
Coverity Platform 2020.12 User and Administrator
Guide
Copyright 2020 Synopsys, Inc. All rights reserved worldwide.

Table of Contents
1. Coverity Platform Overview .. 1

1.1. Installation, Product Licenses, and Supported Platforms .. 3
1.2. Login .. 4
1.3. Shared Navigation and Main menu tools .. 5
1.4. Help Menu .. 8

1.4.1. Keyboard Shortcuts .. 8
1.4.2. Product downloads ... 8
1.4.3. Customer feedback for Coverity .. 9
1.4.4. Coverity Connect platform details .. 9
1.4.5. Coverity Connect documentation set ... 9

2. Coverity Connect Usage .. 10
2.1. Getting Started with Coverity Connect .. 11
2.2. Managing issues ... 12

2.2.1. Understanding the primary Coverity Connect workflows 12
2.2.2. Finding issues .. 13
2.2.3. Managing Issues .. 14
2.2.4. Triaging issues ... 17

2.3. Monitoring issues .. 24
2.3.1. Dashboards ... 24
2.3.2. View-level Charts ... 27

2.4. User Reference .. 29
2.4.1. Views .. 29
2.4.2. View Management ... 34
2.4.3. Snapshot comparison ... 50
2.4.4. View-specific email notifications .. 54
2.4.5. Triage attributes ... 57
2.4.6. Preferences ... 60

3. Coverity Connect Administration ... 61
3.1. Performing system configurations .. 62

3.1.1. Configuring and managing the Coverity Connect server 62
3.1.2. Configuring and managing the embedded database ... 129
3.1.3. Client-side SSL Certificate Management .. 135

3.2. Managing users, groups, and roles .. 143
3.2.1. Managing users ... 143
3.2.2. Managing groups ... 152
3.2.3. Roles and role based access control ... 157

3.3. Managing data on software issues ... 178
3.3.1. Working with projects and streams .. 178
3.3.2. Configuring triage attributes .. 192
3.3.3. Using components ... 196
3.3.4. Managing triage stores ... 213
3.3.5. Configuring legacy issues ... 223

3.4. Configuring automatic owner assignment ... 226
3.4.1. Overview of the automatic owner assignment process .. 226
3.4.2. Setting global SCM rules and the SCM user map .. 227
3.4.3. Setting stream-level rules ... 233

ii

Coverity Platform 2020.12 User and Administrator Guide

3.5. Configuring Coverity Connect enterprise clusters .. 235
3.5.1. Synchronizing multiple Coverity Connect instances .. 235
3.5.2. Managing multiple database instances .. 243

3.6. Configuring a Server to Support Code Sight ... 245
3.6.1. Server administration for the Synopsys Code Sight Plug-in 245
3.6.2. Configuring a Coverity Connect server to support Code Sight clients 245

3.7. Server administration for Desktop Analysis ... 246
3.7.1. Setting up streams ... 246
3.7.2. Creating analysis summaries .. 247
3.7.3. Summary expiration ... 247
3.7.4. Desktop Analysis usage tracking ... 248
3.7.5. Analysis license service .. 248

3.8. Coverity Connect URL construction ... 249
3.9. Exported defect output .. 251

3.9.1. Exported defect URL variables ... 251
3.9.2. Exported defect XML elements ... 251
3.9.3. Exported defect XML file .. 253

3.10. Suppressing built-in views for new users .. 259
3.11. Changing the date format display in Coverity Connect .. 261
3.12. Configuring Coverity Desktop and Architecture Analysis through Coverity Connect 264

3.12.1. Configuring Coverity Desktop and shared files through the Downloads page 264
3.12.2. Downloading a CVA file for Architecture Analysis ... 267

4. Coverity Policy Manager Usage ... 268
4.1. Coverity Policy Manager Overview ... 269

4.1.1. Hierarchies ... 269
4.1.2. Metrics ... 270
4.1.3. Filters .. 270
4.1.4. Reports .. 271
4.1.5. Dashboards ... 274
4.1.6. Heatmaps .. 274
4.1.7. Policies .. 278
4.1.8. Summary Metrics ... 278
4.1.9. Views .. 281

4.2. Using Coverity Policy Manager Hierarchies .. 283
4.2.1. Navigating through Charts .. 283
4.2.2. Performing Common Coverity Policy Manager Actions 283
4.2.3. Setting up Coverity Policy Manager Dashboards .. 286
4.2.4. Setting up Coverity Policy Manager Heatmaps ... 288
4.2.5. Setting up Coverity Policy Manager Status Reports .. 291
4.2.6. Setting up Coverity Policy Manager Trend Reports .. 297

4.3. Coverity Policy Manager Metrics .. 301
4.3.1. Metrics: User Activity .. 301
4.3.2. Metrics: Analysis .. 302
4.3.3. Metrics: Code .. 304
4.3.4. Summary Metrics: Technical Debt ... 305

4.4. Coverity Policy Manager Filter and Segmentation Properties ... 307
5. Coverity Policy Manager Administration .. 309

5.1. Managing a Coverity Policy Manager Hierarchy .. 310

iii

Coverity Platform 2020.12 User and Administrator Guide

5.1.1. Planning a Hierarchy .. 310
5.1.2. Configuring a Hierarchy .. 320

5.2. Importing/Exporting a Coverity Policy Manager Hierarchy .. 327
5.3. Scheduling the Extract Transform Load (ETL) Process ... 330
5.4. Creating Summary Metrics .. 332
5.5. Coverity Policy Manager Roles and Permissions .. 334

6. Coverity Report Generators .. 335
6.1. Configuring Report Generators .. 336

6.1.1. Configuration overview ... 336
6.1.2. General considerations ... 336
6.1.3. Unified configuration file ... 349

7. Coverity Integrity Report Generation ... 351
7.1. Overview .. 352

7.1.1. Defect ratings .. 352
7.1.2. Recommended analysis configuration ... 353
7.1.3. Requirements ... 353

7.2. Generating a Coverity Integrity Report ... 354
7.3. Updating the Coverity Integrity Report configuration file .. 356

8. Coverity Security Report .. 359
8.1. Security Report Overview .. 360

8.1.1. Basic Workflow .. 360
8.1.2. Interpreting the Security Report .. 361

8.2. Working with the Security Report Generator ... 365
8.2.1. Installing the Report Generator ... 365
8.2.2. Connecting to Coverity Connect .. 366
8.2.3. Configuring the Security Report .. 367
8.2.4. Generating a Report ... 372
8.2.5. Customizing Security reports .. 373

9. MISRA Report ... 376
9.1. MISRA Report Overview ... 377

9.1.1. MISRA Compliance .. 377
9.2. Installing the MISRA Report Generator .. 379

9.2.1. Connecting to Coverity Connect .. 380
9.2.2. Configuring a MISRA Report .. 381
9.2.3. Using system environment variables ... 383
9.2.4. Generating a previously configured report ... 384
9.2.5. Generating a report from the command line ... 385
9.2.6. Localizing reports ... 386

10. Synopsys Software Integrity Report .. 387
10.1. Introduction ... 388
10.2. Installation .. 389
10.3. Setup and configuration ... 390

10.3.1. Setting up the Synopsys Software Integrity Report Generator 390
10.3.2. Configuring the Synopsys Software Integrity Report ... 391
10.3.3. Updating the report configuration file ... 391
10.3.4. Using system environment variables ... 394
10.3.5. Generating a report through the GUI ... 394
10.3.6. Generating a report via command line ... 394

iv

Coverity Platform 2020.12 User and Administrator Guide

10.4. PDF report outline ... 396
10.5. Detailed results ... 397

10.5.1. Coverity Results ... 397
11. Coverity CVSS Report ... 398

11.1. Introduction ... 399
11.1.1. Scorecard elements .. 399
11.1.2. Triage attributes ... 400
11.1.3. CVSS Report profile ... 401

11.2. Installing the Coverity CVSS Report Report Generator .. 403
11.2.1. Working with the Coverity CVSS Report Report Generator 403
11.2.2. Downloading the Coverity Reports Installer .. 404
11.2.3. Configuring a CVSS Report .. 405
11.2.4. Generating a CVSS Report ... 407
11.2.5. Using system environment variables ... 409
11.2.6. CVSS Report Input Files .. 409

12. Coverity CERT Report Guide ... 411
12.1. Overview .. 412
12.2. Installing the CERT Report Generator .. 413

12.2.1. Connecting to Coverity Connect .. 413
12.2.2. Working with the CERT Report ... 414
12.2.3. Configuring the Coverity CERT Report .. 415
12.2.4. Using system environment variables ... 417
12.2.5. Generating a previously configured report .. 418
12.2.6. Generating the a report from the command line ... 418
12.2.7. Interpreting the CERT Report ... 418

13. Coverity OWASP Web Top 10 ... 420
13.1. Overview .. 421

13.1.1. Working with the OWASP Web Top 10 Report Generator 422
13.1.2. Interpreting the OWASP Web Top 10 Report ... 422

13.2. Working with the OWASP Web Top 10 Report Generator ... 423
13.2.1. Installing the Report Generator ... 423
13.2.2. Configuring an OWASP Web Top 10 Report .. 423
13.2.3. Generating an OWASP Top 10 Report .. 425

14. Coverity Mobile OWASP Top 10 .. 428
14.1. Overview .. 429

14.1.1. User workflow .. 429
14.1.2. Interpreting the Mobile OWASP Top 10 Report .. 429

14.2. Working with the Mobile OWASP Top 10 Report Generator ... 431
14.2.1. Installing the Report Generator ... 431
14.2.2. Configuring a Mobile OWASP Top 10 Report ... 431
14.2.3. Generating a Mobile OWASP Report ... 433

15. Coverity PCI DSS .. 435
15.1. Overview .. 436

15.1.1. Working with the PCI DSS Report Generator ... 436
15.1.2. Interpreting the PCI DSS Report ... 436

15.2. Working with the PCI DSS Report Generator ... 438
15.2.1. Installing the Report Generator ... 438
15.2.2. Configuring a PCI DSS Report .. 438

v

Coverity Platform 2020.12 User and Administrator Guide

15.2.3. Generating a PCI DSS Report .. 440

vi

Part 1. Coverity Platform Overview
Coverity Platform supports the following components:

Coverity Connect
Developers, managers, and leads of software development teams use Coverity Connect to
understand, manage, and fix issues found by Coverity Analysis and third-party tools.

Administrators set up and manage Coverity Connect for end users through Configuration screens that
are accessible from the Configuration menu, located in the toolbar.

For details, see Part 2, “Coverity Connect Usage” and Part 3, “Coverity Connect Administration ”.

Coverity Policy Manager
Leaders of software development teams use Coverity Policy Manager charts to monitor issues found
by Coverity Analysis and third-party tools.

Coverity Policy Manager administrators set up and maintain Hierarchies that support charts created
by Coverity Policy Manager end users.

For details, see Part 4, “Coverity Policy Manager Usage ” and Part 5, “Coverity Policy Manager
Administration”.

Coverity Integrity Report
Leaders of software development teams use Coverity Integrity Report PDF-based charts to see the
current impact of Coverity Connect issues. Administrators set up and run Coverity Integrity Report to
produce these reports.

For details, see Part 7, “Coverity Integrity Report Generation”.

MISRA Report
Leaders of software development teams use MISRA Report to create a formatted report on issues
related to the MISRA standards in Coverity projects.

For details, see Part 9, “ MISRA Report”.

Security Report
Leaders of software development teams use Security Report to create a formatted report on security-
related issues in Coverity projects.

For details, see Part 8, “Coverity Security Report”.

Synopsys Software Integrity Report
Leaders of software development teams use Synopsys Software Integrity Report to create a
formatted report on security-related issues in Coverity projects.

For details, see Part 10, “Synopsys Software Integrity Report”.

Coverity CVSS Report
Leaders of software development teams use Coverity CVSS Report to create a formatted report on
issues related to the CVSS standard in Coverity projects.

For details, see Part 11, “Coverity CVSS Report”.

Coverity CERT Report Guide
Leaders of software development teams use Coverity CERT Report Guide to create a formatted
report on issues related to the SEI CERT standard in Coverity projects.

For details, see Part 12, “Coverity CERT Report Guide”.

OWASP Web Top 10
Leaders of software development teams use Mobile OWASP Top 10 to create a formatted report on
issues related to the OWASP Web Top 10 standard in Coverity projects.

For details, see Part 13, “Coverity OWASP Web Top 10”.

Mobile OWASP Top 10
Leaders of software development teams use Mobile OWASP Top 10 to create a formatted report on
issues related to the OWASP Mobile Top 10 standard in Coverity projects.

For details, see Part 14, “Coverity Mobile OWASP Top 10”.

PCI DSS
Leaders of software development teams use PCI DSS to create a formatted report on issues related
to the Payment Card Industry Data Security Standard (PCI DSS) in Coverity projects.

For details, see Part 15, “Coverity PCI DSS”.

To see how Coverity products work together, see Coverity Development Testing.

index.html#about_coverity

Chapter 1.1. Installation, Product Licenses, and Supported
Platforms

Installation instructions and supported platform details reside in the Coverity 2020.12 Installation and
Deployment Guide:

• Installation and Licensing instructions can be found in Installation .

Coverity Platform component accessibility varies by license.

• A list of officially supported platforms, utilities, and compilers can be found in Supported Platforms /

3

cov_deploy_install_guide.pdf#part_deploy_install
cov_deploy_install_guide.pdf#compatibility_guide

Chapter 1.2. Login

Coverity Connect (along with Coverity Policy Manager, its fully integrated, companion product) is a Web
application that requires login credentials.

To gain access to Coverity Connect (and Coverity Policy Manager):

1. Enter the URL for the Coverity Connect server into your Web browser.

When your user account is created, you should receive from the Coverity Connect administrator an
email notification that contains your login URL and account credentials.

Login syntax
<protocol>://<server_name>.<domain_name>:<port>/

For example, if the server is using the default port on a machine called machine1 in a domain
called eng.company.com, the URL is:

http://machine1.eng.company.com:8080/

Note

Coverity Connect supports the http:// and https:// protocols.

2. When the sign-in page opens, log into your account using your user name and password.

If you have difficulty logging in, contact your Coverity Connect administrator. This difficulty could be
to due to incorrect user login credentials or that you do not have the expected Role-based Access
Control (Section 3.2.3, “Roles and role based access control”) permissions assigned to you.

For browser support and software requirements, see Coverity 2020.12 Installation and Deployment
Guide.

4

cov_deploy_install_guide.pdf#cim_software_requirements
cov_deploy_install_guide.pdf#cim_software_requirements

Chapter 1.3. Shared Navigation and Main menu tools

Coverity Connect Projects and Coverity Policy Manager Hierarchies (which can be enabled though your
license) share a common high-level navigation UI. For example, Figure 1.3.1, “Example: Navigation to
All Hierarchies and All Projects from the Main Menu” shows a list of hierarchies that a user has opened
by navigating from Projects & Hierarchies in the Main Menu to All Hierarchies (in the left-side navigation
pane).

Note

If you see Projects alone (not Projects & Hierarchies) in the Main Menu, you either need to get
permission to view hierarchies from your Coverity Connect administrator (for more details, see
Chapter 5.5, Coverity Policy Manager Roles and Permissions), or the license is not enabled for
Coverity Policy Manager.

Figure 1.3.1. Example: Navigation to All Hierarchies and All Projects from the Main Menu

The Projects (View All) and Hierarchies (View All) links list projects and/or hierarchies in Coverity
Connect.

5

Shared Navigation and Main menu tools

Figure 1.3.2. Example: All Hierarchies

As shown next in Figure 1.3.3, “Example: Main Menu: Hierarchy”, the top of the Main menu displays the
name of the project or hierarchy that is currently open. If you open a hierarchy, you will see that name in
red.

Figure 1.3.3. Example: Main Menu: Hierarchy

The Main menu has the following tools to help you interact with the Coverity Connect/Coverity Policy
Manager UI:

Table 1.3.1. Main menu tools

Icon Description

The View icon toggles the View panel (sometimes called the "Report panel" for Coverity
Policy Manager). The View panel allows you to navigate and edit your views. For more
information, see Section 2.4.1, “Views”.

The Information icon displays the View Information dialog that lists information about the
currently selected view or hierarchy.

6

Shared Navigation and Main menu tools

Icon Description

The Gear icon launches the Settings dialog. For more information, see Section 2.4.2.1,
“Edit Settings”.

Note

If you are using Coverity Connect on Mozilla Firefox, you should select the Allow pages to choose
their own fonts, instead of my selections above option. Otherwise, the icons listed above might not
display correctly. This setting is typically found in Firefox under Preferences → Content → Fonts &
Colors.

7

Chapter 1.4. Help Menu

Table of Contents
1.4.1. Keyboard Shortcuts .. 8
1.4.2. Product downloads ... 8
1.4.3. Customer feedback for Coverity .. 9
1.4.4. Coverity Connect platform details .. 9
1.4.5. Coverity Connect documentation set ... 9

The Help menu in the tool bar provides the options shown in Figure 1.4.1, “Coverity Connect Help menu
items”.

Figure 1.4.1. Coverity Connect Help menu items

The following subsections describe the content that is available from each Help menu item.

1.4.1. Keyboard Shortcuts

The Keyboard Shortcuts link opens a pop-up window that lists useful shortcuts for navigating through
Coverity Connect issues and events.

1.4.2. Product downloads

The Downloads link (see Figure 1.4.1, “Coverity Connect Help menu items”) provides access to a central
location for downloading and/or installing the following:

• Download the Coverity Desktop product packages for Eclipse, QNX Momentics, Wind River
Workbench, IBM RTC, Visual Studio, IntelliJ, and Android Studio.

• Eclipse Update site

8

Help Menu

• Coverity Desktop Analysis Tools

• Gradle Plug-In

• Coverity Desktop Reports, which include the Coverity MISRA Report, Security Report, and Coverity
Integrity Report

• Software Development Kits

• Other content, such as scripts or additional documentation. For information about making this content
available, see Section 3.12.1, “Configuring Coverity Desktop and shared files through the Downloads
page”.

1.4.3. Customer feedback for Coverity

The Feedback link (see Figure 1.4.1, “Coverity Connect Help menu items”) opens to a feedback form into
which Coverity invites you to send anonymous product feedback.

1.4.4. Coverity Connect platform details

The About Coverity Connect link (see Figure 1.4.1, “Coverity Connect Help menu items”) opens to
information about the Coverity Connect version, installation directories, database, ports, and so on.

1.4.5. Coverity Connect documentation set

The Coverity Connect Help Center link (see Figure 1.4.1, “Coverity Connect Help menu items”)
provides access to the Coverity Connect documentation set.

9

index.html

Part 2. Coverity Connect Usage
Developers, managers, and leads of software development teams use Coverity Connect to understand,
manage, and fix issues found by Coverity Analysis and third-party tools.

Administrators set up and manage Coverity Connect for these end users. For guidance, see Part 5,
“Coverity Policy Manager Administration”.

Chapter 2.1. Getting Started with Coverity Connect

Coverity Connect allows you to examine and manage issues that Coverity Analysis and advisor products
find in your software. Coverity Connect helps you organize, understand, and prioritize these issues
across related code bases (for example, multiple development branches for different target platforms) to
prevent software failures, security breaches, and untested source code from reaching your customers.

After logging into Coverity Connect (see Chapter 1.2, Login), you can perform two major types of tasks:

• Examining and triaging security risks, quality issues, and test violations: See Chapter 2.2, Managing
issues.

• Monitoring current metrics and trends: See Chapter 2.3, Monitoring issues.

For Coverity Connect configuration details, see Part 3, “Coverity Connect Administration ”. For
documentation on topics that are mentioned but not thoroughly addressed in this guide (such as the
analysis and advisor products, supported platforms, and so on), see Coverity Connect Help Center ,
which is available through the Help menu in the Coverity Connect tool bar.

Navigation
For guidance with navigation to projects, see Chapter 1.3, Shared Navigation and Main menu tools.

11

index.html

Chapter 2.2. Managing issues

Table of Contents
2.2.1. Understanding the primary Coverity Connect workflows .. 12
2.2.2. Finding issues .. 13
2.2.3. Managing Issues .. 14
2.2.4. Triaging issues ... 17

The Coverity Connect interface allows you to find, examine, and triage many types of issues that can
occur in your source code.

Your Coverity Connect administrator uses Coverity Connect projects and streams to organize issues
found by Coverity Analysis in your code base. In Coverity Connect, each project contains one or more
streams into which the results of an analysis are pushed (committed). Each time a new set of analysis
results is committed to a Coverity Connect stream, a new snapshot is created for it in Coverity Connect.
So, if an issue that appeared in past snapshots in a given stream has been fixed, that issue will not
appear in the latest snapshot.

The following sections describe the various areas of the Coverity Connect window, and provide the
general workflow for using Coverity Connect.

2.2.1. Understanding the primary Coverity Connect workflows

This section provides a high-level description of two of the primary workflows that Coverity Connect
addresses.

2.2.1.1. Development workflow

This workflow applies to software developers who are primarily interested in understanding the issues
that currently exist in the code base. The focus here is on the details of individual issues found in a given
analysis (typically the most recent snapshot):

1. Find and organize issues and issue-related data (see Section 2.2.2, “Finding issues”). For the
developer workflow, the view type most likely to be used for viewing issues is Issues: By Snapshot.

2. Examine the source code in which an issue is found (see Section 2.2.3, “Managing Issues”).

3. Triage issues to specify their importance, assign them an owner, and add other information that you
want track with the issue (see Section 2.2.4, “Triaging issues”).

2.2.1.2. Management workflow

This workflow applies to users within a given organization that are primarily interested in viewing all
issues within a given stream or group of streams within a given project or component, and not necessarily
within a specific snapshot. This is typically used by project leads, team managers, directors, and so forth,
to get a gauge on the status (or the history) of a given software project:

1. Find, organize, and view issues within a stream, project, or component (see Section 2.2.2, “Finding
issues”). For the management workflow, a helpful view type is Issues: Project Scope.

12

Managing issues

2. Examine the triage states of a group of defects (see Section 2.2.4, “Triaging issues”).

3. View and organize Coverity Connect dashboards and charts (see Chapter 2.3, Monitoring issues).

2.2.2. Finding issues

You can search for an issue by its CID or use Coverity Connect views to group issues and issue-related
data in ways that make them easy to locate whenever you want to see them.

2.2.2.1. Searching for issues by CID

If you know the CID (or CIDs) that you want to examine, you can use the following feature to display it in
Coverity Connect:

• The Enter CID(s) field.

Figure 2.2.1. Enter CIDs field

As Figure 2.2.2, “Example: Search for CIDs” shows, you need to use commas to separate multiple
CIDs.

Figure 2.2.2. Example: Search for CIDs

Note

If the Coverity Connect View pane does not display a CID that you found through the Enter
CID(s) field, you might need to refresh your browser to see it.

2.2.2.2. Using views to find issues

If you do not know the CID of the issue (or issues) that you want Coverity Connect to display, you can
use views to find the issues and issue-related data (for example, file and component data) that you need
to display. The example in Figure 2.2.3, “Example: Selecting a View from a View menu” shows some
issues that appear in Defector after selecting the High Impact Outstanding [p. 30] view.

To display the view types and views that are available to you, click on the View icon ().

13

Managing issues

Figure 2.2.3. Example: Selecting a View from a View menu

Note

In the 7.0 release, some views have been removed by default. If you had views (such as All Newly
Detected) in a previous version of Coverity Connect and have upgraded to version 7.0, most views
will be preserved in the upgraded version.

For details about using, creating, modifying, exporting, and performing other tasks with views, see
Section 2.4.2, “View Management”. Note that you can rearrange the columns in the View pane and select
the columns to display (see Section 2.4.2.1.4, “Columns”).

See also, Chapter 3.8, Coverity Connect URL construction.

2.2.3. Managing Issues

Once you find and select a CID that is important to you (see Section 2.2.2, “Finding issues”), the Coverity
Connect Source pane shows you where the issue occurs in the source code and adds inline details to
help you understand and address it. The example in Figure 2.2.4, “List of CIDs (upper pane) and Source
pane (lower pane)” shows CID 10212 in both Coverity Connect panes.

14

Managing issues

Figure 2.2.4. List of CIDs (upper pane) and Source pane (lower pane)

In addition to inline commentary, the source code can include the icons described in Table 2.2.1, “Issue
markers”.

Table 2.2.1. Issue markers

Marker Description

Issue main event.

Multiple main events that occur on the same line.

Path event.

For some issues, the Source pane provides a More info link to detailed remediation advice and reference
material. For example, all issues pertaining to web application security provide this documentation (which
is also available from the Security Reference). To supplement the inline comments and remediation
advice, Coverity Connect also provides closely related reference material, including CWE and checker
documentation, to help you understand and address the issue. Links to this information are provided in
the top of the triage pane (right pane).

Note

You can use the red or green bars located to the right of the vertical scroll bar to quickly jump to
the issue-related events in the source code. Coverity Connect allows you to adjust the size of the
panes in your browser. You can also show and hide the Triage pane and the pane that contains the
View types and dashboards.

15

cov_checker_ref.pdf#security_advisor_introduction

Managing issues

You can use the icons located between the View pane and the Source pane to control the display
of information and line numbers in the source code and to view the directory structure in which
the selected source file resides. To obtain descriptions of the icons, you can mouse over them in
Coverity Connect.

Data in the View pane can link to the issues to which the data pertains. For example, see the links
in Figure 2.3.7, “Example: View-level column chart”.

2.2.3.1. Show Source Gutter Menu

The Show Source Gutter Menu is activated by clicking on the Show gutter control icon - icon. The
Show Source Gutter Menu allows you to control the display of the following information:

• SCM Author - The username of the user who checked the code in.

• SCM Modification Date - The date that the changed code was checked into an SCM system.

• SCM Revision - The revision number corresponding to the check-in of the changed code. Revision
values depend on the SCM system.

• Line Numbers - The line numbers for each line of code.

• Issue Events - The events that lead to the issue.

• Coverage - The lines of code that are covered by analyzed developer tests (used for Test Advisor
only).

• Coverage Exclusions - Allows you show, hide, or change on the fly, coverage rules (used for Test
Advisor only). For usage details, see the Test Advisor 2020.12 User and Administrator Guide .

In order to see SCM data in Coverity Connect, it is necessary to run the cov-import-scm command
prior to running cov-analyze. For more information, see cov-import-scm .

2.2.3.2. File tree

The Coverity Connect Source pane displays the location of the current source file, and provides a file tree
for browsing connected source code files and directories. This gives you the ability to browse defects as
they relate to individual files and directories, as opposed to using Coverity Connect views. To access the

file tree, click on the file icon in the top-right corner of the source pane - .

16

test_advisor_use_and_admin_guide.pdf
cov_command_ref.pdf#cov-import-scm

Managing issues

Figure 2.2.5. Example: File Tree

When selected, the file tree will display the various directories and source code files that make up your
project. Red exclamation points signify software issues within the given file or directory.

You can display any source file by double-clicking it in the file tree.

2.2.4. Triaging issues

After viewing an issue in the Source pane (see Section 2.2.3, “Managing Issues”), you can triage it by
using the Triage pane to modify one or more of its attributes.

Figure 2.2.6. Example: Triage pane

17

Managing issues

Figure 2.2.6, “Example: Triage pane” shows the default attributes and a built-in attribute (Legacy, which is
not displayed by default):

• Classification (default)

• Severity (default)

• Action (default)

• Legacy Target (built-in attribute)

• External (Ext.) Reference (default)

• Owner (default)

• Comment (default)

• Deprecated Value - This selection box allows you display attributes that have been marked as
deprecated, or change the attribute value to a non-deprecated value. Administrators can designate an
attribute as deprecated in the Configuration - Attributes page.

If you select this option, you can see the deprecated attribute value, but cannot change the attribute
value. If this option is not selected, you can change the attribute to any value (that has not been
designated as deprecated).

Note

The attributes that you see in Figure 2.2.6, “Example: Triage pane” might not match the attributes
you see in your Coverity Connect instance because Coverity Connect administrators can create
and modify these attributes.

You can use filters to find issues based on attributes in the Triage pane. For example, you might
create a view that finds all issues that are classified as Bug. For details about the filter criteria that
you can use, see Section 2.4.2.1.2, “Filters”.

Triaging multiple issues
It is possible to triage multiple CIDs at the same time after selecting all of them at once from the View
pane, as shown in Figure 2.2.7, “Example: Triaging multiple issues”.

18

Managing issues

Figure 2.2.7. Example: Triaging multiple issues

Selecting triage stores to update
If you can perform advanced triage on a CID, the Applying to all stores in the project button will
appear below the Comment field in the Triage pane for that CID.

Figure 2.2.8. Select Triage Stores

By default, Coverity Connect selects all triage stores that contain the CID. The button shown below
the Comment field in Figure 2.2.8, “Select Triage Stores” opens to the advanced triage window
(Apply Scoped... shown below), where you can select or deselect any triage stores that it lists. (Note
that if all the streams in the project are associated with the same triage store, or if you only have
permission to triage issues in one of the triage stores, the button will not appear because there is only
one triage store that you can update.)

19

Managing issues

Figure 2.2.9. Apply Scoped Triage

When triaging a single issue, you can also examine the following:

CWE documentation

• Links to the Common Weakness Enumeration documentation of the issue. For example, Figure 2.2.6,
“Example: Triage pane” includes the CWE-459 link to information on incomplete cleanup.

Projects & Streams section

• Identifies all streams in which the CID occurs in the current project. This section also links to other
projects containing the CID.

Detection History

• Provides the history of when and in which snapshot the CID was first ever detected by Coverity
analysis tools and last detected by Coverity. It also shows in which stream(s) the CID exists.

Triage History

• Provides information about changes to the triage states of the CID, such as classification, owner,
comment, and so forth.

You can select the Show only commented entries option to display only the history of the comments for
the given CID.

20

http://cwe.mitre.org/data/definitions/459.html

Managing issues

Figure 2.2.10. History section

Occurrences

• Provides information about each instance of the CID that occurs in the current project. The pull-down
menu at the top of this section contains instances in the other streams to which you have access in the
project, allowing you to view the occurrence data for each.

Each CID can have multiple occurrences, and each occurrence (also known as an instance) has a set
of events that lead to the issue. See the Occurrences section in Figure 2.2.6, “Example: Triage pane”.
The example shows one occurrence of CID 10006, with three events. To view event information in the
Source pane, click the individual event in this section. If necessary, the source will be reloaded.

Coverity Connect keeps track of the total number of occurrences, recorded and unrecorded. When
committing, Coverity Connect can store up to 15 occurrences of an issue. For example, if a function
has a buffer that is overflowing with 20 separate instances, then only 15 are recorded.

You can use the property allowAllDefectInstences=true defined in cim.properties to
disable the 15 occurrences-per-issue limit, and all occurrences will be recorded. However, be aware
that this can lead to a drastic increase in database size. For this reason, the property is false by default.

Coverity Connect also tracks (internally) the number of merged defects, which are sets of nearly
identical instances in a data structure.

Note

The number of stored occurrences does not affect the numbers of issues displayed by Coverity
Connect. It also does not affect the number that is reported by the report generators, as they
include merged defects into their count.

Standard Attributes

21

Managing issues

• The Standard Attributes panel displays standard-attribute value-description pairs associated with the
selected CID. Value-description pairs are displayed only for standard-attribute columns that both have
a value (other than None) and are enabled.

If no standard-attribute column is enabled, the panel displays None for the selected CID (even if the
selected CID has standard attributes whose values are not None).

If all enabled standard-attribute columns have a value of None, the panel displays None.

2.2.4.1. Event-driven triage notifications

The administrator can use event-driven triage notifications to send notifications to issue owners about
all triage event changes as they happen. These notifications are filterable and configurable. Even driven
notifications do not replace existing notification systems.

This feature is not enabled by default. Once enabled, notifications are sent to Apache Kafka servers
provided and configured by the user to consume these events. The user can then subscribe to these
notifications using technology provided by Kafka. Users can decide what to do with the notifications they
consume: for example, they can use them to send email or instant messenger notifications, or process
them in any other way.

Triage events can originate from the following operations:

• Updating triage in the Coverity Connect UI.

• Updating triage using Web Services requests.

• Triage updates at commit time.

Triage events do not originate from importing or exporting a triage store, or from associating triage stores
with streams or deassociating triage stores from streams.

For each triaged issue, the triage event is sent to the consumer in the following JSON format:

{
 version: 1,
 cid: 10001,
 owner: "Mike",
 email: "mike@example.com",
 urls: ["issue-url-1", "issue-url-2"],
 timestamp: "2019-10-10T17:01:28.111+0000",
 triage-attribute-changes: [
 {
 "triage-attribute-name": "classification",
 "triage-attribute-value": "Pending"
 },
 ...]
}

The fields are described in the following table.

22

Managing issues

Field Meaning

cid CID of the triaged issue

owner Owner of the issue

email Email of the issue owner

urls List of links with all stream-defects affected by the triage event. The same
CID may be present in different streams in different projects; the links will
point to all occurrences of such a CID.

timestamp The time when triage happened

triage-attribute changes A list of the changed triage attributes and their new values.

The basic workflow for setting up event-driven triage notifications is the following:

1. Set up an Apache Kafka server and set up a triage-events topic to receive triage event
notifications.

If this topic is missing triage event notifications will fail.

2. Enable triage event notifications using the eventstriage.enabled property in the
cim.properties file:

events.triage.enabled=true

3. Specify the Kafka servers that have been configured to receive triage events. Use the following syntax:

events.triage.kafka.bootstrapServers=<server1>, <server2>, ...

Notifications can be lost if the consumer is unavailable to Coverity Connect. Events are delivered on
an at least once basis. This means that duplicate events might sometimes be delivered by Kafka. The
user is responsible for filtering or tolerating duplicate messages.

Note

In a Coverity Connect cluster, only the nodes with properly configured triage events notifications will
send the notifications to Kafka. The notification is sent by the node where the triage event happens.

23

Chapter 2.3. Monitoring issues

Table of Contents
2.3.1. Dashboards .. 24
2.3.2. View-level Charts ... 27

The following charts provide insight into the current and evolving state of issues in your code base:

• Dashboards: The Quality, Security, Test Advisor dashboard links open to charts with high-level
information about issues in a project. The links are located in the top-left area of the Coverity Connect
window (see Figure 2.2.3, “Example: Selecting a View from a View menu”).

• View-level Charts: Some Coverity Connect views contain charts that provide more granular information
about issues in a given view.

2.3.1. Dashboards

This section provides examples of the Quality and Security charts that appear in Coverity Connect
dashboards. The Quality charts graph data on issues found with quality-related checkers, while the
Security charts graph data that is related to security-related checkers. (For information about the Test
Advisor dashboards, see the Test Advisor 2020.12 User and Administrator Guide, available through the
Coverity Connect Help Center .)

Issue Trend chart
Shows the number of fixed and outstanding issues (CIDs) over time, in successive snapshots.

Figure 2.3.1. Example: Issue Trend chart

Total Issues Detected charts
Identify the total number of issues detected in the project and the percentage of the detected issues
that meet the following criteria:

24

index.html

Monitoring issues

• False Positives: Percentage of the issues that have been marked by developers as False Positive
in the Triage pane.

• Intentional: Percentage of the issues that have been marked by developers as Intentional in the
Triage pane.

Figure 2.3.2. Example: Total Issues Detected chart

Top 5 - Issues by Owner
Lists the total number of issues by owner. Only displays the top five.

Figure 2.3.3. Example: Issues by Owner chart

Top 5 - New by Owner
Lists the number of new (uninspected) issues by owner. Only displays the top five.

25

Monitoring issues

Figure 2.3.4. Example: New Issues by Owner chart

Top 5 - Outstanding by Owner
Lists the number of unresolved (outstanding) issues by owner. Only displays the top five.

Figure 2.3.5. Example: Outstanding Issues by Owner chart

Top 5 - Fixed by Owner
Lists the number of fixed issues by owner. Only displays the top five. The chart does not include
resolved issues.

26

Monitoring issues

Figure 2.3.6. Example: Fixed by Owner chart

2.3.2. View-level Charts

Views belonging to the Component, Checkers, Owners, and Snapshots view types can display charts that
graph view data. For a list of View types, see Section 2.4.1.1, “View Types”.

Figure 2.3.7, “Example: View-level column chart” shows a chart for the All In Project view of the Checkers
View type.

Figure 2.3.7. Example: View-level column chart

These fields allow you to filter view data:

• Show: For selecting the number of items to display in the chart. Because there are a total of 16
matching checkers listed in the View pane, Figure 2.3.7, “Example: View-level column chart” selects 15
to display (instead of using other options in the menu, such as 10 or 20.).

27

Monitoring issues

• Values From menu: For filtering by the type of view data that you want to display in the chart. For
example, Figure 2.3.7, “Example: View-level column chart” displays only the New issues in the chart
(instead of filtering by other options in this menu: Outstanding issues, Resolved issues, the Total
number of issues for a each function, or the Line Count of each function).

Values From menus include countable values that pertain to the view filters. For example, the chart
for the High Issue Density (> 1) view of the Components View type includes an Issue Density value in
its Values From menu because the view uses the Issue Density filter to set a density > 1, which is a
countable value.

Note that some items, such as a given function name, can occur in numerous source code locations,
and more than one instance of the function can manifest a separate issue (CID). For this reason, it
is possible to discover, for example, when there is more than one new (untriaged) issue for a given
function.

• Chart Type menu: For displaying chart data in vertical columns (see Figure 2.3.7, “Example: View-level
column chart”) or horizontal bars.

28

Chapter 2.4. User Reference

Table of Contents
2.4.1. Views ... 29
2.4.2. View Management ... 34
2.4.3. Snapshot comparison ... 50
2.4.4. View-specific email notifications .. 54
2.4.5. Triage attributes ... 57
2.4.6. Preferences ... 60

Reference material in the following sections supports documentation in the main sections of this guide.

2.4.1. Views

Coverity Connect allows you to organize your CIDs and other data by using saved search criteria (a view)
for data in a Coverity Connect project. You can create a view and use Edit Settings.. options to edit, copy,
delete, and share views. You can also use the View menu to obtain the URL of views and to export the
current content of a given view to CSV or XML.

To display the view types and views that are available to you, click on the View icon - .

2.4.1.1. View Types

Coverity Connect groups CIDs and other data into views that belong to the following View types:
Issues:By Snapshot, Issues: Project, Scope, Files, Functions, Components, Checkers, Owners,
Snapshots, Trends, Tests. Different view types offer different sets of display columns and filters. For a
listing of the display columns and filters available to each type of view, see Table 2.4.1, "Filters." The
subsections that follow describe the default views for each View type and the default filter settings for
each view.

For information about managing and customizing views, see Section 2.4.2, “View Management”.

Note

In the 7.0 release, several default views were removed. If you had views in a previous version of
Coverity Connect and have upgraded to version 2020.12, your views, and their settings, will be
preserved in the upgraded version.

2.4.1.1.1. Issues: By Snapshot

Use Issues: By Snapshot views to review issues that need to be triaged and addressed in current
versions of your source code. Use the snapshot scope to refine the time frame of the issues
shown.

• This view type allows you to see CIDs in one (or more) snapshot. It also allows you to view all
occurrences of an issue. This view type is designed for users whose primary tasks fall under the
Coverity Connect "developer workflow". By default, the views in this view type display the filtered CIDs

29

User Reference

that occurred in the most recent snapshot -- and typically, developers are interested in the state of
CIDs in the most recent snapshot.

Note

It is possible to change the scope to show and/or compare a series of snapshots, snapshots
that occur in different streams, and so forth. For more information, see Section 2.4.3, “Snapshot
comparison”.

Coverity Connect provides the following Issues: By Snapshot views:

• High Impact Outstanding: Classification is set to Unclassified, Pending, Bug, untested AND the High
Impact Outstanding: Impact filter is set to High.

• My Outstanding: Status filter is set to New and Triaged, and the Owner is set to your user name.

• Outstanding Defects: Issue Kind filter is set to Quality, and the Status filter is set to New and Triaged.

