. Most of the Compiler Integration Toolkit (CIT)

156

Using the Compiler Integration Toolkit (CIT)

Flag Description
compilers default to no language sensitivity, but this generally does not cause a
problem as a language-sensitive argument only occurs when compiling that mode.

Alternatively, you can use oa_map instead and map to –
coverity_cxx_switch,<original switch>.

oa_copy_single Passes switch along, however, collapse the switch and its argument into a single
argument. For example, -I dir would become -Idir.

oa_custom Indicates that this switch will be handled in the custom code of a custom translator.

oa_dash May be preceded by a dash (-), for example: -D

oa_dash_dash May be preceded by two dashes (--, for example: --D)

oa_discard_prefix This is the default option for oa_alternate_table and is the opposite of
oa_keep_prefix. oa_discard_prefix will take precedence if oa_keep_prefix
is specified on the oa_alternate_table switch and oa_discard_prefix is
specified in the switch found in the alternate table.

With the following switch table configuration using <compiler>_switches.dat:

{"Xpreprocessor", oa_dash|oa_alternate_table, "preprocessor",
 oa_prepend|oa_keep_prefix},

and <compiler>_preprocessor_switches.dat:

{"D", oa_dash|oa_attached|oa_copy|oa_discard_prefix}, {"I", oa_dash|
oa_attached|oa_copy},

The following command line:

<compiler> -Xpreprocessor -DTRUE=1 -Xpreprocessor -Idir <source_file>

will translate into:

<compiler> -DTRUE=1 -Xpreprocessor -Idir <source_file>

oa_equal May have an argument following an equal sign (=, for example: -D=value)

oa_hyphen_is_underscoreAllows non-prefix hyphens within a switch to be interchangeable with underscores.
For example, all of the following are recognized as the same switch:

• --this-is-a-switch

• --this_is_a_switch

• --this-is_a_switch

oa_keep_duplicate_prefixBy default, switches that are interpreted by an alternate table will cause the switch
that specified the alternate table to be dropped. For example, given these switch
tables in <compiler>_switches.dat:

157

Using the Compiler Integration Toolkit (CIT)

Flag Description
{"Xpreprocessor", oa_dash|oa_alternate_table, "preprocessor",
 oa_prepend},

and in <compiler>_preprocessor_switches.dat:

{"F", oa_dash|oa_unattached|oa_copy},

The following command line:

<compiler> -Xpreprocessor -F -Xpreprocessor foo <source_file>

will result in:

-F foo <source_file>

However, if <compiler>_preprocessor_switches.dat instead has the
following:

{"F", oa_dash|oa_unattached|oa_copy|oa_keep_prefix},

Then the following command line will be unaltered in translation:

-Xpreprocessor -F -Xpreprocessor foo <source_file>

oa_keep_duplicate_prefix can be specified in the primary table as a default for
the table:

{"Xpreprocessor", oa_dash|oa_alternate_table, "preprocessor",
 oa_prepend|oa_keep_duplicate_prefix},

Note that oa_keep_duplicate_prefix and oa_keep_prefix differ in the sense
that with oa_keep_prefix, only the first instance of the prefix is kept, so when
oa_keep_prefix is used, the command line <compiler> -Xpreprocessor -F
-Xpreprocessor foo <source_file> yields this result:

-Xpreprocessor -F foo <source_file>

.

oa_keep_prefix By default, switches interpreted by an alternate table will have the switch that
specified the alternate table dropped. For example, given switch tables in
<compiler>_switches.dat:

{"Xpreprocessor", oa_dash|oa_alternate_table, "preprocessor",
 oa_prepend},

and in <compiler>_preprocessor_switches.dat:

{"D", oa_dash|oa_attached|oa_copy},

158

Using the Compiler Integration Toolkit (CIT)

Flag Description
The following command line:

<compiler> -Xpreprocessor -DTRUE=1 <source_file>

will result in:

-DTRUE=1 <source_file>

However, if <compiler>_preprocessor_switches.dat instead has the
following:

{"D", oa_dash|oa_attached|oa_copy|oa_keep_prefix},

Then the following command line will be unaltered in translation.:

-Xpreprocessor -DTRUE=1 <source_file>

oa_keep_prefix can be specified in the primary table as a default for the table:

{"Xpreprocessor", oa_dash|oa_alternate_table, "preprocessor",
 oa_prepend|oa_keep_prefix},

oa_map Specifies a switch mapping. For example, to map switch -i, which takes an argument
either attached or unattached, to -I which takes the argument attached, specify:

{"i", oa_dash|oa_attached|oa_unattached|oa_map, "I", oa_dash|
oa_attached }

oa_merge Removes white space from values with commas, for example: -Ival, val2 --> -
Ival,val2

oa_optional Adds an optional argument to a compiler switch. This flag is mutually exclusive with
oa_unattached.

oa_parens Must have an argument specified in parentheses that is either attached or unattached
to the switch. For example: "-D(MACRO)" or "-D (MACRO)".

oa_path Indicates that an oa_required switch is a path and should be converted to an
absolute path during probing. If oa_path is not paired with oa_required, oa_path
will have no effect.

oa_plus May be preceded by a plus sign (+), for example: +D

oa_prepend Options interpreted by the alternate switch table should be prepended to
the beginning of the command line. This flag is only valid in conjunction with
oa_alternate_table. For example:

{"Xpreprocessor", oa_dash|oa_alternate_table, "preprocessor",
 oa_prepend},

oa_required Indicates to cov-configure that the switch significantly changes the behaviour of
the compiler in ways that might invalidate the results of the Coverity compiler's probes
(For example, -m32 or –m64 for GCC). This tells cov-configure to require that a
configuration be created with the same combination of required arguments as those
that are present on the command line. In the event of template configurations, cov-

159

Using the Compiler Integration Toolkit (CIT)

Flag Description
translate and cov-build will automatically instantiate the needed configuration if
one is not already made. If no template is present, cov-translate and cov-build
will fail when encountering a missing configuration.

oa_skip_arg Indicates that compiler invocations that use the switch are to be skipped by cov-
translate. This flag imposes similar semantics as the <skip_arg> family of
compiler configuration option tags, but with the following improvements:

• Allowed switch prefixes and case insensitivity will be correctly matched
without the need for duplicate <skip_arg> tags (e.g., <skip_arg>-E</
skip_arg><skip_arg>/E</skip_arg>) or use of regular expressions (e.g.,
<skip_arg>--?clr</skip_arg>).

• Switches that can appear in operands of options associated with an alternate
switch table are correctly matched. For example, <skip_arg>-E</skip_arg>
won't match gcc -Wp,-E, but if the -E option is specified with oa_skip_arg, the
compiler invocation will be correctly skipped.

• Compiler configurations that import switch definition files from other compiler
configurations will automatically attain the intended skip arg semantics without
having to duplicate a set of <skip_arg> directives.

oa_slash May be preceded by a slash (/), for example: /D

oa_split Breaks apart values that are really a list of values. A delimiter should follow
oa_split, such as in oa_split"," to split on commas.

For example, an input switch of -Iinc1,inc2 with oa_dash|oa_attached|
oa_copy|oa_split"," will result in -Iinc1 -Iinc2.

oa_strip_quotes If there are quotes within the value of the switch, erase the outermost set of matching
quotes. For example, "-DMACRO='VALUE'" will become "-DMACRO=VALUE".

This argument is passed to the compiler after all shell processing of quotes has
occurred.

oa_unattached May have a value after a whitespace, for example: -D value

oa_unsupported Indicates that the switch is unsupported. If cov-translate encounters this switch it
will issue an error and exit with a nonzero result.

Note

The Compiler Integration Toolkit (CIT) only supports one switch per line. In addition, you cannot
break a switch's description across multiple lines, as this will cause the translation to not properly
execute.

The options can be combined by ORing them together. For example, if the compiler accepts -Dvalue
and -D value, then the option_type is set to: oa_dash | oa_attached | oa_unattached

160

Using the Compiler Integration Toolkit (CIT)

If a particular option is to be passed through to cov-emit, then one of the oa_copy options should also
be used. In the case of -Dvalue, you can use oa_dash | oa_attached | oa_unattached |
oa_copy

The compiler switch files are sorted (longest switches first) to prevent accidental bugs caused by similar
switches overlapping. For example, in the following scenario, the description for -D would prevent the
description for -DCPU from ever being used:

{ "D", oa_dash|oa_attached }

{"DCPU", oa_dash|oa_equal|oa_required }

With switch sorting, this scenario does not occur, and -DCPU=XXX appropriately flags a new
configuration.

5.4.3. Compiler compatibility header files

Compiler compatibility headers are pre-included by cov-emit to define things that are predefined by
the native compiler like macros, intrinsics, or built-in types. Create a file called config/templates/
<name>/compile-compat-<comptype>.h and cov-configure will arrange for it to be included in
every invocation of cov-emit.

5.4.4. Custom translation code

Custom translation code can be created and executed using the <extern_trans> and
<intern_trans> tags. The <intern_trans> tag can only be used by Coverity since the code
gets linked directly into cov-translate. The source code for these translators is shipped with
the product and can be converted to an external translator by compiling it in combination with
intern_to_extern_phase.cpp. For example, tm_compilers.cpp can be compiled as follows (this
command is an example and should be adjusted for your compiler. If you do not have a compiler that
produces binaries for your system, you can use the Extend SDK compiler):

cd <install_dir_ca>/config/templates/tm

The compilation should be executed from the <install_dir_ca>/config/templates/<compiler>
directory because the binary will be placed into the current working directory and will be automatically
retrieved by cov-translate without modifying the configuration file.

The binary name produced by the compilation should match the internal translator specified by
the <intern_trans> tag in the <install_dir_ca>/config/templates/<compiler>/
<compiler>_config.xml file. However, you should not modify the <intern_trans> tag.

Execute the compilation, for example:

<install_dir_ca>/sdk/compiler/bin/g++ -std=c++11 -o trimedia_pre_translate -I. -
I../../cit \
-DCOMPILER_FILE=tm_compilers.cpp -DFUNCTION=trimedia_pre_translate \
--static ../../cit/intern_to_extern_phase.cpp

161

Using the Compiler Integration Toolkit (CIT)

Note

There are known issues with Cygwin gcc, so you should use statically linked binaries and the
Extend SDK compiler wherever possible.

The following example is typical for a translator. The CompilerOptions class is an executable
representation of the compiler switches file.