• Outstanding Defects Count: Show the total of security and non-security defects.

• Outstanding Non-security Defects Count: Show the total of non-security defects.

• Outstanding Security Defects Count: Show the total of security defects.

• Outstanding Security Risks: Issue Kind filter is set to Security, and the Status filter is set to New and
Triaged.

• Outstanding Test Rule Violations: Issue Kind filter is set to Test Violation, and the Status filter is set
to New and Triaged.

• Outstanding Untriaged: Status filter is set to New.

• Unsaved view: While this view is not a default view "out of the box", it is the view that is displayed
by default from a view type (other than Issues: By Snapshot) from which you derive a list of issues.
For example, when you select a component from a Components view, the Unsaved view displays
the issues in that component. To create a new view from an unsaved view, select the Save as Copy
option and rename, apply filters, and save the copied view.

You can also view issue information in occurrences mode. An occurrence is an instance of an
issue, and the issue itself represents a set of occurences of the same defect. Multiple occurrences might
happen when there are multiple findings of an issue in the same file, or when a project that uses multiple
streams/triage stores has an occurrence of a merged defect for each stream despite it being the same
issue. In the latter case, it is possible for any of the triage columns' cells to contain a variety of values. In
this case, the string "Various" will be displayed in issues mode, but will display the correct line number in
occurrences mode.

There are times when you need to look at a specific occurrence. An occurrence is associated with a
file, a line number, and a triage comment. Note that column values are exactly the same in both Issues
mode and Occurrences mode for both a merged defect and its occurrences for every column except line
number.

30

User Reference

To view snaphot issues in Occurences mode:

1. Click on the settings (gear) icon.

2. In the Filters, Columns, or Snapshot Scope tab of the Settings dialog box, click the box Show
Occurrences, and click OK.

With the occurences view enabled, the Issues: By Snapshot display will show all occurrences of a
defect. As a result the issues grid will display one row for each occurrence; occurrences belonging to the
same merged defect/issue will have the same CID. Because triage cannot be changed for occurences,
the Triage panel will be read-only in this mode.

• Line number, to display the line number of the occurrence in the source file.

• Last triage comment, to display the last triage comment for the issue that aggregates this occurrence.

2.4.1.1.2. Issues: Project Scope

Use Issues: Project Scope views to get a historical overview of all the issues that have ever been
detected in the selected project, including those that have been fixed. Double clicking on an issue
will lead to an Issues: By Snapshot view so that the source may be viewed.

• This view type is designed for users whose primary tasks fall under the Coverity Connect
"management workflow". The scope of the All In Project view is set so that all CIDs in the current
project are returned. You cannot edit the scope in views of this view type, however you can edit all of
the other settings or create a new view with different filter settings.

2.4.1.1.3. Files

Use File views to look at the files in the selected project. Click through different values on the top
right of the Triage panel to view specific issues associated with a file.

• By default, Coverity Connect provides the following Files views:

• In Latest Snapshot: This view is not filtered.

• Uncovered by Tests: Raw Coverage filter is set to >0, and the Raw Covered Lines filter is set to >0.

When you select a file from the list of files, the file opens in the Source browser. The right pane
displays the number of (and a link to) the outstanding issues in that file, as well as the metrics for the
file.

2.4.1.1.4. Functions

Use Function views to look at the functions and methods in the selected project. Click through
different values on the top right of the Triage panel to view specific issues associated with a
function.

• By default, Coverity Connect provides the following Functions views:

• High CCM (>15): CCM filter is set to >15.

• In Latest Snapshot: This view is not filtered.

31

User Reference

• Uncovered by Tests: Raw Coverage filter is set to >0, and the Raw Covered Lines filter is set to >0.

When you select a function from the list of functions, the function opens in the Source browser. The
right pane displays the number of (and a link to) the outstanding issues in that function, as well as the
metrics for the file.

2.4.1.1.5. Components

Use Component views to look at the components in the selected project. Click through different
column values to view specific issues associated with a component.

• By default, Coverity Connect provides the following Components views:

• All in Project: This view is not filtered.

• High Issue Density (>1): Issue Density filter is set to >1.

• With Outstanding Issues: Outstanding filter is set to >0.

• With Untriaged Issues: New filter is set to >0.

2.4.1.1.6. Checkers

Grouping an Issues: By Snapshot view by Checker is the encouraged workflow. Checker views
can be used to look at the number of issues found by specific checkers in the selected project.

• By default, Coverity Connect provides the following Checkers view:

• All in Project: This view is not filtered.

2.4.1.1.7. Owners

Grouping an Issues: By Snapshot view by Owner is the encouraged workflow. Owner views can
be used to look at the number of issues owned by specific owners in the selected project.

• By default, Coverity Connect provides the following Owners view:

• All in Project: This view is not filtered.

2.4.1.1.8. Snapshots

Use Snapshot views to look at the snapshots that belong to the selected project. Click through
different values on the top right of the Triage panel to view specific issues associated with a
snapshot.

• By default, Coverity Connect provides the following Snapshots view:

• All in Project: This view is not filtered.

When a snapshot is selected, users with appropriate permissions can access and use the following
tools in the right pane:

32

User Reference

Figure 2.4.1. Snapshot view panel

Snapshot information
The snapshot ID links to a view of the issues in that snapshot in an Unsaved view [p. 30] in
Issues: By Snapshot. The commit date and the username of the committer is also displayed.

Snapshot comparison
Filters snapshots based on show and comparison scope. See Section 2.4.3, “Snapshot
comparison”.

Attributes
Defines attribute values for Target, Version, and Description, for which you can construct filters.

Build Details
Provides the build information for the snapshot. See Table 3.3.2, “Build Details”.

Analysis Details
Provides the analysis information for the snapshot. See Table 3.3.3, “Analysis Details”.

2.4.1.1.9. Trends

Use Trend views to look at the trends over time associated with the selected project. Adding
columns will add data to the graph. Click through different column values to view specific issues.

• By default, Coverity Connect provides the following Trends view:

• Project Lifetime: This view is not filtered.

2.4.1.1.10. Tests

Use Test views to see a list of tests that were run under Test Advisor instrumentation. If test
separation is not enabled, only a single test called "default" will be shown. If the test source code
for a given test was captured, it will be shown when the test is selected.

• By default, Coverity Connect provides the following Tests views:

• All Tests: This view is not filtered.

33

User Reference

• Currently Failing: State filter is set to Failing.

2.4.2. View Management

Each view provides a menu that allows you to edit, copy, delete, share, receive issue notifications
(specifically, notifications from an Issues: By Snapshot view only), and obtain the URL of the view. You
can also export the content of the view to CSV or XML. You gain access to this menu by mousing over
the view and clicking the menu selector or by clicking the gear icon in the main menu. Figure 2.4.2, “View
Menu Options” shows all the options that are available.

To display a history of your saved or edited views, use the Back button on your browser and select the
view to which you want to display. Deleted views are not displayed in the history.

Figure 2.4.2. View Menu Options

The options are available to all views. For additional view options that administrators can configure for
new users, see Chapter 3.10, Suppressing built-in views for new users.

2.4.2.1. Edit Settings

The Edit Settings menu option allows you to edit and/or or duplicate a complete view within one window.
This includes applying filters, selecting display columns, creating a snapshot scope, and so forth. It is

displayed by selecting the Gear icon () in the Main menu, or by selecting the menu name in the
pulldown next to the view's name in the View panel.

34

User Reference

Figure 2.4.3. Edit Settings window

2.4.2.1.1. Save as a Copy

This option allows you to create a copy of a view. This feature helps save time when you want to create a
new view that is similar to the view that you are copying. By renaming and making a few modifications to
the filters, you can create the view with minimal effort. See also, Creating a view.

2.4.2.1.2. Filters

You use filters to specify the scope of the issues and issue-related data that you want to display. Filters
vary according to the View type (for example, Issues: By Snapshot, Functions, or Snapshots) that you are
using.

By default, Coverity Connect displays some filter data in columns of the same name. For example, many
View types display a Total column in their views, by default. You can select other columns to display them
in the view (see Section 2.4.2.1.4, “Columns”).

Table 2.4.1. Filters

Filter Description View Types

Action Recommended action. See Section 2.4.5.3, “Action”. Issues: By
Snapshot,
Issues: Project
Scope

Acyclic Path
Count

Number of execution paths through the function. Functions

35

User Reference

Filter Description View Types

Analysis Time Time that it took to analyze the code that underlies the snapshot.
Example: 01:16:46

Snapshots

Backedge
Count

Number of back edges in the control flow graph. Functions

Blank Lines Number of blank lines in the source code. Files,
Components,
Snapshots,
Trends

Block Count Number of blocks in the control flow graph. Functions

Build Time Time that it took to build the source code that underlies the snapshot. Snapshots

Category Issue category. Issues: By
Snapshot,
Issues:
Project Scope,
Checkers

CCM Cyclomatic complexity metric. Functions

Checker Name of the checker that discovered the issue. You can quickly select
all filters by enabling the Select All field.

Issues: By
Snapshot,
Issues:
Project Scope,
Checkers

CID The CID of the issue. Issues: By
Snapshot,
Issues: Project
Scope

Classification Classification of the issue. See Section 2.4.5.1, “Classification”. Issues: By
Snapshot,
Issues: Project
Scope

Code Lines
(LOC)

Number of lines of code in the project.a Files,
Components,
Snapshots,
Trends

Comment
Lines

Number of lines in the code that contain comments. Uncommented
code or code that has too few comments can lead to issues when other
developers attempt to modify it.

Files,
Components,
Snapshots,
Trends

Comparison Comparison indicates whether an issue is present in the snapshot(s)
specified in the view’s field in the comparison scope. You can choose
from one of the following options:

• Present - The CID exists in at least one of the comparison snapshots.

Issues: By
Snapshot,
Issues: Project
Scope

36

User Reference

Filter Description View Types
• Absent - The CID does not exist in any of the comparison snapshots.

Component Component name. For example, the component in which the issue, file,
or function is found.

Issues: By
Snapshot,
Issues: Project
Scope, Files,
Functions,
Components

Count Number of issue occurrences. For example, see the Occurrences tab in
Figure 2.2.6, “Example: Triage pane”.

Issues: By
Snapshot

CWE Common Weakness Enumeration (CWE) identifier for software
weaknesses, which include issues such as resource leaks, cross-site
scripting vulnerabilities (XSS), null pointer dereferences, and so on.

Issues: By
Snapshot,
Issues: Project
Scope

Date Date when the snapshot was committed to Coverity Connect. Date of
the trend record. Example: 2012-09-09 20:09:19.136

Snapshots,
Trends

Description Snapshot description. Snapshots

Dismissed Number of dismissed issues. Files,
Functions,
Components,
Checkers,
Owners,
Trends

Duration(ms) Duration of test in milliseconds. This filter is only applicable to Coverity
Connect projects that include Test Advisor data. See ”Viewing test
status” in the Test Advisor 2020.12 User and Administrator Guide.

Tests

External
Reference

An internal identifier used by your company to track the issue. See
Section 2.4.5.7, “Ext. Reference”.

Issues: By
Snapshot,
Issues: Project
Scope

File Name of the file in which the issue, file, or function is found. Issues: By
Snapshot,
Issues: Project
Scope, Files,
Functions

File Count Number of files in the snapshot. Snapshots

First Detected Date when the issue was first detected. Issues: By
Snapshot,
Issues: Project
Scope

First Detected
By

Value that helps identify the process by which an issue was initially
reported to Coverity Connect: Snapshot (for issues initially reported

Issues: Project
Scope

37

http://cwe.mitre.org/
test_advisor_use_and_admin_guide.pdf#viewing_test_status
test_advisor_use_and_admin_guide.pdf#viewing_test_status

User Reference

Filter Description View Types
through a commit process that yields a snapshot), Preview (for issues
initially reported through a preview process, which does not produce
a snapshot, for example, when Coverity Desktop invokes cov-run-
desktop), API (for issues initially reported through a special, rarely
used process). In each case, a CID for the issue is created.

Note

Preview issues that a developer fixes before pushing code
changes to the source code repository will never have (or need) a
snapshot.

Preview issues left unfixed before they are pushed to the
repository will typically undergo the server-based analysis and
commit process. Therefore, these issues will receive a snapshot
in Coverity Connect after they were initially reported, and it will be
possible to triage the associated CIDs and see events related to
them in the source code browser (from an Issues: By Snapshot
view that lists the CID).

Whether fixed or left unfixed prior to the push to the source code
repository, issues will be be identified as Preview issues if they
were initially reported through a preview process.

First Snapshot
(column only -
not a filter)

ID of the snapshot in which the issue was first detected. Issues: By
Snapshot,
Issues: Project
Scope

First Snapshot
Date

Specified range of dates in which one or more issues was first
committed.

Issues: By
Snapshot,
Issues: Project
Scope

First Snapshot
Description
(column only -
not a filter)

Description of the snapshot in which the issue was first detected. Issues: By
Snapshot,
Issues: Project
Scope

First Snapshot
Stream
(column only -
not a filter)

Stream in which the issue was first detected. Issues: By
Snapshot,
Issues: Project
Scope

First Snapshot
Target (column
only - not a
filter)

Target platform of the snapshot in which the issue was first detected. Issues: By
Snapshot,
Issues: Project
Scope

First Snapshot
Version

Version number of the snapshot in which the issue was first detected. Issues: By
Snapshot,

38

User Reference

Filter Description View Types
(column only -
not a filter)

Issues: Project
Scope

Fix Target Target milestone for fixing an issue, such as a release or version. See
Section 2.4.5.5, “Fix Target”.

Issues: By
Snapshot,
Issues: Project
Scope

Fixed Number of fixed issues. Files,
Components,
Checkers,
Owners,
Trends

Forwardedge
Count

Number of forward edges in the control flow graph. Functions

Function The name of the function that contains the issue. Issues:By
Snapshot,
Functions

Function
Count

Number of functions in the source code that underlies the snapshot. Snapshots

Function
Merge Nameb

Internal function name used as one of the criteria for merging separate
occurrences of the same software issue, with the result that they are
identified by the same CID.

Issues: By
Snapshot

Halstead Effort Estimated effort required to modify a program based on empirical
findings by Halstead. In general, the less effort required, the easier it
should be to modify the program.

Functions

Halstead
Errors

Estimate that relates program errors to the number of operands used. In
general, the more operands used, the more prone to error the program
is. Estimate is based on empirical findings by Halstead.

Functions

Has analysis
summaries

Indicates if analysis summaries are included in the snapshot. Snapshots

ID Snapshot ID. Snapshots

Impact Issue impact as determined by Coverity Connect: High, Medium, Low,
Audit.

Issues: By
Snapshot,
Issues:
Project Scope,
Checkers

Inspected Number of inspected issues. Trends

Issue Density Number of unresolved (outstanding) issues per 1000 lines of code. Files,
Components,
Trends

Issue Kind Quality, Security, Test, or Various issue. Issues: By
Snapshot,

39

User Reference

Filter Description View Types
Issues: Project
Scope

Language Programming language associated with the defect. Issues: By
Snapshot,
Issues: Project
Scope, Files,
Functions

Last Failurec Date when test last failed. This filter is only applicable to Coverity
Connect projects that include Test Advisor data. See in the Test Advisor
2020.12 User and Administrator Guide.

Tests

Last Impactedc Date of the most recent snapshot in which the function was either
changed directly by a developer (resulting in a modification of its
syntactic structure) or affected by a direct change elsewhere in the
code base that affects the behavior of the function. Examples include
changes to the items called by the function or to the global variables
used by the function. This filter is only applicable to Coverity Connect
projects that include Test Advisor data. See in the Test Advisor 2020.12
User and Administrator Guide.

Functions

Last Modifiedc Date of the most recent snapshot in which the function was modified.
Last modification date is computed from SCM data and is taken to be
the most recent date on which any of the source code lines belonging
to the function were modified. This filter is only applicable to Coverity
Connect projects that include Test Advisor data. See in the Test Advisor
2020.12 User and Administrator Guide.

Functions

Last Runc Date when test was last run. This filter is only applicable to Coverity
Connect projects that include Test Advisor data. See in the Test Advisor
2020.12 User and Administrator Guide.

Tests

Last Snapshot
(column only -
not a filter)

ID of the snapshot in which the issue was last detected. Issues: By
Snapshot,
Issues: Project
Scope

Last Snapshot
Date c

Specified range of dates in which one or more issues was last
detected..

Issues: By
Snapshot,
Issues: Project
Scope

Last Snapshot
Description
(column only -
not a filter)

Description of the snapshot in which the issue was last detected. Issues: By
Snapshot,
Issues: Project
Scope

Last Snapshot
Stream
(column only -
not a filter)

Stream in which the issue was last detected. Issues: By
Snapshot,
Issues: Project
Scope

40

User Reference

Filter Description View Types

Last Snapshot
Target (column
only - not a
filter)

Target platform of the snapshot in which the issue was last detected. Issues: By
Snapshot,
Issues: Project
Scope

Last Snapshot
Version
(column only -
not a filter)

Version number of the snapshot in which the issue was last detected. Issues: By
Snapshot,
Issues: Project
Scope

Last Successc Date when test last passed. This filter is only applicable to Coverity
Connect projects that include Test Advisor data. See in the Test Advisor
2020.12 User and Administrator Guide.

Tests

Last Triagedc Date when the issue was most recently triaged. Issues: By
Snapshot

Legacy Searches for issues by the Legacy attribute. Options are:

• False

• True

• Various

Issues: By
Snapshot,
Issues: Project
Scope

Line Count Number of lines of code. Functions

Merge Extrab Internal property used as one of the criteria for merging occurrences of
an issue.

Issues: By
Snapshot

Merge Keyb Internal signature used to merge separate occurrences of the same
software issue and identify them all by the same CID.

Issues: By
Snapshot

MISRA
Category

Number of MISRA issues that fall into these selected categories:

• Mandatory

• Required

• Advisory

• None

Issues: By
Snapshot,
Issues: Project
Scope

Name Test name. This filter is only applicable to Coverity Connect projects
that include Test Advisor data. See in the Test Advisor 2020.12 User
and Administrator Guide..

Tests

New Number of new issues. Files,
Functions,
Components,
Checkers,
Owners,
Trends

41

User Reference

Filter Description View Types

Newly
Detected

Issues that were not in the previous snapshot. Components,
Checkers,
Snapshots

Newly
Eliminated

Issues from the previous snapshot that are no longer present. Components,
Checkers,
Snapshots

Operand
Count

Number of operands in the program. Functions

Outstanding Number of unresolved (outstanding) issues. Files,
Functions,
Components,
Checkers,
Owners,
Trends

Owner User or group name of the issue owner.d Issues: By
Snapshot,
Issues:
Project Scope,
Owners

Owner Name Name of the issue owner. Issues: By
Snapshot,
Issues:
Project Scope,
Owners

Policy
Coverage

Policy Coverage. This filter is only applicable to Coverity Connect
projects that include Test Advisor data. See in the Test Advisor 2020.12
User and Administrator Guide.

Files,
Functions,
Components

Policy Covered
Lines

Number of lines covered by tests according to your Test Advisor
policy. This filter is only applicable to Coverity Connect projects that
include Test Advisor data. See in the Test Advisor 2020.12 User and
Administrator Guide.

Files,
Functions,
Components

Policy
Uncovered
Lines

Number of lines not covered by tests according to your Test Advisor
policy. This filter is only applicable to Coverity Connect projects that
include Test Advisor data. See in the Test Advisor 2020.12 User and
Administrator Guide.

Files,
Functions,
Components

Raw Coverage Raw coverage. This filter is only applicable to Coverity Connect projects
that include Test Advisor data. See in the Test Advisor 2020.12 User
and Administrator Guide.

Files,
Functions,
Components

Raw Covered
Lines

Number of lines covered by tests as reported by the coverage tool. This
filter is only applicable to Coverity Connect projects that include Test
Advisor data. See in the Test Advisor 2020.12 User and Administrator
Guide.

Files,
Functions,
Components

42

User Reference

Filter Description View Types

Raw
Uncovered
Lines

Number of lines not covered by tests as reported by the coverage
tool. This filter is only applicable to Coverity Connect projects that
include Test Advisor data. See in the Test Advisor 2020.12 User and
Administrator Guide.

Files,
Functions,
Components

Resolved Number of dismissed and fixed issues. See resolved issues. Trends

Severity Severity of the issue. See Section 2.4.5.2, “Severity”. Issues: By
Snapshot,
Issues: Project
Scope

Standard:
AUTOSAR C+
+14

Identifies the AUTOSAR C++14 coding-standard rule violated by the
issue.

Issues: By
Snapshot,
Issues: Project
Scope

Standard:
CERT C

Identifies the SEI CERT C coding-standard rule or recommendation
violated by the issue.

Issues: By
Snapshot,
Issues: Project
Scope

Standard:
CERT C++

Identifies the SEI CERT C++ coding-standard rule or recommendation
violated by the issue.

Issues: By
Snapshot,
Issues: Project
Scope

Standard:
DISA-STIG
V4R10

Identifies the DISA-STIG V4R10 coding-standard rule violated by the
issue.

Issues: By
Snapshot,
Issues: Project
Scope

Standard:
DISA-STIG
V4R10
Severity

Identifies the DISA-STIG V4R10 Severity coding-standard rule violated
by the issue.

Issues: By
Snapshot,
Issues: Project
Scope

Standard:
DISA-STIG
V4R3

Identifies the DISA-STIG V4R3 coding-standard rule violated by the
issue.

Issues: By
Snapshot,
Issues: Project
Scope

Standard:
DISA-STIG
V4R3 Severity

Identifies the DISA-STIG V4R3 Severity coding-standard rule violated
by the issue.

Issues: By
Snapshot,
Issues: Project
Scope

Standard: ISO
TS17961 2016

Identifies the ISO/IEC TS 17961:2013/Cor1:2016 coding-standard rule
violated by the issue.

Issues: By
Snapshot,
Issues: Project
Scope

43

User Reference

Filter Description View Types

Standard:
OWASP
Mobile Top
Ten 2016

Identifies the OWASP Mobile Top Ten 2016 software vulnerability
category violated by the issue.

Issues: By
Snapshot,
Issues: Project
Scope

Standard:
OWASP Web
Top Ten 2017

Identifies the OWASP Web Top Ten 2017 software vulnerability
category violated by the issue.

Issues: By
Snapshot,
Issues: Project
Scope

Standard: PCI
DSS 2018

Identifies the PCI DSS 2018 coding-standard requirement violated by
the issue.

Issues: By
Snapshot,
Issues: Project
Scope

State Test state. This filter is only applicable to Coverity Connect projects that
include Test Advisor data. See in the Test Advisor 2020.12 User and
Administrator Guide.

Tests

Status Issue status.e Issues: By
Snapshot

Stream Stream name. You can choose to include or exclude matching names. Snapshots

Streams The Streams filter is useful if you need to perform a search for issues in
a subset of streams in your project.

Enter a full or partial stream name in the menu to select streams that
you want to examine. You can select multiple streams, one at a time.

Specify the scope of the software issues that you want to include in the
search results:

• Any: CIDs that have ever occurred in any of the selected streams.

• All: Only those CIDs that have ever occurred in all of the selected
streams at one time or another.

Issues: By
Snapshot

Suite Name of the test suite. This filter is only applicable to Coverity Connect
projects that include Test Advisor data. See in the Test Advisor 2020.12
User and Administrator Guide

Tests

Target Target platform as specified by:

• In the Target attribute in a Snapshots view.

• The --target option to the cov-commit-defects command
when committing the snapshot to Coverity Connect. For more
information about the cov-commit-defects command, see the
Coverity 2020.12 Command Reference. .

Snapshots

44

cov_command_ref.pdf

User Reference

Filter Description View Types

Total Total number of issues. Files,
Functions,
Components,
Checkers,
Owners,
Trends

Total Detected Total number of issues detected in the snapshot. Snapshots

Triaged Number of triaged issues. Triaged
column: Files,
Functions,
Components,
Checkers,
Owners,
Trends

Type Issue type. For example, Resource leak, Out-of-bounds write. Issues: By
Snapshot,
Issues:
Project Scope,
Checkers

Version The version of the most recent commit to any of the streams in the
project. The version is specified by the --version option to the cov-
commit-defects command. For more information, see Coverity
2020.12 Command Reference. .

Snapshots

aLOC is determined by the union of all the file paths in all the latest snapshots in each stream in the project. Coverity Connect
counts LOC, comment lines, and blank lines for each file path. If there is more than one instance for a given filepath (when the file
path occurs in more than one snapshot), Coverity Connect selects the file with the highest LOC, and take the LOC, comment lines,
and blank lines count from that file.
bSeparate instances of software issues (issue occurrences) receive the same CID if they are found by the same checker and have
the same Merged Function Name and Merge Extra property. These instances share the same Merge Key.
cSee Section 2.4.3.1.2, “Grammar for time filter usage” for information about how CIDs are returned for date filters.
dYou can use the <User> token on the Owner filter to return only software issues assigned to whichever user is currently logged in.
See Section 2.4.2.3.1, “Relative user”
eStatus values:

• New: Issues that are classified as Unclassified.

• Triaged: Issues that are classified as Pending or Bug.

• Dismissed: Issues that are classified as Intentional or False Positive, and are present in the latest snapshot.

• Absent Dismissed: Issues that have been classified as Intentional or False Positive in an earlier snapshot, but are absent from the
latest snapshot.

• Fixed: Issues that do not occur in the latest snapshot are assigned this status by Coverity Connect.

Coverity Connect automatically tracks the status of issues based on the state of an issue: For example, Coverity Connect assigns
the status New if the analysis discovers a new issue in the latest snapshot. If you change the classification of an issue, Coverity
Connect updates the status to reflect the change. For example, if you change the classification to Bug, the status is updated as
triaged. If an identical issue exists in more than one stream, Coverity Connect unifies them. This attribute is not displayed in the
Triage pane.

45

cov_command_ref.pdf
cov_command_ref.pdf

User Reference

2.4.2.1.3. Group By

The Group By option allows you to organize the software issues from your current view into attribute
groups. To use this feature, find the Group By pull-down at the bottom of the Filters menu (for the Issues:
By Snapshot and Issues: Project Scope view types only), and select the attribute by which you want to
group your issues. See Figure 2.4.4, “Group By Menu”

Figure 2.4.4. Group By Menu

When you choose an attribute to Group By, the view pane will include a short list of attribute groupings
on the left, with the number of associated software issues for each. The list is sortable by attribute and
number of software issues. Figure 2.4.5, “Grouped issues” shows a list of software issues grouped by
category.

If a notification email is set on the view, the email will show a table in the same format as the view pane.

Figure 2.4.5. Grouped issues

2.4.2.1.4. Columns

This settings window allows you to specify which columns to display in a given view, typically so that you
can see the most important data by which you are filtering a view (see Section 2.4.2.1.2, “Filters”). By
default, Coverity Connect only displays a subset of the columns that are available to a view. To help you

46

User Reference

determine which columns to display, Coverity Connect provides a description of each column that you
can select for a given view.

2.4.2.1.5. Snapshot scope

You use the snapshot scope to specify one or more snapshots that you can then use to create a view of
the issues you want to display:

Show
The scope designated in this field determines the snapshots whose issues will be listed after filters
are applied.

The scope field(s) can be referenced by a combination of snapshot IDs and a relative statements
constructed with a specialized snapshot selection grammar.

This field is only editable in views of the Issues: By Snapshot and Snapshots view types.

Compared to
This optional field defines the scope of snapshots that will be compared to in the Show scope. It
determines the value of the Comparison column; whether an issue is present or absent from the
comparison scope. For more information, see Section 2.4.3, “Snapshot comparison”.

This field is only editable in Issues: By Snapshot.

The scope field(s) can be referenced by a combination of snapshot IDs and a relative statements
constructed with a specialized snapshot selection grammar.

Show Matches
Displays the snapshots that match the snapshot selection grammar expression that you entered (if
any) per field. If the statement is not formatted correctly, Coverity Connect will alert you.

Include outdated streams
Allows Coverity Connect to process the data contained in streams that have been designated as
"outdated".

A user with proper RBAC permissions at the stream level can designate a stream to be "outdated"
to exclude the stream from Coverity Connect processes. This designation is performed in the
Project and Streams configuration window. For more information, see Section 3.3.1.2.2, “Setting up
streams”.

2.4.2.2. Creating and editing views

If none of the default views (described in Section 2.4.1.1, “View Types”) provides the data that you need
to display in the Coverity Connect View pane, you might decide to create or modify a view.

Modifying a view
You can modify a view by renaming it and/or changing the filter criteria that it uses for its searches.
For a list of available filters and the View types to which they belong, see Section 2.4.2.1.2, “Filters”.

Creating a view
You can create a view in any of the following ways:

47

User Reference

• Using the Save as a copy option to create a copy of a view that is similar to the one you want to
create and then modifying the copy.

• Modifying the filters of a view that you do not need and then renaming the view.

• Mousing over the View type to which you want to add a view, clicking the view creation menu, and
saving a unique name for the view:

Figure 2.4.6. Creating a new view

Note

Each View type supports a unique set of filters, so it is important to create your view with the
View type that contains the filters that you want to use. For details, see Section 2.4.2.1.2,
“Filters”.

After you create the view, you need to specify any filters you want to apply to it. By default,
Coverity Connect does not apply any filters to a new view (unless the view is a saved copy of an
existing view).

The Layout Preferences... link allows you to define your user preferences.

2.4.2.3. Sharing

This View menu option allows you to share a view with a user or group. You need to supply the user
name or group name. Coverity Connect will display the shared view at the end of their list of views (for
the View type). This feature avoids the need for users to re-create the view. However, these users cannot
delete the view. Instead, the user who shares the view can unshare it by removing any user name or
group name from the Sharing pop-up window for the view.

Additionally, you can control the display of the views that are shared with you in the Preferences window.
For more information, see Section 2.4.6, “Preferences”.

2.4.2.3.1. Relative user

When sharing a view with other users or groups, filtering on the relative user will limit the view's software
issues to those assigned to the currently logged-in user. A single view can be used to show each user his
or her own issues.

To use this feature, follow these steps (see Figure 2.4.7, “Relative user configuration”):

1. Open the Filters menu for the view you wish to share.

2. Click to expand the Owner filter.

3. Enter the <User> token into the text field.

48

User Reference

4. Select the Include radio button to show issues assigned to the current user, or the Exclude radio
button to show all issues not assigned to the current user.

5. Click OK.

Figure 2.4.7. Relative user configuration

2.4.2.4. Notification

This View menu option allows you to configure periodic email notifications to help you track software
issue data for a particular view. Emails will be sent according to the specified schedule and will contain a
list of issues based on the filters and columns configured for the view. See Section 2.4.4, “View-specific
email notifications” for configuration information.

2.4.2.5. Delete

This View menu option allows you to delete a view. If you create a view that is not needed or do not use
certain default views that Coverity Connect provides, you can delete the view. You are prompted before
you delete the view. Note that if you accidentally delete one of the default views, you can re-create it by
assigning the filters described in Section 2.4.1.1, “View Types”. See also, Creating a view.

2.4.2.6. Export CSV

This View menu option allows you to export the data in the View pane to a CSV file to use for internal
reports.

2.4.2.7. Export XML

This View menu option allows you to export the data in the View pane to an XML file, for example, to use
for internal reports.

49

User Reference

2.4.2.8. Get Link

This View menu option allows you to copy the URL of a view, for example, so that you can bookmark the
view.

2.4.3. Snapshot comparison

Snapshot comparison is a filtering mechanism that allows you to construct a scope by using the snapshot
selection grammar to compare snapshots to the scope defined in the Show field. From the comparison
results, you can then apply filters to create views that list the CIDs in which you are interested. For
example, you can create views that list:

• Issues introduced in the latest analysis run

• Issues fixed in the latest analysis run

• Issues introduced in the last <number_of> days

• Issues introduced since the last release

• Issues that are have not been fixed since the last release

This feature is not a required operation. It is intended as an "advanced" option to determine a CID's
absence or presence in a given scope of snapshot (as displayed in the Comparison column):

• present - The CID exists in the snapshot(s) defined in Show and at least in one of the comparison
snapshots.

• absent - The CID exists in the snapshots defined in Show, but not in any of the comparison snapshots.

Note

Use the Comparison filter to list only the CIDs that are present or absent from the results of the
comparison scope.

The comparison scope is available to the following view types:

• Issues: By snapshot - Located in the Snapshot scope filter of the Edit Settings window.

• Snapshots - When you click on a snapshot, the Snapshot Comparison filter is available in the right
hand panel. After you apply the filter, the CIDs that match the comparison scope are opened as an
Unsaved view in Issues: By Snapshots. To create a new view from this unsaved view, click the Save
as Copy option and rename, apply filters, and save the copied view.

2.4.3.1. Snapshot comparison scope grammar

Coverity Connect provides a grammar that you can use to define the show/comparison scope. Basically,
you can define the scope by one or more snapshot IDs and/or through relative expressions. The grammar
is as follows:

50

User Reference

Table 2.4.2. Snapshot selection grammar

Grammar expression Description

Snapshot ID

You can specify scope based the number assigned as the
snapshot ID. To locate a snapshot ID, go to the Snapshots view
type with the Snapshot ID column enabled.

Snapshot IDs should not be specified in selection expressions
in views because results will not be returned in projects that do
not contain the specified snapshots.

first()
Represents the first (earliest) snapshot in a stream or set of
streams.

last()
Represents the latest (most recent) snapshot committed to a
stream or set of streams.

firstAfter([<snapshot ID> |
<expression> | <date>])

Represents the snapshot that occurs immediately after the
specified expression.

lastBefore([<snapshot ID> |
<expression> | <date>])

Represents the snapshot that occurs immediately before the
specified expression.

<date>

Either an absolute or relative date:

• absolute - in the form of yyyy-mm-dd hh:mm:ss, however
you can exclude the time (hours, minutes, seconds) if
desired. If you specify the time, it must be in 24-hour format.

• relative - in the form of <N> days ago. For example,
lastBefore(5 days ago).

For <date> expression behavior, see Section 2.4.3.1.2,
“Grammar for time filter usage”.

.. (dot-dot)

Denotes a range of snapshots. For example:

• 20021..20025

• first()..lastBefore(last())

• firstAfter(2014-01-02)..firstAfter(2014-01-05)

, (comma) Denotes a set of snapshots. For example,
20021,20022,20025,30031.

2.4.3.1.1. Snapshot selection grammar usage notes

• firstAfter() and lastBefore() must have an embedded expression (snapshot ID, expression,
or date).

• You can use combinations of snapshot IDs, expressions, dates, ranges, and sets in the snapshot
show/comparison statements. For example:

51

User Reference

• first()..lastBefore(20023)

• last()..20025

• 20021,30031..lastBefore(3 days ago)

• Use the Show matches button to see to which snapshots the grammar maps.

• Coverity Connect will alert you if your snapshot selection grammar is incorrect.

• If there are multiple streams in the project, and you use relative expressions, Coverity Connect
will gather the CIDs that exist in the specified snapshot from each stream. For example (using
Figure 2.4.8), if you specified a show scope of first(), Coverity Connect will union the CIDs from
snapshots 10011,20021, and 30031.

2.4.3.1.2. Grammar for time filter usage

• For absolute dates, if the hours are missing from the <date> expression value, Coverity Connect
interprets the time of day as 12:00 AM of that day; meaning the beginning of the specified day. For
example, firstAfter(2014-01-01) returns results from the first snapshot of January 1, 2014 and
NOT the results from the first snapshot of January 2, 2014.

• For relative dates, the query considers the current time of day, so 1 days ago means "in the last 24
hours" and NOT "since 12:00 AM yesterday".

2.4.3.2. Examples

This section provides examples of show and comparison scope expressions as well as examples of
creating views to filter on a desired set of defects. Some of the examples reference the illustration below.

The following figure represents a Coverity Connect project containing three streams, each of which are
represented by snapshot ID and the date of commit.

Figure 2.4.8. Snapshot comparison example

52

User Reference

Comparing the last snapshot with its predecessor to determine new issues
The following are basic examples of comparing the most recent snapshot with the snapshot that
occurs just before it. When the scope is applied and the list of CIDs are displayed, a CID that is
absent in the preceding (compared to) snapshot implies that the issue was just introduced.

• Relative expressions:

Show: last()
Compared to: lastBefore(last())

This scope will compare the union of snapshots 10015, 20025, 30035 to the union of snapshots
10014, 20024, 30034. Those CIDs with a Comparison column value of absent will be the newly
introduced issues.

• Snapshot ID:

Show:10015
Compared to:10014

The preceding example compares two snapshots in Stream 1. To specify snapshots in multiple
streams, use:

Show: 10015,20025,30035
Compared to: 10014,20024,30034

Comparing snapshots in separate streams
Snapshot comparison is not limited to snapshots that are adjacent or sequential, nor are the limited to
comparison within the same stream. You can compare snapshots that exist in different streams.

• Snapshot ID:

Show: 10015
Compared to: 30034

The preceding example compares snapshot 10015 from Stream 1 to snapshot 30034 from Stream
3. In addition, you can specify a group of multiple snapshots or series of snapshots from one
stream and compare them to a group or series in different snapshot. For example (series):

Show: 10012..10014
Compared to: 30033..30035

Outstanding issues since the last release
This example shows a comparison scope intending to show all outstanding (unfixed) issues since
the last release of a product (assume Stream 1 represents the product code base). The release
is represented by a particular date, so in Stream 1, assume that the release date was 01/02/14
(represented by snapshot 10012).

• Relative expressions:

Show: last()
Compared to: firstAfter(2014-01-01)

53

User Reference

Fixed issues since the last release
This example shows a show/comparison intending to display all fixed issues since the last release
of a product (assume Stream 1 represents the product code base). The release is represented by a
particular date, so in Stream 1, assume that the release date was 01/02/14 (represented by snapshot
10012).

• Relative expressions:

Show: firstAfter(2014-01-01)
Compared to: last()

An issue that is absent indicates that the issue was fixed or dismissed in the specified time frame.

2.4.4. View-specific email notifications

Coverity Connect allows you to schedule and receive periodic email notifications to help you track
software issue information. Each notification configuration is tied to a view in Coverity Connect, and will
display the same attributes as the view to which it is assigned.

Note

These notifications are not available for every view type.

Email notifications must be enabled at a global level by your Coverity Connect administrator.
Configuration steps are detailed in Section 3.1.1.15, “Configuring email notification and delivery”.

The email address configured for the View owner is used as the email sender address.

2.4.4.1. Use cases

The following scenarios illustrate the use of Coverity Connect's email notifications. These scenarios
provide a high-level view of how you might combine view and notification options to track various
software issue data. These scenarios cannot cover every use case, because of the large number of
possible configurations, but describe several potential solutions.

2.4.4.1.1. Scenario: Weekly team email to reflect all outstanding issues for the release

Goal: To send a team-wide email notification once a week highlighting any issues that have been
introduced since the last software release.

Basic configuration: In this scenario, the team lead creates a view that filters on:

• Status = New or Triaged

• First Detected date is after last release date

The team lead then adds a notification scheduled for once a week, and adds each team member
individually or adds a group including the team members to the list of recipients.

54

User Reference

2.4.4.1.2. Scenario: User specific email to catch each new software issue

Goal: To notify any member of a team when a new issue is detected in the code for which they are
personally responsible.

Basic configuration: In this scenario, the team lead creates a view that filters on:

• First Detected in the last day

• Owner = <User> (for relative user)

The team lead then adds a notification scheduled for every night at midnight, with each team member or
group included in the list of recipients.

2.4.4.1.3. Scenario: Email to single user illustrating newly triaged issues

Goal: To notify a single developer of all issues triaged in the last 24 hours for a specific project (Project
Y).

Basic configuration: In this scenario, a developer creates a view that filters on:

• Last Triaged in the last day

• Only in projects = Project Y

The developer then sets the view's columns to all triage values (Classification, Severity, Action, Owner,
Fix Target, Ext. Reference) and adds a notification scheduled for every night at midnight, with no
additional recipients configured.