#include "translate_options.hpp"

void trimedia_pre_translate(const CompilerOptions &opts, arg_list_t& in)
{
 arg_list_t out;
 arg_processor mopt(in, out, opts);

 while (!in.empty()) {
 if (mopt("Xc")) {
 if (mopt.extra_arg == "ansi"
 || mopt.extra_arg == "knr"
 || mopt.extra_arg == "mixed"
) {
 out.push_back("-coverity_source=c,h");
 }
 else if (mopt.extra_arg == "arm"
 || mopt.extra_arg == "cp"
) {
 out.push_back("-coverity_source=c++,hpp");
 }
 }
 else if (mopt("Xchar")) {
 if (mopt.extra_arg == "signed") {
 out.push_back("--signed_chars");
 }
 else if (mopt.extra_arg == "unsigned") {
 out.push_back("--unsigned_chars");
 }
 }
 //Automatically translate based on the switch table.
 //Do not remove this call.
 else if (mopt.translate_one_arg()) { }
 else {
 out.push_back(in.front());
 in.pop_front();
 }
 }
 mopt.finalize();

 in = out;
}

162

Using the Compiler Integration Toolkit (CIT)

5.4.5. Creating a Compiler Integration Toolkit (CIT) configuration for a
new compiler

Before you attempt to configure a new, unsupported compiler, there are a number of templates available
upon which you can base your configuration (if your compiler is based on an existing compiler type). For
example, some compilers are GNU compilers with extensions and modifications that are specific to a
particular industry. A number of supported compiler configurations are located in the following directory:

<install_dir>/config/templates

If you do not have a compiler that can "share" configuration from one of the templates, then you can start
by using the /generic template directory.

5.4.6. Creating a compiler from an existing Compiler Integration
Toolkit (CIT) implementation

You can create a new Compiler Integration Toolkit (CIT) compiler by deriving from an existing Compiler
Integration Toolkit (CIT) implementation. With this feature, you do not have to compile new code to
add a new compiler. All that is required is creating a new directory for the compiler under the Compiler
Integration Toolkit (CIT) <install_dir_ca>/config/templates directory AND a properly formatted
derived compiler configuration file within it. Optionally, a switch file as well as additional compiler-
compat files can be specified. This functionality is only intended for compilers that are extremely similar
to compilers that already have Compiler Integration Toolkit (CIT) implementations.

The pre_translate function that gets used is the one that is specified in the configuration file of the
compiler from which it is being derived. Similarly to how regular configuration files are structured, this can
be overwritten through the use of the existing extern_trans functionality.

5.4.6.1. Configuration format for derived compilers

There is a new config format for derived compilers, as shown in the example below. Note that lines with a
asterisk (*) at the end indicate mandatory tags:

<config>
 <build>
 <comp_derived_from>example:compiler</comp_derived_from>*
 <derived_compiler>*
 <comp_name>newCompilerName</comp_name>*
 <default_comp_name>newCompilerDefaultName</default_comp_name>*
 <comp_translator>new:compilercc</comp_translator>*
 <derived_comp_type>example:compilercc</derived_comp_type>*
 <comp_desc>New Compiler CC (CIT)</comp_desc>*

 <comp_family_head>true</comp_family_head>
 <comp_next_type>new:compilercpp</comp_next_type>
 <extra_comp>
 ...
 </extra_comp>
 <config_gen_info>

163

Using the Compiler Integration Toolkit (CIT)

 ...
 </config_gen_info>
 <options>
 ...
 </options>
 </derived_compiler>*
//OPTIONAL EXTRA DERIVED COMPILER(S)
 <derived_compiler>
 <comp_name>newCompilerName</comp_name>
 <default_comp_name>newCompilerDefaultName</default_comp_name>
 <comp_translator>new:compilercpp</comp_translator>
 <derived_comp_type>example:compilercpp</derived_comp_type>
 <comp_desc>New Compiler CPP (CIT)</comp_desc>

 <config_gen_info>
 ...
 </config_gen_info>
 <options>
 ...
 </options>
 </derived_compiler>

 <config_gen_info>
 ...Config gen info not specific
 </config_gen_info>

 <options>
 ...
 </options>
 </build>
</config>

Each listed <derived_compiler> is analogous to a variant from the regular configuration structure.
You can add compiler-specific configuration generation information and options under each derived
compiler tag, as well as more general configuration generation info and options that will be used for every
derived compiler that is listed.

The <derived_compiler> tags are:

<comp_derived_from>
Used to "find" the configuration file of the compiler that is being derived from. As an example, if you
were to derive from the IAR R32C compiler:

<comp_derived_from>iar:r32c</comp_derived_from>

This corresponds to the directory and subdirectory of the compiler being derived from in the Compiler
Integration Toolkit (CIT) templates directory.

<derived_comp_type>
Used to find the correct compiler to match within the config file of the compiler being derived from.
For example, when deriving from the IAR R32C compiler:

<derived_comp_type>renesascc:r32c</derived_comp_type>

164

Using the Compiler Integration Toolkit (CIT)

All of the other tags used in the example above have identical structure and functionality to how they are
used in normal configuration files. For more information, see Section 5.4.1, “The Compiler Integration
Toolkit (CIT) compiler configuration file”.

Anything that can be specified in a normal configuration file can be specified within the proper section in
the derived compiler configuration. In order to override something specified in the configuration file that is
being derived from there must be an opposing option. For example, if there is a test that is disabled under
the <config_gen_info> tag for the compiler being derived from, you only need to enable the test in
the derived compiler configuration file.

5.4.6.2. Derived switch files and compat header files

A new switch file and compiler-compat header files can be created within the directory of the new
compiler. These files must abide by the current naming format. For example, if a new derived compiler
implementation is created in the directory <install_dir_ca>/config/templates/newcompiler,
the switch file must be named newcompiler_switches.dat, and compiler compat files must use
the existing naming formats unless the file is manually specified within the configuration file as an extra
compat file.

The derived compiler will use the compiler-compat headers and the switch files of the compiler being
derived from. Any additional files created in the new compiler directory are added to those when creating
the compiler-compat files during configuration. For the switch files, additional switches can be added but
existing switches cannot be overridden.

Unless an <extern_trans> is specified, the usefulness of the additional switch file is limited to those
options that can be fully handled with <oa_map>, or those options that just need to be ignored. If
additional functionality is required, such as manual handling in a <pre_translate> function, then either
a regular, non-derived Compiler Integration Toolkit (CIT) implementation must be created for the compiler
requiring it, or an <extern_trans> must be used in the derived compiler configuration.

165

Chapter 5.5. Troubleshooting the build integration

Table of Contents
5.5.1. Why is no build log generated? ... 166
5.5.2. I see a header file error: expected an identifier ... 166
5.5.3. I see a header file error: expected a ';' ... 166
5.5.4. Why is the standard header file not found? ... 167
5.5.5. I see the message: #error No Architecture defined ... 168

This section describes causes and solutions to problems that you might encounter after the build
integration.

5.5.1. Why is no build log generated?

Check the permissions of the directory that is being written to. Even though the final message may
indicate that a file is available, you will not see any error message when the file is not written out.

If you cannot write to the expected directory, then give the –dir option either an absolute path to a
directory in your home directory, or a relative path to a better location.

5.5.2. I see a header file error: expected an identifier

Error:

"tasking/c166v86r3/include/stdio.h", line 21: error:
expected an identifier
#ifndef#define#endif
"/tasking/c166v86r3/include/stdio.h",
line 14: error: the #endif for this directive is missing #ifndef _STDIO_H

Solution:

There are missing macros. Look at the stdio.h file to identify the macro in title. The macro could be
removed through a number of reasons. The first to check is the compiler macro and compat files to see
if the string has been #define'd to nothing. The next is to check in the coverity_config.xml file for the
compiler. The directory to look in, for the file, will be shown in the cov-emit line that failed. There will be a
preinclude option followed by a path to the coverity-compiler-compat.h. All the files used are in the same
directory. Please note that Microsoft Visual Studio compilers may use “response” files. These are a list
of files and options in an external file that is passed to cov-translate as an 'rsp' file. If this is the case, you
may not see the complete cov-emit line. To work out which configuration that was being used, you would
manually have to work out which compiler was being used and look that up at the top of the build-log.txt
file.

5.5.3. I see a header file error: expected a ';'

Error:

166

Troubleshooting the build integration

"/workarea09/wa_s30/desyin/removeFrag/sb8/swtools/all_platforms/tasking/c166v86r3/
include/stdio.h", line 136: error:
 expected a ";"
extern _USMLIB int fscanf (FILE *, const char *, ...);

Solution:

This is due to the _USMLIB macro not being understood. There are three possible solutions:

• A <macro_candidate> tag is needed to probe the compiler for this value during cov-configure.

• Another, totally independent macro needs to be defined so that this macro definition gets created.

• The macro must be defined on the command line every time the compiler is invoked (least likely)

It is possible that the native compiler will recognise this and convert it to another text string during the
compilation. In this case, you will need to work out what the new text string means. If it has no effect
on our analysis, then you can remove the original macro by doing a #define of it (to nothing) in the
coverity-compat-<compiler>.h file in the /template directory.

5.5.4. Why is the standard header file not found?

It is possible that during the probing of the compiler, that it does not report all the directories needed. The
mechanism that cov-configure uses is to give the compiler a small file that does a #include of some
standard filenames and then looks at the preprocessed output to see where the file came from on the
system.

For a C compiler, the test gives the compiler these file:

• stdio.h

• stdarg.h

For a C++ compiler the test gives the compiler these file:

• stdio.h

• stdarg.h

• cstdio

• typeinfo,

• iostream,

• iostream.h

• limits

The paths that are recorded for these files are passed to the cov-emit process as a --sys_include
option. If the directory that a particular file is in is not listed on the cov-emit command line, then you

167

Troubleshooting the build integration

can add an extra header filename to the template files. To do this, add a line similar to the following to the
<type>_config.xml file:

<extra_header>headerfile.h</extra_header>

If you have multiple variants defined in your <type>_config.xml file and the header file only applies
to one variant, then the <extra_header> line would go in the <options> section for that particular
variant. The entry is just the filename itself unless you want cov-configure to pick up a parent
directory. This may be the case when the source code being built might have lines similar to the following:

#include <sys/compiler.h>

5.5.5. I see the message: #error No Architecture defined

Macros are not defined. Some compilers have to be explicitly probed for particular macros. There are a
number of reasons why this needs to be done, for instance:

• The compiler can support a number of OS architectures.

• The compiler needs to know a particular variant of the processor.

• A particular macro definition causes the inclusion of particular header files that define a number or
related macros.

The probing of the compiler by the cov-configure program may require a specific option to be defined
on the command line. For example, the Greenhills compiler toolchain uses the -bsp option to determine
what directory to use #include files from. To add this option to the cov-configure process, you
would need to use the "--" option, for example:

cov-configure -co ccintppc.exe -pgreen_hills -- -bsp SLS_Debug -os_dir ...

Options that are put after the -- are then put into the <comp_require> tag by the cov-configure
program. This ensures that you can configure the same compiler for more than one usage.