2.4.4.1.4. Scenario: Notification upon completed commit

Goal: To trigger an email when a commit is complete, highlighting any new defects introduced to the
project (Project Y) in the latest snapshot.

Basic configuration: In this scenario, a developer creates a view that filters on:

• Only in projects = Project Y

• Streams & Snapshots = Newly detected

Then, to trigger the notification after completing the commit step, the developer runs the cov-manage-
im command in notification mode:

cov-manage-im --mode notification --execute --view <view name>

To accomplish this in one step, the developer can create a script which includes each step in the build
process and ends with cov-manage-im. For example:

cov-build <build options> /
cov-analyze[-java] <analyze options> /
cov-commit-defects <commit options> /

55

User Reference

cov-manage-im --mode notification --execute --view <view name>

For more information on using cov-manage-im, see the Coverity 2020.12 Command Reference.

Note

Alternatively, in the Schedule tab of the Notification dialog, selecting Send email when a new
snapshot is created will trigger the notification after the commit occurs.

2.4.4.2. Scheduling a view-specific email notification

Once you have configured your view with the appropriate filters, you can schedule a periodic email
notification by completing the steps below. You can only configure email notifications on views that you
own. If you would like to set up notifications on a view that has been shared with you, duplicate the view
and configure the notification on the duplicate.

Note

If an email notification is created for a Dashboard of an Hierarchy, the email will contain a graphic
showing all of the reports on the dashboard. If the email notification is for a specific report within
Hierarchies, then the single graphic for that report will show in the email.

Table 2.4.3. Notification dialogs

1. Open the View menu and select Notification.

2. To send notifications for this view, select On.

3. On the Schedule tab, choose the days and the time notifications are sent. Notifications can be sent
daily, and must be scheduled at least once a week. If the view does not include any issues at the
scheduled time, no email is sent.

Note

Time should be entered in 24-hour format (5:00pm = 17:00)

4. Select Send email when a new snapshot is created to send an email when a commit of analysis data
is completed.

56

User Reference

5. Click Send email now to send the email report immediately.

6. On the Recipients tab, enter additional Users and Groups to receive the notification. The view owner
is automatically included. They must be currently registered in Coverity Connect.

Note

Disabled users and those with no associated email address will not receive notifications. Any
notifications owned by a disabled user will not be sent.

7. In the CC and Reply To boxes, enter email addresses for users or mailing lists as needed. These
users do not need to be registered users in Coverity Connect.

8. On the Projects or Hierarchies tab (depending on which part of Coverity Connect the dialog is
accessed from), enter the project or hierarchy whose issues are included in the email. If you uncheck
Restrict issues emailed to the following projects:, the notification will be active for all of your projects.

Notification emails will contain up to a maximum of 100 issues by default. This level can be customized
by your Coverity Connect administrator.

Each recipient may receive a different set of issues in the notification, relative to his/her permissions, and
the use of the relative user filter. To receive an unfiltered version of the email notification, enter the user's
email in the CC field.

2.4.4.3. Manually triggering a notification email

It is possible to manually trigger a notification using the cov-manage-im command in notification
mode. To trigger the notification, enter the following command, where viewName is the name of the
Coverity Connect view for which you want to send a notification:

cov-manage-im --mode notification --execute --view <viewName>

For more information on cov-manage-im, see the Coverity 2020.12 Command Reference.

2.4.5. Triage attributes

The Triage pane provides a number of attributes by default. Coverity Connect administrators can add
and modify others. For information about using the attributes to triage a CID, see Section 2.2.4, “Triaging
issues”.

Note

Coverity Connect allows an administrator with appropriate permissions to create and modify
attributes and attribute values. For more information, see Section 3.3.2, “Configuring triage
attributes”.

2.4.5.1. Classification

Unclassified
Default for a new issue. It is intended for issues that have yet to be viewed by a developer.

57

User Reference

Pending
An issue that should be fixed eventually, but perhaps it is not critical enough to fix in the current
source code base, or there are other dependencies that prevent it from being fixed at this time.

False Positive
An issue that a developer has examined and deemed not a true (actual) bug. If a false positive
appears to reflect shortcomings or flaws in the analysis engine, please report the issue to
software-integrity-support@synopsys.com.

Intentional
An issue that might be a true (actual) bug according to the code's programming language but that is
not a bug in this code because either the code is not important or the code can never be exercised in
a dangerous way in deployment environments.

Bug
Reflects a determination that the issue found through a Coverity analysis process is an issue in the
code, and is not a false positive or intentional issue.

Untested
Reflects a determination that a section of the code analyzed by Test Advisor requires that a test be
added to the code.

No Test Needed
Reflects a determination that even though the Test Advisor analysis found a section of code that is
not covered by a test, you are aware of the violation and that there is an accepted reason that the
code is not covered.

Tested Elsewhere
Indicates that a section of code is tested by a test outside of the set of tests that are specified in the
Test Advisor analysis process.

2.4.5.2. Severity

Severities describe how critical an issue is, that is, how much damage the issue will cause to your
program. The default severity attributes follow:

Unspecified
Default for a new issue. Intended for results that have not been viewed by a developer.

Major
Bugs that are the most urgent to fix.

Moderate
Bugs that should be fixed in the near term.

Minor
Bugs that are the least urgent to fix.

Note that a Coverity Connect administrator can add, delete, and rename severity attribute values in the
Triage pane. For more information, see Section 3.3.2, “Configuring triage attributes”.

58

User Reference

2.4.5.3. Action

You use these options to describe and track an issue:

Undecided
Default for a new issue. Indicates that there is no decision yet whether to fix or ignore it.

Fix Required
Indicates that the issue requires a fix.

Fix Submitted
Indicates that the issue has been fixed. Note that issues will continue to appear in snapshots until
they are absent from the source code, as determined by the analysis based on the checkers that are
enabled and the checker options they use.

Modeling Required
Indicates that incorrect modeling (or the absence of modeling) is confusing the analysis. You can
address this issue by fixing or creating the model, which will help the analysis in generating the
correct result.

Ignore
Indicates that the issue can be ignored. This designation might be appropriate for some bugs of
minor severity.

Note that a Coverity Connect administrator can add, delete, and rename these attributes. For more
information, see Section 3.3.2, “Configuring triage attributes”.

2.4.5.4. Legacy

By default, Coverity Connect does not display this attribute. When displayed, you can indicate whether
this is a legacy issue (for example, Legacy = True). For details about this attribute, see Section 3.3.5,
“Configuring legacy issues”. See also, Alternative to using separate triage stores.

2.4.5.5. Fix Target

By default, Coverity Connect does not display this attribute. When displayed, you can select the release
target (or other target milestone) by which an issue should be fixed. Typically, you use this attribute only
if a CID has been classified as a Bug for which a fix is required (Action = Fix Required). See also, the
Alternative to using separate triage stores.

2.4.5.6. Owner

You can assign an owner to an issue or a change the owner of an issue.

2.4.5.7. Ext. Reference

You can provide an external reference (such as an bug number from a different database) to an issue.

2.4.5.8. Comment

You can provide a comment about the issue in the text field. For example, if an issue is marked as a Bug,
you might use the field to document the reason for that designation.

59

User Reference

2.4.6. Preferences

Coverity Connect allows you to set the following preferences (shown in Figure 2.4.9, “Link to Coverity
Connect Preferences”):

• General preferences: For modifying your name, email address, password, and locale.

Supported locales:

• English (United States) - default

• Japanese (Japan)

The language setting will take effect immediately.

• Layout: Allows you to control the following:

View types
Select the view types that you want to be displayed in the left hand panel.

Display views shared with you
You can either display all of the views that are shared with you, or you can select the Custom
attribute and click the edit link to select the views that you want displayed in the left hand panel.

Rows per page
Choose how many rows (for example, number of issues) that are displayed on a page. The default
is 200.

• Component Subscriptions: For receiving email notifications when issues are found in selected
components. For this feature to be available to you, a Coverity Connect administrator needs to set up
email notification in Coverity Connect and to assign component-related RBAC permissions to you. See
also, Section 3.1.1.15.1, “Setting up component subscription notification”.

• Access Roles: For seeing the Role-based Access Control (Section 3.2.3, “Roles and role based
access control”).

Figure 2.4.9. Link to Coverity Connect Preferences

60

Part 3. Coverity Connect Administration
Administrators set up and manage Coverity Connect for end users through Configuration screens that are
accessible from the Configuration menu, located in the toolbar.

End users view, triage, monitor, and fix issues found by Coverity Analysis and third party tools. For details
about end usage, see Part 2, “Coverity Connect Usage”.

For installation instructions, information about supported platforms, and licensing options, see
Chapter 1.1, Installation, Product Licenses, and Supported Platforms.

Coverity Connect also supports an API for creating Web services that communicate with the Coverity
Connect database. For details, see the Coverity Connect Web Services API Reference.

api/cov_platform_web_service_api_ref.html

Chapter 3.1. Performing system configurations

Table of Contents
3.1.1. Configuring and managing the Coverity Connect server .. 62
3.1.2. Configuring and managing the embedded database ... 129
3.1.3. Client-side SSL Certificate Management .. 135

3.1.1. Configuring and managing the Coverity Connect server

This section describes how to configure and manage the Coverity Connect server and embedded
database.

For additional information specific to clustered deployments, see Chapter 3.5, Configuring Coverity
Connect enterprise clusters

Coverity® Web Services

In addition to providing access to Coverity Connect through a browser, the Coverity Connect
2020.12 Web Services API Reference allows applications and scripts to remotely access
functionality on the Coverity Connect server. The SOAP-based API provides the following services:

Defect Web Service
Get defects, project metrics, trend data, source file contents, and checker subcategory
information. Triage defects and copy stream state.

Configuration Web Service
Create, delete, get, and update projects, streams, components, and attributes (actions,
severities, classifications, defect statuses). Get and delete snapshots.

3.1.1.1. Configuring Coverity Analysis Updates

Synopsys allows you to automatically download Coverity Analysis updates through Coverity Connect. To
configure the update settings, go to Configuration > System > Analysis Update. By default, updates
are turned on in Coverity Connect. This means that you allow Coverity Analysis users to download and
install Coverity Analysis updates when Synopsys releases them and makes them available to download.
Coverity Connect sends a request for updates each day at 1:00 A.M. (Coverity Connect server's local
time), by default.

Coverity Connect downloads and stores the update files locally to ensure fast delivery of the updates to
the Coverity Analysis users.

3.1.1.1.1. Storage Capacity and Management

As Coverity Connect continues to download updates, you can manage the storage space used for these
updates on the Coverity Connect server. The Storage Usage section displays the current amount of

62

api/cov_platform_web_service_api_ref.html
api/cov_platform_web_service_api_ref.html

Performing system configurations

storage being used and also has settings to manually or automatically remove update files. You can
remove updates based on storage limits or the age of the update file.

The smaller the storage capacity (5 GB is the minimum requirement), the faster the file purge turnover.
This can be desirable if storage space is an issue. However, if network bandwidth is an issue, then a
larger storage capacity can ensure that all update files are available to the Coverity Analysis user without
the need to download update files from Synopsys each time Coverity Analysis requests an update.

• If no check boxes are selected, then there is no storage limit set and there are no daily purges.

• To manage storage on a daily schedule, based on storage limits, select the Allow up to check box,
then in the GB text box, enter the number of GB to set as the storage limit. For example, if you want
to set the storage capacity to 10 GB, enter 10 into the GB text box. (You must allow at least 5 GB of
storage.)

Now Coverity Connect stores update files only up to the set capacity limit. As Coverity Connect
continues to download more update files and the storage capacity is surpassed, Coverity Connect
removes the oldest update files until the combined size of the files is within the defined storage
capacity.

• To manage storage based on the age of the update file, select the Purge files older than check box,
then in the days text box, enter the number of days to represent the update file age limit. For example,
if you want to set the age limit to 10 days, enter 10 into the days text box.

Now Coverity Connect stores update files only up to the set age limit. As an existing update file's age
limit is surpassed, Coverity Connect removes the update file.

• To immediately purge update files, based on the Storage Usage settings, click the Purge Now button.
(One or both of the check boxes must be selected to use the Purge Now button.) Only update files that
match the Storage Usage settings are purged. For example, you normally set the daily purge storage
limit to 10 GB, but you want to free up some storage so that you can download more update files and
store them locally for the Coverity Analysis user to download. In this case, you can enter 5 into the GB
text box, and click Purge Now. Afterwards, return the storage capacity setting to what you previously
had it set to. In this case, set it back to 10 GB.

3.1.1.1.2. Developer Workflow

When a Coverity Analysis user commits defects to Coverity Connect, using the cov-commit-defects
command, Coverity Connect sends a notification if there are new updates. Coverity Connect determines
which updates are relevant based on the commit. Coverity Connect notifies Coverity Analysis only about
relevant updates and makes them available to download. Any other updates are ignored. In addition,
if the request determines that an update is required, but it is not stored locally on Coverity Connect,
then Coverity Connect requests the update from Synopsys. (This occurs whether or not there is enough
storage available to store it locally; if there is not enough storage then Coverity Connect does not store it
locally.) In this way, the Coverity Analysis user always gets the latest updates regardless of the amount of
storage that Coverity Connect allows for storing the update files.

The Coverity Analysis user can use the cov-install-updates command with its sub-commands to
query and list the available updates, install the updates in order, and if required, rollback an undesired
update. For more information, see the Coverity 2020.12 Command Reference

63

cov_command_ref.pdf

Performing system configurations

3.1.1.1.3. External Network Access

Update information is hosted on the Synopsys Customer Portal, and access to this site is mediated by
an authentication proxy server. When querying and downloading analysis updates, a Coverity Connect
instance must present a valid license ID to the proxy server.

To support Coverity Analysis updates, a Coverity Connect instance must be configured so it can reach
external web addresses. It may be necessary to configure your firewall to allow messages to and from the
Authentication Proxy URL (https://sig-updates.synopsys.com).

Update packages are downloaded directly from Amazon Web Services. It may also be necessary to allow
messages to and from https://s3.amazonaws.com/cdtpincrementals/*.

3.1.1.2. Configuring global owner assignment rules

This tab assigns global rules for automatic ownership using historical data derived from an SCM (Source
Code Management) tool. For more information about the entire automatic ownership configuration
process, see Chapter 3.4, Configuring automatic owner assignment.

3.1.1.3. Integrating with Jira

Coverity Connect allows you to export defects found by Coverity Analysis to an existing Jira instance.
When configured, any CID can be easily added to a specified Jira project, with various fields
automatically generated.

Note

If multiple defect export methods are configured, then the first one in this order is selected:
export-defect-handler, URL, or Jira.

3.1.1.3.1. Requirements

Before configuring Coverity Connect to integrate with your Jira instance, be sure that you have all of the
following:

• Jira version 5.0+ or Jira Cloud

• Coverity Connect version 7.7.0 or later

• Your Jira URL, username, and API token

• The Jira project(s) to which your CIDs will be exported

3.1.1.3.2. Configuring Jira export

The configuration process for Jira integration consists of two main tasks:

• Server configuration

• Project mapping

64

Performing system configurations

Note

Field maps carried over from earlier versions of Coverity Connect are duplicated so that there is
one field map per project. This may cause some of the field mappings to be invalid for a given
project. To check that the field mappings are valid, you should click Test Mappings to test all of the
mappings, and edit or delete mappings found to be invalid.

After you have completed the configuration tasks, the Triage panel will include an Export button. When
clicked, a new bug will be created in the specified Jira project with the information exported from the
Coverity Connect issue.

Note that each issue can only be exported once.

3.1.1.3.2.1. Server configuration

Note

Before you begin the following procedure, you must first create an API token associated with the
Jira account you intend to use. Refer to the Atlassian Jira documenation for information on creating
API tokens.

The first step in configuring integration with Jira is establishing a connection to the Jira server. To do so,
complete the following steps:

1. Navigate to Configuration → System → Bug Tracking System: JIRA and click JIRA Server
Configuration...

2. Enter the URL of your Jira server in the Location field.

3. Enter the username for your Jira account into the Username field.

4. Copy and paste an API token associated with your Jira account into the Password field, and then click
Check Connection.

At this point, you will see a message confirming a successful connection, or an error message
explaining how you might correct the failed connection.

5. When you have a successful connection, click OK and move on to the project mapping step.

Note

Note that it may be necessary to disable the Jira Captcha feature prior to connecting with the Jira
server. To do so, complete the following steps:

1. Go to Jira administration and select System.

2. Click Edit Settings.

3. Change the value in Maximum Authentication Attempts Allowed to blank.

4. Click Update.

65

Performing system configurations

Note

In the case of connecting to a Jira server using SSL, it may be necessary to import the Jira self-
signed certificate into the Java keystore for Coverity Connect.

1. Obtain the Jira SSL certificate (*.pem).

2. Execute cd <install_directory>/jre/lib/security

3. Make a backup of the cacerts file.

4. Execute ../../bin/keytool -importcert -keystore cacerts -file JIRA-
CA.pem

5. Restart Coverity Connect and confirm the connection.

3.1.1.3.2.2. Project mapping

After connecting with the Jira server, choose which Jira projects you want to export your Coverity
Connect issues to. Project mapping allows you to associate your Jira projects with related Coverity
Connect projects, so that when you export an issue, the bug is generated in the correct Jira project, with
the appropriate information included.

You can create and edit project mappings by using the options in the Bug Tracking System: JIRA pane.
After the Jira server is successfully configured, the project list displays existing mappings between Jira
projects and Coverity Connect projects. Each project mapping consists of a Jira project, one or more
associated Coverity Connect projects, and mappings to specify which information to include with each
exported issue.

The Bug Tracking System: JIRA pane provides the following options:

Add...
Opens a pop-up dialog to create new project and field mappings. Here you can specify a Jira project
and the associated Coverity Connect projects. After specifying the projects to map, you specify the
appropriate Jira field along with an associated Coverity Connect field or constant value.

Edit...
Opens a pop-up dialog to edit the selected project mapping.

Delete...
Deletes the selected project mapping.

Test Mappings
Tests all of the defined project mappings to check for errors.

3.1.1.3.2.3. Adding a project mapping

1. Click Add.

2. Click Select JIRA Project and select one of the projects available on the Jira server.

3. In Projects, start entering the name of a Coverity Connect project to add. Alternatively, click Edit to
choose one or more projects from a list of all available projects.

66

Performing system configurations

4. For Mode, select Live or Test. Use Test while you are developing the integration. In Test, Coverity
Connect issues are not actually sent to Jira.

Note

When you are ready to start sending issues to Jira, change the Mode to Live.

5. On the next page, for Issue Type, choose the type of issue defined in the Jira project that will be
assigned to all issues exported from Coverity Connect to that Jira project.

6. On the next page, assign a Coverity Connect field to each Jira field. Select each required Jira field
and click Edit. To export information to other Jira fields, click Add.

Figure 3.1.1. Add field mapping

7. Select a Coverity Connect field to be the source of the value for the Jira field, or select Constant to
set a constant value. Either or both options are shown, depending on settings in the Jira project.

8. After all Jira fields have been mapped to Coverity Connect fields, click Next to check the validity of
the mappings. If they are valid, click Finish to save the map. If the Jira field values are not valid,
helpful error messages will appear and you can click Back to edit them.

3.1.1.3.2.4. Using templates for the Constant static field

You can use simple variables in the Constant field to create templated static fields. To do so, use angle
brackets around the variable name, and the relevant value will be substituted into the exported Jira field.
For example, "<checker> found in <file>" will be formatted to something like "NULL_POINTER found in
main.c".

The available variables are:

Table 3.1.1. Variables for Static Fields

Variable Description

action The action that is being taken for the issue.

category The checker category describing the nature of the
software issue.

checker The checker that found the issue.

cid The CID of the issue.

classification The classification of the issue.

67

Performing system configurations

Variable Description

comparison Indicates if the issue is present in the snapshot
used for comparison.

component The component where the issue is found.

cwe The Common Weakness Enumeration identifier for
the issue.

file The file where the issue was found.

firstdetected Date when the issue was first detected

firstsnapshot Snapshot when the issue was first committed.

firstdate Date of snapshot when the issue was first
committed.

firstdesc Description of snapshot when the issue was first
committed.

firststream Stream in which the issue was first detected.

firsttarget Target platform of the snapshot in which the issue
was first detected.

firstversion Version number of the snapshot in which the issue
was first detected.

fixtarget Target milestone for fixing the issue.

function The name of the function where the issue is
located.

functionmerge Internal function name used as one of the criteria
for merging separate occurrences of the same
software issue, with the result that they are
identified by the same CID.

impact Issue impact as determined by Coverity Connect:
High, Medium, Low, or Audit.

lastsnapshot Snapshot where the issue was last detected.

lastdate Date when the issue was last detected.

lastdesc Description of the snapshot in which the issue was
last detected.

laststream Stream in which the issue was last detected.

lasttarget Target platform of the snapshot in which the issue
was last detected.

lastversion Version number of the snapshot in which the issue
was last detected.

lasttriaged Date when the issue was most recently triaged.

legacy The Legacy attribute of the issue.

68

Performing system configurations

Variable Description

mergekey Internal signature used to merge separate
occurrences of the same software issue and
identify them all by the same CID.

mergeextra Internal property used as one of the criteria for
merging occurrences of an issue.

username The username of the owner of the issue.

owner The first name and last name of the owner of the
issue.

severity Severity of the issue.

status Issue status.

type Type of issue.

url URL to CID of issue.

Figure 3.1.2. Add static mapping

3.1.1.4. Integrating with other (non-JIRA) bug tracking systems

Coverity Connect can be configured to export issues to other bug tracking systems. Currently this option
supports the Bugzilla bug tracking system.

Note

If both JIRA and Bugzilla are configured to receive issues exported from the same project, those
issues will only be exported to JIRA.

3.1.1.4.1. Requirements

This integration requires Bugzilla 4.x or 5.0. The integration utilizes the Bugzilla XML-RPC API. Ensure
that XML-RPC is enabled. Please refer to the Bugzilla Administration Guide on how to enable the XML-
RPC API for Bugzilla.

3.1.1.4.2. Server Configuration

1. In Configuration → System → Bug Tracking System: Other, click Server Configuration.

2. In Location, enter the URL of the bug tracking system.

69

Performing system configurations

3. Enter the appropriate Username and Password.

4. Click Check Connection to verify the settings.

5. Click OK.

Note

When attempting to connect to the Bugzilla server, do not exceed the maximum number of login
attempts, otherwise the Bugzilla account may be locked. Contact the Bugzilla administrator in this
case.

3.1.1.4.3. Configuring the project mapping from Coverity Connect to Bugzilla

The data that is exported to Bugzilla is defined by a project mapping. A project mapping specifies how the
values of certain fields in a specific Coverity Connect project are exported to a specified Bugzilla product.
One or more project mappings are defined in a JSON configuration file. To set up the bug tracking
system integration, the Coverity Connect administrator exports a JSON file from Coverity Connect and
modifies it as needed, and then imports the file. The example shows the required fields.

{
 // File type and format identifier. These fields are required
 // and must exactly match the values shown here.
 "type": "Coverity Connect BTS configuration",
 "format_version": 1,
 "variables" : {
 "defaultComp" : "Cov Test Component",
 "configMap" : {
 "CC_Other" : "Other"

 }
 },
 "configurations": [
 {
 // This is a user-provided name for this configuration and should
 // appear as a column in the BTS config list. Required.
 "name": "Sample Defect Export",

 // This is an optional textual description of the configuration.
 "description": "This configures exports defects from the testVA project.",

 // This is the set of Coverity Connect projects for which this
 // configuration applies. When a bug is exported, we look at the
 // currently selected project, and this configuration applies when
 // the current project is in this list. If multiple configurations
 // list the same project, the last one in the JSON file wins.
 "applies_to_projects": [
 "i18n","sample-ces","race"
],

 // This specifies the name of a BTS plugin to use to export the

70

Performing system configurations

 // defects. It is required, although in Coverity Connect 8.0 the only
 allowable
 // value is "bugzilla".
 "bts_plugin": "bugzilla",

 // Next is a set of name/value pairs that define the contents of
 // an exported bug as a function of the attributes of the defect
 // that is being exported. The latter are referred to using <variable>
 syntax.
 // The exact set of meaningful attributes is dependent on the selected
 bts_plugin
 // and how the BTS itself is configured.
 //
 "export_attributes": {
 // This specifies a mode in which we want to export a defect. It can take
 a value of "live" or "test".
 // If it is in test mode, actual export does not happen. To do an actual
 export, it has to be in "live" mode.
 "mode" : "live",
 // Bugzilla product that receives the defect.
 "product": "Coverity Test Product",
 // Other BZ attributes.
 "component": "<configMap[component]|defaultComp>",
 "version": "1.0",
 "bug_status": "<status>",
 // "platform": "All",
 // "op_sys": "Linux",
 "bug_severity": "<severity>",

 "bug_file_loc": "<url>",
 "cf_eventtag": "<eventtag>",
 "cf_linenumber": "<linenumber>",
 "cf_eventdescription": "<eventdescription>",
 "bug_found_by": "PoP",
 "cf_bug_url": "<function>",
 // The bug title/ summary.
 "short_desc": "CID <cid>: <checker>",
 // The description field (comment 0).
 "description": "File: <file>:<linenumber> Function: <function> Checker:
 <checker> <eventtag>: <eventdescription> Click <url> for more details."

 }
 }
]
 }

JSON file attributes:

name
Name of the Bugzilla product.

71

Performing system configurations

description
A description of the Bugzilla product.

applies_to_projects
One or more Coverity Connect projects can be mapped to one Bugzilla product.

Note

A single Coverity Connect project can only be mapped to one Bugzilla product at a time. In
case of conflict, the most recent Bugzilla product mapping will be used.

bts_plugin
The value must be bugzilla.

The following export_attributes values are required by Bugzilla. A Bugzilla Constant is a
picklist value defined in the Bugzilla product. If this value does not match the actual value in Bugzilla, an
error will occur when exporting an issue. The actual name of fields in Bugzilla may differ from the display
name shown in the Bugzilla interface. Contact the Bugzilla administrator to confirm the actual names.
Coverity Connect templates may be used in combination with string text in some cases.

mode
Allowable values are test or live. It must be set to live for defects to actually be exported.

component
Bugzilla Constant

summary
String text and template fields

version
Bugzilla Constant

description
String text and template fields

op_sys
Bugzilla Constant

platform
Bugzilla Constant

priority
Bugzilla Constant

severity
Bugzilla Constant

The Coverity Connect fields that may be exported are:

• action

72

Performing system configurations

• category

• checker

• cid

• classification

• comparison

• component

• cwe

• file

• firstdetected

• firstsnapshot

• firstdate

• firstdesc

• firststream

• firsttarget

• firstversion

• fixtarget

• function

• functionmerge

• impact

• lastsnapshot

• lastdate

• lastdesc

• laststream

• lasttarget

• lastversion

• lasttriaged

• legacy

73

Performing system configurations

• mergekey

• mergeextra

• username

• owner

• severity

• status

• type

• url

• eventtag

• eventdescription

• linenumber

3.1.1.4.3.1. Maintaining or replacing project mappings

To replace the current project mappings, import a new JSON configuration file containing new project
mappings.

Note

To update the existing project mappings, click Export to extract the JSON file, edit the JSON file as
needed, and then re-import the modified file.

3.1.1.4.4. Variable Substitution

In the JSON file, variables are substituted with values from two sources:

• Coverity Connect fields

• Optional "variables" section in the JSON file

For example, the following expression is replaced with values from both a Coverity Connect field and the
"variables" section.

"component": "<configMap[component]|defaultComp>"

Given the following "variables" section, this expression will resolve as follows:

1. The Coverity Connect field component is used for the map lookup, and succeeds if it matches
"CC_Other". Then the result is "Other"

2. Otherwise, the value for "defaultComp" is substituted, which is "Cov Test Component".

74

Performing system configurations

 "variables" : {
 "defaultComp" : "Cov Test Component",
 "configMap" : {
 "CC_Other" : "Other"
 }

The following rules apply to variable substitution:

1. Use "<foo>" syntax to mean the substitution of the value of input variable foo.

2. Use the set of defect fields listed in "JSON file to import" above as inputs. For example, "<fixtarget>" is
replaced by the parser with the contents of the defect's fixtarget field.

3. Use a map of user-defined variables defined in the JSON as inputs, using the same syntax as the
previous requirement. For example, if the variables include "foo" : "bar", then the syntax "<foo>"
indicates that the string "bar" (without the quotes) should be substituted.

4. Variable names must be taken from [a-zA-Z0-9]. The parser will verify this.

5. Since the defect field names and the variable names are drawn from the same namespace, they must
not collide. The parser implementation will require and verify this.

6. Use the syntax "<foo[bar]>" to mean that:

• The value of "bar" and "foo" will be looked up in the input space.

• The value of "foo" will be used as a map and a lookup performed using the value of "bar".

• Both "foo" and "bar" must exist in the input space. The value of "foo" must be a map. The map must
contain an entry for "bar".

7. Use the syntax "<foo[bar]|baz>" to mean the same as "foo[bar]" except that if the map lookup fails, the
value of "baz" from the input space (which must be present, whether or not the lookup succeeds) is
substituted.

8. In addition to any number of substitutions, value strings may include any number of characters
expressible in JSON. To express the "<" character, "<<" is used.

3.1.1.4.4.1. Example: Map Coverity fields to Bugzilla fields

The following example maps Impact fields (High, Medium, Low) in Coverity Connect to the corresponding
fields (Highest, Normal, Lowest) in Bugzilla. To accomplish this, create a configMap section in the
variables: section of the JSON file.

"configMap" : {
 // Map Coverity Impact field to Bugzilla Priority Field
 "High" : "Highest",
 "Medium" : "Normal",
 "Low" : "Low",
 "Audit" : "Lowest"

75

Performing system configurations

 }

In the export_attributes section of the JSON file, add this line:

"priority" : "<configMap[impact]>",

When an issue is created in Bugzilla, the impact values from Coverity Connect are looked up in the
configMap section, and replaced in the Bugzilla entry with the corresponding values.

3.1.1.4.5. Connecting to a Bugzilla instance using SSL

If the Bugzilla instance uses SSL, it is necessary to import the SSL certificate to Coverity Connect. The
following example is shown for Windows.

1. Access the Bugzilla instance through a browser.

2. In the Address bar, click the "lock" icon and save the certificate.

3. Double-click the certificate and click Install certificate. Follow the instuctions to add the certificate to
the Trusted Root Certificate Authorities store .

4. On the command line, launch certmgr.msc.

5. Navigate to the Trusted Root Certificate Authorities store.

6. Expand the tree and click Certificates.

7. Find the certificate saved previously.

8. Right-click on the certificate and choose All tasks and Export.

9. Navigate to the Coverity Connect installation directory.

10. Execute the command: <installationfolder>/jre/bin/keytool -import -alias
"bugzilla" -file exportedCert.cer -keystore <installationfolder>/jre/lib/
security/cacert

11. Restart Coverity Connect.

The following procedure is for Linux:

1. Obtain the Bugzilla certificate (for example, bugzilla-cert.crt) and copy it to the following
directory:

$ sudo cp bugzilla-cert.crt /usr/local/share/ca-certificates/bugzilla-
cert.crt

$ sudo update-ca-certificates

2. Import the Bugzilla certificate into Coverity Connect:

$ keytool -importcert -file bugzilla-cert.crt -keystore ~/<install-dir>/
jre/lib/security/cacerts

76

Performing system configurations

The default passphrase is: changeit

3. Restart Coverity Connect.

Note

If the SSL handshake fails and leaves an "unrecognized_name" error in cim.log, then set the
following parameter in the <install-dir>/config/system.properties file:

java_opts_pre=-Djsse.enableSNIExtension=false

(The parameter java_opts_post=-Djsse.enableSNIExtension=false also works.)

Note

If the SSL handshake fails and leaves a "No name matching" error in cim.log, then the long
name of the certificate must be used. For example, if the full certificate name is bugzilla-
cert.company.com, using the short name will cause the SSL handshake to fail.

3.1.1.5. Configuring custom checker descriptions

Note

Note that the features described in this section are deprecated as of version 7.6.0. This functionality
will be removed completely in a future release.

Custom checker properties are now reported during the commit process automatically, so importing
checker descriptions via a CSV file is no longer necessary. Coverity Connect continues to support
custom issue categories and impact - see Section 3.1.1.6, “Configuring custom issue categories”.

Coverity Connect allows you to add issue descriptions and information that will be displayed in the UI
when a custom checker discovers an issue. The information you add can appear in various locations in
the Coverity Connect UI, such as:

• In the issue filters for checkers, categories, and types.

• In the CWE listing and Information tab in the Triage pane.

• In the Source browser as event descriptions.

All unrecognized checkers, developed with the Extend SDK or some other custom solution, are
categorized as Miscellaneous (a category value) and as type Other violation (a name value) in the UI
unless you specify the checker descriptions in a CSV file (for example, customCheckers.csv) and
then import the file to Coverity Connect. Alternatively, you can create a custom categorization map that
recategorizes the defect type (see Section 3.1.1.6, “Configuring custom issue categories”).

Note

Note that all custom checkers will initially be assigned an impact of "Low". If you wish to change the
impact value for a custom checker, create an Issue Categorization Map to map the checker type to
your desired impact value.

77

Performing system configurations

The CSV file accepts the following values:

domain
Represents the programming language that the checker analyzes or the type of analysis. The
following values are allowed:

• STATIC_C - C/C++ language.

• STATIC_JAVA - Java language.

• STATIC_CS - C# language.

• DYNAMIC_JAVA - Dynamic Analysis.

• OTHER - Denotes another language that might be used with importing third-party issues. See
Using the Third Party Integration Toolkit for more information.

This is a required field.

Name
The display name of the checker. This is a required field.

subcategory
A checker subcategory, describing the issue produced by the checker. Checkers can have multiple
subcategories. This is an optional field.

Extend SDK checkers do not support subcategories, so all issues will have a subcategory of none.

category
A string used to describe the nature of the issue. This must be a string between 2 and 256 characters
long, and can be a previously known category or a custom category.

This a required field.

type
A short description of a checker that will be displayed under the Type filter in the issue view. For
more information abut the checker filters, see Part 2, “Coverity Connect Usage”.

This is a required field.

CWE
The number that corresponds to an issue description in the Common Weakness Enumeration (CWE).
The CWE provides further information and examples of the issue type. Leave this field empty if there
is no plausible link, as with Test Advisor violations.

long description
The description that will appear in the upper section of the triage pane.

local effect
The description that will appear under the Information tab in the triage pane.

78

cov_analysis_administration_guide.pdf#save_tpit

Performing system configurations

event set 0 caption
Describes the event(s) that leads to the issue as found by your checker. This description is displayed
in the Occurrences tab of the Triage pane.

You can specify multiple events with event set 1 caption and event set 2 caption.

The file is simply a list of comma separated values. For example:

STATIC_C,checker1,*,apiUsageErrors,C API usage error,382,long description,local
 effect,event set 0 caption,event set 1 caption,event set 2 caption
STATIC_C,checker2,subcategoryA,buildSystemIssues,C build system issue,,long
 description,local effect,,,
STATIC_C,checker2,subcategoryB,controlFlowIssues,C control flow issue,398,long
 description,local effect,,,
STATIC_JAVA,checker1,*,apiUsageErrors,Java API usage error,382,long description,local
 effect,event set 0 caption,event set 1 caption,event set 2 caption

Be sure to format the CSV fields precisely, with no additional spacing or quoting around field values.
Each entry should be typed on a single line.

Note

Wildcards ("*") are accepted in the following places in the CSV file:

1. After the period (".") in a checker name. For example, CustChkr.* will return CustChkr.1,
CustChkr.2, CustChkr.3, and so on (assuming they exist).

2. In the place of a subcategory name. The wildcard indicates that the specified category, cwe,
short description, and so forth, should be applied to all subcategories of the specified checker.

To import the CSV file

1. Edit and save the CSV file with your custom checker descriptions.

2. Navigate to Configuration → System → Custom Checkers.

3. Click the Import button and browse to the location of the CSV file.

• If the structure of the file is valid, you will receive a Success notification.

• If it is not valid, you will receive a Failure notification. In this case, you need to check your file for
errors. You can also search for errors in cim.log.

After the file is successfully imported, the checker name, description, and language (domain)
are displayed in the custom checker table. The custom checkers will also be added to all of your
category maps, under the categories specified in the imported CSV.

To remove all custom checkers

1. Create an empty CSV file.

2. Click the Import button to import the empty CSV file.

79

Performing system configurations

This action will remove any existing custom checker settings.

To remove an individual custom checker

1. Click the Export button and save the customCheckers.csv file.

2. Open the customCheckers.csv file.

3. Remove the line or value (if it is not required) of the checker that you want to delete.

4. Save the customCheckers.csv file.

5. Click the Import button to import the new CSV file.

3.1.1.6. Configuring custom issue categories

Coverity Connect allows you to change the impact level and category of issue types through a custom
issue (defect) category map file (JSON file). Issues are categorized by the following criteria:

• Impact levels (High, Medium, Low, or Audit). In Coverity Connect, you can filter software issues by
impact level, which can help you to identify the issues that require attention first.

• Issue description and category. For example, a C/C++ FORWARD_NULL checker can report Medium
priority Unchecked dynamic_cast issues that belong to the Null pointer dereferences category.

For details about issue categories, see the Coverity 2020.12 Checker Reference.

To customize issue categories:

1. Navigate to Configuration → System → Issue Categorization.

2. Click Download Value File to generate a list of available values for "type" and "impact", along
with all currently known category names. This information will be useful in editing/creating the issue
categorization map.

3. If you already have an issue categorization map you want to edit, select it from the Issue
Categorization Map Name list, and click Export. Then you can open and edit the file in your text
editor. Otherwise, you will have to create a new issue categorization map.

See Section 3.1.1.6.1, “Issue categorization map JSON format” for information on formatting the map
file.

4. Click Import and browse to the JSON file location.

5. Click Next. A message will be displayed to tell you whether the import was successful. If the import
fails, an error message will be displayed, describing the problem.

Note that a successful import may still return one or more warning messages, describing potentially
unintended results.

80

cov_checker_ref.pdf#checker_groups

Performing system configurations

6. Issue categorization maps are applied to issues based on their stream. Therefore, to apply
the mapping, you must configure your desired stream to apply the newly created map. See
Section 3.3.1.2.7, “Selecting an issue categorization map for a stream” for configuration instructions.

Note

Issue categorization maps can be synchronized across a Coordinator/Subscriber cluster. In order
to work correctly, however, all subscribers should be upgraded to match the coordinator version.
Otherwise, issue categorization may not work properly on all subscriber instances.

3.1.1.6.1. Issue categorization map JSON format

An imported issue categorization map must match a defined JSON format. Each map must contain a
"name" object, along with a list of "types". Each individual type object consists of a type name, and an
associated "category" value, "impact" value, or both. This will map the specified category and/or
impact value with all issues of the given type.

For example, the following JSON file creates an issue categorization map called "My default map". It
maps all issues of type "Allocation size error" to the "Memory - corruptions" category and "High" impact.
It also maps all issues of type "Calling deprecated method" to the "Code maintainability issues" category.
The built-in impact for "Calling deprecated method" type issues remains unchanged.

{
 "name": "My default map",
 "types": {
 "Allocation size error": {
 "category": "Memory - corruptions",
 "impact": "High"
 },
 "Calling deprecated method": {
 "category": "Code maintainability issues"
 }
 }
}

Please note the following when creating or editing an issue categorization map:

• To override built-in "category" or "impact" values for any "types", import a map that only provides the
new values. This is shown in the example above.

• It is not an error to use type names that Coverity Connect does not recognize, however a warning will
be raised upon importing the file. This is to ensure that the issue type is a valid value and not a typo.

Once imported, those type names will be recognized by Coverity Connect. In future commits, any
issues with a matching type will be mapped accordingly.

Note

A custom categorization can be tied to either a snapshot or stream. Each stream and snapshot
also has its own categorization. Therefore, we recommend that you tie the categorization to a
stream, so that the categorization persists for both the snapshot and stream. New changes will

81

Performing system configurations

be seen only after a commit has been made to that stream, or when a new snapshot has been
created.

• The value for "category" must be a string between 2 and 256 characters long. You can use a
previously known category, or create a custom category.

• Impact value must be "High", "Medium", "Low", or "Audit".

• "category" and "impact" are both optional, but at least one must be specified for each type.

• Null values are not valid for any field.

• The name shown for each issue type corresponds to a checker shown in the Coverity 2020.12 Checker
Reference .

3.1.1.7. Configuring sign-in settings

To control user access to Coverity Connect, sign in to Coverity Connect using a web browser as the
admin user. Then go to Configuration → System → Authentication and Sign In.

To configure sign-in settings:

1. Select from the sign-in options:

Limit failed sign in attempts to
Set the number of failed name-password sign-in attempts before the user is locked out. Once
this happens, unless password recovery is enabled, the administrator must reset the password
for this user. See Section 3.2.1.2.3, “Locking and unlocking a user account” for more information.

Disable local password authentication
Entirely disable local account access, and use LDAP for authentication. Requires previous LDAP
configuration.

Allow email password recovery
If the user is locked out due to incorrect password attempts, the password can be requested
using email. Requires previous email configuration.

Time out signed in users after [N] minutes of inactivity
Set the number of minutes of inactivity before requiring users to sign in again. Note that this
option is permanently enabled. Its default setting is 120 minutes.

2. If you are using LDAP, select from the following options:

Create LDAP users automatically on sign-in
Creates users in Coverity Connect upon successful authentication with your LDAP server.
Requires LDAP configuration.

You can also choose to only create users that belong to imported LDAP groups.

Only create users that are members of imported group(s)
Provides for backward compatibility with Microsoft Active Directory products that require LDAP
users to be members of an LDAP group.

82

cov_checker_ref.pdf
cov_checker_ref.pdf

Performing system configurations

3. Click Done to finalize your changes and exit the screen.

Sign In Log
The Sign In Log shows a history of user session activity.

Note

If you need to reset the Administrator password, use the reset-admin-password option of the
cov-admin-db command. For more information, see the Coverity 2020.12 Command Reference.

3.1.1.8. Configuring Coverity Connect for TLS/SSL

You can configure Coverity Connect to encrypt communications using TLS/SSL.

This process summarizes steps described in the Tomcat documentation , as well as the Java keytool
 command. You can refer to this documentation for more in-depth information on configuring the

embedded Tomcat server and managing a Java keystore. Refer to the appropriate keytool documentation
for the JDK or JRE version that you are using. See Section 3.1.1.8.1, “Commit encryption use cases” for
information on committing over TLS/SSL use cases.

Encryption for Coverity Connect works in tandem with the Coverity Analysis client, and some
configuration by the user may be necessary. For information on client-side configuration (including the
ca-certs.pem file) and authentication, see Coverity Analysis Trust Store .

Coverity Connect supports the session cookie flags of secure and httpOnly to prevent misuse of
session cookies. The secure flag is only available when using HTTPS, and is on by default.

Cookie settings can be confirmed using the web developer tools in a modern browser. With the
web developer tools active, connect to Coverity Connect, and then look for a cookie named
COVJSESSIONID-*. Check the HttpOnly and Secure columns.

• HttpOnly should always be on. It prevents client-side scripts (such as JavaScript) from accessing the
cookie.

• Secure should be on if and only if the connection is HTTPS. It prevents the cookie from being sent on
an unsecure (HTTP) channel.

Refer to http://tomcat.apache.org/tomcat-8.0-doc/ssl-howto.html for information on setting up TLS/
SSL for Tomcat servers like Coverity Connect. Additionally, see http://en.wikipedia.org/wiki/X.509 for
background on digital certificates, and https://www.openssl.org/docs/manmaster/apps/x509.html for
information on working with certificates using OpenSSL.

To configure Coverity Connect to use TLS/SSL:

The example commands illustrate the general procedure for importing certificates. You may need to alter
the parameters depending on the requirements of your certificate authority. The certificate authority may
have specific instructions for how their certificates are to be installed on various types of servers.

1. Select one of the following options:

• Obtain an SSL certificate from a certificate authority and proceed to the next step.

83

http://tomcat.apache.org/tomcat-8.0-doc/ssl-howto.html
http://docs.oracle.com/javase/6/docs/technotes/tools/solaris/keytool.html
http://docs.oracle.com/javase/6/docs/technotes/tools/solaris/keytool.html
cov_analysis_administration_guide.pdf#sa_trust_store
http://tomcat.apache.org/tomcat-8.0-doc/ssl-howto.html
http://en.wikipedia.org/wiki/X.509
https://www.openssl.org/docs/manmaster/apps/x509.html

Performing system configurations

• Use the self-signed SSL certificate created by the installer. It is in the keystore at
<install_dir_cp>/server/base/conf/keystore.jks. If you use this option, proceed to
Step 3.

Note

For information on Windows domain certificates, refer to the Microsoft documentation.

2. Create and import a certificate, as shown in sub-steps a through h.

If you need additional assistance with completing this step, contact
software-integrity-support@synopsys.com.

a. Go to the <install_dir_cp>/server/base/conf directory.

b. Rename your existing keystore, for example:

mv keystore.jks keystore_bak.jks

Renaming the keystore removes it from operation and backs it up. You should keep the backed-
up keystore at least until you complete this procedure and are satisfied that the new keystore
you create is functioning properly.

c. Create a new keystore with a new private key. For example (substitute your Coverity Connect
server's hostname or IP address for <hostname>):

<install_dir_cp>/jre/bin/keytool -keystore keystore.jks -storepass changeit -
alias tomcat -genkeypair \
-validity 730 -sigalg SHA256withRSA -keyalg RSA -keysize 2048 -dname
 'CN=<hostname>' -keypass changeit \
-deststoretype JKS

Note

You may need to change the -sigalg parameter to match the signature algorithm
used by the SSL certificate. For example, SHA1withRSA, SHA256withRSA, and
SHA1withDSA are commonly used.

Note

The password specified for the -storepass parameter must be the same as the
password specified for the -keypass parameter.

d. Generate a certificate signing request (CSR) from the private key. The following command
creates a file called csr.pem:

<install_dir_cp>/jre/bin/keytool -keystore keystore.jks -storepass changeit -
alias tomcat \
-certreq -sigalg SHA256withRSA -file csr.pem

e. Send the CSR to your certificate authority, from which you will receive a "user" certificate.

84

Performing system configurations

You might also receive a chain certificate (also called an "intermediate" certificate). If you do,
perform steps Step 2.f and Step 2.g

If you only receive a user certificate, only perform Step 2.g.

If your certificate authority sends your user certificate together with chain certificates in PKCS7
format, only perform Step 2.h.

f. Put the chain certificate into a file named chain-cert.pem and add the chain certificate to the
same keystore that contains your private key:

<install_dir_cp>/jre/bin/keytool -keystore keystore.jks -storepass changeit \
-alias chaincert -importcert -file chain-cert.pem -trustcacerts -deststoretype
 JKS

g. Put the user certificate in a file named cert.pem and then add the certificate to the keystore
using the alias for the existing private key, tomcat:

<install_dir_cp>/jre/bin/keytool -keystore keystore.jks -storepass changeit \
-alias tomcat -importcert -file cert.pem -trustcacerts -deststoretype JKS

h. Save the certificate blob in a file called certs.pk7.pem and add it to the keystore:

<install_dir_cp>/jre/bin/keytool -keystore keystore.jks -storepass changeit \
-alias tomcat -importcert -trustcacerts -file certs.pk7.pem -deststoretype JKS

3. Stop the server, for example:

> <install_dir_cp>/bin/cov-im-ctl stop

4. Enable TLS/SSL on the Coverity Connect server as follows:

Note

If you enabled TLS/SSL during the installation process, skip this step.

Edit the Tomcat configuration file located at <install_dir_cp>/server/base/conf/
server.xml. Uncomment the Connector section, which resembles the following:

<!-- Define a SSL Coyote HTTP/1.1 Connector on port 8443

The default connector configuration obeys all of the following rules:
 - allow only TLSv1.2 connections;
 - the enabled cipher suites must use all of the following:
 - Ephemeral Diffie-Hellman for key exchange
 (optionally, allow RSA for key exchange if necessary for supporting some
 clients);
 - block ciphers with key lengths of at least 128 bits;
 - block ciphers in GCM mode;
 (if CBC mode must be allowed for supporting some clients,
 use only CBC mode cipher suites that use the SHA-2 family of hash

85

Performing system configurations

 functions);
 - do not enabled the following cipher suites because there are problems with
 them when they are used with Firefox/Chrome:
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,TLS_DHE_RSA_WITH_AES_128_GCM_SHA256.

This connector is not compatible with some older CIM clients which only support
TLSv1, (e.g. clients that use JRE 6, because TLSv1.2 is not enabled by default
there).
If you need to enable TLSv1 (such a configuration is considered to be insecure),
do the following:
 - append TLSv1 to the set of enabled protocols, e.g.
 sslEnabledProtocols="TLSv1.2,TLSv1" (do not remove TLSv1.2 from the set);
 - append TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA cipher suite to the set of enabled
 cipher suites.

If you know that your web browser supports TLSv1.2, but it still can not
communicate with this server (this must not happen to web browsers which are
officially supported by this server), please consider appending the following
cipher suites to the set of enabled cipher suites:
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384,TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256,
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384,TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256,
TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
-->
<!-- Enable this connector to add SSL support. -->
<!--
<Connector port="8443"
 protocol="org.apache.coyote.http11.Http11NioProtocol"
 maxThreads="150" ciphers="TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384,TLS_DHE_RSA_WITH_AES_128_CBC_SHA256"
 scheme="https" secure="true" SSLEnabled="true" sslEnabledProtocols="TLSv1.2"
 keystoreFile="conf/keystore.jks" keystorePass="changeit"
 clientAuth="false" sslProtocol="TLS"/>

86

Performing system configurations

-->

Note

Do not copy this example into your server.xml file, as there may be other settings that are
specific to your installation. Also, note that the long ciphers list is important for correcting
certain security issues with Firefox and Chrome browsers and TLS v1.2 in Tomcat.

Depending on your use case, you might wish to revise the attribute values in server.xml. For
example, you might need to disable weak ciphers or protocols, or reference custom resources.

ciphers
A comma-separted list of ciphers to be enabled. You can add or remove cipher names from the
list.

sslEnabledProtocols
A comma-separated list of TLS protocols to be enabled. To enable a protocol, add it to the list.

TLS 1.2 ("TLSv1.2") is enabled by default.

Note

As of Coverity 2018.09, the TLS 1.0 protocol is no longer enabled by default. We continue
to support it in order to maintain backward compatibility, but please be aware that TLS 1.0
is now considered to be insecure.

keystoreFile
The value here should match the name of the keystore file that you are using.

keystorePass
The password set here must match that used for your keystore file.

If you make changes to server.xml, restart Coverity Connect with the cov-im-ctl command,
and then test that your browser can communicate with Coverity Connect using HTTPS.

5. Edit the Coverity Connect properties file located at <install_dir_cc>/config/
cim.properties. Set the standard encryption level of incoming commits by adding
a line, commit.encryption=<value>, to cim.properties. Acceptable values for
commit.encryption are:

required
Each commit connection must be encrypted. Any commit from a cov-commit-defects client
that declines to open a TLS/SSL connection will be rejected.

preferred
Coverity Connect will open a TLS/SSL connection if required or preferred by the client. If not, the
commit will continue unencrypted. This is the default value for commit.encryption.

87

Performing system configurations

none
Coverity Connect will refuse any client request to connect through TLS/SSL, and will only receive
commits in the clear.

6. Restart the server, for example:

> <install_dir_cp>/bin/cov-im-ctl start

7. Inform users to access Coverity Connect using a URL that contains https:// and the port specified
as <Connector port="<port_number>" in the server configuration file, instead of previous
http://. For example, if the insecure URL was previously:

http://coverity_server:8086

then the new URL (using the previous configuration example) is:

https://coverity_server:8443

Users can still access the insecure HTTP port unless you explicitly disable it.

8. Once you are certain that Coverity Connect is accessible through the HTTPS URL, disable the
insecure HTTP access.

Note

If errors occur, check for the following common mistakes:

• The argument < -trustcacerts> was not included on the Java keytool command line.

• The private key in the keystore does not match the public key of the server certificate.

To disable insecure access to Coverity Connect:

1. Stop the server with the cov-stop-im command.

2. Open the tomcat server.xml file to edit it.

3. Comment out the Connector section that enables the default port 8080, which starts with the
following line:

Connector port="8080" protocol="HTTP/1.1

4. Copy certain property specification lines from the default Connector section that was commented out
to the TLS/SSL Connector section that was uncommented (see below). You should copy all of the
lines that do not specify port usage. Typically, the default lines that you should copy are:

connectionTimeout="20000"
compression="10240"
compressableMimeType="text/html,text/xml,text/plain,application/json"

5. Restart the server with cov-start-im.

88

Performing system configurations

If you are committing to a TLS/SSL-enabled instance of Coverity Connect, use the --https-port
option instead of --port. For more information, see Coverity 2020.12 Command Reference.

3.1.1.8.1. Commit encryption use cases

Depending on your standards, Coverity Connect and its clients may need to alter their configurations
slightly to allow for committing over TLS/SSL. The typical use-cases for encrypted commits are as
follows:

TLS/SSL is not important for sending or receiving commits
Follow the instructions in Step 5 to set commit.encryption to none.

TLS/SSL is important to Coverity Connect server or administrator
Leave commit.encryption with its default value of "preferred", or follow the instructions in Step
5 to set commit.encryption to required.

TLS/SSL is required by the user
The Coverity Analysis developer must set the cov-commit-defects --encryption parameter to
required for each commit.

The following table illustrates the expected outcomes for cov-commit-defects based on the
encryption values of the user and Coverity Connect administrator.

3.1.1.9. Integrating with LDAP servers

Lightweight Directory Access Protocol (LDAP) is used in organizations to centralize the storage of
information common to many applications, particularly related to authentication, such as a user name (ID)
or password. LDAP allows site administrators to enter this information only once, and all LDAP-compliant
applications can use this central resource.

LDAP is used for authentication of users and for retrieving external properties stored in LDAP that are
of interest to Coverity Connect, such as an email address and a user's full name. These attributes are
replicated in the Coverity Connect database. Coverity Connect uses LDAP group information.

You can use LDAP authentication for user sign-in so that Coverity Connect does not have to save user
passwords locally.

Note

It's important that Coverity Connect users retain their identities even in the event of configuration
or organizational changes. If a person's identity is not maintained in Coverity Connect, issues that
include that person in triage records (for example, issue owner designations) will appear to have
originated with a different person.

89

cov_command_ref.pdf

Performing system configurations

LDAP servers maintain user identities. When considering whether to add an LDAP server to
Coverity Connect, ask yourself whether the new server will refer to the same persons as the old
server. If the answer, generally, is "yes", you should modify the existing LDAP server configuration
in Coverity Connect to point to the new server rather than add an additional LDAP server
configuration.

3.1.1.9.1. LDAP server requirements

Coverity Connect has the following requirements for LDAP server configuration:

• The LDAP server must support at least one of the following types of bind operations:

general bind with shared bind DN
In this type of bind operation, a shared DN (distinguished name) exists and is allowed to query the
LDAP server for user records and group definitions. To use this type of bind operation, the DN's
name and password must be defined in the LDAP server configuration screen.

anonymous bind
In this type of bind operation, the LDAP server allows the querying of users and groups without
having to authenticate first. To use this type of bind operation, select Use anonymous bind in the
LDAP server configuration screen.

• Your server must be configured to use case-insensitive user names. Imported LDAP usernames are
normalized to lower case characters.

• Coverity Connect only imports first-level LDAP users and groups. For example:

Group1
 -user1
 -user2
 -user3
 -Group1A
 --user4
 --user5

In this case, Coverity Connect imports user1, user2, user3, and Group1A, but not user4 and user5.

• If an LDAP user and a local user have the same user name, the local user will need to append @local
to their user name when logging in.

• The SASL (simple authentication and security layer) framework is not supported.

• If the LDAP server is unreachable and an LDAP user attempts to sign in, the sign in will fail and the
user will receive the following error:

Error during sign in.

You can find more information about the failure in the cim.log file.

• LDAP usernames can only be between 1 and 32 characters long. User names can include unicode
characters starting from U+0020 (space), and up to, but not including, U+007f (delete).

90

Performing system configurations

• All required LDAP configuration values must be set in the LDAP server configuration screen before you
can save the configuration.

The LDAP server configuration screen provides links that automatically populate common user and
group search settings for Active Directory and OpenLDAP servers.

3.1.1.9.2. Read-only access to LDAP data

Coverity Connect never adds to or modifies the LDAP server data.

3.1.1.9.3. LDAP server types

Coverity Connect provides basic configuration for Microsoft Active Directory and OpenLDAP servers.
Other types of servers might require custom configuration values in the LDAP Configuration screen.

3.1.1.9.4. LDAP server configuration overview

To configure LDAP:

1. Configure LDAP settings with Configuration → System → LDAP Configuration. More information.

2. Go to Configuration → System → Authentication and Sign In, and select Authenticate with:LDAP. Click
Done to finalize your changes and exit the screen.

3. Import LDAP users using one of the following methods:

• Add LDAP users

• Import LDAP groups

• Create LDAP users automatically on sign-in

More information.

4. Synchronize Coverity Connect with data from the LDAP server by re-importing the LDAP group,
using the Configuration → Users & Groups menu. More information.

3.1.1.9.5. Configuring LDAP server settings

You configure LDAP server settings for Coverity Connect in Configuration → System → LDAP
Configuration.

Warning

Some LDAP server implementations do not allow spaces in configuration settings. To avoid
possible problems, do not use spaces in your Base DN, User Search Base DN, and Group Search
Base DN settings.

To configure LDAP server settings:

1. Create or edit the LDAP server settings.

• Click Add from the LDAP Configuration screen to create a new configuration.

91

Performing system configurations

This action opens configuration pane.

Note

If your instance of Coverity Connect is configured as a subscriber in a clustered Coverity
Connect environment, you can not configure the LDAP settings (the Add button will be
disabled). The coordinator is the only Coverity Connect instance in a clustered environment
that can configure these settings. For more information, see Section 3.5.1, “Synchronizing
multiple Coverity Connect instances”.

• Click the name of an existing LDAP configuration to open its configuration pane.

2. Provide a display name.

This is used to identify an instance in a multi-server setup.

3. If there are multiple LDAP server configurations, indicate whether this one is the Primary server.

If checked, this configuration is treated as the primary configuration.

Note

When a user logs in with their username only, Coverity Connect attempts to authenticate
the username against the LDAP server specified as Primary in the LDAP Configuration
pane. If the username is not found in the Primary LDAP server, authentication fails.
To log in with a username set in a non-primary LDAP server, the user must log in as
username@other_ldap_server.

4. Complete the configuration.

For information about the configuration pane, see:

• Section 3.1.1.9.5.1, “Connection settings”

• Section 3.1.1.9.5.2, “Pre-fill settings”

• Section 3.1.1.9.5.3, “User search settings”

• Section 3.1.1.9.5.4, “Group Search Settings”

5. Click Done to finalize your changes and exit the screen.

You must set all required LDAP server configuration values before you can save them.

3.1.1.9.5.1. Connection settings

The connection settings are:

Host Name
The host name of the LDAP server (using the IP address is not supported). The host name must be
resolvable from the Coverity Connect host.

92

Performing system configurations

Port
The TCP port number where the LDAP server listens for connections (defaults to 389).

Base DN
The LDAP domain name in host format, such as <domain>.com or <corp.domain>.<com>, or base
DN such as ou=corp .

Note

If you specify the domain as a hostname, it is translated into DN (distinguished name) format,
where each element of the hostname becomes a domain component (DC) in the DN. For
example, <corp.domain>.com becomes dc=<corp>,dc=<domain>,dc=<com>.

If this does not match your LDAP directory structure, use DN format.

Security
Specify one of the following security protocols:

• SSL

• TLS

Select None if you do not want to use SSL or TLS security.

For more information, see Section 3.1.1.9.6, “LDAP security”.

Use anonymous bind
Specify this option to use an anonymous LDAP connection. If Use anonymous bind is enabled, Bind
DN and Password are disabled.

If Use anonymous bind is not enabled, you must provide a value for Bind DN for an unauthenticated
bind request, or you must provide a value for both Bind DN and Password for an authenticated bind
request.

Bind DN
The username needed to access the LDAP server.

You can specify the user in username@domain or LDAP DN format.

Bind Password
Bind user password for LDAP user queries. This field is required for authenticated binding requests.

If you do not enter a password, and if your LDAP server is configured to accept unauthenticated
binding requests, Coverity Connect will attempt to gain unauthenticated access to the LDAP server.

If an unauthenticated LDAP connection fails, Coverity Connect will display an LDAP Server
Configuration failed message and an explanation of the failure. You can find more information
about the failure in the cim.log file.

Test Connection Settings
Click Connect to LDAP Server to test the connection.

93

Performing system configurations

If the connection fails, there might be a problem with your configuration. You can find more
information about the failure in the cim.log file.

3.1.1.9.5.2. Pre-fill settings

If you are using Microsoft Active Directory or OpenLDAP servers, you can use the following links to
automatically populate standard user and group search settings for these servers:

• Pre-Fill Microsoft Active Directory Settings

• Pre-Fill OpenLDAP Settings

Make sure that you use the correct auto-fill form for your server type.

If you are using an LDAP server type other than Microsoft Active Directory or OpenLDAP, it might require
custom configuration values for the User and Group search settings..

3.1.1.9.5.3. User search settings

The user search configuration settings are:

User Search Base DN
A user search base DN to prepend to the base DN. Used to limit user search.

Note

The base DN is configured as Domain as part of the basic LDAP settings.

For example:

cn=users,ou=corp

If the search base is incorrectly set and an LDAP user attempts sign in, the sign in will fail and the
user will receive the following error:

Error during sign in.

You can find more information about the failure in the cim.log file.

User ObjectClass
The LDAP ObjectClass associated with users on your LDAP server. For OpenLDAP, the default is
inetOrgPerson and for Active Directory, the default is user.

Username Attribute
LDAP attribute that maps to the Coverity Connect username.

Given Name Attribute
LDAP attribute that maps to the given name.

Surname Attribute
LDAP attribute that maps to the surname.

Email Attribute
LDAP attribute that maps to the email.

94

Performing system configurations

Test User Search Settings
Coverity Connect will attempt to connect to the LDAP server and will test the filter based on a
valid LDAP username that you are required to enter. Click Connect to LDAP Server to test the
connection. If the connection fails, or if authentication fails, there might be a problem with your
configuration.

Username
Enter a known LDAP username from your LDAP server. Coverity Connect searches for this user
when you click Test User Search Settings.

3.1.1.9.5.4. Group Search Settings

The group search configuration settings are:

Group Search Base DN
The group search base DN to prepend to the base DN. Used for group searches. The base DN is
configured as Domain as part of the basic LDAP settings.

For example:

cn=groups,ou=corp

Groups ObjectClass
The LDAP objectClass value that identifies user groups. For OpenLDAP, the default is
groupofnames. For Active Directory, the default is group. This field defines a component of the
LDAP user group search query that Coverity Connect creates.

Group Name Attribute
The name attribute for the group, for example cn.

Member Attribute
The LDAP attribute that defines the members of a group. Group members can be referred to by their
DN or username.

Members stored by
Setting that indicates whether members of your LDAP groups are stored by their full DN or by the
username attribute.

Additional Search Filter
Additional filter arguments to include certain entries in the subtree and to exclude others. This filter
supports standard LDAP query syntax.

For example, the following entry limits the search to all groups where the name is either dev, or starts
with eng-:

(|(name=eng-*)(name=dev))

In this case, the group search filter that Coverity Connect creates is:

(&(objectClass=group)(|(name=eng-*)(name=dev)))

95

Performing system configurations

Test Group Search Settings
Coverity Connect will attempt to connect to the LDAP server and retrieve the list of groups. Click
Retrieve Groups to test the connection. If the connection fails, or the list of groups is empty, there
might be a problem with your configuration. You can find more information about the failure in the
cim.log file. If the number of groups returned is greater than 1000, you need to use an additional
group search filter to reduce the number of groups.

3.1.1.9.6. LDAP security

For security reasons, LDAP authentication tokens (passwords) are never stored in the Coverity Connect
database, except for the special case of the bind DN/password. The bind/DN password is encrypted in
the database for security.

3.1.1.9.6.1. Configuring Coverity Connect with SSL and TLS-enabled LDAP servers

In addition to setting the security type during LDAP configuration, Coverity Connect requires certificates
to connect to an SSL or TLS-enabled LDAP server. For information on creating certificates and enabling
your LDAP server for SSL or TLS, refer to your server's documentation.

Interoperability with SSL/TLS-capable LDAP servers is provided, but only simple authentication is
supported. The SASL framework is not supported.

For LDAP SSL/TLS integration, Coverity Connect must be able to find the root CA (certificate authority)
public keys (certificates) to verify the signature of the LDAP SSL or TLS server certificate. Coverity
Connect uses the Java Secure Socket Extension (JSSE) format to manage certificates and key stores.
The J2SE SDK ships with the keytool utility, which enables you to set up and work with JSSE digital
certificates.

There are two scenarios for certificates for setting up SSL/TLS: LDAP server authentication and client
authentication, in which Coverity Connect is the client. In both scenarios, a truststore is required. A basic
set of steps for accessing an LDAP server via SSL is outlined below, with additional details available in
the subsequent sections:

Note

The examples in the following section use Linux-based syntax. The Windows syntax is different.
For example in Linux, the following configuration:

-Djavax.net.ssl.trustStore=<install_dir_cc>/config/LDAP_cers.jks

Would be represented in Windows as the following:

-Djavax.net.ssl.trustStore=<drive>\:<install_dir_cc>\\config\\LDAP_cers.jks

A backslash is required in front of the colon (:) and each of the path separators.

1. Set up your certificates

a. If a truststore is not provided for you, use the keytool utility to create the truststore; it may be a
randomly chosen file and location. For example:

96

Performing system configurations

export trst=<install_dir_cc>/config/LDAP_cers.jks
export kt=<install_dir_cc>/jre/bin/keytool
$kt -genkeypair -dname "CN=<some_user>, OU=<People>, DC=<somedom>, DC=<com>" -
keystore
$trst -storepass <store_password> -keypass <key_password> -alias <some_user-
keypair>

See Section 3.1.1.9.6.1.1, “Using a truststore” for more information.

b. Import the <some_user> client certificate.

$kt -importcert -trustcacerts -file <some_user_client.cer> -keystore $trst -
storepass <store_password> -alias <some_user_client_key>

c. Import the LDAP server Root CA.

$kt -importcert -trustcacerts -file LDAP_Root_CA.cer -keystore $trst -storepass
 <store_password> -alias LDAP_Root_CA_key

d. Set the needed info in the system.properties file, located in <install_dir_cc>/config.

java_opts_post=-Djavax.net.ssl.trustStoreType=jks
-Djavax.net.ssl.trustStore=<install_dir_cc>/config/LDAP_cers.jks

-Djavax.net.ssl.trustStorePassword=<store_password>

See Section 3.1.1.9.6.1.3, “Client authentication” for more details.

2. Restart Coverity Connect.

3. Create a new LDAP configuration and set the needed login option for the LDAP. See
Section 3.1.1.9.5, “Configuring LDAP server settings” for more information.

3.1.1.9.6.1.1. Using a truststore

Both server authentication and client authentication can use the default JSSE truststore. The truststore is
in a JKS format file and contains the root or intermediate CA certificates. These CA certificates determine
which endpoints are allowed for communication.

Coverity Connect connects to the LDAP server, which presents a certificate that is signed by one of the
truststore's CA certificates. Using this truststore, Coverity Connect attempts an SSL handshake with all
LDAP servers that present a certificate signed by the CA. JSSE looks for the truststore as follows:

1. If the javax.net.ssl.trustStore system property is defined, then the value of this property is
used as the truststore's location.

2. If the lib/security/jssecacerts file is defined in the java.home directory, then the
jssecacerts file is used as the truststore.

3. If the file lib/security/cacerts file is defined in the java.home directory, then the cacerts
file is used as the truststore.

97

Performing system configurations

You can also use a custom truststore in the Coverity Connect server to accept a generated certificate. To
do so:

1. Use the keytool utility to generate the truststore. For more information, see the keytool
documentation at http://download.oracle.com/javase/6/docs/technotes/tools/windows/keytool.html .

2. Import the certificate into the newly created truststore.

3. Edit the java_opts_post property in the Coverity Connect system.properties file to define
the location of the truststore. By default, system.properties is located at <install_dir_cc>/
config. For example:

java_opts_post=-Djavax.net.ssl.trustStoreType=jks \
-Djavax.net.ssl.trustStore=/openldap-cert/truststore.jks \
-Djavax.net.ssl.trustStorePassword=adminadmin

Note

Do not use quotation marks (" ") to specify a full path or other multiple string values. If a path
contains spaces (for example, Program Files), use an equivalent path without spaces (for
example, Progra~1) or change to a location that does not contain spaces.

4. Stop and restart Coverity Connect.

For more information, see Section 3.1.1.9.8, “Stopping and starting Coverity Connect”.

3.1.1.9.6.1.2. LDAP server authentication

With server authentication, client certificate authentication is not enforced, meaning the LDAP server
does not expect to receive a certificate from Coverity Connect for authentication. Coverity Connect
verifies that any SSL/TLS-enabled LDAP server is valid. The truststore must be available, as specified in
Section 3.1.1.9.6.1.1, “Using a truststore”.

3.1.1.9.6.1.3. Client authentication

With client authentication, Coverity Connect must provide a certificate for authentication. The truststore
needs to have the Certificate Authority certificate available in it. Through this truststore, Coverity Connect
verifies the server that is responding to the request. Coverity Connect must have a keystore, which
contains the private and public key pair.

The separation of the truststore and keystore is not mandatory, but it is recommended. They can be the
same physical file.

1. Use the keytool utility to create the keystore.

2. Import the certificate into the keystore.

3. Edit the java_opts_post property in the Coverity Connect system.properties file to define
the location of the keystore. By default, system.properties is located at <install_dir_cc>/
config. For example:

98

http://download.oracle.com/javase/6/docs/technotes/tools/windows/keytool.html

Performing system configurations

java_opts_post=-Djavax.net.ssl.keyStoreType=jks \
-Djavax.net.ssl.keyStore=/openldap-cert/keystore.jks \
-Djavax.net.ssl.keyStorePassword=adminadmin

Note

Do not use quotation marks (" ") to specify a full path or other multiple string values.

4. Stop and restart Coverity Connect.

For more information, see Section 3.1.1.9.8, “Stopping and starting Coverity Connect”.

3.1.1.9.7. Upgrading LDAP server configuration settings

If you upgrade from a version of Coverity Connect earlier than 5.3, it is possible that your LDAP server
configuration settings will not successfully upgrade due to your user and group objectClass settings.

In previous versions, the LDAP server configuration screen contained the User Search filter and Group
Search Filter fields which required you to define the respective objectClass as part of the filter definition.
As of 5.3, these fields are removed. Coverity Connect now automatically builds the user search filter and
group search filter based on the values set in the User objectClass and Group objectClass fields. The
defaults for these values are:

• User objectClass: inetOrgPerson (OpenLDAP), user (Active Directory)

• Group objectClass: groupofnames (OpenLDAP), group (Active Directory)

If your objectClass definitions from a previous Coverity Connect version match the defaults listed above,
your LDAP server configuration settings should successfully upgrade. If the objectClass definition do
not match, configuration settings will not update successfully. In this case, you will have to manually set
User objectClass and Group ObjectClass to your desired value after you upgrade your Coverity Connect
server.

To aid you in locating possible mismatches, Coverity Connect writes your LDAP configuration settings
to the upgrade log before you upgrade and after the upgrade is finished. If there are conflicts, Coverity
Connect alerts you. You can use the upgrade log to locate the mismatch and make the appropriate
changes.

3.1.1.9.8. Stopping and starting Coverity Connect

To stop or start Coverity Connect:

• On Linux, go to <install_dir_cc>/bin and run the cov-im-ctl command.

The command accepts the maintenance, start, stop, or status options. For example, to get
status information:

> cd <install_dir_cc>/bin
> ./cov-im-ctl status

• On Windows, go to <install_dir_cc>\bin and run the cov-im-ctl.exe program.

99

Performing system configurations

When Coverity Connect is installed as a service, the cov-im-ctl.exe program is often unnecessary
because Coverity Connect starts and stops automatically when the system boots up or shuts down.
When Coverity Connect is installed as a service, any administrator can use this program.

When Coverity Connect is not installed as a service, only the user who installed Coverity Connect is
able to use this program to start or stop it.

Note

If you need to restart your external PostgreSQL database, see the PostgreSQL documentation.

3.1.1.9.9. LDAP debugging tools

To set up the LDAP environment, customers need to examine their internal LDAP configuration in order
to find and test values for Connection Settings, User Search Settings, and Group Search Settings. The
following tools are suggested for this purpose.

• ldapsearch

• JXplorer (see JXplorer download page .)

• Apache Directory Studio (see Apache Directory Studio download page .)

3.1.1.9.9.1. Integrating Coverity Connect with Active Directory (AD) Global Catalog

The Global Catalog component of Active Directory is accessed using 3268/3269, and the AD server is
accessed using ports 389/636. When connecting to the Global Catalog, the AD attributes typically used
by Coverity are not available, and Test Connection Settings results in an error.

To avoid this error, edit the ldap.properties file in the <CC_INSTALL_DIR>/server/base/
webapps/ROOT/WEB-INF/classes/ directory, as follows:

1. Set the "ldap.ldapValidationEnabled" property to "false". This will turn off LDAP validation on Coverity
Connect and thus should suppress the error.

Note

Make sure to verify that you can import users and groups, by using Test User Search Settings
and Test Group Search Settings.

To enable Test Connection Settings to work, do the following:

1. Edit the "ldap.connectFilter=(objectClass=classSchema)" line and replace the "classSchema" with a
known attribute in your AD catalog.

Note

Use the tools mentioned above to inspect your AD catalog.

3.1.1.10. Configuring Coverity Connect to use Kerberos

100

http://www.postgresql.org/docs/manuals/
http://jxplorer.org/downloads/
https://directory.apache.org/studio/downloads.html

Performing system configurations

3.1.1.10.1. Kerberos Overview

Kerberos is a suite of services that implement Single Sign-On (SSO). Kerberos enables a client and a
server (security principals) to authenticate each other securely on an unsecure network, and conduct
encrypted communications. The Kerberos protocol is operated by the Key Distribution Center (KDC). The
KDC comprises two services: an Authentication Server (AS) and a Ticket Granting Service (TGS).

When a client wishes to access a resource on a server, the client first contacts the KDC and provides
an account name and password. The AS accesses Active Directory to verify the credentials, and if
verified, grants a Ticket Getting Ticket (TGT) to the client. When the client needs to access a server in
the domain, the client submits the TGT back to the Ticket Granting Service of the KDC, which then grants
a service ticket and session keys to the client. The client presents the service ticket to the server, which
then authenticates the ticket and the client.

The service ticket is typically valid for a day, but the interval can be set by the Kerberos administrator.
Each time the user needs to obtain a new service ticket, he will have to execute kinit. See
Section 3.1.1.10.4.3, “Obtaining an initial Kerberos ticket”.

In Coverity, when Coverity Connect is configured to use Kerberos, it will use Kerberos authentication for
LDAP users from LDAP servers associated with the Kerberos server.

Warning

Coverity Connect does not use Kerberos for local users, including the built-in Admin user account.

3.1.1.10.2. Key Concepts

• Keytab

The keytab file (“key table”) contains one or more entries, where each entry consists of a timestamp
(indicating when the entry was written to the keytab), a service principal name, a key version number,
an encryption type, and the encryption key itself. The keytab file is generated on each host in the
Kerberos realm, and is used by Coverity Connect to authenticate clients.

• Fully Qualified Domain Name

The fully qualified domain name (FQDN) is the complete domain name for a specific computer,
or host, on a network. The FQDN consists of a hostname and a domain name. For example, in
mycomputer.mycompany.com, mycomputer is the hostname, and mycompany.com is the domain
name.

• Realm

A Kerberos realm shares a common Kerberos database, and security principals within it can be
authenticated to each other. It is conventionally written as an upper-case ASCII string.

3.1.1.10.3. Setup

Coverity Connect uses a keytab file generated on each host to authenticate service tickets from clients. A
keytab file can be generated by the Kerberos administrator using the following command:

101

Performing system configurations

Generating a Keytab file (Mac/Linux)

1. On the command line, start kadmin.

2. To export the keytab file, enter:

ktadd host/name_of_service_principal

3. Exit kadmin.

Configure Coverity Connect to use Kerberos using the following procedure:

1. In Configuration – System, select Kerberos Configuration.

2. For Kerberos Keytab, click Browse to select the Keytab file.

3. In Host FQDN, enter the fully-qualified domain name of the Coverity Connect host server.

4. In Realm, enter the name of the realm covered by Kerberos authentication.

5. Click Validate to confirm the settings.

6. Click Done to save your changes.

7. In Configuration → System → Authentication and Sign In, under Authentication Method for LDAP
Users, select Authenticate with: Kerberos.

8. Click Done to save your changes and exit.

3.1.1.10.4. Configuring the Browser

Browsers must be configured to use Kerberos. The procedure varies by browser and operating system. It
may be necessary to obtain a Kerberos ticket for the browser as well.

Note

In some networks, a server may be configured to share login credentials with other servers. This
is called "credential delegation." Credential delegation can expose the credentials to third parties,
which in theory is a security vulnerability. The procedures for configuring browsers for Kerberos
include a step for enabling credential delegation. Coverity Connect does not use credential
delegation, so unless otherwise needed, consider refraining from enabling credential delegation.
The specific settings are indicated in the respective procedures.

3.1.1.10.4.1. Configuring the Firefox browser on Linux and Mac OS

To configure the Firefox browser to use Kerberos:

1. Enter about:config in the address bar.

2. In Filter, enter negotiate.

102

Performing system configurations

3. Double-click network.negotiate-auth.trusted-uris.

4. Enter the Coverity Connect domain name.

5. Repeat the procedure for the network.negotiate-auth.delegation-uris entry, using the same domain.

Note

This setting enables credential delegation. It is optional.

6. Double-click network.negotiate-auth.allow-non-fqdn to change the Value to true.

3.1.1.10.4.2. Configuring the Chrome browser on Linux and Mac OS

To configure the Chrome browser to use Kerberos, start the browser from the command line with the
following arguments:

--auth-server-whitelist="*.example.com" --auth-negotiate-delegate-
whitelist="*.example.com"

Replace the "*.example.com" with the domain used in your organization.

Note

The setting --auth-negotiate-delegate-whitelist enables credential delegation. It is
optional.

3.1.1.10.4.3. Obtaining an initial Kerberos ticket

If the client is not in a Windows Active Directory network, then it is necessary to obtain an initial Kerberos
Ticket Granting Ticket (TGT). This ticket provides evidence that the client (browser) is authenticated in
the network. This procedure will work if the client is in a Kerberos realm.

1. In a command shell, type kinit and enter the user password. This retrieves the Kerberos ticket
from the KDC.

2. To view the Kerberos tickets on the client, enter klist.

3.1.1.10.5. Troubleshooting

Kerberos authentication relies on the proper configuration of various network resources outside of
Coverity Connect. If problems occur, the following tips may help you resolve them.

3.1.1.10.5.1. How can I test that my Kerberos-enabled client is working with a Kerberos-enabled
web server?

The end to end test involves having network access from the client to the kerberos server and a keytab
file for the web server. Settings for the kerberos server and associated realm are specified in the kerberos
configuration file (e.g. krb5.conf or krb5.ini).