If the compiler will only tell you about a macro if you already know about it, then you will need to trawl
through the manual for the compiler and add the macros using the <macro_candidate> tag.

Some compilers can be told to give all the macros that they have defined internally to the standard
output. For example, the gcc compiler will do this if it is given the option -dM when you are preprocessing
a file (-E). If the compiler is capable of doing this, then cov-configure can make use of it to find more
macros. If you have the manual for the compiler, find the option(s) that have the desired effect and add
them to the configuration file using the <dump_macros_arg> tag. For example, for gcc:

<options>
 <dump_macros_arg>-dM</dump_macros_arg>
 <dump_macros_arg>-E</dump_macros_arg>
<options>

168

Part 6. Using the Third Party Integration Toolkit

Table of Contents
6.1. Overview ... 170
6.2. Running the Third Party Integration Toolkit ... 171
6.3. Import file format and reference ... 174

6.3.1. Import file format examples ... 174
6.3.2. Import format reference .. 176

6.4. Capacity and performance ... 183

Chapter 6.1. Overview

The Coverity Connect Third Party Integration Toolkit is a command line tool that imports issues
discovered by a third-party analysis tool and the source code files that contain these issues. The issues
are then displayed in Coverity Connect allowing you to examine and manage the issues in the same way
that you would manage an issue discovered by Coverity Analysis.

For example, the Third Party Integration Toolkit can import results from an analysis run by PMD and can
then be viewed in Coverity Connect, alongside analysis results from Coverity Analysis. PMD issues can
then be triaged and annotated in Coverity Connect.

The Third Party Integration Toolkit imports your third-party issues through the cov-import-results
command. cov-import-results accepts issue and source file information provided in a JSON import
file. The import file is typically created by a tool, such as a script, that you provide (it is not provided by
Coverity).

This book provides the following information:

• A tutorial describing the process of running the Third Party Integration Toolkit

• Sample JSON and source files that serve as the basis of the tutorial

• A reference of the JSON elements used in the import file

• Important capacity and performance information and recommendations

170

Chapter 6.2. Running the Third Party Integration Toolkit
This section demonstrates the work-flow for running the Third Party Integration Toolkit. Certain steps
refer to the examples (the JSON file and its referenced source files), which are provided so you can see
the relationship of the files and how the information in the files is displayed in Coverity Connect. You can
copy these files and use them with cov-import-results as a demonstration of the utility.

To run the Third Party Integration Toolkit:

1. Create a JSON file in the format shown in the JSON file example.

There are some notes to consider for this step:

• In the example, the "file" element references a file named missing_indent_source.c. This
is the source file that contained the issue discovered by the checker that is described in the JSON
file. All filenames must have absolute pathnames, so you will need to update the paths that are
used in the example to match your directory structure.

• See the Import file reference section to see how to integrate multiple source files and their related
issue data.

2. Run the cov-import-results command to extract the issue data from the JSON file. For
example:

cov-import-results --dir dirEx --cpp doc_example.json

• The command is located in <install_dir_ca>/bin.

Note

If you run separate cov-import-results commands or run cov-import-results
after cov-analyze, you must add the --append option to add the results to the
intermediate directory. Otherwise, the cov-import-results will replace the contents of
the intermediate directory with the its results.

• --dir specifies the intermediate directory from where you will commit your third party issues.

• --cpp is the domain (language) for the issues. In this case, the domain is C/C++. The Third Party
Integration Toolkit also accepts --java (Java), --cs (C#), and --other-domain (another
domain/language).

Note

• You can only specify one domain at a time for cov-import-results. If you want to
import issues from different domains, you must run separate cov-import-results
commands and commit each of them (see the next step).

3. Commit the issues to Coverity Connect. For example:

cov-commit-defects --dir dirEx --host localhost --user admin --port 8008
--stream cov_imp_tst

171

Running the Third Party Integration Toolkit

If you have imported issues with different specified domains you need to run a separate cov-
commit-defects command line for each domain type. The stream you commit to also must match
the domain type that you specify.

4. Log into Coverity Connect, and navigate to your issues list.

Figure 6.2.1. Coverity Connect with imported third-party issues

The image above shows how third-party issues are displayed in Coverity Connect. This
display image is the result of a commit with the example import file using the example
missing_indent_source.c source file (both are described in the next chapter. The call-outs denote the
area of the Coverity Connect UI that displays the relevant import file elements. Additionally, the items
listed below link to a description of the displayed elements :

1. Issue listing:

• issues:subcategory

2. Source code in the Source browser:

• issues:function

3. Event information leading to the issue in the source:

• issues:subcategory

• issues:checker

• events:description

172

Running the Third Party Integration Toolkit

• events:main

4. Occurrences tab describes event information that leads to the issue:

• events:tag

• events:file or issues:file

• events:line

Note

If you have created custom checkers, you can import the issue results found by those checkers
using cov-import-results. By importing the results, you can utilize the checker-based Coverity
Connect and Coverity Policy Manager filters (such as, by Impact rating and Checker name).

For information about creating custom checkers, see the Coverity Platform 2020.12 User and
Administrator Guide .

When cov-import-results runs on high-density files (files with more than 100 issues that also
average more than 1 issue for every 10 lines of code), the console will print a warning that names
all the files that exceed the threshold, and the import process will exclude all issues associated
with the affected files from the intermediate directory. This change prevents the Coverity Connect
source browser from becoming too crowded with issues.

To suppress this density check (allowing all issues to be imported) in version 7.0, define the
environment variable COVERITY_ALLOW_DENSE_ISSUES when running the commands.

173

cov_platform_use_and_admin_guide.pdf#cim_sdk_checkers
cov_platform_use_and_admin_guide.pdf#cim_sdk_checkers

Chapter 6.3. Import file format and reference

Table of Contents
6.3.1. Import file format examples ... 174
6.3.2. Import format reference .. 176

6.3.1. Import file format examples

This section describes the format and attribute values of the JSON file that you must construct in order to
import third-party issues into Coverity Connect, including:

• A sample import file

• Sample source files that the import file references

• Import file reference that describes the elements used in the import file

Any field preceded by a question mark (?) is optional.

174

Import file format and reference

Example 6.3.1. JSON file - example.json

{
"header" : {
 "version" : 1,
 "format" : "cov-import-results input"
},
"sources" : [{
 "file" : "/projects/cov-import-test/doc_example/missing_indent_source.c",
 ? "encoding" : "ASCII",
 ? "language" : string
 },
 {
 "file" : "/projects/cov-import-test/doc_example/too_many_characters.c",
 "encoding" : "ASCII"
 }
],
"issues" : [{
 "checker" : "bad_indent",
 "extra" : "bad_indent_var",
 "file" : "/projects/cov-import-test/doc_example/missing_indent_source.c",
 ? "function" : "do_something",
 "subcategory" : "small-mistakes",
 ? "domain" : string

 ? "properties" : {
 ? "type" : "Type name",
 "category" : "Category name",
 "impact" : "Medium",
 ? "cwe" : 123,
 "longDescription" : "long description",
 "localEffect" : "local effect",
 "issueKind" : "QUALITY"
 },
 "events" : [{
 "tag" : "missing_indent",
 "description" : "Indent line with 8 spaces (do not use Tab)",
 ? "linkUrl" : "http://www.synopsys.com/",
 ? "linkText" : "Synopsys, Inc web page",
 "line" : 19,
 ? "main" : true
 }
] },
{
 "checker" : "line_too_long",
 "extra" : "line_too_long_var",
 "file" : "/projects/cov-import-test/doc_example/too_many_characters.c",
 "function" : "do_something_else",
 "subcategory" : "small-mistakes",
 "events" : [
 {
 "tag" : "long_lines",
 "description" : "This line exceeds the 80 character limit",
 ? "linkUrl" : "http://www.synopsys.com/",
 ? "linkText" : "Synopsys, Inc web page",
 "line" : 4,
 ? "main" : true
 }
] }
] }

175

Import file format and reference

Example 6.3.2. Source file 1 - missing_indent_source.c

#include <stdio.h>

int main(int argc, const char * argv[])
{
 int limit=10;
 int res = 0;

 res = do_something (limit);

 printf ("The final count for l was %d\n",res);

 return 0;
}

int do_something (int limit) {
 int i=0, l=0;

 for (i=0;i<limit;i++){
 l+=i;
 }

 return l;
}

Example 6.3.3. Source file 2 - too_many_characters.c

#include <stdio.h>

int do_something_else () {
 printf("This is an example of a pretty long line, which will exceed the 80 character
 rule");
}

6.3.2. Import format reference

The following syntax explains the structure of the JSON import file. Note the following:

• Items shown in bold are to be entered in your import file exactly as shown.

• Items shown in italics refer to subsequent items, or to items of JSON syntax.

• Items shown with ellipses (...) indicate that there can multiple occurrences of that item.

• Definitions and usage notes for the items are listed in the Table 6.3.1, “Import file item definitions”.

file ← {
 "header": header,
 "sources" : [
 source , …
] ,
 "issues": [
 issue, …

176

Import file format and reference

]
}
header ← {
 "version" : integer ,
 "format" : string
}
source ← {
 "file" : string ,
 "language" : string ,
 "encoding" : string
}
issue ← {
 "checker" : string ,
 "extra" : string ,
 "file" : string ,
 "function" : string ,
 "domain" : string ,
 "subcategory" : string ,
 "properties" : properties ,
 "events" : [
 event, …
]
}
properties ← {
 "category" : string ,
 "impact" : string ,
 "type" : string ,
 "cwe" : integer ,
 "longDescription" : string ,
 "localEffect" : string ,
 "issueKind" : string
}
event ← {
 "tag" : string ,
 "description" : string ,
 "file" : string ,
 "linkUrl" : string ,
 "linkText" : string ,
 "line" : integer ,
 "main" : boolean
}

The following table is a reference for the JSON elements that are used to construct the import file and
defines the following:

• JSON element is the name of the JSON element listed in the import file.

• Required tells if the element is required or optional.

• Descriptions defines the JSON element value.

• GUI Display shows in what area the element value is displayed in Coverity Connect using the example
data provided in this section.

177

Import file format and reference

• Merge Key shows which elements in the file affect the way in which issues (CIDs) are merged and
displayed in Coverity Connect.

The Merge Key is a unique identifier for an issue. It is used to determine if two issues are the "same",
for example, if they were detected in two slightly different versions of the same code base. Every CID
corresponds to a single Merge Key.

Every issue specified in the JSON file should include the checker name (issue.checker) and the
file name (issue.file). While the function name (issue.function) is optional, it is strongly
recommended to set it for all defects in code. It can be left unset for defects in configuration files,
text files, or unparseable code, which are not applicable. Excluding the function name can produce
unexpected results.