1. If the initial kerberos token (Ticket Granting Ticket) is required, authenticate to the Kerberos server:

103

Performing system configurations

kinit kuser1@YOUR-REALM
kuser1@YOUR-REALM's Password:

2. Verify that a valid kerberos token (TGT) is available:

klist
Credentials cache: API:678E11A7-D99A-45AE-8FBE-C8ED45AD8338
Principal: kuser1@YOUR-REALM
Issued Expires Principal
Nov 23 11:03:13 2015 Nov 23 21:03:08 2015 krbtgt/YOUR-REALM@YOUR-REALM

3. Send a web request with a kerberos-enabled web client, such as a browser:

http://your-server.company.com:8080/

3.1.1.10.5.2. Why am I getting errors about unsupported encryption types?

The Kerberos server may be using encryption that is not supported by the Java runtime environment.
For information on updating the JRE with more encryption types, see: Java Cryptography Extension
(JCE) Unlimited Strength Jurisdiction Policy Files 8 Download . In addition, the Kerberos server may
be configured to use weaker encryption (that is available in the default JRE) by editing the Kerberos
configuration file:

use weak encryption so as not to require the unlimited strength security jars
default_tgs_enctypes = des3-hmac-sha1
default_tkt_enctypes = des3-hmac-sha1
permitted_enctypes = des3-hmac-sha1

3.1.1.11. Adding and configuring a reverse proxy server

This section describes how to add and configure a reverse proxy (RP) server in front of the Coverity
Connect server.

Note

This is a prerequisite for enabling Reverse Proxy Authentication (RPA) in Coverity Connect.

The RP server configuration described in this section can handle requests from, and responses to, any
HTTP or HTTPS client. Examples include:

• browsers

• cov-manage-im

• cov-run-desktop

• cov-commit-defects

As shown in the diagram below, requests from these clients are addressed to the HTTPS port on the RP
server.

104

http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html
http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html

Performing system configurations

3.1.1.11.1. Setup using Apache HTTP Server

This section describes how to add and configure Apache HTTP Server 2.4 (apache2) to act as a reverse
proxy (RP) in front of the Coverity Connect server. It assumes the reader has some familiarity with
reverse proxy concepts, usage, and administration.

Note

If desired, web servers other than apache2 can be used. However, instructions specific to other
web servers are not provided.

The configuration described in this section also enables the transformation of HTTPS requests to HTTP
requests.

To add and configure the reverse proxy:

Note

In addition to the steps below, note the following:

• If you plan to use RPA, set up the reverse proxy on the same host as the Coverity Connect server.

• Assuming you use the --host --port method of connecting, the Coverity Connect implementation
can provide service only for RPs for which the “context path” part of the URL is empty. For example,
the RP works if it uses the URL https://coverity.example.com/ for Coverity Connect, but not if
it uses https://example.com/coverity/. If you wish to use context paths, then you must use the
--url method of connecting instead of --host --port.

• You need to take steps to ensure that clients cannot reach CC directly--that is, by bypassing the proxy.

Note

These steps are for configuring apache2 on Ubuntu. The steps for other platforms are similar.

1. On the reverse proxy host machine, make sure the necessary apache2 modules are installed and
enabled:

a. In the /etc/apache2 directory, run the following command to get a list of available apache2
modules:

105

Performing system configurations

sudo a2enmod

b. In response to the prompt asking you which module(s) you want to enable, enter the following
list of modules:

auth_basic authn_core authn_file authz_core authz_host
authz_user env headers log_debug mime mpm_event proxy_http
proxy rewrite setenvif socache_shmcb ssl

2. In the /etc/apache2/sites-available directory, create a coverity.conf file and enter the
following lines:

Include coverity/ssl.conf
Include coverity/authentication.conf
Include coverity/proxy.conf

Note

The authentication.conf and proxy.conf files are located in<cim-installer-
location>/extras/proxy/apache2.

3. Enable the coverity site:

sudo a2ensite coverity

4. Remove any unneeded sites from /etc/apache2/sites-enabled using the a2dissite
command.

5. In the /etc/apache2 directory, create a coverity directory:

sudo mkdir coverity

6. cd into the coverity directory, and create these configuration files:

• ssl.conf—Modify your Apache SSL (HTTPS) configuration file as necessary to provide SSL
service for your environment. If you want to use an RP URL without a port number, SSL service
should be provided on port 443.

• authentication.conf—This file is empty if RPA is not used. For details about using this file for
RPA, see Section 3.1.1.12, “Adding Reverse Proxy Authentication”.

• proxy.conf—To specify that requests to the RP using http://<ccserver_hostname>.com/
foo be converted to a proxy request to the Coverity Connect address, http://
localhost:8080/foo, copy the content from <cim-installer-location>/extras/
proxy/apache2/proxy.conf and paste it into the proxy.conf file.

Note

This <cim-installer-location>/extras/proxy/apache2/proxy.conf configuration
is for the scenario when the RP server is located on the same host as the Coverity Connect
server.

106

Performing system configurations

7. Restart apache2 to activate the new configuration:

sudo service apache2 restart

3.1.1.12. Adding Reverse Proxy Authentication

Coverity Connect supports Reverse Proxy Authentication (RPA). RPA is an authentication method that
can be used to transmit authentication information from a Single Sign-On (SSO) implementation to
Coverity Connect.

Note

This section provides detailed instructions for adding RPA and configuring it for SSO. It does not
cover adding SSO itself. Instructions for adding SSO are beyond the scope of this guide.

3.1.1.12.1. RPA key concepts

After adding RPA:

• Only LDAP users are accessible. The built-in admin user is not accessible, so you must assign the
System Admin role to an LDAP user before enabling RPA.

In Coverity Connect, RPA is one of three “LDAP-only” authentication methods (the others are LDAP
and Kerberos) that you can use. An “LDAP-only” authentication method is an authentication method
that only works for LDAP users. Only one LDAP-only authentication method can be enabled at a time.
However, each LDAP-only authentication method can be used at the same time as one or more non-
LDAP-only authentication methods.

• Authentication and session management is delegated to the proxy. Coverity Connect does not time out
users’ sessions. The “log out” menu item is disabled.

• Optionally, for Web Services access and cov-commit-defects requests, password-based authentication
can be disabled. Authentication keys can be used instead when password-based authentication is
disabled.

When enabled, RPA authenticates Coverity Connect UI requests. In addition, after enabling RPA, you
can optionally disable password-based authentication for SOAP and REST Web services (WS), and for
cov-commit-defects. Authentication keys can be used instead to authenticate those three services.
For more information, see Section 3.2.1.6, “Working with authentication keys”.

Disabling password-based authentication for WS and cov-commit-defects provides assurance
that the only way users can authenticate to Coverity Connect is by entering their password at the SSO
Identity Provider's screen.

The disadvantages of disabling password-based authentication for WS and cov-commit-defects
are as follows:

• After password-authentication is disabled, users cannot use cov-manage-im or desktop plugins to
create authentication keys. Instead, users must use the Coverity Connect UI.

107

Performing system configurations

• After password-authentication is disabled, users must store authentication keys on their computer's
file system. This makes the keys vulnerable to security attacks unless they are properly protected.

To disable password-based authentication, add the following line to <install_dir_cp>/config/
cim.properties and restart the server:

authentication.proxy.disable.password=true

• Coverity Connect will accept HTTP and HTTPS connections only from clients on the same host as
Coverity Connect. The proxy must be on the same host.

When RPA is used, authentication of HTTP and HTTPS Coverity Connect UI requests is delegated to
the RP. For security reasons, the RP must reside on the same host machine as the Coverity Connect
server. After the RP server authenticates an HTTPS request, it forwards the request to the Coverity
Connect server as an HTTP request and adds a header to the request. The header lets the Coverity
Connect server know that the request has been authenticated, and the header also identifies the
authenticated user.

In addition, with RPA, session management is delegated to the RP server, Coverity Connect does not
time-out users’ sessions, and the “Log out” menu item is disabled.

• Verify the forward proxy connection for a successful commit. Client calls to cov-commit-defects are
directed to the HTTP or HTTPS proxy server, which are then forwarded on to the hostname specified in
the URL.

An existing (nonempty) value for the http_proxy or https_proxy environment variable indicates
that a proxy is used. You can use the printenv command to see what values exist. (The port default
value is 1080.)

Note

When https_proxy is defined and cov_commit_proxy is undefined (or empty), then the
commit protocol uses the proxy for its connection, regardless of whether the connection is secure
or not. We recommend that you set cov_commit_proxy to none, so that no proxy is used for
the commit protocol.

108

Performing system configurations

To ensure a working proxy connection, check for the following:

• Correct syntax for your proxy address.

• Schemes that match the protocol of the environment variable. The port syntax should look like this:
hostname or scheme://hostname[:port].

• If the --dataport option is not set, then an HTTP or HTTPS request is sent to retrieve the dataport
before the commit protocol begins. It uses http_proxy or https_proxy accordingly.

• The no_proxy setting overrides and disables the cov_commit_proxy, http_proxy, and
https_proxy settings.

3.1.1.12.2. Setting up RPA

This section describes how to set up RPA using basic authentication. You can modify the steps provided
such that RPA is set up using your SSO authentication method.

To set up RPA:

1. If you have not done so already, configure a reverse proxy server on the same host machine as the
Coverity Connect server as described in Section 3.1.1.11, “Adding and configuring a reverse proxy
server”

2. cd into the /etc/apache2/coverity directory, and replace the contents of
authentication.conf with the content found inside the <cim-installer-location>/
extras/proxy/apache2/authentication.conf file.

3. To enable SSO, replace the following line of authentication.conf as needed for your SSO
protocol:

SSO implementation invoked here.

3.1.1.12.3. Configuring Coverity Connect for RPA

After setting up RPA, and enabling and verifying SSO capability, you need to configure Coverity Connect
to use RPA.

To configure Coverity Connect for RPA:

1. In a Web browser, enter the URL for the Coverity Connect server (using either the http:// or
https:// protocol).

2. When the sign-in page opens, log in as the admin user.

3. Configure LDAP if it is not already configured. See Section 3.1.1.9, “Integrating with LDAP servers”.

4. Choose one or more LDAP users to be administrators, and assign the System Admin role to each
user. See Section 3.2.1.2.2, “Managing roles for a user”.

109

Performing system configurations

5. Modify the value of the web.url property in the file <install_dir_cp>/config/
web.properties to be the URL of the RP. For example:

web.url=https\://coverity.example.com

6. Modify the file <install_dir_cp>/server/base/conf/server.xml by adding the address
attribute to all of the Connector entities that are not commented out. The address attribute must
have a value of localhost or 127.0.0.1 as shown below:

<Connector port="8080" protocol="HTTP/1.1" URIEncoding="UTF-8"
 connectionTimeout="20000" compression="10240"
 compressableMimeType="text/html,text/xml,text/plain,application/json"
 address="127.0.0.1" redirectPort="8443"/>

7. Stop and restart the server. For example:

<install_dir_cp>/bin/cov-im-ctl stop
<install_dir_cp>/bin/cov-im-ctl start

8. In Configuration > System > Authentication and Sign In, in the Authentication Method for LDAP
Users section, select Authenticate with: Reverse Proxy.

Note

The Reverse Proxy option is disabled if the address attribute is not added correctly, as
described in Step 6.

9. Click Done to save your changes and exit.

10. Check the <install_dir_cp>/logs/cim.log file for errors that indicate RPA was not enabled.

11. Verify HTTPS browser access by connecting to the proxy. Log in as one of the LDAP users to which
you assigned the System Admin role in Step 4.

Following successful SSO login, you should see the Coverity Connect Web application.

12. In Configuration > System > Authentication and Sign In, in the Authentication Method for LDAP
Users section, verify that it still says Authenticate with: Reverse Proxy. If it says LDAP instead of
Reverse Proxy, then the changes made to server.xml, as described in Step 6, are incorrect or
incomplete.

3.1.1.13. Coverity Connect license information

You can check your Coverity Connect license information at Configuration → System → Coverity Connect
License. This page shows the status of the terms of your license. This is useful if you are using Coverity
Connect as an evaluation and you want to keep track of the usage limitations defined in the license. If
you exceed any of the following terms defined in your license, you will no longer be able to use Coverity
Connect:

110

Performing system configurations

Licensed to
The name of the organization to which Coverity Connect is licensed.

Allowable users
The number of Coverity Connect users that you have added. A disabled user is not counted as an
allowable user.

Lines of code
The sum of all lines of code that are analyzed by Coverity tools. Any files that have duplicate names
or content are not counted.

Expires
The date on which the terms of the license agreement expires.

Use the Import license button to upload a new license.

3.1.1.14. Analysis license files

You can use Coverity Connect to host your Coverity Analysis license files, and associate them with their
respective Coverity Connect projects. This allows Desktop Analysis users to be covered by the analysis
license file specified by their associated Coverity Connect project.

To view or update your analysis license files, navigate to Configuration → System → Analysis License
Files. This page displays your previously uploaded analysis licenses, and allows you to perform the
following tasks:

Default License
Select your default analysis license from a list of your previously uploaded license files. The default
license will be associated with each Coverity Connect project that isn't specifically configured to use
another license.

Import...
Import a new analysis license or Flexnet file. Use the pop-up dialog to choose a file and edit the
license name.

Update...
Upload a license file to replace the selected analysis license.

Delete...
Delete the selected analysis license. If the default license is deleted, the value in the Default License
drop-down will change to "None."

Export
Export the selected analysis license file.

Once you have uploaded your analysis license files, you can associate them with specific projects. To do
so, complete the following steps:

1. Navigate to Configuration → Projects & Streams.

2. Select the relevant project from the list in the left pane.

111

Performing system configurations

3. Click Edit and choose the correct license file from the Analysis License File drop-down menu.

Note

All projects not specifically associated with a license file using these steps will use the default
license.

3.1.1.15. Configuring email notification and delivery

You can enable Coverity Connect to send email from Configuration → System → Email Configuration. You
can now change the default email listed in the From Address field of your email configuration settings to
send view-specific notification emails. Once enabled, users can schedule periodic notifications to help
track issue data in their specific views. See Section 2.4.4, “View-specific email notifications” for more
information.

The administrator account can also be configured to use email, but a valid email address must be used.
You can view or change the default configuration settings for your account by navigating to Configuration
→ Users & Groups.

Email configuration consists of the following options:

Allow Coverity Connect to send email
Select to enable email. This can include name-password information when creating new users. If this
is not enabled, all Coverity Connect email functionality is disabled. Selecting this option is required for
self-service user password recovery.

Suspend email delivery
Select to hold all email notification until this attribute is unselected. All email notifications are queued
and then sent after the attribute is unselected. This feature is useful, for example, if there is a
problem connecting to your mail server, or if your are in the process of changing or updating your
users' email addresses.

Host Name
Specify the SMTP or server name.

Port
Type a port number for the mail server.

No encryption
Email is sent without encryption. This typically uses port 25.

SMTP over SSL
Email is sent by means of SMTP using SSL. This typically uses port 465.

Require STARTTLS
Email is sent using the STARTTLS protocol. This typically uses port 587 or port 25.

Username
Specify a username to authorize name/password on the mail server.

112

Performing system configurations

Password
Specify a password to authorize name/password on the mail server.

From Address
Specify the email address of the sender.

View notification emails use the email address of the View owner as the sender address.

Plain-Text only
If On is selected, Coverity Connect will send emails of Content-Type: text/plain. If set to Off CIM: will
send emails of Content-Type: text/html. The default is Off.

Send Test Email
(Optional) Send an email to test these settings. Provide a destination email address, and click Send.
If there is a failure, you can find more information about it in the cim.log file.

Click Done to finalize your changes and exit the screen.

Note

Before you click Done, ensure that the browser's autofill function has not entered spurious values in
the Username or Password fields.

3.1.1.15.1. Setting up component subscription notification

In order to allow Coverity Connect to send issue notification based on user component subscription,
you must create an external Coverity Connect Web Services script that runs periodically (for example,
nightly), executes the appropriate query for users and their component assignments, and then invokes
the notification API to send out a message in a predetermined format, such as HTML.

To ensure that notification will work, you should be aware of the following in your Web Services
implementation:

• The usernames of all users that subscribe to the component are available in the subscribers
element in the componentDataObj type for Configuration Web Services.

• The notify() method in the Administration Web Services works.

For more information, see the Coverity Connect 2020.12 Web Services API Reference.

3.1.1.15.2. Setting the maximum included defects in notification emails

By default, notification emails triggered by Coverity Connect include a maximum of 100 defects. To
update the maximum number of included defects, add the notification.maximum.rows property to
the cim.properties file, with a value equal to the new maximum.

For example, if you wanted to include a maximum of 50 defects in notification emails, you would add the
following line to cim.properties: notification.maximum.rows=50

3.1.1.15.3. Changing the URL for email notifications

You can change your hostname by specifying the cim.rootcontext property in the
<install_dir_cc>/config/cim.properties file. For example:

113

Performing system configurations

cim.rootcontext=http://<hostname>:<port>

This URL will be used to generate hyperlinks in emails generated by Coverity Connect. If you specify a
hostname that is only available on your company intranet, keep in mind that your users will only be able
to click on these links from within the intranet.

3.1.1.15.4. Configuring Coverity Connect with an SSL-enabled mail server

If the mail server used by Coverity Connect is protected with SSL authentication, then the mail server's
SSL certificate must be added to the Coverity Connect keystore.

1. Obtain the certificate (for example, exportedCert.cer) from the mail server administrator.

2. In the Coverity Connect installation folder, run the following command:

jre/bin/keytool -import -alias "mailserver" -file exportedCert.cer -
keystore jre/lib/security/cacert

3. Restart Coverity Connect.

3.1.1.15.5. Configuring your default email to send view-specific notification emails

If you receive an access denied error message while sending a notification email, you may need to
configure your email configuration settings. You also need to modify your cim.properties file.

To fix this error message, perform the following steps:

1. Navigate to the right-hand menu in Coverity Connect and click Configuration → System → Email
Configuration.

2. Update your cim.properties file (via the command line) with the following setting:

notify.using.configured.from.address.only=true

3.1.1.16. Configuring logging

Coverity Connect automatically logs system event information to the cim.log file. You can increase the
amount of information that Coverity Connect records to this file by enabling additional logging options to
work with Coverity Support on an issue. Coverity recommends that you leave all of the logging options
un-enabled and only enable them by request from Support.

3.1.1.16.1. Coverity Connect log files

If an error occurs, you can examine the following log files to help diagnose the issue.

catalina.out
Log that is used only in case of a catastrophic Tomcat failure, when the file can contain standard
error and output.

cim.log
Basic information about startup, shutdown, and access to Coverity Connect. It also records output
from the cov-manage-im command. Errors during commits are stored in this log. This log is rotated

114

Performing system configurations

daily. The size of the log can grow over time, taking up database space. It is recommended that you
monitor the log size and remove logging information as needed.

cov-admin-db.log
Records cov-admin-db activity, such as a change to a password or the creation of a database
archive file.

cov-archive.log
Records stream export and import actions resulting from the execution of the cov-archive
command.

coverity_service.log
Windows-only log file that records activity pertaining to Coverity Connect as a service. The file can be
present only if Coverity Connect is installed as a service.

catalina.log
Internal information about the embedded Tomcat server. This log is rotated daily.

The log files are written to the <install_dir_cc>/logs directory. Note that most Coverity Connect
system commands log process and environment data.

3.1.1.16.2. Enhanced Usage Logging

Coverity Connect records events related to user activity in usage logs. In the 8.6 release, Coverity
Connect adds additional logging entries focused on user events such as changing user preferences,
viewing source files and issues, creating users, and logging in to Coverity Connect.

Events are recorded as JSON-formatted log entries. Each event is recorded on a single line of the
machine-readable log file. Log files are stored in the Coverity Connect logs directory. Each log file
contains one day’s worth of logging, based on the local time zone. Customers may write programs that
consume these log files.

The system administrator is responsible for deleting log files as needed. Usage logging is always
enabled; there is no provision to turn it off.

The formats of some of the values in the JSON key:value pairs are given in the following table.

Table 3.1.2. Standard value formats

Format name Format Example Notes

datetime RFC-3339 2016-07-08T17:20:39+0000Date and time.

username user@domain maribel@example A domain of “local”
refers to a user whose
repository is Coverity
Connect. Domains other
than “local” are names
of LDAP domains. The
@domain portion may
be dropped; in this case

115

Performing system configurations

Format name Format Example Notes
any customer program
that consumes the log
file should assume the
domain to be @local.

host IP address (IPv4 or IPv6) 192.138.8.145

id nonnegative number 10014 A low-level identifier for
an object.

filename slash-separated absolute
or relative path

path/to/a/file.cpp

Customer programs that consume the log files should ignore the following:

• unparsable lines

• unexpected types

• unexpected fields

Some pairs appear in every entry, as described in the following table. The “Value type” column refers to a
JSON type name.

Table 3.1.3. Standard pairs

Name Value type Value format Value example Semantics

@type string LogInEvent Describes the
semantics of the
entry, including
what name:value
pairs will appear in
it.

timestamp string datetime 2016-07-08T17:20:39+0000The time and date
at which the event
occurred.

userId number id 12 Persistent, unique
user id of the user
executing the
operation.

remoteHost string host IP address of the
remote host from
which the operation
was initiated.

ipv6 boolean false True if remoteHost
is an IPv6 address.

The following events were added to Coverity Connect logging.

116

Performing system configurations

• Creation of a user. All user creations are logged.

Table 3.1.4. UserCreatedEvent

Name Value type Value format Semantics

targetId number id User id of the new user.

userName string The user name of the
new user.

• Deletion of a user. All user deletions, whether local or LDAP in origin, are logged.

Table 3.1.5. UserDeletedEvent

Name Value type Value format Semantics

targetId number id User id of the deleted
user.

• Changing of a user’s password.

Table 3.1.6. UserPasswordChangeEvent

Name Value type Value format Semantics

targetId number id User id of the user
whose password is
being changed.

• Change of a user’s preference.

Table 3.1.7. UserPreferenceChangeEvent

Name Value type Value format Semantics

setting string Name of the user
preference setting that
was changed.

• The user has changed the project scope for subsequent requests.

Table 3.1.8. ProjectScopeChangeEvent

Name Value type Value format Semantics

projectName string Name of the new project
scope

• The user has viewed a source file.

Table 3.1.9. SourceFileViewedEvent

Name Value type Value format Semantics

117

Performing system configurations

filename string filename Name of the file viewed

• The user has viewed an issue in the context of the source file in which it occurs. Note that other views
of issues, such as tables, are not logged.

Table 3.1.10. IssueViewedInSourceEvent

Name Value type Value format Semantics

cid number id Identifier of the issue
that was viewed

filename string filename Name of the file viewed

• A session has been created for a user.

Table 3.1.11. SessionCreatedEvent

Name Value type Value format Semantics

sessionId number id Identifies the session

• A session has been deleted.

Table 3.1.12. SessionDeletedEvent

Name Value type Value format Semantics

sessionId number id Identifies the session

• Attempted user authentication.

Table 3.1.13. LogInEvent

Name Value type Value format Semantics

userName string The user name of the
authenticated user.

protocol string one of “GUI”, “WS”,
“commit”

GUI means use of the
Web UI. WS means
use of Web Services.
Commit means use of
the commit protocol.

logInSucceeded boolean True if login was
successful.

failureReason string If login failed, the reason
for the failure.

authenticationSource string LOCAL or LDAP or
AUTHENTICATION_KEY

How the user
authenticated.

• A new role is associated with an entity (project, stream, triage store, or component), user, or group.

118

Performing system configurations

Table 3.1.14. RoleAssignmentAddEvent

Name Value type Value format Semantics

entityID number id Identifies the project,
stream, triage store or
component.

entityType string one of “project”,
“stream”, “triageStore”,
“component”

Type of entity to which
the role is being added.

groupName string Group to which the roles
are being assigned.

roleAssignment string id Role being assigned.

roleAssignments string comma separated list of
role ids

List of roles being
assigned.

username string User to whom the roles
are assigned.

• A check was done to verify that the current user is not attempting to modify their roles or permissions.

Table 3.1.15. RoleAssignmentCheckSelfOperationEvent

Name Value type Value format Semantics

checkMessage string Explanation about the
outcome of a check
operation.

currentUserId number id User trying the role
assignment change.

roleAssignment number id Role assignment being
checked to forbid self-
changes.

roleAssignments string comma separated list of
role ids

List of roles
assignments being
checked to forbid self-
changes.

success boolean True if check succeeds.

targetUserId number id User for which the role
assignment change is
attempted.

• Global removal of role assignments.

Table 3.1.16. RoleAssignmentGlobalRemoveEvent

Name Value type Value format Semantics

119

Performing system configurations

groupName string Group from which the
role assignment(s) is
being removed.

username string User from whom the
role assignment(s) is
removed.

• Removal of role assignments at the entity level.

Table 3.1.17. RoleAssignmentRemoveEvent

Name Value type Value format Semantics

entityID number id Identifies the project,
stream, triage store or
component.

entityType string Type of entity from
which the role is being
removed.

groupName string Group from which the
entity role assignment(s)
is being removed.

roleAssignment string id Role assignment being
removed.

roleAssignments string comma separated list of
role ids

List of role assignment
being removed.

username string User from whom the role
assignment(s) is(are)
removed.

• A new role was created.

Table 3.1.18. RoleCreateEvent

Name Value type Value format Semantics

role string JSON representation of
the role:

{ "roleId": "roleId",
"name": "name",
"description":
"description",
"permissions":
["permission1",
… ,"permissionN"]}

Role being created.

• An attempt to update a non-editable role was made.

120

Performing system configurations

Table 3.1.19. RoleForbiddenUpdateAttemptEvent

Name Value type Value format Semantics

role string JSON representation of
the role:

{ "roleId": "roleId",
"name": "name",
"description":
"description",
"permissions":
["permission1",
… ,"permissionN"]}

Role on which the
rejected attempt was
made.

• A role was updated.

Table 3.1.20. RoleUpdateEvent

Name Value type Value format Semantics

role string JSON representation of
the role:

{ "roleId": "roleId",
"name": "name",
"description":
"description",
"permissions":
["permission1",
… ,"permissionN"]}

Role being updated: the
state after udpate.

3.1.1.17. Collecting and delivering Use and Compliance data (UDC)

Starting in version 5.4, Coverity Connect collects Use and Compliance data from streams on a regular
basis. If permitted under the terms of your Product License Agreement (PLA), Coverity Connect also
sends a set of this data to Coverity. The PLA sets forth the frequency of data delivery and the types of
stream data that Coverity Connect can send to Coverity.

Data Collection
Coverity Connect collects data from the most recent commit to Coverity Connect streams. If the
Coverity Connect server is down during the collection period, Coverity Connect skips the data
collection process that week and resumes the next week. Data collection takes place on Saturdays.

You can receive notification when Coverity Connect collects data. For details, see Section 3.1.1.17.1,
“Administering Use and Compliance data”.

Data Delivery
Coverity Connect delivers the data to Coverity at an interval that is specified in the PLA. Each PLA
applies to Coverity commands that analyze source code and commit the results to Coverity Connect

121

Performing system configurations

streams, for example, the Coverity Analysis cov-analyze and cov-commit-defects commands.
PLAs can indicate which portion of the data collected from the stream, if any, Coverity Connect will
deliver to Coverity.

The data is contained in a set of CSV files, which Coverity Connect packages into an encrypted file
that it sends to Coverity.

If the PLA allows, you can enable or disable the delivery of data to Coverity. For details, see
Section 3.1.1.17.1, “Administering Use and Compliance data”.

Important

For Coverity Connect to email data to Coverity, you must configure and enable Coverity Connect
email. Setting up Coverity Connect email also allows Coverity Connect to send data collection and
delivery notifications to you. For the setup procedure, see Section 3.1.1.15, “Configuring email
notification and delivery”.

The <install_dir_cc>/logs/cim.log file provides license information for each commit of
analyzed data to Coverity Connect.

3.1.1.17.1. Administering Use and Compliance data

The Use and Compliance Data screen allows you to download data that Coverity Connect sends to
Coverity. In addition, some of the fields on the screen, such as Notification Email, are editable. However,
most are informational only and therefore not editable.

To use the screen:

1. Open the Use and Compliance Data screen.

Navigate to Configuration → System → Usage Data Collection.

2. If you have not done so already, configure and enable email delivery in Coverity Connect.

Navigate to Configuration → System → Email Configuration.

For the setup procedure, see Section 3.1.1.15, “Configuring email notification and delivery”.

3. Determine which tiers of data Coverity Connect can deliver to Coverity:

• Compliance data: Coverity product license compliance data.

• Aggregate Usage data: Basic Coverity Connect usage data, plus Compliance data.

• Detailed data: Additional Coverity Connect usage data, plus Aggregate Usage data and
Compliance data.

Note

The data tiers are fully described in the PLAs.

The following data delivery rules are possible:

122

Performing system configurations

• Mandatory: Coverity Connect delivers a given tier of data to Coverity at the specified interval. This
option is not editable.

• Optional: You can enable or disable the delivery of a given tier of data to Coverity. This option
defaults to Off. You cannot edit the delivery interval.

• Disabled: Coverity Connect will not deliver a given tier of data to Coverity. This option is not
editable.

Note

A more inclusive tier might allow for the delivery of data that is disabled at a less inclusive
tier. For example, if an Aggregate usage data tier is disabled but the Detailed usage data tier
is enabled, Coverity Connect will send Detailed and Aggregate usage data to Coverity.

The following delivery intervals are possible:

• Weekly: Once per week.

• Monthly: Once per month.

• Quarterly: Four times per year.

• Semi-annually: Two times per year.

• Annually: Once per year.

4. Receive notification by email of Coverity Connect data collection and delivery dates.

• Notification Email: Coverity Connect sends data collection notifications to the email address that
you provide in the subscription field.

• To activate notification emails, enter your email address, and click Done.

Upon collection, Coverity Connect will send you one notification per enabled tier (Compliance,
Aggregate Usage, Detailed). All Mandatory tiers are enabled. Administrators can enable Optional
tiers.

The notification contains a link to the Use and Compliance Data screen and information about the
next date on which the data will be sent to Coverity. It also identifies the PLA that applies to the
data.

Note

The field will be uneditable if Coverity Connect email is not enabled and configured. For the
setup procedure, see Section 3.1.1.15, “Configuring email notification and delivery”.

If Coverity Connect email was disabled after an email address was added, the disabled
subscription field will display that email address. To edit the field, you must re-enable
Coverity Connect email.

123

Performing system configurations

5. Download data files that Coverity Connect sends to Coverity:

• Click the Download button to download an unencrypted zip file that contains the CSV files. These
files are generated from the most recent data collection.

This feature allows you to see what Coverity Connect sends to Coverity. On the specified delivery
date, Coverity Connect emails the most current version of this data to Coverity in an encrypted file.

• Click the Download Encrypted button to download an encrypted file that contains CSV files from
the most recent data collection. The encrypted file is used for official Coverity audits.

Note

If data delivery is disabled for all tiers, neither button will appear.

If the buttons are not visible even though delivery is enabled for at least one of the tiers, then
no data files are available for download yet. This scenario can occur when you commit data to
a new Coverity Connect stream. The buttons will appear after the first data collection from the
stream takes place.

3.1.1.18. Enabling Issue Export by URL or Export Defect Handler

Issues can be exported from Coverity Connect to an export defect handler program, a URL, or a JIRA
instance. When any of these three methods is configured, the Export button displays in the Triage pane.
It is recommended that you create a URL to receive and display the exported defect data. However,
you can also create an export-defect-handler program to do the same thing. Instructions for both
configurations are listed below. For information on JIRA configuration, see Section 3.1.1.3, “Integrating
with Jira”.

If multiple issue export methods are configured, then the first one in this order is selected: export-
defect-handler, URL, or JIRA.

Note

The Export button will not be displayed in the Triage pane if JIRA, a URL, or an export defect
handler program is not properly configured.

To export issue data to your URL (recommended method):

1. Edit your cim.properties file to include the following properties:

• export.issue.url=https://<yourURL>/?
mergedDefectId={mergedDefectId}&projectId={projectId}

• export.issue.request.confirmation=true

2. Restart Coverity Connect.

To restart, run <install_dir_cc>/bin/cov-stop-im, then run <install_dir_cc>/bin/
cov-start-im.

124

Performing system configurations

When the user clicks Export, Coverity Connect opens a new window to your configured URL, with
the current defect data displayed. The {mergedDefectId} and {projectId} variables in the
export.issue.url parameter will be replaced with their respective exported values. You can also
include additional variables at the end of the URL, separated by ampersands (&).

For more information on available issue data variables, see the export XML file in Chapter 3.9, Exported
defect output.

To create a program to handle an exported issue XML file:

1. Name your program export-defect-handler.

On non-windows systems, do not use a file extension. On Windows systems, the program must
have an extension, such as .com, .exe, or .bat. It can be any extension, but make sure that the
extension is in the PATHEXT environment variable so the program can run.

2. Copy the program to the following directory:

<install_dir_cc>/bin

3. Restart Coverity Connect.

To restart, run <install_dir_cc>/bin/cov-stop-im, then run <install_dir_cc>/bin/
cov-start-im.

The Export button is enabled when Coverity Connect locates export-defect-handler upon
start-up.

When the user clicks Export, Coverity Connect runs the export-defect-handler program and it
passes the exported XML file name as the first argument. What export-defect-handler writes to
stdout is written to the <install_dir_cc>/logs/cim.log file. If the program returns a non-zero
status, the program writes to stderr which is also written to the <install_dir_cc>/logs/cim.log
file.

For more information, see the export XML file in Chapter 3.9, Exported defect output.

3.1.1.19. Disabling project dashboards in the Coverity Connect interface

By default, Coverity Connect displays graphs and charts that provide an overview of the state of the
issues in the currently selected project. Coverity Connect provides the following Dashboard views:

• The Quality charts graph data on issues found with quality-related checkers.

• The Security charts graph data that is related to security-related checkers.

• The Test Advisor charts graph data that is related to Test Advisor policy violations.

Coverity Connect allows you to remove the display of the dashboards from the Coverity
Connect interface. To remove the dashboards, add the following variables and definitions to the
<install_dir_cc>/config/cim.properties file:

For Quality:

125

Performing system configurations

display.quality=false

For Security:

display.security=false

For Test Advisor:

display.ta=false

After you edit the properties file, restart Coverity Connect.

3.1.1.20. Specifying commit options

You can use the following properties of cim.properties to modify the queue-related behavior for
commits of analysis results to the Coverity Connect database:

• commitWorkQueueCapacity: Specifies the number of commits that can wait in the queue. Minimum
15. Maximum 255. Default 80.

• commitPoolThreads: Specifies the number of concurrent threads to process commits off of the
queue. Minimum 1. Maximum 50. Default 5.

Note

Prior to 6.5.1, commitWorkQueueCapacity had lower Max/Default values, which were: Minimum
15. Maximum 100. Default 20.

3.1.1.21. System Diagnostics

System Diagnostics provides information about the current health of the Coverity Connect server, and
gives access to system logs. The function is available only to administrative users. It is most helpful for
diagnosing performance problems in conjunction with assistance from Coverity Support. In that case,
the command-line tool cov-support may be used to gather support information. See cov-support for
more information.

To access the feature, select Help, then select System Diagnostics.

3.1.1.21.1. System Diagnostics Overview

The System Diagnostics page provides the following features:

• Check the current operating status of the server

The Overview tab displays information and statistics about the current operating condition of the
Coverity Connect server. The data are updated in real time.

• Check the load on the system

The Graph tab provides five different types of graphs, each measuring different processes that
contribute to or indicate system load. The graphs will update in real time if the check box is selected, as
long as the tab remains open.

126

cov_command_ref.pdf#cov-support

Performing system configurations

• Check the status of the cluster

If the Coverity Connect server is a subscriber or coordinator, the Cluster tab displays information about
the cluster status.

• Check user information

The Users tab displays information about several categories of users. If the number of allowed users
has been reached, this tab will help you know which ones to delete.

• Check database information

The Database tab displays information about database size and current query.

• Check configuration files, environment variables, and Java properties

The Config Files tab displays a list of configuration files, environment variables, and Java properties
used by Coverity Connect. The contents of the files can be viewed by clicking on each item, or the files
can be downloaded as a set.

• Check logs and log information

The Logs tab displays a list of log files used by Coverity Connect. The contents of the files can be
viewed or downloaded.

3.1.1.21.2. Custom Database Queries

An administrator can create custom database queries and set them to appear in the Database tab. The
queries are entered into a file as a YAML document, with the format shown in this example:

queries:
 - name: A
 sql: select * from users
 - name: B
 sql: select * from project
 - name: C
 sql: select * from user_group

Note

Do not perform any data definition language (DDL) or data manipulation language (DML)
operations on the content of a Coverity Connect database unless Coverity Support specifically
instructs you to do so. Otherwise, all of your Coverity Connect data may become unusable and
unrecoverable. This restriction applies whether you are using the embedded database or an
external one.

Coverity Support will not assist you in the recovery of data that gets corrupted due to such an
update of the database.

For more information about YAML, a type of markup language, see http://www.yaml.org/start.html.

To create a custom query:

127

http://www.yaml.org/start.html

Performing system configurations

1. Create a text file using the format shown above.

2. Save the text file in the installation directory of Coverity Connect, with the name
customQueries.yml.

3. Select the Query drop-down on the Database tab, and select the name of a custom query.

3.1.1.22. Securing Coverity Connect

There are several features of Coverity Connect that are used to control access to the system and protect
the critical data it contains. Review the following sections to learn how to enhance system security in your
data environment.

Configuring Coverity Connect to use SSL
SSL provides authentication and encryption between clients and servers. See Section 3.1.1.8,
“Configuring Coverity Connect for TLS/SSL”.

Integrating with LDAP servers
LDAP provides centralized user authentication and management. See Section 3.1.1.9.6, “LDAP
security”.

Configuring Coverity Connect to use Kerberos
Kerberos provides authentication among clients and servers in a realm. See Section 3.1.1.10,
“Configuring Coverity Connect to use Kerberos”.

Role-Based Access and Control (RBAC)
RBAC provides detailed control over users and what parts of the Coverity Connect system they have
access to. See Section 3.2.3, “Roles and role based access control”.

To operate Coverity Connect in a safety- and security-conscious manner, please keep the following tips
in mind:

• Make sure physical access is restricted to the machine where Coverity Connect is installed.

• Verify that file permissions for installed files (including Postgres files) are set only to the Coverity
Connect user. Note that the installer correctly applies permissions to all files and directories during the
initial install. It is not recommended that these privileges be modified as it may affect the security of the
application.

• Use standard IT password rules for users, such as long and complex passwords, and requiring that
passwords be changed periodically.

• Note that Coverity Connect will not run under the root or Administrator accounts. The installer requires
a dedicated user account on Unix-like systems and should refuse to install or start if attempted to run
under root. On Windows, by default Coverity Connect uses a Service Account when configured to start
as a service. Although the installer requires Administrator privileges to run, this requirement addresses
installation location privileges only, not the privileges required to run Coverity Connect.

• It is highly recommended that Coverity Connect be configured to use HTTPS using a corporate SSL
certificate authority.

128

Performing system configurations

• Application configuration files ($CIM_HOME/config) contain sensitive information. By default, the
$CIM_HOME/config/pgpass and $CIM_HOME/config/cim.properties are accessible only by the account
running CIM and administrators (root/Administrator).

• When installing Coverity Connect with the embedded DB option, the database listens exclusively to
localhost and does not accept network connections. Only a single application account is configured
for accessing the database. This mechanism should not be subverted by adding additional users. If this
functionality is required, an external database should be used with configuration vetted by a certified
database administrator (DBA).

• For even stronger security, use system-level access logging (i.e. syslogNG, Splunk, etc.) to report
when connections are made to the Coverity Connect account.

• To ensure that configuration files are not modified without notification, customers can use a tripwire
application to watch the configuration directory ($CIM_HOME/config).

• To protect data on the drive from being read by untrusted third parties in the event the drive is moved,
make sure to use hardware which supports the Trusted Computing standard.

3.1.2. Configuring and managing the embedded database

This section describes database maintenance operations for the embedded database in a Coverity
Connect stand-alone deployment.

Note

For additional information specific to managing databases in clustered deployments, see
Section 3.5.2, “Managing multiple database instances”

3.1.2.1. Important notes

• Do not perform any data definition language (DDL) or data manipulation language (DML) operations on
the content of a Coverity Connect database unless Coverity Support specifically instructs you to do so.
Otherwise, all of your Coverity Connect data may become unusable and unrecoverable.

DDL operations include SELECT, UPDATE, INSERT, or DELETE. DML operations include DROP
INDEX, CREATE INDEX, DROP TABLE, CREATE TABLE, CREATE FOREIGN KEY, and others. This
restriction applies whether you are using the embedded database or an external one.

• Coverity Support will not assist you in the recovery of data that gets corrupted due to such an update of
the database.

• Use the backup and restore solution selected by your company to backup and restore an external
PostgreSQL database in a stand-alone deployment.

• Backups can take a long time for large databases. In addition to using the --dir option to create
directory backups, it is recommended that you place the backup file or directory on a device with fast

129

Performing system configurations

read/write speeds (such as a solid state disk). The use of a fast file system is also recommended as it
may affect performance when dealing with a large number of files.

• Restores can also take a long time. Backup files, databases, or directories can be restored more
quickly if you use a faster file system.

3.1.2.2. Maintaining the size of the database

With each commit to Coverity Connect or any additions to the number of Coverity Connect entities (users,
groups, components), the size of your database will grow. The rate that the database grows is based on
many factors including the number of defects and snapshots (which will vary for every organization) and
the number of lines of code in a given project. Because of this, predicting the size of database over time
is extremely difficult, however is it important to both monitor and maintain the size of your database over
time.

The database password is located in the <install_dir_cc>/config/cim.properties file.

3.1.2.2.1. Database optimization

To maintain the size of your embedded database, run the command cov-admin-db optimize. This
command should be scheduled to run nightly on databases that regularly see heavy commit traffic. The
command vacuums and analyzes the database, which compresses it and updates the query planner
data.

For more information, see the cov-admin-db description in the Coverity 2020.12 Command Reference.

3.1.2.2.2. Purge snapshot details

The Purge Snapshot Details feature allows you to schedule a clean-up process in which Coverity
Connect automatically removes snapshot information that you might no longer need if more current
snapshot information is available. This feature is recommended because it allows you to reduce and
maintain the size of a Coverity Connect database. This feature is also recommended instead of deleting
snapshots, if you have been using snapshot deletion in previous versions to save database size.
Snapshot purging is faster, more efficient, and preserves your snapshot and triage history.

This feature is implemented as follows:

• During the installation of Coverity Platform - This installation option sets a preconfigured interval for this
feature. For more information, see the Coverity 2020.12 Installation and Deployment Guide.

• Through the Coverity Connect administration configuration menu - This allows you to customize your
interval settings. These configuration setting override the installation settings if you chose to implement
them. For more information, see the Coverity Platform 2020.12 User and Administrator Guide.

3.1.2.2.2.1. Configuring Purge Snapshot Details

This section describes purging snapshot details throught the Coverity Connect adminstration
configuration menu.

130

Performing system configurations

Note

For considerations when purging snapshots during or after an upgrade, see Section 3.1.2.2.2.2,
“Important upgrade notes”.

Note

It is highly recommended to back up and restore your database after the purge process completes.

To configure snapshot detail purging, define the following:

Scope:
Allows you to designate the purge snapshot details process based on their age (in days) AND
identifies the number of snapshots within a stream that will not be removed. Coverity Connect will
not remove snapshot details for the most recently committed snapshot, so the value to designate the
number of snapshots per stream must be one or greater.

If you chose to enable automatic snapshot details deletion during your Coverity Connect installation
process, the scope is set for snapshots that are older than 120 days and to keep snapshot details for
5 snapshots per stream. These settings can be changed at any time.

Schedule:
Allows you to choose the days and time of day that the snapshot purge process will run. If you chose
to enable automatic purging during your Coverity Connect installation process, the snapshot purging
schedule is set for every day at 5:00 AM. The time value is set in 24-hour notation.

• The purge snapshot details feature removes the following snapshot data (and not the entire snapshot
itself):

• out-of-date source code

• source code symbol references (xrefs)

• function metrics and instances

Because the Purge Snapshot Details feature does not remove the entire snapshot, you can still view
some information for a CID that occurred in a "purged" snapshot. For example, if you view a CID that
is in the FIXED state that belonged to a snapshot that has been cleaned, you can still see some of the
basic information (such as triage states). However, you are not able to see the source code in which
the issue occurred or any function data.

• The snapshot purging process is global to all streams within a given Coverity Connect instance. If
you have an enterprise cluster deployment, the snapshot purging configuration for a given Coverity
Connect instance is not shared with other Coverity Connect instances within the cluster.

• This feature removes rows from the database table. To reclaim disk space, you need to back-up and
restore the database.

• In Coverity Policy Manager, if you have changed the configuration and it needs to fetch the existing
history (and the history includes purged snapshots) of a stream, the following information is not
available (and thus not displayed in Coverity Policy Manager):

131

Performing system configurations

• Code coverage numbers (they will be set to 0)

• Function count

• CCM information

3.1.2.2.2.2. Important upgrade notes

If you have enabled this option during the upgrade process or if you have configured the schedule after
the upgrade, it is important to note that the first time that the clean-up process runs it might take a long to
complete and might result in performance degradation due to the following:

• If your pre-6.5.1 Coverity Connect database contains a large amount of deleted snapshot data.

The clean-up process that is executed by the Purge Snapshot Details feature performs a full search
and removal (garbage-collection) of all of the old and superficial information that was not handled by
snapshot deletion in previous releases. This only occurs the first time the clean-up process is executed.

• If your build and commit processes are scheduled at the same time as the Purge Snapshot Details
process.

While the snapshot purging process is running, commits might be significantly delayed, especially if
some of the commits take a long time to run.

To decrease the time of the clean-up process and to avoid performance degradation, it is highly
recommended to reconfigure the default settings (if set) and schedule "incremental" clean-up processes
separately from your scheduled build/commit process.

The first run should specify a date range of older snapshot data. Subsequent processes should specify
newer date ranges until the process time is manageable.

For example, assume that your pre-6.5.1 database is 1095 days (3 years) old and you do not have any
large commits scheduled to run during the weekend (Friday night through Sunday night):

Note

The values in the following steps are examples and are not suggested values to be used in a real
deployment. If you need help to determine a work-able clean-up schedule based on the size and
age of your database, contact Coverity Support.

1. Set the Removes information from snapshots that are older than number> days to 730 and schedule
the clean-up process to run on Friday night at 23:59.

When the process runs at the scheduled time, Coverity Connect will remove snapshot information that
existed from (day age) 1095 through (day age) 730.

2. After the clean-up process completes, set the Removes information from snapshots that are older than
<number> days to 365.

The clean-up process will, again, run at the scheduled time and will remove the snapshot information
that existed from (current day age) 730 to (current day age) 365.

132

Performing system configurations

3. Continue this process once a week, lowering the Removes information from snapshots that are older
than <number> days number until the setting has reached the level at which you want it set long-term
(the recommended number of days is 120, which is the default).

To ensure that the entire Purge Snapshot Details process is complete, see the cim.log file. Completion
status is displayed as follows:

For the snapshot details purge process:

Starting snapshot details purge for {number} streams
Finished snapshot details purge for {number} snapshots in {number}ms

For the garbage-collection process:

Starting garbage collection batch
Finished garbage collection batch

Note that while garbage collection is running, the above message are continually printed (not just once).
You can identify that the process ends when the "finished" message is not followed by a new "started"
message.

3.1.2.3. Backing up the database

This section describes how to backup the embedded PostgreSQL database in a Coverity Connect stand-
alone deployment. It covers using the Coverity Connect UI or the command line to perform or schedule
the backup.

Note

For information specific to backing up databases in clustered deployments, see Section 3.5.2,
“Managing multiple database instances”

As you would do with any system that contains important data, you should develop a process for regularly
backing-up and restoring the database. The database contains all of the sensitive data for your system,
including source code and defects, so choose an appropriate location when creating copies for back up
purposes.

It is up to you to decide the backup schedule (and this might depend on how large the database is and
how long the backup takes), but it is a good idea to always have a relatively recent backup. For example,
if anything were to go wrong with your system at some point, you will have a successful backup that
you can restore into production. It is also important to make a backup of your database when you make
changes to the system, such as new feature implementation, major system configuration changes, major
tuning changes, upgrades, and so forth.

Once you have a process for regular backups, you should also implement a process for periodically
testing the backups by attempting to restore them to an instance of the Coverity Connect server that

133

Performing system configurations

is the same version the backup was created from. This practice will verify the media reliability and
information integrity in the event restoring a backup is required.

3.1.2.3.1. Important notes

• Commit and backup can now run in parallel. There is no risk to the backup if a commit is in progress
while the backup occurs. If restored, such a backup will show a partial commit, which will be removed
by the next commit to the affected stream.

• Backups work the same whether performed using the Coverity Connect UI or the command line.

• The backup does not store a property that is used by Coverity Connect to retain passwordsset up for
Coverity Connect email or for LDAP or Jira integrations. If you are using any ofthese features, you
should keep a backup of the cim.ldap.key value (in <install_dir>/config/cim.properties)
in an accessible location. Otherwise, you will need to re-enter the passwords if you need to restore a
backup of the database to a different instance of CoverityConnect.

• Any errors are written to cim.log. Within the file, backup statements are denoted by BackupJob.

3.1.2.3.2. Using the Coverity Connect UI

The Coverity Connect Configuration menu provides a menu item for making or scheduling a backup
of the current state of your database. This feature only supports backing up an embedded database.
External database backup is not supported by this feature.

Note

If Coverity Connect is running on a Windows computer as a service, it will not be able to backup to
a drive letter. Drive letters are mapped on a per-user basis and the local service user does not have
the mappings. It can, however, backup to volumes using UNC paths. For example:

\\server\volume\path\to\backup

To make or schedule a database backup in a stand-alone deployment:

1. Before you perform or schedule a backup, enter the directory location in which you want the backup
to be saved. The default directory is:

<install_dir_cc>/backup

When the backup completes, the backup file is saved with the following naming convention:

<date>,<time>.backup.

2. Do one of the following:

• To perform a backup, click the Backup Now button.

• To schedule a backup, choose one or more days and set the time of the backup and click Done.

When the backup is started without any errors, Coverity Connect displays a Success message.

134

Performing system configurations

3.1.2.3.3. Using the command line

You can manually run (or create a script to automatically run) cov-admin-db backup to backup your
database. For more information, see the cov-admin-db description in the Coverity 2020.12 Command
Reference.

To backup the database in a stand-alone deployment:

1. Verify that the Coverity Connect database is running. To check the status of your database, type the
following command:

> cov-im-ctl status

2. Back up your database by entering the cov-admin-db command. For example:

> cov-admin-db backup daily_cim_database_backup

3.1.2.4. Restoring the database

Once you have a process for regular backups, you should also implement a process for periodically
testing the backups by attempting to restore them to an instance of the Coverity Connect server that
is the same version the backup was created from. This practice will verify the media reliability and
information integrity in the event restoring a backup is required.

Note

For information specific to restoring databases in clustered deployments, see Section 3.5.2,
“Managing multiple database instances”

To restore the database in a stand-alone deployment:

Note

Use caution when restoring a database with cov-admin-db, because it deletes data in an existing
database. For more information, see the cov-admin-db description in the Coverity 2020.12
Command Reference and the pg_restore documentation at http://www.postgresql.org/
docs/8.4/static/app-pgrestore.html.

1. Place the embedded database in maintenance mode using the cov-im-ctl command. For
example:

> cov-im-ctl maintenance

2. Use the cov-admin-db command to restore the database from an archive file. For example:

> cov-admin-db restore daily_cim_database_backup

3. Start Coverity Connect using the cov-im-ctl command. For example:

> cov-im-ctl start

3.1.3. Client-side SSL Certificate Management

135

Performing system configurations

3.1.3.1. Overview

Secure Sockets Layer (SSL) is a suite of industry-standard protocols for creating encrypted connections
between servers and applications. It is used in Coverity for a variety of applications. This section focuses
only on clients (such as cov-commit-defects and cov-security-report) of Coverity Connect.

SSL is important because it makes possible encryption and authentication. Encryption allows a client
and a server to communicate across an open network, with the assurance that anyone monitoring the
communication will not be able to understand it. Authentication allows the client to know that it is actually
communicating with whom it expects, and not with an impostor.

The name “SSL” actually refers to an older version of the software. Transport Layer Security (TLS) is the
name of the newer version, but it is also referred to as SSL/TLS, or just SSL.

3.1.3.2. SSL Key Concepts

Certificates
SSL uses digital certificates. Certificates are passed from servers to clients in order to authenticate
the server and create encrypted connections. Certificates are data files that contain information such
as the Subject and Issuer of the certificate.

The Subject identifies the party that proffers the certificate. In effect, “this is who I am.”

The Issuer identifies the party that asserts the veracity of the Subject. In effect, “this is who vouches
for me.”

The certificates are digitally signed, which achieves two goals:

• Makes the certificates attributable: you can confirm whom they come from.

• Makes the certificates non-forgeable: anyone can verify that the contents are exactly as the issuer
intended.

Certificate Authority
A Certificate Authority (CA) is an entity that digitally signs the certificates it issues. When a Certificate
Authority issues a certificate, it is making the public claim that it has investigated the party named in
the certificate’s Subject, and found it to be authentic. When a CA signs a certificate, it puts its own
identifier in the Issuer field.

Self-signed certificates
A self-signed certificate has the same Issuer and Subject. In effect, it says “I vouch for myself.” This
feature implies that a self-signed certificate can act as its own CA certificate in an SSL handshake
(see below).

It can be used to establish encrypted communications between a client and server, but it does not
provide authentication. However, within a secure corporate network, the convenience of self-signed
certificates may outweigh the absence of authentication.

Certificate chain
A certificate chain is a series of one or more certificates returned by the server. Each certificate
has a Subject, “who I am”, and an Issuer, “who vouches for me.” The Issuer of one certificate is the

136

Performing system configurations

Subject of the next certificate in the chain. The chain links the certificate from the server itself (called
the server certificate) back to a certificate issued by the Certificate Authority. A client receives this
certificate chain, and verifies that each certificate vouches for the next one. The final certificate,
called the CA root certificate, is a self-signed certificate. If the client "trusts" the CA root certificate
(explained below), the chain is called a “chain of trust.”

Figure 3.1.3. SSL Certificate Chain

In the figure, each numbered box represents a certificate, with an Issuer (I) and a Subject (S).
Certificate 1 is the Server Certificate. The letters A, B, C, and D represent entities that issue or are
the subject of certificates. Certificates 1, 2, and 3 comprise the certificate chain sent by the server to
the client; certificate 4 is the CA root certificate.

SSL Handshake
To establish a connection, the client contacts the server. Following that, the client and server
exchange messages that verify the server’s identity and set up an encrypted channel. This exchange
is called the "SSL handshake."

The first part of the handshake is to authenticate the server. First, the server sends its certificate
chain, except for the CA root certificate, which the client supplies. The client must construct a verified
“chain of trust” starting with the server certificate and ending with a CA root certificate. The client
application verifies each certificate in the chain. Since the CA root certificate is implicitly trusted by
the client, and that trust flows from the CA root certificate to the server certificate, the client can trust
that the server’s identity is truly what is stated in the server certificate’s subject.

After establishing a chain of trust, the client verifies that the server hostname in the server certificate
Subject field matches the hostname given by the user in the --host option or connection page. This
match must be exact, except for letter case. For example, if cov-commit-defects has --host
foo but the server certificate has foo.example.com in its Subject, the handshake will fail. This step
is called "hostname verification" and is the last step in the authenticating the server.

Note that a server with a self-signed certificate can put anything it wants in the Subject field. Coverity
software therefore does not do hostname verification when accepting self-signed certificates.

Trust Stores
A client application knows it can trust a CA root certificate because it fetches the certificate from a
trusted location within itself or in its environment. These trusted locations store collections of CA root
certificates, and they are called trust stores.

137

Performing system configurations

The browser is a common Coverity Connect client that comes preconfigured with a trust store
containing CA certificates from the largest CA vendors. The browser checks the server's certificate
chain against the certificates in its Trust Store to find one that completes the chain. If a certificate is
found in the trust store that completes the chain, then the client authenticates the server, and an SSL
connection can be established.

3.1.3.3. Server Certificate Use Cases

Server Certificates fall into three categories according to their origin and how they are handled by
Coverity client applications:

1. Self-signed certificates: These certificates are generated by the server administrator. Also, Coverity
Connect is preconfigured by the installer with a self-signed certificate. Coverity client software lets the
user decide whether to trust a self-signed certificate.

Note

Port redirection is not supported with the default self-signed certificate server/base/conf/
server.xml.

2. Well-known Certificate Authority: the client is preconfigured with these CA certificates in the trust store
already.

3. Private Certificate Authority: the administrator has to put the private CA certificate into a trust store that
clients can use. Well-known CAs are inherently less secure than private CAs, because they are well
known. For this reason, many organizations establish private CAs to provide certificates for servers on
their internal networks.

3.1.3.4. Improvements in Certificate Management

Prior to Coverity 8.0 there were various difficulties in managing certificates. Coverity 8.0 solves these
difficulties.

• Few Coverity SSL client applications accept self-signed certificates. Other applications needed to be
provided with certificates in other ways. In Coverity 8.0, all clients can accept self-signed certificates.

• CA root certificate propagation was difficult. Customers with private CAs had to manually propagate CA
root certificates to every SSL client. Now, several features make this task easier.

• There were multiple types of trust stores, and several ways to update each type, which was difficult to
document and manage. Now, most trust stores are in PEM format, facilitating updates.

3.1.3.5. Self-signed certificates and Trust-First-Time SSL

This section is relevant if the Coverity Connect server is configured with self-signed certificates. This is
the default configuration, since the installer generates a self-signed certificate for the server.

Self-signed certificates do not permit the client to authenticate the server, so they are inherently less
secure than CA-signed certificates, which do allow authentication. However, CA-signed certificates
require more administrative overhead than self-signed certificates. With this in mind, Coverity applications

138

Performing system configurations

allow the server to use self-signed certificates for the benefit of customers for whom the additional
overhead does not justify the benefit of authentication of the server.

All Coverity SSL client applications now accept self-signed certificates, provided the user permits it.
(Previous to Coverity 8.0, only cov-commit-defects, cov-run-desktop and cov-manage-
history accepted self-signed certificates.) Coverity’s algorithm for conditionally accepting them,
called Trust First Time (TFT), is designed to minimize the number of times the user is asked to permit
an SSL handshake with self-signed certificates. The algorithm, modeled after that of SSH, has these
characteristics:

• A handshake with a self-signed certificate will fail unless the user permits it to succeed.

• This permission is stored by the client.

• Subsequent handshakes with the same self-signed certificate for the same server host and port
automatically succeed.

• An attempt by the server or an impostor to use a different self-signed certificate is rejected by the client.

TFT has two modes of operating: one for attended applications and one for unattended applications.
It is assumed that the former will always have a user present to be able to accept alerts and answer
questions, while this may not be true of the latter. The attended applications in Coverity 8.0 are all the
GUI applications. All the command-line applications are considered unattended.

TFT is triggered when the server sends a self-signed certificate to the client. If the server’s certificate is
not present in the trust store of self-signed certificates, the application’s response is based on the user’s
intentions with respect to self-signed certificates:

• Attended applications describe the self-signed certificate for the user and ask whether it should be
trusted (i.e., accepted for the handshake) and stored for future handshakes. If the user assents, e.g. by
clicking the OK button, the application completes the handshake and stores the certificate.

• Unattended applications cannot ask the user what to do. Instead they rely on a command-line directive.
A new option, --on-new-cert, specifies what to do. It has two values: “trust” and “distrust”. The
default is “distrust”. (The default behavior previous to Coverity 8.0 was “trust”.)

• “trust” indicates that the application should behave as if the user assented to use of the self-signed
certificate: the handshake is completed and the certificate is stored.

• “distrust” indicates that the application should fail the handshake and not store the certificate.

The old --authenticate-ssl option for cov-commit-defects is a synonym for --on-new-
cert distrust.

If the server sends a different self-signed certificate than in the past, the TFT algorithm detects this and
displays a warning for the user. This is important because it may indicate that the server is an impostor.
In this situation,

• Attended applications ask the user if the stored certificate should be replaced with the new one. If the
user says yes, it stores the new certificate and permits the handshake to succeed.

139

Performing system configurations

• Unattended applications fail.

The trust store for self-signed certificates is a directory under the user’s home directory:

• (Windows) %APPDATA%\Coverity\certs\tft

• (elsewhere) $HOME/.coverity/certs/tft

3.1.3.6. Types of Coverity Trust Stores

This section is relevant to customers whose server certificates are issued by private CAs. In this situation,
the administrator must provide users with CA root certificates, and a way for client applications to use
them.

In order to facilitate use of private CAs, Coverity provides several different trust stores. Generally, trust
stores used by Coverity software are sequences of PEM-formatted certificates. They are in ASCII, which
makes them easy to manipulate.

Installation Trust Store
This file is installed with Coverity client applications. It is called ca-certs.pem and is located in the
certs directory. It contains public CA certificates, and private CA root certificates can be added to
it. If it is not present, Java applications use the CA certificate file cacerts installed with Java. This is
not a PEM file but a Java keystore file with the password changeit.

Extra CA Trust Store
This optional CA certificates file is passed to command-line applications using the -–certs option or
to GUI applications via their Connection pages.

User Trust Store
This file is stored under the user's home directory:

• (Windows) %APPDATA%\Coverity\certs\ca\ca-certs.pem

• (Unix/Linux) $HOME/.coverity/certs/ca/ca-certs.pem

Operating System Trust Store
Some operating systems (Windows, Linux, Mac OS) provide mechanisms for storing CA root
certificates.

Windows: Active Directory administrators can remotely manage the user’s Root Certificate Store, or
users can update the store themselves using a wizard, the certmgr.msc executable.

Additional References:

• Active Directory Certificate Services

• Active Directory Certificate Services Step-by-Step Guide

Mac OS X: Certificates are stored in the user and system keychains. The user uses the Keychain
graphical application or the security command to add certificates. The Keychain API may also be
used.

140

https://technet.microsoft.com/en-ca/windowsserver/dd448615.aspx
https://technet.microsoft.com/en-us/library/cc772393(v=ws.10).aspx

Performing system configurations

Additional References:

• Keychain Access: Add certificates to a keychain

Unix/Linux: certificates are stored in /etc/ssl/certs/ca_certificates.crt, a PEM-format file. The
administrative procedures for updating certificates vary by OS brand, but they all require root
permission. Trust stores can be updated remotely using scripting or SSH.

Additional References:

• OpenSSL Cookbook

3.1.3.7. Procedures for propagating CA certificates

These procedures are needed for propagating private CA root certificates. Guidelines are presented
below depending on network environment.

On Windows, use Active Directory
By storing a certificate in AD, a network administrator can push the certificate to users’ Root
Certificate Store. See your AD documentation for information on how to do this.

On Unix/Linux, use the OS trust store
Using remote administration software such as Puppet, append CA certificates to /etc/ssl/certs/
ca-certificates.crt, a PEM-formatted file.

Share a file via shared storage
If your client executables are provided via a shared volume, consider putting the CA certificates in the
Installation trust store.

Otherwise, consider putting the CA certificates in shared storage and referring to them as the Extra
CA trust store.

Store a certificate file in your codebase
It can be used as an Extra CA trust store or copied to the User trust store.

Propagate using email
If you email a PEM-format certificate file as an attachment with an extension of .cer, a Windows
user can add it to their Root certificate store by double-clicking on it.

Similarly, a Macintosh user can add the certificate to their keychain.

If your Unix/Linux users have root access, they can append the file to their OS trust store file.

Otherwise, the attachment can be put in the User trust store.

3.1.3.8. Obtaining the CA's certificate

You can obtain the CA's certificate from the .pem file on the server.

To obtain the certificate, on the Coverity Connect host, use keytool to export the CA's certificate in
PEM format (-rfc) to a file. For example, where the CA’s certificate’s alias is “root” in the CC keystore:

141

https://support.apple.com/kb/PH20129?
https://www.feistyduck.com/books/openssl-cookbook/

Performing system configurations

<CC_host>$ <CC_install_dir>/jre/bin/keytool \
-keystore <CC_install_dir>/server/base/conf/keystore.jks -storepass changeit \
-exportcert -rfc -alias root -file root-CA-cert.pem
Certificate stored in file root-CA-cert.pem

142

Chapter 3.2. Managing users, groups, and roles

Table of Contents
3.2.1. Managing users .. 143
3.2.2. Managing groups ... 152
3.2.3. Roles and role based access control ... 157

3.2.1. Managing users

You manage users in Configuration → Users & Groups. If your user role has permission to manage users
and groups, you can add, delete, copy, import, and edit users. When adding and editing a user, you can
assign the user to a group and set one or more roles for the user.

Built-in users

Coverity Connect automatically creates the following users during the installation process:

• The admin user is the overall administrator for the system. This user cannot be deleted. Also, this
user is outside of the scope of the RBAC feature.

• The reporter user is a specialized process (as opposed to an actual person) in the Coverity
Connect system that collects nightly trend and metrics data.

The reporter is assigned the System Report Generator role to streamline the trend data collection
process. By default, the role assignment is global, meaning that the reporter collects data for
all components, projects, and streams on your system. To change this default behavior, see
Section 3.2.1.5, “Limiting the scope of data collection”.

3.2.1.1. Setting up a local or LDAP user

When a user is created, it is automatically added to the Users group. This built-in group has predefined
access control rules that allow the user to perform certain tasks, such as signing into Coverity Connect.
After the user is created, you can assign other permissions through the Roles tab.

Note

Compare to Section 3.2.1.4, “Importing users”

To set up a new user:

1. Navigate to Configuration → Users & Groups.

2. Click Add to open the edit fields for the new user.

3. Specify the user properties.

For guidance with this step, see Section 3.2.1.2, “Editing a local or LDAP user”.

4. Click Create to save your changes and exit.

143

Managing users, groups, and roles

Note

Values for the Coverity Connect username field are stored in lower case.

3.2.1.2. Editing a local or LDAP user

After creating a user, you can edit its properties.

To edit a user:

1. Navigate to Configuration → Users & Groups.

2. Select the user to edit. In User Details, click Edit.

3. Edit the user properties.

• Username: Required identifier for the users.

New user names cannot match any existing user in the system.

Note

If an existing user name is changed, then any authentication keys that were generated for it
will need to be regenerated using cov-manage-im.

• First Name: Optional entry for the first name of the user.

• Last Name: Optional entry for the last name of the user.

• Email: Optional e-mail address of between 6 and 256 characters. The e-mail address is required
for Notification.

• Password: Required entry of between 6 and 32 characters.

• Confirm Password: Required entry that must match the password entry.

• Account Type: Required user account type (Local or LDAP).

All information about local users is stored in the Coverity Connect database. Information about
LDAP users is stored both in the Coverity Connect database and an LDAP server, with the
exception of passwords.

As an administrator, you can control which types of user accounts are allowed to access Coverity
Connect by disabling various authentication mechanisms through the Configuration → System →
Authentication and Sign In screen.

You can change the Type at any time by editing the user.

LDAP Users

If you change an LDAP user to a local user, all LDAP groups are removed.

144

Managing users, groups, and roles

After you add an LDAP user and apply your changes, the user is automatically synchronized
with the LDAP server. For information about manually synchronizing users with LDAP
groups, see Refreshing LDAP group membership.

You cannot change the user name, domain, first name, last name, email, or password of an
LDAP user because this information is stored on the LDAP server.

You can change the Account Type from LDAP to Local (or vice versa).

To email the new user an account notification that contains a Coverity Connect URL, name, and
sign-in information, select Email sign-in instructions once you apply.

Requirement

You can only send email sign-in instructions if you have configured email in Coverity
Connect. The check box will be disabled if email is not configured.

• Locale: Required UI display language for the particular user. You can select from the following:

• English (United States) - default

• Japanese (Japan)

The language setting will take effect the next time the user signs in.

Click OK to close the Edit dialog.

4. If necessary, in the Group Memberships tab, assign the user to an additional user group. For
guidance, see Section 3.2.1.2.1, “Assigning a user to a group”.

By default, all users belong to the Users group.

5. If necessary, in the Roles tab, change the role settings for the user at the global, project, stream, or
component level.

For guidance with this task, see Section 3.2.1.2.2, “Managing roles for a user”. Note that it is
typical to reserve role assignment at the user level for special cases in which role assignment at a
group level is not feasible or where you need to override a group-level role (see Section 3.2.1.2.1,
“Assigning a user to a group”). For details about roles, see Section 3.2.3.1.3, “Understanding how
Coverity Connect applies roles”.

6. Click Done to save your changes and exit.

3.2.1.2.1. Assigning a user to a group

A user can belong to one or more groups. Groups are an efficient way of assigning roles to a user.
The user inherits the roles of the groups to which it belongs, unless overridden at the user level (see
Section 3.2.3, “Roles and role based access control”).

145

Managing users, groups, and roles

Note

If you want to assign multiple users to a group at once, you can follow the procedure in
Section 3.2.2.2.1, “Assigning one or more users to a group”.

To assign a user to a group:

1. Select a user to display the Group Memberships tab for the user.

2. Click Edit, and start typing in Select group to add. Select one or more groups from the drop-down
menu in the tab.

For example, you might select the Administrators group. You might need to scroll down the list.

3. Click OK to save your changes and exit.

Removing a user from a group

To remove a user from a group, select the group, and click Remove.

3.2.1.2.2. Managing roles for a user

When you select a user from the Users & Groups menu, the Roles tab will display any roles that are
currently assigned to the user at each level (global, component, project, stream, and triage store). You
can use this tab to view role assignments at all levels, or add, edit, and remove roles for the selected user
at the global level.

Note

You can edit roles at a lower level (by project, stream, component map, or triage store) from the
respective Configuration menu.

For information about roles, including role and permission definitions, see Section 3.2.3, “Roles and role
based access control”.

To manage a role for a user:

1. Select a user from the list of users.

2. Click the Roles tab for the user.

a. In the Roles tab, ensure that you've selected the Global level from the Show pull-down menu.

b. Click Edit in this tab.

c. Assign one or more roles to the user.

3. Click OK to save your changes and exit.

Removing a role from a user:

To remove a role assignment from a user, click Edit in the Roles tab, and de-select the role that
you want to remove. Then apply your changes.

146

Managing users, groups, and roles

3.2.1.2.3. Locking and unlocking a user account

You can lock or unlock a user account. Users that are locked out of Coverity Connect can regain
access through a password recovery email, if you have enabled password recovery (for details, see
Section 3.1.1.7, “Configuring sign-in settings”) and have configured email.

Note

Compare to Section 3.2.1.2.5, “Disabling a user account”.

To lock or unlock a user account:

1. Select a user from the user list.

2. In User Details, click Edit.

3. Under Additional Actions, select Lock account to lock a user account.

Note

If a user has been locked out automatically due to a timeout interval, you need to deselect Lock
account to re-enable access.

3.2.1.2.4. Unlocking all temporarily locked user accounts

You can unlock all temporarily locked user accounts. A user who is temporarily locked out of an account
as a result of repeated unsuccessful login attempts can simply wait 30 minutes for the account to
be automatically unlocked. As an alternative, you can immediately unlock all such users. Unlocking
temporarily locked user accounts does not affect accounts that you have explicitly locked.

To unlock all temporarily locked user accounts:

1. Navigate to Configuration → System → Authentication and Sign In → Sign In Log.

2. Click Unlock All.

3.2.1.2.5. Disabling a user account

You can disable a user account to prevent that user from gaining access to Coverity Connect.

Note

Compare to Section 3.2.1.2.3, “Locking and unlocking a user account”.

To disable a user account:

1. Select a user from the user list.

2. In User Details, click Edit.

3. Under Additional Actions, select Disable account.

147

Managing users, groups, and roles

Users that are disabled cannot log in to the system, cannot use password recovery, and cannot
become owners of new issues. An administrator must unset this option to reestablish access (or
create a new user account).

To disable users who have been disabled or deleted in LDAP

If a user has been deleted from your LDAP server, you need to change the user account type to Local
before you can disable the user account. To change the account type, see Section 3.2.1.2, “Editing a
local or LDAP user”.

You can also disable users who have been disabled in LDAP. The following steps will result in disabling
all users matching the specified filter, at midnight.

1. Go to Configuration > System > User Search Settings.

2. In the Disabled user filter field specify an LDAP filter.

The filter depends on the LDAP sever implementation. For example, it might be
UserAccountControl:1.2.840.113556.1.4.803:=2 for Active Directory server.

To change the default schedule from 12am every night, you can add the
ldap.users.disabled.sync.cron.schedule property to the cim.properties file. This property
accepts a cron string in the same format as cron schedules in the policy manager. For example, the
following string disables users every night at 3 a.m.: ldap.users.disabled.sync.cron.schedule=
0 0 3 * * *

3.2.1.3. Deleting a user

To delete a user:

1. Navigate to Configuration → Users & Groups.

2. Select each user to delete.

3. Click Delete.

Click Delete in the confirmation window.

4. Click Done to save your changes and exit.

Note

When you delete a user who is not associated with an issue, snapshot, or triage record, that user
is removed from the system. On the other hand, a deleted user that is associated with an issue,
snapshot, or triage record is, by default, merely disabled and removed from the Users & Groups
list. If you want all users removed from the system upon deletion, then you must add the following
property to the $CIM_HOME/config/cim.properties file:

retain.user_information=false

148

Managing users, groups, and roles

You must restart Coverity Connect for this change to take effect. Setting this property does not
affect users who were deleted prior to the setting of the property. Such users will continue to exist in
a disabled state.

3.2.1.4. Importing users

Instead of setting up users one at time, you can import multiple local or LDAP users at once.

1. Navigate to Configuration → Users & Groups.

2. Click Import to open the Import Users window.

3. To import local users, you can either:

• Upload a comma-separated CSV file from a local directory.

• Import users from an LDAP server.

An entry has the following structure:

User Name, First Name, Last Name, Email, Group1; Group2

Notice the semi-colon (rather than a comma) between the group names.

Note

The format for the exported users.csv file (generated by clicking the Export button) contains
two additional fields:

• A boolean value between the Email value and Group values specifies whether or not the
user is built-in.

• The final field in the exported file (after the group names) specifies the date of the user's last
login, or, if the user has never logged in, the time of the export.

These fields are for informational purposes only, and must not be specified when importing.
Also note that values in the exported file are escaped by quotation marks (""), but these should
not be included when importing.

4. If you opt to import users from an LDAP server:

a. If multiple domains appear in a drop-down list, select the correct domain. Click Next.

b. Select one or more groups to import, and then click Next.

c. Confirm the list of users by clicking Next.

Note

This process can take a few minutes to complete. Once complete, a table with attributes of
the imported user will appear.

149

Managing users, groups, and roles

d. If you receive an error notification, click Back and fix these problems, or click Next to continue
the import without these users.

e. Select any of the following options:

• Lock accounts (users must use recover password to unlock)

• Disable accounts (users cannot sign in)

• Email sign in instructions to users after adding

• Refresh LDAP group membership nightly

Note

For the Lock accounts and Email sign in instructions to be enabled, it is necessary for
Coverity Connect e-mail to be enabled. For details, see Section 3.1.1.15, “Configuring
email notification and delivery”.

f. Click Finish to complete the process.

g. Click Done to save your changes and exit.

5. Click Done to save your changes and exit.

3.2.1.5. Limiting the scope of data collection

You can change the scope of the data that the reporter [p. 143] collects by disabling its access to that
data for any of the following items:

• Project

• Stream

• Component

For example, you might want to omit data collection from certain streams so that the issue data contained
in those streams are not added to the overall issue trend data.

To limit the scope of data collection on a project or stream:

1. Navigate to the Configuration → Projects & Streams menu.

2. Select the appropriate project or stream from the file tree on the left.

3. Select the reporter user from the Roles tab and click Edit. If reporter isn't listed, click Add and type it
in the Group/User field.

4. Assign the No Access permission to the user.

150

Managing users, groups, and roles

Note

The No Access permission will only be assigned to the reporter in the context of this specific
project or stream.

To limit the scope of data collection on a component:

1. Navigate to the Configuration → Component Maps menu.

2. Select the appropriate component under Component Maps.

3. On the Components tab, under Group/User, select the reporter user and click Edit. If reporter isn't
listed, click Add and type it in the Group/User field.

4. Assign the No Access permission to the user. This permission will only be assigned to the reporter in
the context of this specific component.

Note

Streams created through the Coverity Desktop plug-in automatically have the User Group - No
Access permission assigned to them by default. This will cause data collection from these streams
to be omitted. To enable data collection for a stream created by the Coverity Desktop plug-in,
remove the User Group from the stream. Note that doing so effectively makes the stream visible to
others.

3.2.1.6. Working with authentication keys

Coverity Connect users can create authentication keys and use them to securely connect to Coverity
Connect without specifying a password.

3.2.1.6.1. Creating keys

Users can create authentication keys from the Coverity Connect UI or from the command line.

To create a key from the UI:

1. After logging in to Coverity Connect, select <User> → Authentication Keys...

The "Manage My Authentication Keys" page displays.

2. In the New Authentication Key field, enter a name for the key.

3. Click Create and Download.

To create a key from the command line:

• Create the key using the cov-manage-im command in auth-key mode. For example:

cov-manage-im --host <host_name> --port <port_number> \
 --user <user_name> --password <password> --mode auth-key \
 --create --output-file <keyfile>

151

Managing users, groups, and roles

3.2.1.6.2. Using keys

After creating an authentication key, cov-manage-im, cov-commit-defects, and cov-run-
desktop will accept the --auth-key-file option for connecting to Coverity Connect, rather than
requiring --password.

See the command reference for cov-manage-im , cov-commit-defects , and cov-run-
desktop for more information.

3.2.1.6.3. Viewing and revoking keys

You can view a list of the active authentication keys that you created, and you can revoke one or more of
them. To do so, log in to Coverity Connect and select <User> → Authentication Keys...

3.2.1.6.4. Use cases

There are three main scenarios in which a user should consider using an authentication key:

Desktop Analysis with the cov-run-desktop command
When performing desktop analysis, cov-run-desktop needs to communicate with Coverity
Connect (unless in disconnected mode). Using an authentication key is a secure alternative to typing
a password on every analysis.

Certain requests when password-based authentication is disabled
When RPA is enabled, password-based authentication can be optionally disabled (for details, see
Section 3.1.1.12.1, “RPA key concepts”. if password-based authentication is disabled, you must use
authentication keys (instead of password-based authentication) for SOAP and REST Web services
requests and for cov-commit-defects requests.

Periodic commits of new analysis snapshots with cov-commit-defects
A user or administrator might use a script to run periodic analyses and commits. Using an
authentication key is more secure than having the Coverity Connect password hard-coded directly in
the script.

Authentication keys can be used for all administrative actions that can be performed by means of a web
service. For example, authentication keys can be used for scripts that create or update projects and
streams, or create triage stores.

Note

When an authentication key is created by cov-manage-im, its file permissions will only allow the
user who created the key file to read it. If the file permissions are changed to allow other users to
read the file, the cov-* tools will no longer accept the key.

3.2.2. Managing groups

Use Configuration → Users & Groups to manage groups. All users must belong to at least one group.

152

cov_command_ref.pdf#auth_key_mode_im
cov_command_ref.pdf#cov-commit-defects
cov_command_ref.pdf#cov-run-desktop
cov_command_ref.pdf#cov-run-desktop

Managing users, groups, and roles

If your role has the Manage users and groups permission, you can add, copy, edit, delete, and import
groups. When adding and editing, you can assign or remove users from the group and set the roles that
apply to the group at any level of the system (global, component, project, stream).

3.2.2.1. Built-in groups

By default, built-in groups are assigned specific roles that allow each group to perform functions:

Administrators
By default, members of this group have the Server Admin role at the Global level, which provides
them system-wide access to Coverity Connect.