If issue.function is set, then the merge key is exactly a function of the following: issue.checker,
issue.extra, and issue.function. On the other hand, if issue.function is unset, then the
merge key will instead be a function of issue.checker, issue.extra, and the file name (not the
complete path) from issue.file.

Any functions named main are handled specially, and also include the file name or the first parent
directory from issue.file.

The data used to calculate the Merge Key should generally be stable over time. If any one of the values
change, a new Merge Key (and new CID) will result, and issues associated with the old Merge Key will
no longer be detected, and will appear as "fixed".

Note

cov-import-results does not accept JSON import files that contain Windows file paths. You
must use forward slashes ("/") to separate paths for Windows and include drive-letter syntax. For
example:

"file" : "C:/projects/cov-import-test/doc_example/missing_indent_source.c",

For more information about JSON and its syntax, see http://www.json.org .

Table 6.3.1. Import file item definitions

JSON
element

Required Description GUI
Display

Merge
Key

header required The object that identifies the file format. Do not
change the values.

version required The value is "1".

format required The value is "cov-import-results input".

sources [] required An array of source objects. Source objects identify
information pertaining to a source file that contains
the issue. You can specify 0 or more sources.

source.file required The full pathname and filename of the source file
that you want to import so that it displays in the

178

http://www.json.org/

Import file format and reference

JSON
element

Required Description GUI
Display

Merge
Key

Source browser in Coverity Connect. On Windows
systems, you must use the drive letter format and
forward slashes ("/") to denote path separation,
such as "C:/path/filename". You can trim
portions of the pathname using the --strip-path
option.

source.encodingoptional The encoding type for the file. The encoding types
are the same that are accepted by the cov-
emit command. Defaults to the system default
encoding.

source.languageoptional The primary source language of the source file.

issues [] required An array of issue objects. Issue objects describe
all of the information about the specific third-party
issues and how that information is displayed in the
Coverity Connect UI. You can specify 0 or more
issues.

issue.checker required Name of the checker that found the issue. The
checker name lengths must be between 3 and 256
characters.

3 Yes

issue.domain optional The analysis domain associated with this issue.

issue.extra required A string that allows Coverity Connect to determine
if a given issue is new, or if it is an additional
instance of an existing issue. Coverity Connect
combines the checker, file name, function, and
extra fields to define a unique signature for
each issue. If the signature matches an existing
signature, the two issues are considered to be the
same (merged).

 Yes

issue.file required The full pathname and filename of the source file
that contains the issue. You can trim portions of the
pathname using the --strip-path option.

The file must match a source file in the “sources”
array, or a source file already present in the
intermediate directory (placed there by a preceding
invocation of cov-build or cov-import-
results).

On Windows systems, you must use the drive letter
format and forward slashes ("/") to denote path
separation, such as such as "C:/path/filename".

3, 4 Yes, but
only if
issue.function
is not
present, or
is present
but is
ambiguous.

179

cov_command_ref.pdf#cov-emit
cov_command_ref.pdf#cov-emit

Import file format and reference

JSON
element

Required Description GUI
Display

Merge
Key

issue.function optional The name of the function that contains the issue.
Name mangling is optional.

2 Yes

issue.subcategoryrequired The subcategory and tag attributes, along with
the domain definition specified in cov-import-
results, are used to identify the issue's type.

type is a brief description of the kind of issue
that was uncovered by one or several checkers,
and is displayed in the event's message in the
source browser. If you want to categorize, and
accordingly display type for an issue, a custom
checker description must be defined in Coverity
Connect.

If you do not define a custom checker description,
the issue's type is displayed as Other violation in
Coverity Connect.

For more information, see "Configuring custom
checker descriptions"in the Coverity Platform
2020.12 User and Administrator Guide.

1, 3

properties optional The object that identifies properties of software
issues, the same sort of properties that are
associated with issues found by checkers. If this
element is present in the file, all of its fields except
for cwe are required. Invalid values will be rejected
by cov-import-results.

property.categoryrequireda A string between 1 and 100 characters long that
identifies an issue category. See issue category.

property.impact requireda A string that describes the impact of the issue. It is
displayed in Coverity Connect UI elements, such as
columns and filters. See impact.

Valid values: "Low", "Medium", "High".

property.type requireda A string between 1 and 100 characters long that
describes the checker type. It is displayed in
Coverity Connect UI elements, such as columns
and filters. See type.

property.cwe optional Integer that maps issues found by the checker to
a Common Weakness Enumeration for software
weaknesses. It is displayed in Coverity Connect UI
elements, such as columns and filters. See CWE.

180

Import file format and reference

JSON
element

Required Description GUI
Display

Merge
Key

property.localEffectrequireda A string of 0 to unlimited length that is displayed in
the Coverity Connect triage pane. See local effect.

property.longDescriptionrequireda A string of 0 to unlimited length that serves as
a description of the issue. It is displayed in the
Coverity Connect triage pane. See long description.

property.issueKindrequireda A string that identifies the kind of issue found. It is
displayed in Coverity Connect UI elements, such as
columns and filters. See kind.

Valid strings: "QUALITY", "SECURITY", "TEST", or
"QUALITY,SECURITY".

events [] required Array of event objects. Event objects describe all
of the even information that leads to the issue. You
can specify 0 or more event objects.

event.tag required See subcategory. 4

event.descriptionrequired A description of the event, helping you to identify
the impact of the issue. Event descriptions should
be a single, short sentence, providing explanatory
information for Coverity Connect users. For
example, an event message for the existing
RESOURCE_LEAK checker is "At (3): Variable "p"
going out of scope leaks the storage it points to."
See Example 6.3.1, “JSON file - example.json” for
more event description examples.

3

event.file optional The full pathname and filename of the file
containing the event. This is normally not needed.
The default is the filename of the issue.

On Windows systems, you must use the drive letter
format and forward slashes ("/") to denote path
separation, such as "C:/path/filename".

event.linkUrl optional Any valid URL that you wish to include as part of
the event message, such as a link to an internal
site containing more information about the issue.
You can only specify one link for each event.

3

event.linkText optional The text that is displayed in the event message
that serves as the hyperlink to the URL provided in
event.linkUrl.

3

event.line required The line number of the source code in which the
event occurs. You must specify one or more.

3

181

Import file format and reference

JSON
element

Required Description GUI
Display

Merge
Key

event.main optional Denotes the nature of the event's path. The value
can be true or false. It is true if this event is the
main event.

3

aRequired only if properties is present in the JSON file.

182

Chapter 6.4. Capacity and performance

The Third Party Integration Toolkit does not impose any hard limit on the number of source files, issues,
events, and so forth, that can be imported into Coverity Connect. However, you must make sure that
Coverity Connect is properly sized to handle the size of code base, issue types, and issue density, as
well as the number of concurrent commits, and that the Coverity Connect UI is performing well. See
Coverity Platform 2020.12 User and Administrator Guide for information about Coverity Connect
tuning.

If you import a high issue density, large source files, and so forth, you might notice degradation in
performance of Coverity Connect. Frequent commits of non-Coverity issues might cause the database
to increase in size, which might result in further performance degradation, causing Coverity Connect to
become unresponsive.

Because of this, it is recommended that the following limits be considered when building integration with
a third party analysis tool. Ignoring one of the following might cause performance degradation of Coverity
Connect:

1. Size of a single source file should not exceed 1MB

2. Number of source files should not exceed 30,000

3. Size of JSON file should not exceed 60MB

4. Database size should not exceed 300GB

5. Density should not exceed 100 issues per thousand lines of code

6. Events per issue should not exceed 25 events per issue

7. Size of a single event should not exceed 300 characters

8. Total Emit directory size should not exceed 8GB

183

cov_platform_use_and_admin_guide.pdf#cim_sysadmin_guide

Appendix A. Coverity Analysis Reference

Table of Contents
A.1. Troubleshooting Coverity Analysis .. 184
A.2. Using Cygwin to invoke cov-build .. 185
A.3. Finding Third-party Licenses ... 186
A.4. Incompatible #import Attributes ... 186

A.1. Troubleshooting Coverity Analysis

A.1.1. Windows systems

You might encounter the following issues if you use Coverity Analysis on Windows systems.

When using the cov-build command with Cygwin make, I get an error about not being able to load
cygwin.dll.

Run the cov-build command in a Bourne or Bash shell. For example:

> <install_dir_sa>/bin/cov-build.exe --dir <intermediate_directory> bash make

The problem is that cov-build executes make as if it were a native Windows program, but make is
usually invoked from the Cygwin bash shell, which invokes it differently. Having cov-build use a
Bourne or Bash shell lets the shell invoke make in the correct manner.

When using the cov-build with Cygwin and a shell script that invokes a build, I get a CreateProcess
error.

Execute the build script in a Bourne or Bash shell using the format sh|bash <script_name>,
where <script_name> is the script that executes the build.

For example:

> <install_dir_sa>/bin/cov-build.exe --dir <intermediate_directory> \
 sh build.sh

The problem is that Windows does not know how to associate a Cygwin shell script with the Cygwin
shell that processes it. Therefore, you need to explicitly reference the shell when using the script.

The cov-commit-defects.exe command hangs when an invalid port is used for the remote host.
When the host running the Coverity Connect uses Windows firewall and an invalid port is used with cov-
commit-defects.exe --host, the command fails without an immediate error message. Eventually, a
timeout error is returned.

Make sure to use the correct port. Also, check that the Windows firewall is configured to unblock the
necessary port, or allow the Coverity commands to run as exceptions. See also the previous two
questions.

184

Coverity Analysis Reference

The cov-analyze command returns error: boost::filesystem::path: invalid name
For cov-analyze, the --dir option does not support a path name with just the root of a drive, such
as d:\.

For cov-analyze, the --dir option does not support a path name with just the relative directory
of a drive, such as d:foo. Valid values for path names with drives use the full directory name in
addition to the drive letter (for example, d:\cov_apache_analysis), or a relative directory path
name without a drive letter.

The cov-analyze command returns error: [FATAL] No license file (license.dat) or
license configuration file (license.config) found

If you get a fatal No license found error when you attempt to run this command, you need to
make sure that license.dat was copied correctly to <install_dir>/bin.

On some Windows platforms, you might need to use administrative privileges when you copy the
Coverity Analysis license to <install_dir>/bin. Due to file virtualization in some versions of
Windows, it might look like license.dat is in <install_dir>/bin when it is not.

Typically, you can set the administrative permission through an option in the right-click menu of the
executable for the command interpreter (for example, Cmd.exe or Cygwin) or Windows Explorer.

The cov-configure returns error: access denied
On some Windows platforms, you might need to use Windows administrative privileges when you run
cov-configure.

Typically, you can set the administrative permission through an option in the right-click menu of the
executable for the command interpreter (for example, Cmd.exe or Cygwin) or Windows Explorer.