Configuration Managers
By default, members of this group have the Project Admin and Project Owner roles, which allow them
to configure projects, streams, components, and attributes.

Users
By default, members of this group have Committer and Developer roles at the Global level, and they
have the Developer role at the Component level. Every user that is created is, by default, a member
of this group.

Note that you can customize access control permissions by changing roles for these and other groups.
For more information, see Section 3.2.2.2.2, “Managing roles for a group”. For additional details about
these roles, see Figure 3.2.1, “Built-in roles”.

Note

For user administration and system management tasks, rather than using the default Administrator
account, it is recommended that an alternative administrator account be created. Follow the
procedures in Chapter 3.2, Managing users, groups, and roles to create a new user account and
assign it to the Administrators group. That user account will have all of the permissions of the
Server Admin role.

3.2.2.2. Setting up a group

Additional groups are useful if you need to assign specialized roles or LDAP properties to a group of
users.

Note

You can also import groups from external files or an LDAP server. See Section 3.2.2.4, “Importing
LDAP groups”.

To add a new group:

1. Select Configuration → Users & Groups.

2. In the Groups tab, click Add to create a new group.

3. Specify a unique Name for the group.

153

Managing users, groups, and roles

4. Specify one of the following group types:

• Local

• LDAP

Select the LDAP domain, if available. The LDAP group must exist on the LDAP server before you
add it.

5. Click Create.

6. If you selected LDAP for the Group Type, click Edit in Group Details to select the following options:

Refreshing LDAP group membership

Refresh LDAP group membership nightly
This option synchronizes members of the LDAP group with users on the system on a nightly
basis. Users are not deleted or disabled, and no user attributes are refreshed. The nightly
synchronization time occurs at 2 AM (02:00:00), and this time cannot be changed.

Refresh LDAP group membership now
This option synchronizes members of the LDAP group with users on the system immediately
after you apply this setting to the group membership.

In both cases, new group members are added as users, and users who are no longer members of
the group are removed from the group.

7. Use the Members tab to assign users to the new group.

For guidance, see Section 3.2.2.2.1, “Assigning one or more users to a group”.

8. Use the Roles tab to assign one or more roles to the group.

For guidance, see Section 3.2.2.2.2, “Managing roles for a group”

9. Select Done.

3.2.2.2.1. Assigning one or more users to a group

When you create or edit a group, you can assign users to it.

To assign one or more users to a group:

1. In the Groups tab, select a group.

2. In the Members tab, click Edit.

3. Start typing in Select user to add, and select a user from the drop-down list. Repeat to add more
users.

4. Click OK to save your changes.

154

Managing users, groups, and roles

Removing a user from a group

To remove a the user from a group, click Edit, select the user, and click Remove.

It is not possible to remove users from the Users group.

3.2.2.2.2. Managing roles for a group

When you select a group from the Users & Groups menu, the Roles tab will display any roles that are
currently assigned to the group at each level (global, component, project, stream, and triage store). You
can use this tab to view role assignments at all levels, or add, edit, and remove roles for the selected
group at the global level.

Note

You can edit roles at a lower level (by project, stream, component map, or triage store) from the
respective Configuration menu.

For information about roles, including role and permission definitions, see Section 3.2.3, “Roles and role
based access control”.

To manage a role for a group:

1. Select a group from the list of groups.

2. Click the Roles tab for the group.

a. In the Roles tab, ensure that you've selected the Global level from the Show pull-down menu.

b. Select Global in the list and click Edit in this tab.

c. Assign one or more roles to the group.

3. Click OK to save your changes.

Removing a role from a group:

To remove a role assignment from a group, click Edit in the Roles tab, and deselect the role that
you want to remove. Then apply your changes.

3.2.2.3. Editing a group

To edit a group:

1. Select Configuration → Users & Groups.

2. In the Groups tab, select the group to edit.

3. In the Group Details tab, click Edit.

For guidance with this task, see the information on editable group fields in Section 3.2.2.2, “Setting
up a group”.

155

Managing users, groups, and roles

You cannot change the group name for an LDAP group.

4. Click OK to save your changes.

3.2.2.4. Importing LDAP groups

You can import one or more LDAP groups at once.

Note

The Group Filter can now be applied to either top-level and nested groups, or just top-level groups.
By default it applies to both.

To import only top-level groups, go to Configuration > System > LDAP Configuration > ldap and
uncheck Retrieve group members from nested groups.

1. Navigate to Configuration → Users & Groups.

2. Click Import to open the Import LDAP Groups window.

3. Import one or more groups:

a. If multiple domains appear in a drop-down list, select the correct domain, and then click Next.

If not, proceed to the next step.

b. Select one or more groups to import, and then click Next.

c. Confirm the list of groups by clicking Next. A table that lists all of your group memberships
should appear.

d. If you receive an error notification, click Back and fix these problems, or click Next to continue
the import without these groups.

e. Select any of the following options:

• Lock accounts (users must use recover password to unlock)

• Disable accounts (users cannot sign in)

• Email sign in instructions to users after adding

• Refresh LDAP group membership nightly

Note

For the Lock accounts and Email sign in instructions to be enabled, it is necessary for
Coverity Connect e-mail to be enabled. For details, see Section 3.1.1.15, “Configuring
email notification and delivery”.

f. Click Finish.

156

Managing users, groups, and roles

g. Click Done.

4. Click Done.

3.2.2.5. Deleting a group

To delete a group:

1. Select Configuration → Users & Groups.

2. On the Groups tab, select each group to delete.

3. Click Delete. In the confirmation dialog, click Delete again.

3.2.3. Roles and role based access control

Role-based access control (RBAC) is a feature that restricts system access to authorized Coverity
Connect users. Within Coverity Connect, roles represent various job functions that can be assigned to
users or groups.

Roles consist of permissions that grant or restrict actions to certain operations or to certain areas of the
user interface. Users and groups are not assigned permissions directly; rather, they acquire them through
their role (or roles).

Managing individual user access rights becomes a matter of simply assigning the appropriate roles to the
user or group. This also simplifies common operations, such as accounting for user turnover or changing
a user's department or job function.

This chapter provides the following information:

• Key concepts, including role and permission definitions, role assignments, and role creation.

• Use cases that give examples of the use of roles in Coverity Connect.

3.2.3.1. Key concepts

The following sections provide descriptions of RBAC-related topics. They also provide definitions of
permission rules and list the available roles in Coverity Connect and the role permissions that they
possess.

3.2.3.1.1. Coverity Connect Permissions

Permissions are rules that can be added to a role to define access rights for a user. Generally, similar
types of rules are assigned to a role based on a person's responsibilities within the organization.

157

Managing users, groups, and roles

Global permissions
System permissions are access rules that are intended primarily for administrative tasks, such as
Coverity Connect server configuration, user and group creation and management, and so forth. The
global permissions are described in the following table:

Permission Description

Log in to Coverity Connect Allows the user to sign in to Coverity Connect
through the web interface, assuming that the user
has proper authentication credentials.

Access web services Allows the user to access the Coverity Connect
Web services API.

Manage server parameters Allows the user to access the Configuration →
System menu and to edit the Coverity Connect
server system settings.

Manage users and groups Allows the user to access the Configuration
→ Users & Groups menu, and to create and
manage user and group settings.

Manage role definitions Allows the user to access the Configuration
→ Roles menu and to create roles and assign
permissions.

Manage attribute definitions Allows the user to access the Configuration →
Attributes menu and to create, configure, and
delete Coverity Connect triage attributes and
their values.

Manage component maps Allows the user to access the Configuration →
Component Maps menu. The user can create
component maps, add components, add RBAC
access rules, and so forth.

View global dashboard Allows the user to access the dashboard for the
current project for Quality, Security, and Test
Advisor (if a valid Test Advisor license exists)
results. The dashboards shows graphs and
charts that provide an overview of status of all of
the project.

Create projects Allows the user to access the Configuration →
Projects & Streams menu to create new projects
and streams in the system.

Create triage stores Allows the user to create new triage stores in the
system by accessing the Configuration → Triage
Stores menu.

View Policy Manager Allows the user to access Coverity Policy
Manager to view and create charts that are used
for monitoring and reporting on the status of the
code base. Note that Coverity Policy Manager

158

Managing users, groups, and roles

Permission Description
might not be enabled by your Coverity Connect
license.

Manage Hierarchies Allows the user to configure Coverity Policy
Manager Hierarchies. Note that Coverity Policy
Manager might not be enabled by your Coverity
Connect license.

Project permissions
Project permissions are access control rules that are applied at the project level. Users with project
permissions can access items and features in the Projects screen. For example, your organization
more than likely has project leads or project owners. Such users are typically assigned roles that
contain these permissions. After the roles are assigned, users with project permissions can then
assign roles or regulate access in the project to the developers that are assigned to it. The project
permissions are described in the following table:

Permission Description

Manage projects Allows the user to edit and manage the project,
including updating the name and description,
assigning roles to users in the project, linking
streams, and setting trend data calculation
formulas.

Create streams Allows the user to create new streams within the
project.

View project history and dashboard Allows the user to view the project trends and
reports.

Stream permissions
Stream permissions are access control rules that are applied to users at the stream level. Stream
permissions are intended for users (typically, developers) who are examining and triaging issues in
the code. The stream permissions are described in the following table:

Permission Description

Manage streams Allows the user edit and manage the stream,
including updating the name and description,
assigning roles for users in the stream, and so
forth.

View issues Allows to the user to view, but not triage, issues
that occur in the stream to which the user is
assigned.

View source Allows the user to view issue occurrences in the
Source browser.

Commit to stream Allows the user to commit analysis results to
Coverity Connect using the cov-commit-
defects command.

159

Managing users, groups, and roles

Permission Description

Preview commits Allows the user to preview commits to streams
using the --preview-report option with the
cov-commit-defects command.

Triage issues Allows the user to change and update triage
states for issues that exist in the stream. Users
who do not possess this permission cannot
access the triage form in the Source tab.

Classify issues Allows the user to change and update
classification states for issues that exist in a
stream that is associated with a triage store.
Users who do not possess this permission cannot
access the triage form in the Source tab.

Triage Store permissions
Triage Store permissions are access control rules that are applied to users at the triage store level.
Triage store permissions are intended for users (typically, developers) who are examining and
triaging issues in the code. The triage store permissions are described in the following table:

Permission Description

Manage triage stores Allows the user edit and manage the triage store,
including updating the name and description, and
branching triage stores, associated streams with
a triage store, and assigning roles for groups and
users in the triage store.

Classify issues Allows the user to change and update
classification states for issues that exist in a
stream that is associated with a triage store.
Users who do not possess this permission cannot
access the triage form in the Source tab.

Triage issues Allows the user to change and update triage
states for issues that exist in a stream that is
associated with a triage store. Users who do not
possess this permission cannot access the triage
form in the Source tab.

View issues Allows to the user to view, but not triage, issues
that occur in the stream to which the user is
assigned.

Component permissions
Component permissions are access control rules that are applied to users at the component level.
Component permissions are intended for users (typically, developers) who are examining and
triaging issues in the code. The component permissions are described in the following table:

160

Managing users, groups, and roles

Permission Description

View source Allows the user to view issue occurrences in the
Source browser.

View issues Allows the user to view, but not triage, issues that
occur in the stream to which the user is assigned.

Triage issues Allows the user to change and update triage
states for issues that exist in a stream that is
associated with a triage store. Users who do not
possess this permission cannot access the triage
form in the Source tab.

3.2.3.1.2. Coverity Connect roles

Roles are entities that contain any number of permissions to grant or restrict access to a specific "type"
of Coverity Connect user. For example, an administrator will most likely only need to access certain
parts of Coverity Connect for configuring the system, while a developer does not need to access system
configuration screens, but does need to view and triage issues.

Note

The System Report Generator is a specialized role that is specifically assigned to a unique type
of user in Coverity Connect, the reporter user. The reporter is a process (rather than an a person)
that is automatically created by Coverity Connect. For details about the role of this user, see Built-in
users.

Roles can be assigned to both users and groups. For more information, see Section 3.2.3.1.3,
“Understanding how Coverity Connect applies roles”.

Coverity Connect has the following types of roles:

• Built-in roles. For details, see Section 3.2.3.1.2.1, “Managing built-in roles”.

• Custom roles. For details, see Section 3.2.3.1.2.3, “Creating new roles”.

3.2.3.1.2.1. Managing built-in roles

Built-in roles are pre-defined roles that you cannot edit or delete. You can, however, copy a built-in role
and edit the name and permissions of the copy.

The following table lists the permissions that are assigned for each built-in role:

161

Managing users, groups, and roles

Figure 3.2.1. Built-in roles

Permissions marked with an asterisk (*) also belong to the component level. For more information, see
Section 3.2.3.1.3, “Understanding how Coverity Connect applies roles”.

Permissions marked with two asterisks (**) also belong to the component level and triage store levels.
For more information, see Section 3.2.3.1.3, “Understanding how Coverity Connect applies roles”.

162

Managing users, groups, and roles

Note

As of release 2018.06 the new permission category, Classify Issues, is available by default to all
users. See Stream permissions.

To copy and edit a built-in role:

1. Select the name of the role that you want to copy.

2. Click Duplicate.

A dialog with the copied role name followed by a number (for example, Project Owner 73) appears.

3. Change the name and description of the role, as needed.

4. Select or remove any permissions that you want included or excluded in the role.

5. Click Create to finalize your changes and exit the dialog.

3.2.3.1.2.2. Managing custom roles

Custom roles are pre-configured roles that you can edit by adding or removing permissions to match your
requirements. The following table lists the permissions that are assigned for default roles:

163

Managing users, groups, and roles

Figure 3.2.2. Custom roles

164

Managing users, groups, and roles

Permissions marked with an asterisk (*) also belong to the component level. For more information, see
Section 3.2.3.1.3, “Understanding how Coverity Connect applies roles”.

Permissions marked with two asterisks (**) also belong to the component level and triage store levels.
For more information, see Section 3.2.3.1.3, “Understanding how Coverity Connect applies roles”.

To edit a custom role:

1. Select the name of the role.

2. In Role Details, click Edit.

3. Change the name or description of the role, if desired. Select or remove any permissions that you
want included or excluded from the role.

4. Click OK to finalize your changes and exit the dialog.

Note

To delete a default role, see Deleting roles.

3.2.3.1.2.3. Creating new roles

Coverity Connect allows you to create your own, custom sets of access permissions for specific types of
users or groups in your organization. In general, you need to create a new role if one or more of the built-
in or default roles does not apply the permissions you need for a given user or group.

To create a new role:

1. Click Add.

A dialog appears with the Name set to New Role followed by a number (for example, New Role 47).

2. Change the name and description of the role.

3. Select any of the permissions that you want included in the role.

4. Click Create to finalize your changes and exit the screen.

You can now apply the role to users and groups.

Deleting roles

To delete one or more roles, select the name of each role to delete, and click Delete. In the
confirmation dialog, click Delete again.

3.2.3.1.3. Understanding how Coverity Connect applies roles

Coverity Connect allows you, as an administrator, to assign roles to specific users or groups at a number
of different levels. Role assignments at a more specific level override role assignments at a more general
level. This allows role assignments at a specific level to grant a user (or group) additional permissions
OR to remove permissions within that level. The Coverity Connect RBAC implementation provides the
following levels:

165

Managing users, groups, and roles

• Global-level roles grant permissions to users throughout Coverity Connect, except when they are
overridden by role assignments on a triage store, component, project or stream.

• Triage store-level roles grant permissions to users within the confines of a given triage store.

• Component-level roles grant permissions to users within the confines of a given component map.

• Project-level roles grant permissions to users within the confines of a given project, except when they
are overridden by role assignments on a stream.

• Stream-level roles grant permissions to users within the confines of a given stream.

Some of the levels combine to form hierarchies by which Coverity Connect determines access roles, as
illustrated in the following diagram:

Figure 3.2.3. RBAC roles on a Coverity Connect

Coverity Connect enforces RBAC permissions by determining an "effective" role for the user or group that
is trying to perform some action. This effective role, in turn, allows Coverity Connect to decide if the action
is permitted or not.

Effective role
To determine the effective role, Coverity Connect examines the most specific level for the action
that is being attempted. For example, if a user is attempting to triage an issue on a specific stream,
Coverity Connect determines access rights by examining the role assignments on that stream. If
Coverity Connect identifies one or more role at that level, it stops the evaluation at that level and
does not continue to evaluate role definitions at "higher" levels. This is because the role permissions
at the more specific level hide (or, override) any role permissions that exist at more general levels.

Coverity Connect examines roles defined at a higher level only when the more specific level does not
have any roles assigned to it. Therefore, a role assigned to a user or group at the global level can be
overridden by assigning a role at a more specific level.

When Coverity Connect finds a role at a given level, it gathers all role definitions at that level and
combines them to form the effective role. The effective role contains all of the permissions that are
assigned to the user at that level, so the user can use any permission defined in any role at that level.

166

Managing users, groups, and roles

Furthermore, a user's role can vary depending on context. For example, a user could be assigned the
Developer role on one stream, and the Observer role on another stream.

As an example of how Coverity Connect determines role access, consider the following:

• user1 has a global Developer role.

• user1 also has the No Access role assigned at the project level for projectA.

In this configuration, user1 has permission to view and triage issue anywhere on the system, except for
in projectA, which user1 cannot see at all.

As an additional example:

• user2 has a global Visitor role.

• user2 has the Developer role defined at the project level for projectB.

• user2 has a role with the view issues permission to view issues, and the triage issues permission at
the component and triage store level to triage issues.

In this configuration, user2 can log into the system, but can only view and triage issues on projectB.

3.2.3.1.3.1. Permissions for triaging issues

Most actions for which a user is allowed or denied permission take affect on a single object. Because
of this, these permissions take place in a single hierarchy. A few common operations, however, require
multiple objects and are therefore controlled by permission settings of multiple hierarchies at one time.

One very common and important example of this is applying issue triage permissions. This involves
role settings at the triage store, component, and stream levels. The user must be authorized at all three
levels in order for the action to succeed. All three effective roles must grant at least the Triage issues
permission in order for the triage action to be allowed. For an example, see Section 3.2.3.2.1, “Scenario:
Granting triage permissions on a synchronized Coverity Connect enterprise cluster ”

The View issues permission is available for definition at the triage store level, so a user must have this
permission at the triage store, component, and stream levels in order to view issues.

3.2.3.1.3.2. Triaging workflows and classifying issues

By default all users have the right to triage as well as to classify an issue. If you want to prevent certain
users from being able to dismiss an issue, you can do so by limiting their ability to classify an issue. You
can apply the restriction to groups of users as defined by their assigned role. In this way triaging may be
done in two steps: when a new issue is detected,

• A junior developer can triage the defect; then depending on the action needed

• A senior developer can determine the appropriate action; for example, by setting its classification to
False Positive or Intentional

You can control which users can do further classification by enabling the Classify issues checkbox when
defining the user role.

167

Managing users, groups, and roles

If a user does not have the Classify issues permission, when triaging an issue using the Triage pane,
They may still specify the severity of the issue and the action taken. If the user tries to classify an issue in
some other way, for example, through Web Services, an error is returned.

3.2.3.1.3.3. Assigning roles to users and groups

All levels of roles can be assigned to users and groups in the Configuration → Users & Groups menu.
When you assign a role to a group, all members of the group possess the permission rules for each
role. Assigning roles directly to users and groups is typically performed by an administrator who must be
assigned a role that contains the Manage users and groups permission.

Roles assigned directly to the user take precedence over those assigned to the user through group
membership. If a user belongs to a group that is assigned a role with permissions that are different than
permissions that are assigned to the user, Coverity Connect applies the permissions defined for the user
and ignores the group permissions.

For information about adding roles to users, see Section 3.2.1.2.2, “Managing roles for a user”. For
information about adding roles to groups, see Section 3.2.2.2.2, “Managing roles for a group”.

3.2.3.1.3.4. Assigning roles to levels

Coverity Connect allows you to assign roles directly to users and groups at each of the levels:

Adding roles at the triage store level
Specific users and groups can be assigned roles through Configuration → Triage Stores. In order to
add users and group role assignments at this level, the granter must have the Manage triage stores
permission. For more information, see Section 3.3.4, “Managing triage stores”.

Adding roles at the component level
Specific users and groups can be assigned roles through Configuration → Component Maps. In order
to add users and group role assignments at this level, the granter must have the Manage component
maps permission. For more information, see Section 3.3.3, “Using components”.

Adding roles at the project level
Specific users and groups can be assigned roles through Configuration → Projects & Streams. Users
that are assigned roles through the project are granted permissions that apply only to the project. You
must have a role with the Manage projects permission to add users and assign project-level roles.
For more information, see Section 3.3.1.2.6, “Assigning roles per project or stream”.

Adding roles at the stream level
Specific users and groups can be assigned roles at the stream level through Configuration → Projects
& Streams. You must have a role with the Manage streams permission to authorize users and assign
stream-level roles. For more information, see Section 3.3.1.2.6, “Assigning roles per project or
stream”.

3.2.3.1.4. Assigning RBAC roles on a synchronized Coverity Connect cluster

If you are using a Coordinator to synchronize multiple Coverity Connect instances, the global, triage
store, and component level roles must be set on the Coordinator. Any of these roles that are set on the

168

Managing users, groups, and roles

Coordinator are shared with each Subscriber within the enterprise. Roles for the project and stream
levels, however, can be set on and are local to each Subscriber instance. If you are using Coverity
Connect as a standalone instance, roles can be set for each level on that Coverity Connect instance.
Please note that in order for a developer to be able to triage issues, the developer must have
the appropriate roles set at the triage store, component, and stream levels. For an example, see
Section 3.2.3.2.1, “Scenario: Granting triage permissions on a synchronized Coverity Connect enterprise
cluster ”.

Figure 3.2.4. RBAC roles on a Coverity Connect cluster

For more information about Coverity Connect synchronization, see Section 3.5.1, “Synchronizing multiple
Coverity Connect instances”.

3.2.3.1.5. Primary projects and stream links

When you associate a stream with a project, that project becomes the primary project for the stream. The
project also becomes the primary project for any stream links that were created from those streams. A
stream link is a reference to a stream that can occur in other projects.

Streams and stream links that are associated with the primary project inherit the roles from the primary
project. In this way, primary projects provide a way for project owners to centrally define and manage
access role permissions for streams and stream links.

After you create and associate streams with the primary project, the streams can be associated with other
projects by stream links (for details, see Section 3.3.1.2.3, “Associating a stream with multiple projects”).
Stream links behave the same as the stream to which you create the link. The following figure shows the
relationship of multiple project/stream associations. The red lines represent the association of streams to
a primary projects, while the dotted blue lines represent a stream link association:

169

Managing users, groups, and roles

See the Primary project use case for an example of the process.

3.2.3.2. Use cases

The following scenarios illustrate the use of RBAC. These scenarios provide a high-level view of how
roles and permissions apply to different types of Coverity Connect groups and users. These scenarios
cannot cover every use case, because of the large number of combinations and ways to establish access
control, but the scenarios covered in this section describe common use cases. Furthermore, these use
cases assume that you (or the user types described in the scenarios) are familiar with Coverity Connect
operations related to that user. These scenarios do not go into detail, for example, about triaging issues,
setting up components, creating projects and streams, and so forth.

3.2.3.2.1. Scenario: Granting triage permissions on a synchronized Coverity Connect
enterprise cluster

Goal: To grant permissions for groups of users to be able to triage issues on a specific stream on a
subscriber instance of Coverity Connect.

In order to accomplish this, the group must have appropriate triage permissions at the following levels:

• Triage store level (set on the coordinator)

• Component level (set on the coordinator)

• Stream level (set on a subscriber)

Note

If this scenario were to be deployed on a standalone instance of Coverity Connect, the procedures
are basically the same. Instead of performing these steps on a coordinator or subscriber,
respectively, they would be performed on the single Coverity Connect instance.

Scenario assumptions: The organization has two product lines in their code base, represented as
ProductA and ProductB.

Coverity Connect is deployed as an enterprise cluster as follows:

• coordinator is the name of the installed coordinator for the system.

• subscriber1 is a configured subscriber of coordinator and contains the analysis streams for
ProductA.

• subscriber2 is a configured subscriber of coordinator and contains the analysis streams for
ProductB.

On coordinator, the following users and entities exist:

• Users and groups:

170

Managing users, groups, and roles

• SysAdmin possesses one or more roles that contain the Manage users and groups, Manage
component maps, Manage triage stores, and Manage streams permissions (for example, the System
Administrator role).

• The users group contains all users on the system.

• Users who are a group of engineers that belong to DevGroupA. This group represents the engineers
that develop ProductA.

• Users exist on the system, some of which are a group of engineers that belong to DevGroupB. This
group represents engineers that develop ProductB.

• Some users that belong to DevGroupA and DevGroupB belong to a group calledSecurityGroup.

• Triage stores:

• ProductAStore is the triage store that contains all of the development streams that represent
ProductA; ProdAVer1.0, ProdAVer2.0, ProdAVer3.0 (see subscriber 1, below).

• ProductBStore is the triage store that contains all of the development streams that represent
ProductB; ; ProdBVer1.0, ProdBVer2.0, ProdBVer3.0 (see subscriber 2, below).

• Components:

• Default contains component maps that are associated with streams pertaining to ProductA and
ProductB.

• 3rdParty contains a component map of the same name that is associated with third-party libraries
that are to be viewed by select users.

On subscriber1, the following entities exist:

• ProjectA exists and contains the following streams, which represent release versions of ProductA.

• ProdAVer1.0 - This stream has been marked as EOL (End of Life). No development or bug fixes
occur on the code represented by this stream.

• ProdAVer2.0 - This stream represents code that is currently supported, but no new features are
under development. Bug fixes are expected.

• ProdAVer3.0 - This stream represents code that is under active development.

On subscriber2, the following entities exist:

• ProjectB exists and contains the following streams, which represent release versions of ProductB.

• ProdBVer1.0 - This stream has been marked as EOL (End of Life). No development or bug fixes
occur on the code represented by this stream.

• ProdBVer2.0 - This stream represents code that is currently supported, but no new features are
under development. Bug fixes are expected.

171

Managing users, groups, and roles

• ProdBVer3.0 - This stream represents code that is under active development.

Scenario procedures:

1. On coordinator, SysAdmin assigns the Developer role at the global level.

SysAdmin accesses Configuration → Users & Groups, selects DevGroupA, and in the Roles tab
assigns the Developer role at the global level. SysAdmin then repeats the role assignment for
DevGroupB and SecurityGroup.

• At this point, all groups have the Developer role assigned to them at the global level. Because
there are currently no roles assigned at any of the "lower" roles levels, the members of the group
will have the Developer role permissions defined for every level on the system to which the group
will be assigned.

• For triage purposes, the permissions that are of most interest are View issues, View source, and
Triage issues.

2. SysAdmin assigns groups and access roles at the Triage Store level.

a. SysAdmin accesses Configuration → Triage Stores.

b. SysAdmin selects ProductAStore.

c. On the Roles tab, SysAdmin clicks Add, starts typing in the Group / User box and selects
DevGroupB to associate that group with ProductAStore.

d. SysAdmin selects the Observer role to DevGroupB, and clicks OK.

e. SysAdmin repeats the process but for ProductBStore and DevGroupA, respectively.

• Access is now starting to be restricted at lower levels. DevGroupA has triage access only to the
streams that are associated with ProductAStore, while DevGroupB has triage access only to
the streams that are associated with ProductBStore. Each group has Observer permissions on
the triage store of the other groups.

3. On coordinator, SysAdmin assigns groups and roles at the component level.

a. SysAdmin accesses Configuration → Component Maps.

b. SysAdmin selects the Other component (under the Default component map, Components
tab), and in the Group/Users selects DevGroupA and DevGroupB to associate those groups
with the component map. The groups inherit the Developer role on Other by virtue of the global
Developer role assignment.

c. SysAdmin selects the 3rdParty component map and under Group/Users, adds
SecurityGroup to associate that group with 3rdParty.

d. SysAdmin clicks Edit and applies the Observer role to SecurityGroup. This role does not
contain triage permissions, but allows the members of the group to view issues.

172

Managing users, groups, and roles

e. SysAdmin adds DevGroupA and DevGroupB to the 3rdParty component map and assigns
them the No Access role.

• Users in DevGroupA and DevGroupB have triage permissions at the component-level role
because the Developer role is inherited by virtue of that role's global assignment.

• Users in SecurityGroup are the only users on the system that can view issues in the streams
that are associated with that component. Furthermore, because the Observer role is assigned
to the group at the component level, the permissions in that role take precedence over the
permissions that are assigned to the Developer role at the global level. So, the members of the
group can view issues and the source, but not triage issues in the streams that are associated with
the component map.

4. On subscriber1, SysAdmin assigns groups and roles at the stream level.

a. SysAdmin accesses Configuration → Projects & Streams, and selects ProjectA.

b. In both ProdAVer2.0 and ProdAVer3.0, SysAdmin associates DevGroupA to them in
Group/Users.

c. In both ProdAVer2.0 and ProdAVer3.0, SysAdmin associates the users group to them in
Group/Users and then assigns the No Access role to the users group. This ensures that no
users on the system can access these two streams, unless explicitly given access permissions.

d. In ProdAVer1.0, SysAdmin associates DevGroupA to it in Group/Users.

e. In the Roles tab for ProdAVer1.0, SysAdmin assigns the No Access role to the group.

• DevGroupA now has the Developer role on the ProdAVer2.0 and ProdAVer3.0 streams
because the role is inherited from the levels above it. The members of the group can now view and
triage the issues that exist in each stream.

• In the ProdAVer1.0 stream, DevGroupA has the No Access role assigned. Because Coverity
Connect evaluates the role defined at the most granular level (in this case, the stream level) and
because the role definition does NOT contain the View issues, View source, and Triage issue
permissions, the members of the group cannot view or triage issues in the stream.

5. On subscriber2, SysAdmin assigns groups and roles at the stream level.

SysAdmin performs the same procedures described in the previous step for DevGroupB and users
as they apply to the ProBAVer1.0, ProdBVer2.0, and ProdBVer3.0. The results are similar:

• The members of DevGroupB can view and triage issues in the ProdAVer2.0 and ProdAVer3.0
streams.

• The members of DevGroupB can not view or triage issues in the ProdBVer1.0 stream.

3.2.3.2.2. Scenario: Delegating project management

Goal: To delegate management of a project to that project’s owner

173

Managing users, groups, and roles

Scenario assumptions:

• ProjectManager exists on the system with a role that includes the Manage projects permission.

• user1 exists on the system.

• Project A exists on the system.

1. ProjectManager goes to Configuration → Projects & Streams.

2. ProjectManager edits ProjectA.

3. ProjectManager adds user1 to the project's Roles.

4. ProjectManager assigns the Project Owner role to user1 so that he/she is allowed to administer
the project.

Note

Roles can also be assigned to a user group that represents users that are the project's owners.

5. user1 logs into Coverity Connect and can create streams in ProjectA and assign roles to other
users and groups in their respective projects.

Stream ownership can be delegated similarly to this procedure by assigning the Stream Owner role.

3.2.3.2.3. Scenario: Limiting access for project and stream administration

Goal: To allow project owners to create and configure their own projects/streams, but to not be able to
access other owner's projects/streams.

Scenario assumptions:

• Admin exists on the system with a role that includes the Manage users and groups permission.

• user1 and user2 exist in the system and are designated to be project owners.

1. Admin assigns user1 and user2 the Project Admin role at the global level.

This role has a Create projects global permission, but no project or stream-level permissions.

2. user1 creates a ProjectA and is given the Project Owner role on that project by the system.

3. user2 creates a ProjectB and is given the Project Owner role on that project by the system.

4. user1 creates several streams, adds users to ProjectA, and assigns them the Stream Owner role
on those streams.

5. user2 also creates several streams, adds users to ProjectB, and assigns them the Stream Owner
role on those streams.

174

Managing users, groups, and roles

6. user1 cannot add any streams that exist in ProjectB, because user1 does not have the Manage
stream for those streams.

The same is true for user2 regarding the streams in ProjectA.

7. The users in each project cannot add streams to their respective projects, because they do not have
the Manage project or Create streams permissions.

3.2.3.2.4. Scenario: Managing roles through primary projects

Goal: To manage multiple projects that have the same access control restrictions to avoid having to
replicate access control settings on each project.

Scenario assumptions:

• SysAdmin is a user that exists in the system. This user has the Create projects and Manage users and
groups permissions.

• ProductManager creates the following projects and associated streams:

• Multiple users exist on the system and will have access to one (or more) of the streams. (Users could
alternatively be members of separate groups).

1. ProductManager creates a separate project called Primary Project that will manage all
permissions.

2. ProductManager assigns all of the users a global role that includes the View project permission,
but no stream permissions. (For example, Visitor).

3. ProductManager associates all of the streams with Primary Project and lists it as their
primary parent. The streams now inherit access control settings from Primary Project and are
associated with the other projects as stream links.

4. ProductManager assigns the appropriate roles for the users (or groups) on the Primary
Project.

5. Because the role assignments in Primary Project cascade down to the streams,
ProductManager does not need to manage stream permissions on ProjectA, ProjectB, or
ProjectC.

3.2.3.2.5. Scenario: Granting access to create streams

Goal: To allow other users to create streams in a project.

175

Managing users, groups, and roles

Scenario assumptions:

• ProjectManager exists on the system and has a role with the Manage project and Create project
permissions.

• user1 and user2 exist on the system, both with a global Visitor role.

1. ProjectManager creates Project1.

2. ProjectManager goes to Configuration → Projects & Streams and edits Project1.

3. In the Roles tab, ProjectManager adds user1 and user2 and assigns them a role that includes
the create stream permission (for example, Stream Admin).

4. user1 and user2 each creates a stream, and the system grants them the Stream Owner role for
each stream that they have created.

3.2.3.2.6. Scenario: Restricting project access for Coverity Desktop users

Goal: To grant Coverity Desktop users access only to the Coverity Connect projects to which they are
assigned.

Scenario assumptions:

• ProjectManager exists on the system and has a role with the Manage project and Create project
permissions.

• Multiple Coverity Desktop users exist on the system.

1. In the Roles tab, ProjectManager creates a new role, Desktop Developer, selects the
same permissions that are assigned to the Developer role, and adds the Create Triage Stores
permission.

2. ProjectManager creates a new Group, Group1, and adds the Coverity Desktop developers to the
list of members.

3. In the Projects & Streams menu, ProjectManager creates a new Project, Project1, and adds
Group1 with the Committer, Desktop Developer, and Triage Store Owner roles assigned.

4. In the Triage Stores menu, ProjectManager creates a Triage Store, TriageStore1, and adds
Group1 with the Desktop Developer, and Triage Store Owner roles assigned.

5. In the Triage Stores menu, ProjectManager adds Group1, to the Default Triage Store
and Empty Triage Store, with the Desktop Developer, and Triage Store Owner roles
assigned.

6. In the Component Maps menu, ProjectManager creates a Component Map, CompMap1, and adds
Group1 with the Committer, Desktop Developer, and Triage Store Owner roles assigned.

7. In the Component Maps menu, ProjectManager adds Group1, to the Default component map
with the Desktop Developer and Triage Store Owner roles assigned.

176

Managing users, groups, and roles

3.2.3.3. Guidelines for restricting access

Often it is necessary to restrict visibility of source and defects to specific users or groups of users. RBAC
can be configured to allow access to specific projects, components, or triage stores. Usually, the simplest
approach is to choose one way to control access, and remove restrictions on other ways:

• If you choose to control access by project, then remove restrictions on access by components and
triage stores.

• If you control access by components, then remove restrictions by projects and triage stores.

• If you control access by triage stores, then remove restrictions by projects and components.

Listed below are steps to control access by project. These steps are similar to those for controlling
access by components or triage stores.

1. Assign the Visitor role to the Users group at the Global level. This allows all users to login, but does
not allow access to any projects, components, or triage stores.

2. Assign the Developer role to the Users group for every component and triage store. This removes
restrictions on access by components and triage stores.

3. For each project, assign the roles to each specific user and group that needs access to the project.
Depending on the access the user or group needs, you may assign the Developer role and/or other
roles. This grants only the specific user or group access to the project.

177

Chapter 3.3. Managing data on software issues

Table of Contents
3.3.1. Working with projects and streams .. 178
3.3.2. Configuring triage attributes .. 192
3.3.3. Using components ... 196
3.3.4. Managing triage stores ... 213
3.3.5. Configuring legacy issues ... 223

3.3.1. Working with projects and streams

You create a stream to support issue data on a portion of your code base. Each stream is organized into
a project, which can support multiple streams. You can create one or more projects in Coverity Connect.

You must create a stream before you can commit issue data to Coverity Connect. To add issue data to a
stream, you first need to run an analysis on some part of your code base, then commit the resulting issue
data to the stream, for example, by using Coverity Analysis.

3.3.1.1. Planning your project and stream configuration

To effectively view and manage the data on issues in your code base, you need to think carefully about
how to set up streams for your code base and how to organize those streams into Coverity Connect
projects.

The following figure provides examples of possible Coverity Connect stream configurations for two
products. Product 1 contains a development branch and an integration (trunk) branch. Each branch
has one assumed target (represented by dotted lines). Product 2 also contains a development branch
and a trunk branch, but in this case, both branches are built for two target platforms.

178

Managing data on software issues

Figure 3.3.1. Coverity Connect streams

In this example, there are six possible streams. Certain streams, or combinations of streams, are useful
to certain roles within your enterprise. For example:

• Developers might be interested in branches for a specific product. Developers for Product 1 will
focus on Stream 1 or Stream 2. Developers for Product 2 will focus on Stream 3 and Stream
4, or Stream 5 and Stream 6.

• QA engineers might be interested in a particular platform target, so they will focus on each individual
stream, Stream 1 through Stream 6.

• A Program manager might want to monitor the integrity of all of the products on a particular branch, so
a person in this position will focus on Stream 1, Stream 3, and Stream 4 of the Dev branches, and
Stream 2, Stream 5, and Stream 6 of the Trunk branches.

Coverity Connect allows you to organize your streams into projects to give you easy access to the most
important information for your job. The following figure focuses on Product 2 in Figure 3.3.1, “Coverity
Connect streams” and shows how the streams can be associated with projects appropriate to the role
discussed above:

• Project 1 through Project 4 contain individual streams for use by QA engineers.

• Project 5 contains Stream 3 and Stream 4. Project 6 contains Stream 5 and Stream 6.
Both projects are organized by branch for use by developers and program managers.

179

Managing data on software issues

Figure 3.3.2. Coverity Connect projects

Note

If you want to associate the same stream with multiple projects, you can use stream links.
For more information, see Section 3.3.1.2.3, “Associating a stream with multiple projects” and
Section 3.2.3.1.5, “Primary projects and stream links”.

3.3.1.2. Creating, copying, and deleting projects and streams

All project and stream configuration takes place in the Configuration → Projects & Streams menu. You
must have appropriate Project and Stream permissions in order to create, edit, or delete them.

Important preconditions

Plan your project and stream configuration before using them in a production environment. For
guidance, see Section 3.3.1.1, “Planning your project and stream configuration”. Also, decide
whether and how streams should share triage data within and across Coverity Connect instances.
For guidance, see Chapter 3.5, Configuring Coverity Connect enterprise clusters.

3.3.1.2.1. Setting up projects

When you create a project, you give it a name and description. You can also assign RBAC roles to it. For
more information about roles and the permissions that are associated with those roles, see Section 3.2.3,
“Roles and role based access control”.

To set up a project:

1. In the Projects & Streams menu, click +Project.

Coverity Connect displays a dialog with a name similar to New Project 141 and a Description
field. Select the Analysis License File, if necessary, and click Create.

180

Managing data on software issues

2. Select the project, and in the Roles tab, select one or more groups.

Note

Make sure that the roles assigned to that group are appropriate for the project. Click Edit to
change the assigned roles. For guidance, see Section 3.3.1.2.6, “Assigning roles per project or
stream”.