A.1.2. All operating systems

You might encounter the following issues if you use Coverity Analysis on all operating systems.

http_proxy, https_proxy, and no_proxy environment variables
Analysis may fail or return inaccurate results when run on networks using HTTP client proxies.
Specifically, issues are known to arise when the http_proxy or https_proxy environment
variable is a machine name rather than an IP address, or when there are wildcards in the no_proxy
environment variable.

A.2. Using Cygwin to invoke cov-build

Coverity Analysis supports the Cygwin development environment. The cov-build command supports
build procedures that run within Cygwin, so you can use build procedures without modifications.

You can run Coverity Analysis commands from within Cygwin. However, when running these commands,
you cannot use Cygwin paths as command line option values. Cygwin paths are UNIX-style paths that
Cygwin translates into Windows paths. Instead, use only Windows paths. You can convert Cygwin paths
to Windows paths with the Cygwin utility cygpath -w.

The command that cov-build runs is found through a Windows path. If cov-build cannot find the
correct build command, invoke bash first. For example:

185

Coverity Analysis Reference

> cov-build --dir <intermediate_directory> bash -c "<cygwin command>"

A.3. Finding Third-party Licenses

Coverity Analysis includes third-party software. For the terms of the associated licenses, see the files
in the <install_dir>/doc/licenses subdirectory. Some of this software is covered by the Lesser
GNU Public License (LGPL). Coverity will provide materials on demand, including source code for
components covered by the LGPL, as required by the terms of the LGPL.

A.4. Incompatible #import Attributes

The Microsoft Visual C++ #import directive is used to incorporate information from a type library. The
extracted information is then converted into valid C++ code and fed into the compiler. The Coverity
compiler also uses this generated code. The code, however, can be generated incorrectly if during a
single compilation a type library is included multiple times with different attributes. The Coverity compiler
generates the following warning when this happens:

"t.cpp", line 2: warning: incompatible #import attributes (previous import at
 line 1)
#import "t.tlb" no_namespace

To avoid this issue, you need to add guards around every #import, for example:

#ifndef __import_MSVBBM60_dll
#define __import_MSVBBM60_dll
#import "MSVBVM60.dll" raw_native_types raw_interfaces_only
#endif

#ifndef __import_MSVBBM60_dll
#define __import_MSVBBM60_dll
#import "MSVBVM60.dll" raw_native_types
#endif

186

Appendix B. Coverity Glossary

Table of Contents
Glossary ... 187

Glossary

A

Abstract Syntax Tree (AST) A tree-shaped data structure that represents the structure of concrete
input syntax (from source code).

action In Coverity Connect, a customizable attribute used to triage a CID.
Default values are Undecided, Fix Required, Fix Submitted, Modeling
Required, and Ignore. Alternative custom values are possible.

Acyclic Path Count The number of execution paths in a function, with loops counted one
time at most. The following assumptions are also made:

• continue breaks out of a loop.

• while and for loops are executed exactly 0 or 1 time.

• do…while loops are executed exactly once.

• goto statements which go to an earlier source location are treated as
an exit.

Acyclic (Statement-only) Path Count adds the following assumptions:

• Paths within expressions are not counted.

• Multiple case labels at the same statement are counted as a single
case.

advanced triage In Coverity Connect, streams that are associated with the same always
share the same triage data and history. For example, if Stream A and
Stream B are associated with Triage Store 1, and both streams contain
CID 123, the streams will share the triage values (such as a shared
Bug classification or a Fix Required action) for that CID, regardless of
whether the streams belong to the same project.

Advanced triage allows you to select one or more triage stores to update
when triaging a CID in a Coverity Connect project. Triage store selection
is possible only if the following conditions are true:

187

Coverity Glossary

• Some streams in the project are associated with one triage store (for
example, TS1), and other streams in the project are associated with
another triage store (for example, TS2). In this case, some streams
that are associated with TS1 must contain the CID that you are
triaging, and some streams that are associated with TS2 must contain
that CID.

• You have permission to triage issues in more than one of these triage
stores.

In some cases, advanced triage can result in CIDs with issue attributes
that are in the Various state in Coverity Connect.

See also, triage.

analysis annotation A marker in the source code. An analysis annotation is not executable,
but modifies the behavior of Coverity Analysis in some way.

Analysis annotations can suppress false positives, indicate sensitive
data, and enhance function models.

Each language has its own analysis annotation syntax and set of
capabilities. These are not the same as the syntax or capabilities
available to the other languages that support annotations.

• For C/C++, an analysis annotation is a comment with special
formatting. See code-line annotation and function annotation.

• For C# and Visual Basic, an analysis annotation uses the native C#
attribute syntax.

• For Java, an analysis annotation uses the native Java annotation
syntax.

Other languages do not support annotations.

annotation See analysis annotation.

C

call graph A graph in which functions are nodes, and the edges are the calls
between the functions.

category See issue category.

checker A program that traverses paths in your source code to find specific
issues in it. Examples of checkers include RACE_CONDITION,
RESOURCE_LEAK, and INFINITE_LOOP. For details about checkers,
see Coverity 2020.12 Checker Reference.

188

Coverity Glossary

checker category See issue category.

churn A measure of change in defect reporting between two Coverity Analysis
releases that are separated by one minor release, for example, 6.5.0 and
6.6.0.

CID (Coverity identifier) See Coverity identifier (CID).

classification A category that is assigned to a software issue in the database. Built-
in classification values are Unclassified, Pending, False Positive,
Intentional, and Bug. For Test Advisor issues, classifications include
Untested, No Test Needed, and Tested Elsewhere. Issues that are
classified as Unclassified, Pending, and Bug are regarded as software
issues for the purpose of defect density calculations.

code-line annotation For C/C++, an analysis annotation that applies to a particular line of
code. When it encounters a code-line annotation, the analysis engine
skips the defect report that the following line of code would otherwise
trigger.

By default, an ignored defect is classified as Intentional. See
"Models and Annotations in C/C++" in the Coverity Checker Reference.

See also function annotation.

code base A set of related source files.

code coverage The amount of code that is tested as a percentage of the total amount
of code. Code coverage is measured different ways: line coverage, path
coverage, statement coverage, decision coverage, condition coverage,
and others.

component A named grouping of source code files. Components allow developers
to view only issues in the source files for which they are responsible,
for example. In Coverity Connect, these files are specified by a Posix
regular expression. See also, component map.

component map Describes how to map source code files, and the issues contained in the
source files, into components.

control flow graph A graph in which blocks of code without any jumps or jump targets are
nodes, and the directed edges are the jumps in the control flow between
the blocks. The entry block is where control enters the graph, and the
exit block is where the control flow leaves.

Coverity identifier (CID) An identification number assigned to a software issue. A snapshot
contains issue instances (or occurrences), which take place on a specific
code path in a specific version of a file. Issue instances, both within a
snapshot and across snapshots (even in different streams), are grouped
together according to similarity, with the intent that two issues are

189

Coverity Glossary

"similar" if the same source code change would fix them both. These
groups of similar issues are given a numeric identifier, the CID. Coverity
Connect associates triage data, such as classification, action, and
severity, with the CID (rather than with an individual issue).

CWE (Common Weakness
Enumeration)

A community-developed list of software weaknesses, each of which is
assigned a number (for example, see CWE-476 at http://cwe.mitre.org/
data/definitions/476.html). Coverity associates many categories of
defects (such as "Null pointer dereferences") with a CWE number.

Coverity Connect A Web application that allows developers and managers to identify,
manage, and fix issues found by Coverity analysis and third-party tools.

D
data directory The directory that contains the Coverity Connect database. After

analysis, the cov-commit-defects command stores defects in this
directory. You can use Coverity Connect to view the defects in this
directory. See also intermediate directory.

deadcode Code that cannot possibly be executed regardless of what input values
are provided to the program.

defect See issue.

deterministic A characteristic of a function or algorithm that, when given the same
input, will always give the same output.

dismissed issue Issue marked by developers as Intentional or False Positive in the Triage
pane. When such issues are no longer present in the latest snapshot of
the code base, they are identified as absent dismissed.

domain A combination of the language that is being analyzed and the type of
analysis, either static or dynamic.

dynamic analysis Analysis of software code by executing the compiled program. See also
static analysis.

dynamic analysis agent A JVM agent for Dynamic Analysis that instruments your program to
gather runtime evidence of defects.

dynamic analysis stream A sequential collection of snapshots, which each contain all of the issues
that Dynamic Analysis reports during a single invocation of the Dynamic
Analysis broker.

E
event In Coverity Connect, a software issue is composed of one or more

events found by the analysis. Events are useful in illuminating the
context of the issue. See also issue.

190

http://cwe.mitre.org/data/definitions/476.html
http://cwe.mitre.org/data/definitions/476.html

Coverity Glossary

F

false negative A defect in the source code that is not found by Coverity Analysis.

false path pruning (FPP) A technique to ensure that defects are only detected on feasible paths.
For example, if a particular path through a method ensures that a given
condition is known to be true, then the else branch of an if statement
which tests that condition cannot be reached on that path. Any defects
found in the else branch would be impossible because they are “on a
false path”. Such defects are suppressed by a false path pruner.

false positive A potential defect that is identified by Coverity Analysis, but that you
decide is not a defect. In Coverity Connect, you can dismiss such issues
as false positives. In C or C++ source, you might also use code-line
annotations to identify such issues as intentional during the source code
analysis phase, prior to sending analysis results to Coverity Connect.

fixed issue Issue from the previous snapshot that is not in the latest snapshot.

fixpoint The Extend SDK engine notices that the second and subsequent paths
through the loop are not significantly different from the first iteration, and
stops analyzing the loop. This condition is called a fixpoint of the loop.

flow-insensitive analysis A checker that is stateless. The abstract syntax trees are not visited in
any particular order.

function annotation For C/C++, an analysis annotation that applies to the definition of a
particular function. The annotation either suppresses or enhances the
effect of that function's model. See "Models and Annotations in C/C++"
in the Coverity Checker Reference.

See also code-line annotation.

function model A model of a function that is not in the code base that enhances the
intermediate representation of the code base that Coverity Analysis uses
to more accurately analyze defects.

I

impact Term that is intended to indicate the likely urgency of fixing the issue,
primarily considering its consequences for software quality and security,
but also taking into account the accuracy of the checker. Impact
is necessarily probabilistic and subjective, so one should not rely
exclusively on it for prioritization.

inspected issue Issue that has been triaged or fixed by developers.

intermediate directory A directory that is specified with the --dir option to many commands.
The main function of this directory is to write build and analysis results

191

Coverity Glossary

before they are committed to the Coverity Connect database as a
snapshot. Other more specialized commands that support the --dir
option also write data to or read data from this directory.

The intermediate representation of the build is stored in
<intermediate_directory>/emit directory, while the analysis
results are stored in <intermediate_directory>/output. This
directory can contain builds and analysis results for multiple languages.

See also data directory.

intermediate representation The output of the Coverity compiler, which Coverity Analysis uses to run
its analysis and check for defects. The intermediate representation of the
code is in the intermediate directory.

interprocedural analysis An analysis for defects based on the interaction between functions.
Coverity Analysis uses call graphs to perform this type of analysis. See
also intraprocedural analysis.

intraprocedural analysis An analysis for defects within a single procedure or function, as opposed
to interprocedural analysis.

issue Coverity Connect displays three types of software issues: quality
defects, potential security vulnerabilities, and test policy violations. Some
checkers find both quality defects and potential security vulnerabilities,
while others focus primarily on one type of issue or another. The Quality,
Security, and Test Advisor dashboards in Coverity Connect provide high-
level metrics on each type of issue.

Note that this glossary includes additional entries for the various types of
issues, for example, an inspected issue, issue category, and so on.

issue category A string used to describe the nature of a software issue; sometimes
called a "checker category" or simply a "category." The issue pertains
to a subcategory of software issue that a checker can report within the
context of a given domain.

Examples:

• Memory - corruptions

• Incorrect expression

• Integer overflow Insecure data handling

Impact tables in the Coverity 2020.12 Checker Reference list issues
found by checkers according to their category and other associated
checker properties.

192

Coverity Glossary

K

killpath For Coverity Analysis for C/C++, a path in a function that aborts program
execution. See <install_dir_sa>/library/generic/common/
killpath.c for the functions that are modeled in the system.

For Coverity Analysis for Java, and similarly for C# and Visual Basic,
a modeling primitive used to indicate that execution terminates at this
point, which prevents the analysis from continuing down this execution
path. It can be used to model a native method that kills the process, like
System.exit, or to specifically identify an execution path as invalid.

kind A string that indicates whether software issues found by a given checker
pertain to SECURITY (for security issues), QUALITY (for quality issues),
TEST (for issues with developer tests, which are found by Test Advisor),
or QUALITY/SECURITY. Some checkers can report quality and security
issues. The Coverity Connect UI can use this property to filter and
display CIDs.

L

latest state A CID's state in the latest snapshot merged with its state from previous
snapshots starting with the snapshot in which its state was 'New'.

local analysis Interprocedural analysis on a subset of the code base with Coverity
Desktop plugins, in contrast to one with Coverity Analysis, which usually
takes place on a remote server.

local effect A string serving as a generic event message that explains why the
checker reported a defect. The message is based on a subcategory of
software issues that the checker can detect. Such strings appear in the
Coverity Connect triage pane for a given CID.

Examples:

• May result in a security violation.

• There may be a null pointer exception, or else the
comparison against null is unnecessary.

long description A string that provides an extended description of a software issue
(compare with type). The long description appears in the Coverity
Connect triage pane for a given CID. In Coverity Connect, this
description is followed by a link to a corresponding CWE, if available.

Examples:

• The called function is unsafe for security related
code.

193

Coverity Glossary

• All paths that lead to this null pointer comparison
already dereference the pointer earlier (CWE-476).

M
model In Coverity Analysis of the code for a compiled language—such as C,

C++, C#, Java, or Visual Basic—a model represents a function in the
application source. Models are used for interprocedural analysis.

Each model is created as each function is analyzed. The model is an
abstraction of the function’s behavior at execution time; for example,
a model can show which arguments the function dereferences, and
whether the function returns a null value.

It is possible to write custom models for a code base. Custom models
can help improve Coverity's ability to detect certain kinds of bugs.
Custom models can also help reduce the incidence of false positives.

modeling primitive A modeling primitive is used when writing custom models. Each
modeling primitive is a function stub: It does not specify any executable
code, but when it is used in a custom model it instructs Coverity Analysis
how to analyze (or refrain from analyzing) the function being modeled.

For example, the C/C++ checker CHECKED_RETURN is associated
with the modeling primitive _coverity_always_check_return_().
This primitive tells CHECKED_RETURN to verify that the function being
analyzed really does return a value.

Some modeling primitives are generic, but most are specific to a
particular checker or group of checkers. The set of available modeling
primitives varies from language to language.

N
native build The normal build process in a software development environment that

does not involve Coverity products.

O
outstanding issue Issues that are uninspected and unresolved.

outstanding defects count The sum of security and non-security defects count.

outstanding non-security
defects count

The sum of non-security defects count.

outstanding security defects
count.

The sum of security defects count.

194

Coverity Glossary

owner User name of the user to whom an issue has been assigned in Coverity
Connect. Coverity Connect identifies the owner of issues not yet
assigned to a user as Unassigned.

P
postorder traversal The recursive visiting of children of a given node in order, and then the

visit to the node itself. Left sides of assignments are evaluated after
the assignment because the left side becomes the value of the entire
assignment expression.

primitive In the Java language, elemental data types such as strings and integers
are known as primitive types. (In the C-language family, such types are
typically known as basic types).

For the function stubs that can be used when constructing custom
models, see modeling primitive.

project In Coverity Connect, a specified set of related streams that provide a
comprehensive view of issues in a code base.

R
resolved issues Issues that have been fixed or marked by developers as Intentional or

False Positive through the Coverity Connect Triage pane.

run In Coverity releases 4.5.x or lower, a grouping of defects committed to
the Coverity Connect. Each time defects are inserted into the Coverity
Connect using the cov-commit-defects command, a new run is
created, and the run ID is reported. See also snapshot

S
sanitize To clean or validate tainted data to ensure that the data is valid.

Sanitizing tainted data is an important aspect of secure coding practices
to eliminate system crashes, corruption, escalation of privileges, or
denial of service. See also tainted data.

severity In Coverity Connect, a customizable property that can be assigned
to CIDs. Default values are Unspecified, Major, Moderate, and Minor.
Severities are generally used to specify how critical a defect is.

sink Coverity Analysis for C/C++: Any operation or function that must
be protected from tainted data. Examples are array subscripting,
system(), malloc().

Coverity Analysis for Java: Any operation or function that must be
protected from tainted data. Examples are array subscripting and the
JDBC API Connection.execute.

195

Coverity Glossary

snapshot A copy of the state of a code base at a certain point during development.
Snapshots help to isolate defects that developers introduce during
development.

Snapshots contain the results of an analysis. A snapshot includes both
the issue information and the source code in which the issues were
found. Coverity Connect allows you to delete a snapshot in case you
committed faulty data, or if you committed data for testing purposes.

snapshot scope Determines the snapshots from which the CID are listed using the Show
and the optional Compared To fields. The show and compare scope is
only configurable in the Settings menu in Issues:By Snapshot views and
the snapshot information pane in the Snapshots view.

source An entry point of untrusted data. Examples include environment
variables, command line arguments, incoming network data, and source
code.

static analysis Analysis of software code without executing the compiled program. See
also dynamic analysis.

status Describes the state of an issue. Takes one of the following values: New,
Triaged, Dismissed, Absent Dismissed, or Fixed.

store A map from abstract syntax trees to integer values and a sequence of
events. This map can be used to implement an abstract interpreter, used
in flow-sensitive analysis.

stream A sequential collection of snapshots. Streams can thereby provide
information about software issues over time and at a particular points in
development process.

T

tainted data Any data that comes to a program as input from a user. The program
does not have control over the values of the input, and so before using
this data, the program must sanitize the data to eliminate system
crashes, corruption, escalation of privileges, or denial of service. See
also sanitize.

translation unit A translation unit is the smallest unit of code that can be compiled
separately. What this unit is, depends primarily on the language: For
example, a Java translation unit is a single source file, while a C or C++
translation unit is a source file plus all the other files (such as headers)
that the source file includes.

When Coverity tools capture code to analyze, the resulting intermediate
directory contains a collection of translation units. This collection
includes source files along with other files and information that form the

196

Coverity Glossary

context of the compilation. For example, in Java this context includes
bytecode files in the class path; in C or C++ this context includes both
preprocessor definitions and platform information about the compiler.

triage The process of setting the states of an issue in a particular stream, or of
issues that occur in multiple streams. These user-defined states reflect
items such as how severe the issue is, if it is an expected result (false
positive), the action that should be taken for the issue, to whom the issue
is assigned, and so forth. These details provide tracking information for
your product. Coverity Connect provides a mechanism for you to update
this information for individual and multiple issues that exist across one or
more streams.

See also advanced triage.

triage store A repository for the current and historical triage values of CIDs. In
Coverity Connect, each stream must be associated with a single triage
store so that users can triage issues (instances of CIDs) found in the
streams. Advanced triage allows you to select one or more triage stores
to update when triaging a CID in a Coverity Connect project.

See also advanced triage.

type A string that typically provides a short description of the root cause
or potential effect of a software issue. The description pertains to a
subcategory of software issues that the checker can find within the
scope of a given domain. Such strings appear at the top of the Coverity
Connect triage pane, next to the CID that is associated with the issue.
Compare with long description.

Examples:

The called function is unsafe for security related code

Dereference before null check

Out-of-bounds access

Evaluation order violation

Impact tables in the Coverity 2020.12 Checker Reference list issues
found by checkers according to their type and other associated checker
properties.

U
unified issue An issue that is identical and present in multiple streams. Each instance

of an identical, unified issue shares the same CID.

uninspected issues Issues that are as yet unclassified in Coverity Connect because they
have not been triaged by developers.

197

Coverity Glossary

unresolved issues Defects are marked by developers as Pending or Bug through the
Coverity Connect Triage pane. Coverity Connect sometimes refers to
these issues as Outstanding issues.

V

various Coverity Connect uses the term Various in two cases:

• When a checker is categorized as both a quality and a security
checker. For example, USE_AFTER_FREE and UNINIT are listed as
such in the Issue Kind column of the View pane. For details, see the
Coverity 2020.12 Checker Reference.

• When different instances of the same CID are triaged differently.
Within the scope of a project, instances of a given CID that occur in
separate streams can have different values for a given triage attribute
if the streams are associated with different . For example, you might
use advanced triage to classify a CID as a Bug in one triage store but
retain the default Unclassified setting for the CID in another store. In
such a case, the View pane of Coverity Connect identifies the project-
wide classification of the CID as Various.

Note that if all streams share a single triage store, you will never
encounter a CID in this triage state.

view Saved searches for Coverity Connect data in a given project. Typically,
these searches are filtered. Coverity Connect displays this output in
data tables (located in the Coverity Connect View pane). The columns in
these tables can include CIDs, files, snapshots, checker names, dates,
and many other types of data.

198

Appendix C. Coverity Legal Notice

Table of Contents
C.1. Legal Notice ... 199

C.1. Legal Notice

The information contained in this document, and the Licensed Product provided by Synopsys, are the
proprietary and confidential information of Synopsys, Inc. and its affiliates and licensors, and are supplied
subject to, and may be used only by Synopsys customers in accordance with the terms and conditions
of a license agreement previously accepted by Synopsys and that customer. Synopsys' current standard
end user license terms and conditions are contained in the cov_EULM files located at <install_dir>/
doc/en/licenses/end_user_license.

Portions of the product described in this documentation use third-party material. Notices, terms and
conditions, and copyrights regarding third party material may be found in the <install_dir>/doc/en/
licenses directory.

Customer acknowledges that the use of Synopsys Licensed Products may be enabled by authorization
keys supplied by Synopsys for a limited licensed period. At the end of this period, the authorization
key will expire. You agree not to take any action to work around or override these license restrictions
or use the Licensed Products beyond the licensed period. Any attempt to do so will be considered an
infringement of intellectual property rights that may be subject to legal action.

If Synopsys has authorized you, either in this documentation or pursuant to a separate mutually accepted
license agreement, to distribute Java source that contains Synopsys annotations, then your distribution
should include Synopsys' analysis_install_dir/library/annotations.jar to ensure a clean
compilation. This annotations.jar file contains proprietary intellectual property owned by Synopsys.
Synopsys customers with a valid license to Synopsys' Licensed Products are permitted to distribute this
JAR file with source that has been analyzed by Synopsys' Licensed Products consistent with the terms of
such valid license issued by Synopsys. Any authorized distribution must include the following copyright
notice: Copyright © 2020 Synopsys, Inc. All rights reserved worldwide.

U.S. GOVERNMENT RESTRICTED RIGHTS: The Software and associated documentation are provided
with Restricted Rights. Use, duplication, or disclosure by the U.S. Government is subject to restrictions
set forth in subparagraph (c)(1) of The Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of Commercial Computer Software – Restricted
Rights at 48 CFR 52.227-19, as applicable.

The Manufacturer is: Synopsys, Inc. 690 E. Middlefield Road, Mountain View, California 94043.

The Licensed Product known as Coverity is protected by multiple patents and patents pending, including
U.S. Patent No. 7,340,726.

Trademark Statement
Coverity and the Coverity logo are trademarks or registered trademarks of Synopsys, Inc. in the
U.S. and other countries. Synopsys' trademarks may be used publicly only with permission from

199

Coverity Legal Notice

Synopsys. Fair use of Synopsys' trademarks in advertising and promotion of Synopsys' Licensed
Products requires proper acknowledgement.

Microsoft, Visual Studio, and Visual C# are trademarks or registered trademarks of Microsoft Corporation
in the United States and/or other countries.

Microsoft Research Detours Package, Version 3.0.

Copyright © Microsoft Corporation. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or affiliates. Other names may be trademarks of
their respective owners.

"MISRA", "MISRA C" and the MISRA triangle logo are registered trademarks of MISRA Ltd, held on
behalf of the MISRA Consortium. © MIRA Ltd, 1998 - 2013. All rights reserved. The name FindBugs and
the FindBugs logo are trademarked by The University of Maryland.

Other names and brands may be claimed as the property of others.

This Licensed Product contains open source or community source software ("Open Source Software")
provided under separate license terms (the "Open Source License Terms"), as described in the
applicable license agreement under which this Licensed Product is licensed ("Agreement"). The
applicable Open Source License Terms are identified in a directory named licenses provided with the
delivery of this Licensed Product. For all Open Source Software subject to the terms of an LGPL license,
Customer may contact Synopsys at software-integrity-support@synopsys.com and Synopsys
will comply with the terms of the LGPL by delivering to Customer the applicable requested Open Source
Software package, and any modifications to such Open Source Software package, in source format,
under the applicable LGPL license. Any Open Source Software subject to the terms and conditions of the
GPLv3 license as its Open Source License Terms that is provided with this Licensed Product is provided
as a mere aggregation of GPL code with Synopsys' proprietary code, pursuant to Section 5 of GPLv3.
Such Open Source Software is a self-contained program separate and apart from the Synopsys code
that does not interact with the Synopsys proprietary code. Accordingly, the GPL code and the Synopsys
proprietary code that make up this Licensed Product co-exist on the same media, but do not operate
together. Customer may contact Synopsys at software-integrity-support@synopsys.com and
Synopsys will comply with the terms of the GPL by delivering to Customer the applicable requested
Open Source Software package in source code format, in accordance with the terms and conditions of
the GPLv3 license. No Synopsys proprietary code that Synopsys chooses to provide to Customer will
be provided in source code form; it will be provided in executable form only. Any Customer changes
to the Licensed Product (including the Open Source Software) will void all Synopsys obligations under
the Agreement, including but not limited to warranty, maintenance services and infringement indemnity
obligations.

The Cobertura package, licensed under the GPLv2, has been modified as of release 7.0.3. The
package is a self-contained program, separate and apart from Synopsys code that does not interact
with the Synopsys proprietary code. The Cobertura package and the Synopsys proprietary code
co-exist on the same media, but do not operate together. Customer may contact Synopsys at
software-integrity-support@synopsys.com and Synopsys will comply with the terms of the
GPL by delivering to Customer the applicable requested open source package in source format, under
the GPLv2 license. Any Synopsys proprietary code that Synopsys chooses to provide to Customer
upon its request will be provided in object form only. Any changes to the Licensed Product will void all

200

Coverity Legal Notice

Coverity obligations under the Agreement, including but not limited to warranty, maintenance services
and infringement indemnity obligations. If Customer does not have the modified Cobertura package,
Synopsys recommends to use the JaCoCo package instead.

For information about using JaCoCo, see the description for cov-build --java-coverage in the
Command Reference.

LLVM/Clang subproject
Copyright © All rights reserved. Developed by: LLVM Team, University of Illinois at Urbana-
Champaign (http://llvm.org/). Permission is hereby granted, free of charge, to any person
obtaining a copy of LLVM/Clang and associated documentation files ("Clang"), to deal with Clang
without restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of Clang, and to permit persons to whom Clang is furnished
to do so, subject to the following conditions: Redistributions of source code must retain the above
copyright notice, this list of conditions and the following disclaimers. Redistributions in binary form
must reproduce the above copyright notice, this list of conditions and the following disclaimers in
the documentation and/or other materials provided with the distribution. Neither the name of the
University of Illinois at Urbana-Champaign, nor the names of its contributors may be used to endorse
or promote products derived from Clang without specific prior written permission.

CLANG IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH CLANG OR THE USE OR OTHER DEALINGS WITH
CLANG.

Rackspace Threading Library (2.0)
Copyright © Rackspace, US Inc. All rights reserved. Licensed under the Apache License, Version 2.0
(the "License"); you may not use these files except in compliance with the License. You may obtain a
copy of the License at http://www.apache.org/licenses/LICENSE-2.0.

Unless required by applicable law or agreed to in writing, software distributed under the License is
distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations
under the License.

SIL Open Font Library subproject
Copyright © 2020 Synopsys Inc. All rights reserved worldwide. (www.synopsys.com), with
Reserved Font Name fa-gear, fa-info-circle, fa-question.

This Font Software is licensed under the SIL Open Font License, Version 1.1. This license is
available with a FAQ at http://scripts.sil.org/OFL.

Apache Software License, Version 1.1
Copyright © 1999-2003 The Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

201

Coverity Legal Notice

1. Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the following
acknowlegement: "This product includes software developed by the Apache Software Foundation
(http://www.apache.org/)."

Alternately, this acknowlegement may appear in the software itself, if and wherever such third-
party acknowlegements normally appear.

4. The names "The Jakarta Project", "Commons", and "Apache Software Foundation" must not be
used to endorse or promote products derived from this software without prior written permission.
For written permission, please contact apache@apache.org.

5. Products derived from this software may not be called "Apache" nor may "Apache" appear in their
names without prior written permission of the Apache Group.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Apache License Version 2.0, January 2004 http://www.apache.org/licenses/
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in
compliance with the License. You may obtain a copy of the License at: http://www.apache.org/
licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is
distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations
under the License.

Results of analysis from Coverity and Test Advisor represent the results of analysis as of the date and
time that the analysis was conducted. The results represent an assessment of the errors, weaknesses
and vulnerabilities that can be detected by the analysis, and do not state or infer that no other errors,
weaknesses or vulnerabilities exist in the software analyzed. Synopsys does NOT guarantee that all
errors, weakness or vulnerabilities will be discovered or detected or that such errors, weaknesses or
vulnerabilities are are discoverable or detectable.

SYNOPSYS AND ITS SUPPLIERS DISCLAIM ALL WARRANTIES, CONDITIONS AND
REPRESENTATIONS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THOSE RELATED

202

Coverity Legal Notice

TO MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, SATISFACTORY QUALITY,
ACCURACY OR COMPLETENESS OF RESULTS, CONFORMANCE WITH DESCRIPTION, AND
NON-INFRINGEMENT. SYNOPSYS AND ITS SUPPLIERS SPECIFICALLY DISCLAIM ALL IMPLIED
WARRANTIES, CONDITIONS AND REPRESENTATIONS ARISING OUT OF COURSE OF DEALING,
USAGE OR TRADE.

203

	Coverity Analysis 2020.12 User and Administrator Guide
	Table of Contents
	Part 1. Overview
	Chapter 1.1. Roles and Responsibilities
	Chapter 1.2. Use Cases
	Chapter 1.3. Language Support
	Chapter 1.4. Coverity analyses
	1.4.1. The configuration
	1.4.2. The capture
	1.4.2.1. Build capture (for compiled languages)
	1.4.2.2. Filesystem capture
	1.4.2.2.1. Deployment recommendations
	1.4.2.2.2. Filesystem capture for JavaScript
	1.4.2.2.3. Filesystem capture for PHP
	1.4.2.2.4. Filesystem capture for Python
	1.4.2.2.5. Filesystem capture for Ruby
	1.4.2.2.6. Filesystem capture for configuration and template files
	1.4.2.2.7. Filesystem capture for Java source
	1.4.2.2.8. Moving from filesystem capture to buildless capture
	1.4.2.2.8.1. Specifying custom file patterns
	1.4.2.2.8.2. Specifying additional library paths
	1.4.2.2.8.3. Specifying the search directory
	1.4.2.2.8.4. Specifying a list of source files
	1.4.2.2.8.5. Listing matched files
	1.4.2.2.8.6. Excluding files
	1.4.2.2.8.7. Controlling what languages are captured
	1.4.2.2.8.8. Emit failures and parse error threshold
	1.4.2.2.8.9. Build and filesystem capture in a single invocation

	1.4.3. Buildless capture
	1.4.3.1. Buildless capture for C#
	1.4.3.2. Buildless capture for Java
	1.4.3.3. Buildless capture for JavaScript/TypeScript
	1.4.3.4. Buildless capture for PHP, Ruby, and Python

	1.4.4. The analysis
	1.4.5. The commit
	1.4.6. Tasks that support Coverity analyses
	1.4.6.1. Enabling Checkers
	1.4.6.2. Using custom models to improve analysis results
	1.4.6.2.1. Using models to mimic functions or methods that lack source code
	1.4.6.2.2. Using models to tune the interprocedural analysis

	1.4.6.3. Using Coverity Analysis configuration files in the analysis
	1.4.6.3.1. Using alternative configuration file names and directories
	1.4.6.3.2. Specifying command line options in the configuration file
	1.4.6.3.2.1. Using the <cim> tag to specify commit options
	1.4.6.3.2.2. Using the prevent tag to specify directories and emit options

	1.4.6.4. Changing a configuration for a compiler

	Part 2. Analyzing source code from the command line
	Chapter 2.1. Getting started with Coverity analyses
	Chapter 2.2. Running Web application security analyses
	2.2.1. Running a security analysis on a Java Web application
	2.2.2. Running a security analysis on an ASP.NET Web application
	2.2.2.1. Capturing an ASP.NET Core (2.0 or later) Web application
	2.2.2.2. Capturing an ASP.NET (4.0 or earlier) Web application

	Chapter 2.3. Running mobile application security analyses
	2.3.1. Running a security analysis on an Android mobile application
	2.3.1.1. For Java Android applications
	2.3.1.2. For Kotlin Android applications
	2.3.1.3. For hybrid (Java and Kotlin) Android applications

	2.3.2. Running a security analysis on an iOS mobile application (written in Swift)

	Chapter 2.4. Running coding standard analyses
	2.4.1. Coding standard analysis guidelines

	Chapter 2.5. Running Fortran Syntax Analysis
	Chapter 2.6. Using advanced analysis techniques
	2.6.1. Incremental, parallel, and desktop analysis
	2.6.1.1. Incremental analysis
	2.6.1.2. Parallel analysis
	2.6.1.3. Desktop analysis
	2.6.1.4. Running analysis as part of a CI/CD pipeline

	2.6.2. Using cov-analyze options to tune the analysis
	2.6.3. Using advanced analysis techniques
	2.6.3.1. Running an analysis without cov-build
	2.6.3.2. Adding custom models with cov-make-library
	2.6.3.3. Adding custom C and C++ models with the cov-make-library command
	2.6.3.3.1. Prerequisites for interprocedural analysis
	2.6.3.3.2. Using cov-make-library
	2.6.3.3.2.1. Determining which functions are analyzed and called
	2.6.3.3.2.2. Suppressing macro expansion to improve modeling
	2.6.3.3.2.3. Adding a prototype for a function

	2.6.3.4. Running analyses that use derived models for C and C++ source code

	Chapter 2.7. Configuring compilers for Coverity Analysis
	2.7.1. Generating a standard configuration
	2.7.2. Generating a template configuration
	2.7.3. Compiler-specific configurations
	2.7.3.1. gcc/g++
	2.7.3.2. CEVA compilers
	2.7.3.3. Freescale Codewarrior compiler
	2.7.3.4. Green Hills compiler
	2.7.3.5. HighTec compiler
	2.7.3.6. Keil compilers
	2.7.3.7. Microchip compilers
	2.7.3.8. Microsoft Visual C and C++
	2.7.3.9. PICC compiler
	2.7.3.10. QNX compiler
	2.7.3.11. Qualcomm Kalimba C compilers
	2.7.3.12. Renesas compilers
	2.7.3.13. STMicroelectronics compilers
	2.7.3.14. Sun (Oracle) compilers
	2.7.3.15. Synopsys MetaWare compilers
	2.7.3.16. Texas Instruments C and C++ compilers
	2.7.3.17. Trimedia C and C++ compilers
	2.7.3.18. Tensilica Xtensa C and C++ compiler
	2.7.3.19. Clang compilers
	2.7.3.19.1. Supported language extensions
	2.7.3.19.2. Supported compliance standards for Clang compilers
	2.7.3.19.3. Clang limitations

	2.7.4. Using predefined macros for Coverity Analysis-specific compilations
	2.7.5. Modifying preprocessor behavior to improve compatibility

	Part 3. Setting up Coverity Analysis for use in a production environment
	Chapter 3.1. The Central Deployment Model
	Chapter 3.2. Coverity Analysis Deployment Considerations
	Chapter 3.3. Integrating Coverity Analysis into a build system
	3.3.1. The intermediate directory
	3.3.2. Integrating Coverity Analysis into the build environment — cov-build
	3.3.2.1. The output of cov-build: the build-log.txt log file
	3.3.2.2. Building non-ASCII source code
	3.3.2.3. Detecting parse warnings, parse errors, and build failures
	3.3.2.3.1. Viewing parse errors
	3.3.2.3.2. Preprocessing source files
	3.3.2.3.3. Building with preprocessing first
	3.3.2.3.4. Testing hypotheses
	3.3.2.3.5. Re-running failed compiles without re-running the build

	3.3.2.4. Linkage information
	3.3.2.4.1. Example 1
	3.3.2.4.2. Example 2

	3.3.2.5. Record/Replay - Deferred builds and parallelizing single process builds
	3.3.2.5.1. Running cov-build with --record-only
	3.3.2.5.2. Running cov-build with --record-with-source

	3.3.2.6. Error handling with commands
	3.3.2.7. Troubleshooting build problems
	3.3.2.8. Platform-specific cov-build issues
	3.3.2.8.1. Linux
	3.3.2.8.2. Solaris
	3.3.2.8.3. Windows
	3.3.2.8.4. FreeBSD
	3.3.2.8.5. AIX

	3.3.3. Alternative build command: cov-translate
	3.3.3.1. The cov-translate command in place of the native compiler

	3.3.4. Running parallel builds
	3.3.4.1. Single build on a single machine
	3.3.4.2. Multiple builds on a single machine
	3.3.4.3. Multiple builds on multiple machines
	3.3.4.3.1. Sharing a common intermediate directory on an NFS partition
	3.3.4.3.2. Copying intermediate directories from local disks

	Chapter 3.4. Using SSL with Coverity Analysis
	3.4.1. Trust store overview
	3.4.2. Configuring Coverity Analysis to use SSL
	3.4.3. Working with the trust store
	3.4.3.1. Viewing trust-first-time certificates
	3.4.3.2. Viewing certificate authority certificates
	3.4.3.3. Interpreting a certificate file
	3.4.3.4. Adding a certificate to ca-certs.pem
	3.4.3.5. Removing a trust-first-time certificate from the trust store
	3.4.3.6. Removing certificates from ca-certs.pem

	Chapter 3.5. Using a Network File System (NFS) with Coverity Analysis
	Chapter 3.6. Coverity Analysis Updates

	Part 4. Capturing specific build systems
	Chapter 4.1. Using IncrediBuild
	4.1.1. Building code with IncrediBuild as part of the analysis process
	4.1.1.1. Using IncrediBuild to build your code
	4.1.1.1.1. Building from the command line
	4.1.1.1.2. Building in Visual Studio

	4.1.1.2. Important usage notes

	4.1.2. Coverity Desktop Analysis

	Chapter 4.2. Building with Xcode
	4.2.1. Building Xcode projects that use pre-compiled headers
	4.2.2. Building projects that use Xcode 10's new build system

	Chapter 4.3. Building with Visual Studio 2015+ or .NET Core SDK (‘dotnet’)
	Chapter 4.4. Building with Cygwin

	Part 5. Using the Compiler Integration Toolkit (CIT)
	Chapter 5.1. Compiler Integration overview
	5.1.1. Before you begin
	5.1.2. Basic requirements

	Chapter 5.2. The Coverity Analysis build system
	5.2.1. The cov-configure command
	5.2.2. The cov-translate command
	5.2.3. The cov-preprocess command
	5.2.4. The cov-test-configuration command

	Chapter 5.3. Understanding the compiler configuration
	5.3.1. The <compiler> tags
	5.3.2. <options> tags in coverity_config.xml
	5.3.2.1. Tags used for native preprocessing
	5.3.2.2. Tags for skipping compilations
	5.3.2.3. Tags that influence translation
	5.3.2.4. Tags used for transforming the native command line to the Coverity compiler
	5.3.2.5. Tags for phases of command line transformations
	5.3.2.6. Tags used to internally pass information from cov-build
	5.3.2.7. Tags used to handle response files
	5.3.2.8. Tags to process commented lines in response files
	5.3.2.9. Tags to direct which groups the options are applied to

	5.3.3. Editing the Coverity configuration file - coverity_config.xml

	Chapter 5.4. Using the Compiler Integration Toolkit (CIT)
	5.4.1. The Compiler Integration Toolkit (CIT) compiler configuration file
	5.4.1.1. cit_version tag
	5.4.1.2. compiler and variant tags
	5.4.1.3. options tags that are specific to the Compiler Integration Toolkit (CIT)
	5.4.1.3.1. Tags used for invoking the native compiler and probing

	5.4.1.4. config_generic_info tags
	5.4.1.4.1. Test tags
	5.4.1.4.2. Additional configuration tags

	5.4.2. The compiler switch file
	5.4.3. Compiler compatibility header files
	5.4.4. Custom translation code
	5.4.5. Creating a Compiler Integration Toolkit (CIT) configuration for a new compiler
	5.4.6. Creating a compiler from an existing Compiler Integration Toolkit (CIT) implementation
	5.4.6.1. Configuration format for derived compilers
	5.4.6.2. Derived switch files and compat header files

	Chapter 5.5. Troubleshooting the build integration
	5.5.1. Why is no build log generated?
	5.5.2. I see a header file error: expected an identifier
	5.5.3. I see a header file error: expected a ';'
	5.5.4. Why is the standard header file not found?
	5.5.5. I see the message: #error No Architecture defined

	Part 6. Using the Third Party Integration Toolkit
	Chapter 6.1. Overview
	Chapter 6.2. Running the Third Party Integration Toolkit
	Chapter 6.3. Import file format and reference
	6.3.1. Import file format examples
	6.3.2. Import format reference

	Chapter 6.4. Capacity and performance

	Appendix A. Coverity Analysis Reference
	A.1. Troubleshooting Coverity Analysis
	A.1.1. Windows systems
	A.1.2. All operating systems

	A.2. Using Cygwin to invoke cov-build
	A.3. Finding Third-party Licenses
	A.4. Incompatible #import Attributes

	Appendix B. Coverity Glossary
	Glossary

	Appendix C. Coverity Legal Notice
	C.1. Legal Notice