3. If necessary, assign one or more streams to your project.

From the Projects & Streams menu, simply select and drag one or more streams to the project.

If you need to assign a new stream, see Section 3.3.1.2.2, “Setting up streams”.

4. Click Done to save your changes and exit. If you need to change any of the information, click Edit in
Project Details.

Note

To use local analysis, Coverity Desktop requires special projects to be created. For more
information, see Section 3.12.1, “Configuring Coverity Desktop and shared files through the
Downloads page”.

3.3.1.2.2. Setting up streams

The process of creating a stream is similar to creating a project. When you create a stream, you give it
a name and description. In addition, you must associate the stream with a Triage Store. You can also
select a component map, an issue category map (if more than one is set up), and one or more groups
with permission to the stream. For more information about roles and the permissions that are associated
with those roles, see Section 3.2.3, “Roles and role based access control”.

Note

See Important preconditions for using streams in a production environment.

To create a stream:

1. Select Configuration → Projects & Streams.

2. Decide where to create the stream:

• If you select a project before creating a stream, Coverity Connect will automatically associate the
stream with the selected project. Creating a stream under a project also makes the project the
primary project for the stream (see Section 3.2.3.1.5, “Primary projects and stream links” for more
information).

• To create an unassociated stream, you need to select Other Streams and click the +Stream
button. You can then associate the new stream with any existing project.

Note that you can always associate a stream with another project (but not Other Streams) after
creating it.

181

Managing data on software issues

3. Click +Stream.

Coverity Connect displays a dialog with a name similar to New Stream 280.

4. Select a programming language for the stream:

• Any

• C/C++

• C#

• Java

• Dynamic Analysis

• Other

These settings determine the programming language's analysis results that you can commit to the
stream. The default for a newly created stream is Any, indicating that the stream can accept commits
from any of the supported languages. Furthermore, you can commit multiple analyses of mixed
languages to the same Any stream. Coverity highly recommends that you choose Any for each new
stream that you create.

The other languages are provided for backward compatibility for previously released Coverity
Connect versions (in implicitly designated languages were required for streams). Coverity
recommends that you only select a specific language when you want to commit to the stream using
pre-7.0 clients. If you define a specific language to a stream, Coverity Connect prohibits you from
committing results from a different language.

After a stream has been defined and an initial commit has been executed, it is possible to change
the language for the stream and then commit the newly defined language analysis results to it. Use
extreme caution if you plan to switch languages because the stream will not necessarily indicate any
information about the stream's past commits from another language.

5. Optionally, select a component map for the stream.

This setting associates the source stream with an existing component map. For information about
component maps, see Step 1.

6. Optionally, select an Issue Categorization. If one or more issue categorization maps have been set
up in Coverity Connect (see Section 3.1.1.6, “Configuring custom issue categories”), you can apply
one to the stream. Issues found in future commits to the stream will use those issue categories.

7. Select a Triage Store for the stream.

Each stream must be associated with a single Triage Store. For information about Triage Stores, see
Section 3.3.4, “Managing triage stores”.

8. Optionally designate the stream as Outdated.
182

Managing data on software issues

When you select this option, the stream and its data are effectively hidden from Coverity Connect
user-oriented operations such as metric calculation, issue reporting, views displays, and so forth.
Certain marked non-issue views (Functions, Files) will continue to include outdated issues in their
aggregate counts, though following the link can bring the user to a view that excludes the specific
outdated issues.

Note

A user can still commit to an outdated stream.

9. Click Create to save your changes and exit. If you need to change any of the information, click Edit
in Stream Details.

Snapshots

Once you create the stream, it will include a Snapshots tab. For details, see Section 3.3.1.4,
“Managing snapshots of streams”.

3.3.1.2.3. Associating a stream with multiple projects

You can use stream links to associate a single stream with more than one project. A stream link is
a reference that points to a stream. A stream link inherits all groups (and associated roles) that are
assigned to the stream to which it is a link and to the project with which that stream (not the stream link)
is associated.

To create a stream link:

1. Select Configuration → Projects & Streams.

2. Select a stream to which you want to create a stream link.

3. Click +Link.

4. Select a Project from the drop-down list and click Create.

5. Click Done to save your changes and exit.

3.3.1.2.4. Copying and deleting projects and streams

Projects and streams have the same mechanism for copying and deleting:

• You can create a copy of a project or stream that will contain its original configuration settings. Copying
is useful to preserve complex stream and component configuration that you might update in the original
stream or project later.

To create a copy, select a project or stream and click Duplicate. You can then edit the copied project
or stream. CLick Create to save your changes.

• To delete a project or stream, select it, and click Delete. When the delete prompt appears, click Delete
to continue with the deletion, or Cancel to exit without deleting the project.

183

Managing data on software issues

The data belonging to a stream is deleted in the background while Coverity Connect is running. Some
parts of this background activity conflict with other activities: for example ETL, garbage collection, commit
actions, intra-cluster synchronization. The property cim.cleanup.stream.delay.min defines a
delay that Coverity Connect introduces between deleting separate streams to give an opportunity for
other conflicting activities to start. Before version 2020.03, the default value of this property was 30
(minutes), and starting with 2020.03 the default value is 2 (minutes). While it is possible to set the value
of the property to 0, we do not recommend doing so. It might be worth doing temporarily to delete a large
number of streams as fast as Coverity Connect can do it provided that starving all the conflicting activities
is not considered to be a problem.

The property cim.cleanup.stream.delay.min also affects auto-deletion of expired streams. See
"Designating a stream for auto-deletion of expired streams" for more information.

3.3.1.2.5. Exporting and importing streams

A system administrator can use the cov-archive command to export a set of streams into an archive
file (and optionally delete the exported streams), import streams from an archive, or get information about
an archive file (its version, the date and time of creation, the streams contained, and so on). You, the
system administrator, can export one or more streams to an archive file that contains those streams
and some associated entities. You may specify the streams to export either by name or by the project to
which they belong.

Exporting and importing streams can be useful in situations like the following:

• You need to save one or more streams offline and to restore these to online status in future.

• You need to transfer a stream to another Coverity Connect instance for coarse-grained load balancing
or for some other administrative purpose.

• You need to remove streams from Coverity Connect as part of an offlining or moving operation, or
simply to reclaim resources.

Export and import actions are logged in the file <CC_install_dir>/logs/cov-archive.log.
For more information and for examples, please see the cov-archive command in the Command
Reference.

Note

You may import an archive into a Coverity Connect instance that has the same or a newer version
as the Coverity Connect instance used to create the archive. You can check the Coverity Connect
version used to create the archive using the cov-archive list command.

3.3.1.2.6. Assigning roles per project or stream

Coverity Connect supports role-based access control (RBAC) roles to projects and streams. For example,
if you want a specific group of users (Group A) to be able to create streams in a given project, you can
assign the Stream Admin role to that group. This role has permission to create streams. If you want
another group of users to be able to manage issues in all streams in a given project, you can assign the
Developer role to that group. For details about these roles, see Section 3.2.3, “Roles and role based
access control”.

184

Managing data on software issues

To assign a role per project or stream

1. In the Projects & Streams menu, click the name of the project or stream.

2. In the Roles tab, select a user or group to which you want to assign a role.

Note

If the user or group is not listed, you can add it by clicking Add.

3. Click Edit to open the Roles window.

This window provides a list of roles that you can assign to the user or group.

4. Select one or more roles for the user or group.

Note

You can also deselect one or more roles to unassign the role.

5. Click OK to close the Roles window.

6. Click Done to finalize your changes and exit the screen.

Note

You can remove a group from the project or stream by clicking Remove.

3.3.1.2.7. Selecting an issue categorization map for a stream

Checkers automatically categorize issues and assign an impact level (High, Medium, Low, and Audit).
For example, in the Coverity categorization, a C/C++ FORWARD_NULL checker can report a number of
medium priority issues, one of which is an unchecked dynamic_cast.

Custom categorizations can be imported through Configuration → System → Issue Categorization, and
applied to individual streams.

To select an issue categorization map:

1. Select Configuration → Projects & Streams.

2. Select the stream with which you want to associate an issue categorization map.

3. In Stream Details, click Edit.

4. Use the Issue Categorization drop-down to select your preferred issue category map.

5. Click OK to save your changes and exit.

Note

Note that the issue categorization map is applied to defect instances at commit time. Changes to
issue category mapping will only take effect for future snapshots, and will not get applied to existing
defects.

185

Managing data on software issues

3.3.1.2.8. Associating an analysis license with a project

Coverity Connect projects are automatically associated with your default analysis license, however you
may want certain projects to use different license files.

To select an analysis license file:

1. Select Configuration → Projects & Streams.

2. Select the project with which you want to associate the analysis license.

3. In Project Details, click Edit.

4. Use the Analysis License File drop-down to select your preferred license file.

5. Click OK to save your changes and exit.

3.3.1.2.9. Using search filters to find projects and streams

If you have a large number of projects and streams on your system, you can use the search filter field to
locate them quickly. The search filter accepts a glob pattern and returns a list of projects and streams that
match your search pattern.

To use the search filter:

• Enter a full or partial pattern. For example, if you enter *dev*, the filter will return all projects and
streams that contain dev in their names.

• Click the clear icon (x) to clear the filter pattern and re-display all projects.

3.3.1.3. Editing projects and streams

The Projects & Streams menu lists all of the projects and streams that are in Coverity Connect.

To edit a project or stream:

1. Select the project or stream that you want to edit from the list in the Projects & Streams menu.

This action opens the edit fields and tabs for the project or stream.

You can filter the projects and streams. See Section 3.3.1.2.9, “Using search filters to find projects
and streams”.

2. Click Edit or use the tabs to modify the project or stream.

• Editing projects: For information about editable project properties, see Section 3.3.1.2.1, “Setting
up projects”.

• Editing streams: For information about editable stream properties, see Section 3.3.1.2.2, “Setting
up streams”.

186

Managing data on software issues

Note

Stream links are not editable. For details, see Section 3.3.1.2.3, “Associating a stream with
multiple projects”.

3. Click Done to save your changes and exit.

3.3.1.3.1. Associating a stream with a project

You can associate one or more streams with a project.

To associate a stream with a project:

1. From the Projects & Streams menu, simply select and drag one or more streams to the project.

Note

You can use one or more stream links to assign a stream to multiple projects. For details, see
Section 3.3.1.2.3, “Associating a stream with multiple projects”.

2. Click Done to save your changes and exit.

3.3.1.3.2. Managing daily trend records at the project level

The Daily Trend Records tab allows you to view and rebuild project-wide issue trends on a daily basis. To
exclude the data that belongs to a deleted snapshot, rebuild the trend data.

By default, Coverity Connect gathers trend issue data nightly at 1 AM. However, you can choose to
rebuild the trend data at any time (see Rebuilding trend data now for information about the data collection
date).

Trend data management options:

• Viewing trend data:

• Total daily trend record

• Latest daily trend record

• Earliest daily trend record

• Deleting and rebuilding all trend records:

This option deletes all trend records from your system and rebuilds the trending data based on the
most current state of the project.

• Deleting all records and rebuilding only trend records since a certain date:

This option deletes trend records from a specified date and recomputes trending data based on the
most current state of the project. You click the calender widget to select a date from which you want to
recompute. Trending records that were computed before the specified date are preserved.

187

Managing data on software issues

• Deleting and rebuilding the latest trend record:

This option deletes the most recent trend record and recomputes trending data based on the most
current state of the project. All previous trending records are preserved.

• Rebuilding trend records now:

The data for the rebuilt records was collected up to 1 AM of the day on which you run the rebuild.
For example, if you choose to rebuild trend records on October 5 at 2:30 PM, Coverity Connect will
recompute data available up to October 5 at 1 AM.

For information about monitoring your trend data, see Chapter 2.3, Monitoring issues.

3.3.1.3.3. Designating a stream for auto-deletion of expired streams

Coverity Connect can automatically delete streams after a period of inactivity. Only streams that are
specifically configured for this feature are eligible for automatic deletion. Streams can opt in to automatic
deletion in one of two ways:

1. The Coverity Desktop plug-ins for Eclipse and Visual Studio create private streams, and these private
streams are configured for automatic deletion.

2. Other streams can be configured for automatic deletion using Web Services API.

The configuration parameter which enables automatic deletion is only visible via Web Services. Every
night, Coverity Connect deletes streams which meet all of the following criteria:

• The stream must be configured for automatic deletion, with the Web Services API setting
autoDeleteOnExpiry=true.

• The stream must have at least one snapshot in it (it must have commit data).

• The stream must not have any snapshots (commits) within the last 28 days.

Streams meeting all three criteria will be deleted automatically. The Coverity Connect log will record each
stream deleted.

To configure a stream for automatic deletion, the value autoDeleteOnExpiry must be set to true
in the StreamSpecDataObj passed to the ConfigurationService operation createStream,
createStreamInProject, or updateStream. See the Coverity Connect 2020.12 Web Services API
Reference for details on how to access the SOAP web services.

The inactivity threshold is also configurable, by adding a line to cim.properties. The property name is
stream.expiration.inactivity.days, and the value is specified in days. For example, to set the
inactivity threshold to 60 days, add the following line:

stream.expiration.inactivity.days=60

The default value of 28 days is used if the property is not specified. The Stream Expiry feature can be
turned off entirely by setting the inactivity threshold to 0; with this setting Coverity Connect will never
delete streams automatically, even if they meet all 3 criteria for automatic deletion.

188

Managing data on software issues

When copying a stream, either through Web Services or through the Duplicate button in the UI, the the
hidden stream setting that controls whether the stream should be deleted automatically is not preserved.
The copied stream will have this setting turned off.

3.3.1.4. Managing snapshots of streams

A snapshot of the stream is created when a stream receives issue data, at which point this tab will add
the new Snapshot ID, the snapshot creation date, the user name of the person who committed the
analysis results (the committer), along with optional data that can also be committed (the version, target,
and description) to Coverity Connect through the cov-commit-defects command or can be defined in
the Snapshots view type (users must have appropriate RBAC permissions).

You can click the ID to view additional snapshot attributes, build details, and analysis details. You can
also delete snapshots from a stream.

3.3.1.4.1. Viewing snapshot data

Each stream that is listed in the Projects & Streams menu contains a Snapshots tab, which displays the
values of attributes that are associated with each snapshot of the stream.

To view snapshot data for a stream:

1. Select a stream in the Projects & Streams menu.

2. On the Snapshots tab, select the ID to examine.

3. Click Details to view information about the snapshot.

The following table provides information about properties of the snapshot.

Table 3.3.1. Snapshot Attributes

Snapshot Attributes Value

ID A number that uniquely identifies the snapshot

Version The version of the product being analyzed. This
attribute is optionally set in Coverity Connect
in the Snapshots view type, or on the cov-
commit-defects command line.

Target Intended to represent a milestone of a given
product or code base, such as a release version
number. This field is optionally defined in
Coverity Connect in the Snapshots view type, or
on the cov-commit-defects command line.

Description The description of the snapshot. This field
is optionally defined on the cov-commit-
defects command line.

Date Committed The date when the snapshot was committed.

189

Managing data on software issues

Snapshot Attributes Value

Committer The username of the person who committed the
issue data to Coverity Connect.

The following table provides build information on the snapshot.

Table 3.3.2. Build Details

Build Details Description

Working Directory The directory in which the source code is built.

Command Line The command, options, and values used for the
build.

Intermediate Directory The location of the intermediate directory
specified for the build command.

Configuration File The name of the configuration file
used during analysis. By default, it is
coverity_config.xml

Build Host The host name of the committed snapshot.

Build Time The duration of the build.

The following table provides code analysis information on the snapshot.

Table 3.3.3. Analysis Details

Analysis Details Description

Working Directory The directory in which the analysis takes place.

Command Line The command, options, and values used for the
analysis.

Intermediate Directory The location of the intermediate directory
specified for the analysis command.

Configuration File The name of the configuration file
used during analysis. By default, it is
coverity_config.xml

Analysis Host The host name of the committed snapshot.

Analysis Time The duration of the analysis.

Enabled Checkers The list of checkers that were enabled for the
analysis.

Note

If you committed Architecture Analysis data, the snapshot record will contain a CVA
column that contains a *.cva file entry, from which you can download a CVA file. For more
information, see Section 3.12.2, “Downloading a CVA file for Architecture Analysis”.

190

Managing data on software issues

3.3.1.4.2. Deleting snapshots

Coverity Connect allows you to delete snapshots from a specified stream. Deleting a snapshot reverses
the effects of a commit and can be used to undo a commit of mistaken, erroneous, or experimental
analysis results.

When you delete the most recent snapshot in a stream, Coverity Connect removes all the data that
comprises the snapshot (including issue states and file states) from the stream. For example, if you
commit a snapshot and then immediately delete that snapshot, Coverity Connect will be in a state
equivalent to the state it was in before the snapshot was committed.

When you delete an older snapshot, Coverity Connect updates its history as if the snapshot had never
occurred. For example, assume that you have committed snapshot1, snapshot2, and snapshot3 (in
order). Then you delete snapshot2. Coverity Connect's history now appears as if you only committed
snapshot1 and snapshot3.

Deleting a snapshot affects other aspects of the system. The following important notes outline things you
should consider before you delete a snapshot:

Trends and metrics
Trends and metrics are not automatically recalculated after a snapshot is deleted. If you delete a
snapshot before the nightly metrics and trends data is collected, the data for the deleted snapshot
will not be recorded as part of the trend and metrics data for that stream or issue. If you delete an
older snapshot (one that has already been factored into trends and metrics data), you must manually
recompute the data. For more information on recomputing trend records, see Section 3.3.1.3.2,
“Managing daily trend records at the project level”.

Defect Manager run deletion vs. Coverity Connect snapshot deletion
Coverity Defect Manager had the ability to delete runs. This is a very different mechanism than the
ability in Coverity Connect to delete snapshots. If you are accustomed to using Defect Manager and
are new to Coverity Connect, it is important to note the distinction.

Deleting a run in Defect Manager deleted some of the information from a run but retained all of the
triage information. Basically, it archived the run that was used to save space in the database while
retaining the most important state information from a run. It worked on the assumption that a run was
valid, but that you no longer needed to keep the additional data around and wanted to aggregate the
information.

In Coverity Connect, you use snapshot deletion when a snapshot is not valid. This feature is used to
correct mistakes. A snapshot should be deleted only if it was a mistake or otherwise invalid.

Do not use snapshot deletion to save space, as it will alter the history of your issues. See
Section 3.1.2.2.2.2, “Important upgrade notes” for the proper procedure.

To delete a snapshot:

1. Navigate to Configuration → Projects & Streams, and select a <Project>.

2. Click the corresponding triangle icon to open the project, and select a stream name under the
project.

191

Managing data on software issues

3. In the Snapshots tab, select a snapshot to delete.

4. Click Delete.

5. In the confirmation window, click Delete.

Note

Snapshot deletion may not be an instantaneous process. To indicate that a deletion operation has
been queued for a given snapshot, a yellow, rounded square icon will appear in the snapshot ID
column.

3.3.1.5. Setting automatic issue ownership in streams

This tab assigns owners for unassigned issues in the selected stream. For more information about
the entire automatic ownership configuration process, see Chapter 3.4, Configuring automatic owner
assignment.

3.3.1.6. Setting Desktop Analysis options for streams

The Desktop Analysis tab (located under Configuration → Projects & Streams → Desktop Analysis) allows
you to enable Desktop Analysis for a stream, and access advanced configuration options, described in
the following list. See Chapter 3.7, Server administration for Desktop Analysis for additional information
on server administration for Desktop Analysis. Click Edit to change the following settings.

Enable Desktop Analysis
Click the Enable Desktop Analysis check-box to configure the selected stream for use with Desktop
Analysis. The stream in question becomes a central repository for analysis summary information, as
used by Desktop Analysis and Coverity Desktop.

Days before Summary Purge
Summary data older than the number of days specified will be deleted.

3.3.2. Configuring triage attributes

Developers use these attributes to triage software issues through the Triage panel in Coverity Connect.
The Attributes menu allows you to edit some of the built-in attributes and to create and edit custom
attributes.

There are many conceivable scenarios for using a custom attribute. The following scenario uses a
custom attribute to identify the version (or branch) of the code base in which a bug should be fixed.

Scenario: Targeting the code branch in which to fix a CID. Assume that developers are working on
multiple branches of the same code base and that issue data from each branch is submitted to separate
streams in a Coverity Connect project (Project 1):

• Branch 1 of the code base is analyzed and committed to streamV1 in Coverity Connect.

• Branch 2 of the code base is analyzed and committed to streamV2 in Coverity Connect.

192

Managing data on software issues

In such a case, you might use the built-in Fix Target attribute to list all versions (or releases) in which
bugs might be fixed (for example, v1 and v2). Developers can then mark the version in which the bug
should be fixed. For example, assume that both code branches contain the same issue (CID 123). If CID
123 is a bug, developers might set the Fix in attribute to Version 2 (v2), for example, if there is no time to
fix it in Version 1, or if the bug is of lower priority than others. However, if time permits, they might reset
the Fix in attribute for the CID to Version 1 (v1). Both branches will share the same setting for the CID if
the stream for each branch is associated with the same triage store (see Section 3.3.4, “Managing triage
stores”). Note that after creating the appropriate values for the Fix in attribute, you also need to select the
Show in triage panel option. For details, see Section 3.3.2.3, “Editing triage attributes”.

3.3.2.1. Creating a custom triage attribute

You can create up to 10 custom attributes and specify their attribute values.

To create a custom attribute:

1. Select Configuration → Attributes.

2. Click the Add button that is below the list of built-in and custom attributes.

A screen displays with a name similar to New Attribute Definition 108.

3. Type a name and description for the attribute.

4. Indicate whether to display this attribute in the Triage panel so that developers can use it to triage
issues.

This panel appears in Projects → <a project> → <a CID> → Source tab.

5. For Type, select a value.

a. Select the value type:

• Text: Allows developers to type a value of their choice when triaging the issue.

• Pick list: Allows developers to select a value from a list of pre-specified values when triaging
the issue.

b. If you selected Pick list:

i. Click +.

ii. Type a name for the value.

iii. Select whether the value is the Default value for the pick list, and/or if it is Deprecated.

6. Click Create to save your changes and exit.

3.3.2.1.1. Custom attribute limits

Custom attributes have the following limits:

193

Managing data on software issues

• Maximum number of custom attributes is 10

• Maximum custom attribute name length is 128 characters

• Maximum custom attribute description length is 255 characters

• Maximum length for a custom attribute text value is 1024 characters

• Maximum length for the name of a custom attribute pick-list value is 256 characters

• Maximum number of elements in a custom attribute pick-list is 50

In addition, there is a limit of 4096 characters for the combined length of all the custom attribute text
values on a single issue.

3.3.2.2. Copying a triage attribute

You can make a copy of any attribute. Except for the name of the new attribute, all the properties of the
copy will match those of the attribute you copied.

To copy an attribute:

1. Select Configuration → Attributes.

2. Select the attribute to copy.

3. Click Duplicate.

4. Edit the copy, as needed.

For guidance, see Section 3.3.2.3, “Editing triage attributes”.

5. Click Create to save your changes and exit.

3.3.2.3. Editing triage attributes

You can modify Custom attributes, Built In (only Action, Severity, and Fix Target) attributes, and their
values.

Note

You cannot change or delete the Classification or Ext. Reference attributes.

To edit an attribute:

1. Select Configuration → Attributes.

2. Select an editable attribute.

3. Click Edit to modify the attribute, as needed:

To change the name or description of an attribute:

• Type a new name or description for the attribute.

194

Managing data on software issues

To display or hide an attribute from the Coverity Connect Triage panel:

• Set Display.

On means that the attribute will appear the panel. Off means that it will not appear in the panel.

To add a new value to an attribute:

• Click + to show the Values field.

You can create one or more predefined values or a text box into which developers can enter the
value.

4. Modify any attribute values, as needed:

To change the name or description of an attribute value:

• Type a new name or description for the value.

Note that CIDs associated with an old attribute value name will still refer to the old name.

To delete an attribute value:

• Select the value, and click - to remove it.

Note

You cannot delete an attribute value if an issue is using it.

Note that you can deprecate an attribute value if you do not want to delete it.

To deprecate an attribute value:

• Click the Deprecated check box that is associated with the value.

This action strikes through the name of the value. Developers cannot triage a deprecated issue.
You can un-deprecate the value at a later date, if necessary.

Note that you can delete an attribute value if you do not need it anymore.

To reorder triage attribute values:

• Select the value that you want to move, and then click Up or Down to change the position of the
selected attribute value.

The order that you specify affects the order in which the values appear in lists and the order used
when sorting on its column in tables throughout Coverity Connect.

To select a default value for an attribute:

• Click the Default check box that is associated with the value that you want to set as the default.

195

Managing data on software issues

5. Click OK to save your changes and exit.

3.3.3. Using components

The Coverity Connect components feature allows you to logically group source code files in named
entities. Defining components allows you to:

• Filter issues and files to show the relationship between source code and development teams.

• Assign issues to only the users or groups that are responsible for a particular section of the code.

• Limit access to code and issues, for example, to address, intellectual property concerns, to prevent
exposing third party code, or to prevent exposing vulnerabilities in the code.

Generally, you create components with source files of related functionality, such as libraries or software
subsystems. For example, if a particular software group is working on a specific set of functions within a
product, the group might only be interested in issues found in the source code of those functions.

A user with configuration privileges can create a component for the group containing the source files for
these functions. For information on setting configuration privileges, see Section 3.2.3, “Roles and role
based access control”.

Members of the group can view and filter these issues in the Source screen and receive automatic email
notification of issues found in these files.

Note

After components have been added, deleted, or changed, users need to logout and login again for
the changes to take effect.

3.3.3.1. Configuring components

Configuring and using the Coverity Connect components feature requires multiple procedures and
options over several areas of the interface. This section provides procedures for setting up components.
Subsequent sections provide more detailed User Scenarios that provide examples of component
configuration and user interaction.

To configure a component:

1. Create a component map.

A user with configuration privileges creates a component map that describes how to map source
code files and analysis issues into components.

UI Location: Configuration → Component Maps

196

Managing data on software issues

Figure 3.3.3. Component map settings

To create a new component map, select Add. To copy an existing component map, select a
component map from the list and click Duplicate. The Delete button removes a selected component
map.

After you have added or duplicated a component map, you define the following:

• Name - Uniquely identifies the component map.

• Description - Optional description of the component map.

• Stream associations

• Components

• File Rules

• Default owner

The Default component map is a Coverity Connect-created component map that consists of a single
rule that maps to the catch-all Other component. Newly created streams and streams that have
no component map associations are automatically associated with Default. Default can be edited
or copied, but cannot be removed. When an existing component map is removed, the streams
associated with it are re-associated to the Default component map.

2. Create the component.

UI Location: Configuration → Component Maps → Components

197

Managing data on software issues

Figure 3.3.4. Component settings

To add a new component, click +. To remove an existing component, select one and click -. The
Other component cannot be removed.

After you add a new component, you define the following:

1. Name

Uniquely identifies the component.

2. Roles

The access control feature allows you to restrict users to viewing and triaging issues contained in
a component. You define access privileges for users based on users and/or groups through the
Coverity Connect RBAC feature.

Each component can be associated with an ordered list of user or groups, in which each group
can be assigned RBAC roles to limit or grant usage permissions. Any role can be assigned to a

198

Managing data on software issues

user or group within a component, but the only permissions that effectively limit or grant access
are:

• View issues

• View source

• Triage issues

Coverity Connect ships with a number of pre-defined roles that contain these permissions, but you
can create your own customized rules to limit or grant access. For more information about RBAC,
see Section 3.2.3, “Roles and role based access control”.

For example, suppose that your system contains the following groups:

• Users contains all users on your system.

• offshore contains users that represent a part of the engineering department that are in a
different locale from the local developers.

Within a component, you grant access for code and issues at the component level for the users
group, but wish to restrict access to offshore:

Users - Assign a global role, such as Developer, that includes permissions for viewing and
triaging issues

offshore - Assign a role, such as No Access on a given component.

Alternatively, you could grant a global No Access role for the User group, and grant a Developer
role for Offshore at the component level.

3. File Rules

UI Location: Configuration → Component Maps → File Rules

199

Managing data on software issues

Figure 3.3.5. File Rules settings

To add a file rule:

a. Click Insert Rule....

This displays the file rules edit dialog:

Insert Rule... add a new rule expression immediately after the selected rule (if a rule is
selected). If there is no selection, the new rule is added at the end of the list.

b. Enter a regular expression to map source files (see the notes below for more information).

c. Add the file rule to an existing component.

d. Click OK.

A file represents a source file in your code. It is identified by its fully-qualified file path. You can
exclude path prefixes for filenames during the commit process by using the cov-commit-defects
--strip-path option. For more information, see the cov-commit-defects documentation.

File rules contain path patterns to establish which files are mapped to the component. Use regular
expressions to match a component's set of file names. For example, the following path pattern

200

cov_command_ref.pdf#cov-commit-defects

Managing data on software issues

for component1 matches any file contained in any directory named /temp within your directory
structure:

/temp/.* (component1)

However, /temp might exist in multiple subdirectories, so for component2, you might want to match
only a set of specific file types that exist under a specific directory. The following file rule returns only
files with the .c extension in the /subdir/temp directory:

Caution

Avoid using a leading .* in these regular expressions. This can make the search considerably
slower.

/subdir/temp/.*\.c (component2)

Coverity Connect maps each file to a component using the first regular expression that matches the
entire absolute path of that file. Coverity Connect allows you to add multiple file rules per component
map, and to set the order of precedence in which the file rules are executed.

Continuing with the example, if you set the following file rule order by selecting the rule and using the
Up or Down buttons:

/subdir/temp/.*\.c (component2)

/temp/.* (component1)

component2 will contain only .c files contained in the /subdir/temp/ path, while component1
will contain any file under any /temp directory, except for .c files that exist under /subdir/temp/.

If you select Ignore lettercase in regex evaluation, all regular expressions will be evaluated without
regards to case. If this option is not selected, all regular expressions will be evaluated with regards to
case sensitivity.

4. Assign the default owners

UI Location: Configuration → Component Maps → Default Owners

201

Managing data on software issues

Figure 3.3.6. SCM system settings for automatic owner assignment

This optional step allows you to assign an owner to issues upon a commit based on the first
issue component that matches the rule. Any user that is permitted to access a component can
be designated as the default owner for all issues within the component. This feature is one of the
configuration options for Automatic owner assignment.

To assign a default owner, select a component name and click Assign Owner..., and then type a
user name in the Default owner field. `

5. Associate streams with your component map.

UI Location: Configuration → Projects & Streams

Note

The Streams tab under Components only displays the stream that are currently assigned to the
component map. Stream association is configurable in the location listed above.

202

Managing data on software issues

Figure 3.3.7. Stream settings

To associate a stream:

a. Select a stream from the Projects & Streams list.

b. Enter a component map name in the Component Map field.

c. Click Done.

When you associate a stream with a component map, it maps the source files in that stream into a
component.

A given stream can only be associated with exactly one component map. However, a component
map can contain multiple streams. If a component map is not specified, the stream is associated with
the Default component map.

3.3.3.2. Importing and exporting component maps

The Component Maps configuration screen also allows you to import and export previously configured
component maps.

UI Location: Configuration → Component Maps → Import/Export

203

Managing data on software issues

Figure 3.3.8. Component map import/export

Export
The Export feature creates a JSON file with all of the relevant information for the selected
component map. This includes components, file rules, and default owners.

The downloaded file can then be edited and imported back into Coverity Connect.

See Section 3.3.3.2.1, “Exported component map JSON elements” for details on the exported JSON
elements.

Import
The Import feature accepts a component map JSON file, and uses it to overwrite the components,
file rules, and default owners for the selected component map. Section 3.3.3.2.1, “Exported
component map JSON elements” contains information on the various component map JSON
elements.

There are several important considerations for formatting the import file:

• The format of the import file should match the exported JSON. Aside from required elements,
missing fields will be considered empty, and will be deleted if they existed prior to the import.
The only exceptions to this are the defaultOwners and rbacSettings fields. An empty
defaultOwners or rbacSettings field will simply be ignored.

If you want to delete defaultOwners or rbacSettings through import, set their value to null.

• The imported JSON must contain exactly one component with the name "Other".

• Import can not be used to create component maps. If you want to import into a new component
map, you need to create a new component map by clicking Add, and then import the component
map data.

204

Managing data on software issues

• If a component's name is changed in the JSON, any file rules (fileRules) that refer to that
component must also use the new component name (via the componentName field).

3.3.3.2.1. Exported component map JSON elements

The following table lists and describes the elements contained in the JSON file that is produced when you
use the Export button in the Component Maps menu.

Table 3.3.4. Exported component map JSON elements

Element Description

version Specifies the version of the component map JSON format.

This may be excluded, but if present, the value must be 1.

name The name of the component map. This is a required element.

description Optional description of the component map.

components Contains each of the components within the component map. Each
component object contains the following child elements:

name, description, defaultOwner, and rbacSettings.

 name The name of the component. This is a required element. No duplicate
names are allowed in the JSON file.

 defaultOwner The username of the default owner in the format username@ldap
(or just username if ldap is null.

 rbacSettings Contains desired RBAC settings for the component map. This
element is optional for import. If it is missing, the existing RBAC
settings will be unchanged.

The rbacSettings element contains the following child elements:

groupOrUser, principalName, and roles.

 groupOrUser Specifies whether the RBAC settings apply to a group or a single
user. This element is required (if rbacSettings is present) with a
value of "group" or "user".

 principalName Specifies the group or username the RBAC settings apply to. This is
a required element if rbacSettings is present.

 roles A list of role names that apply to the group or user specified by
principalName. This is a required element (if rbacSettings is
present), and must contain a non-empty list of role names.

fileRules Contains each of the file rules within the component map. Each file
rule object contains the componentName and pathPattern child
elements.

This element may be excluded, which will be interpreted as a request
to delete all existing file rules.

205

Managing data on software issues

Element Description

 componentName Component name that exists in this JSON file. This component will
be mapped to all files that match the sibling pathPattern element.

This is a required element if fileRules is present.

 pathPattern A valid regex pattern. Any files matching the pattern will be mapped
to the component specified by the sibling componentName element.

This is a required element if fileRules is present.

3.3.3.3. User scenarios: components

The following scenarios illustrate the use of components through the Coverity Connect interface. The first
scenario focuses on component configuration and the second scenario describes the work-flow of a user
who is assigned to the component.

The recommended configuration pattern is to have streams which are based on the same code base
share a single component map. Streams which are unrelated should generally not share a component
map. For example:

• Code-A version1 - Uses component map "X"

• Code-A version2 - Uses component map "X"

• Code-B version1 - Uses component map "Y"

This way, the same components and file rules will apply to any stream associated with a component map,
while maintaining the best performance possible.

3.3.3.3.1. System overview

The examples in the following scenarios use the BusyBox open-source project to represent a product's
code base for an unnamed organization. The codebase was analyzed using Coverity Analysis, and was
committed to the following streams, each representing a different way in which the software is built:

• allyesconfig

• allnoconfig

• defconfig

• randconfig

The user scenarios in this section concentrate on a project called busybox_dev which contains the
allyesconfig and allnoconfig stream associations.

The following organizational chart displays the users that are key participants in the busybox_dev
project, and the development groups to which they belong:

206

Managing data on software issues

Figure 3.3.9. busybox_dev users

admin
The Coverity Connect system administrator. Responsible for creating/importing users, configuring
groups, setting user permissions, and so forth.

busybox_owner
Leads a team of nine developers and is responsible for team's overall productivity and for assigning
issues and project tasks to developers. Knows the exact issues contained in the project areas for
assignment. Manages multiple groups and requires the groups to have limited access to certain
portions of the codebase. Has configuration (Project Owner) privileges.

user1-user9
Use Coverity tools to find and resolve issues in the codebase. Have User privileges to view, filter, and
triage issues.

Note

For information about creating users, creating groups, and adding users to groups, see
Chapter 3.2, Managing users, groups, and roles.

3.3.3.3.2. Scenario 1: Component configuration

User: busybox_owner

Goal: To create and configure a component map called busybox that contains the following
components:

core_libs
This component represents a section of core library files that exist in the following directories:

• libbb

• include

The devA group is the team of developers that primarily works on this section of code. The devC
group occasionally works on this section of the code.

207

Managing data on software issues

IO
This component represents input and output utilities that exist in the archival directory. The devB
group is the team of developers that primarily work on this code. The devA group occasionally works
on this section of the code.

util
This component represents a series of utilities located in the following directories:

• util

• util-linux

The devB group is the team of developers that work on this section of code.

3rd_party_code
This component represents sections of the code developed by a third party. The files and issues
contained in this component are not to be exposed to Coverity Connect users.

Configuring components:

1. busybox_owner creates a component map.

a. Goes to Configuration → Component Maps.

Coverity Connect automatically creates the Default component map. This component map
can be copied or edited, but not deleted.

b. Clicks Add to create a new component map.

c. Enters busybox as the component map name.

d. Adds a description of the component map (this step is optional).

e. Instead of adding a new component each time, busybox_owner can use the Duplicate button
to copy an existing component map and then edit it.

2. Adds the first component definition for the busybox component map (more components are added
later in this scenario).

a. While the busybox component map is selected, busybox_owner clicks + to add a new
component and names it busybox.

b. Selects busybox to edit it.

3. Defines file rules in the File Rules tab.

a. Uses a regular expression pattern to match files that belong to a component. File rules are
added by using the Insert Rule... button.

busybox_owner adds the following file rules:

208

Managing data on software issues

/libbb/.*
Maps all files and issues contained in the /libbb directory to this component.

/1_9_2/include/.*
Maps all files and issues contained only in the /1_9_2/include/ directory to this
component. This file rule specifies the /1_9_2 because other /include subdirectories
exist, but the files contained within them are not applicable to the development groups
associated with this component.

b. For each file rule added, busybox_owner selects and assigns core_libs from the
Components auto-complete field..

4. (This step is optional) - In the Default Owner tab, busybox_owner chooses to define user1 as the
default owner for the core_libs component.

5. Goes to the Components tab to add access control for the development groups working on the files
and issues defined in the component.

a. Clicks Add open the RBAC selection list.

b. Enters devA in the Group/User field.

c. Assigns the Developer role to the group.

d. busybox_owner enters devC and assigns the Developer role.

6. busybox_owner associates streams with the component map.

a. Goes to Configuration → Projects & Streams.

b. Selects the allnoconfig stream and adds the busybox component map to it.

c. Selects the allyesconfig stream and adds the busybox component map to it.

d. Clicks Done to finalize the changes and exit the screen.

Note

If busybox_owner copies a stream (for example, allyesconfig), the copied stream is
associated with the same component map (busybox).

7. Repeats the Add Component procedure for the IO component with the following configuration:

File Rules: /archival/.*

default owner: user6

Access Control: devB - Developer, devA - Developer

8. Repeats the Add Component procedure for the util component with the following configuration:

209

Managing data on software issues

File Rules: /runit/.*\.c

/util-linux/.*\.c

These files rules return files with the .c suffix in the designated directories.

default owner: user6

Access Control: devB - Developer

9. Repeats the Add Component procedure for the 3rd_party_code component. This component is
defined so that third party code, and its associated issues, are not exposed. In this scenario, header
(.h) files that exist in directories other than those defined in the previous components represent
third-party code. The configuration is:

File Rules: \.h

default owner: Not set (no action required).

Access Control: devC - Developer, devA - Developer

10. Establishes the file rule order in the File Rules tab.

If a file matches multiple component specifications, it is assigned to the first component in the list
(from top to bottom). busybox_owner changes the order of components as follows:

a. Selects the file rule, and then clicks the up or down buttons.

b. Repeats this process (if necessary) to get the desired ordering.

c. Clicks Done to finalize the changes and exit the screen.

Figure 3.3.10. File Rules tab

210

Managing data on software issues

11. Observes the effects of changes to the component rules in the configuration area prior to applying
the changes.

12. Clicks Done to update all changes in the system.

3.3.3.3.3. Scenario 2: User work-flow

User: user1

Goal: This scenario describes the work-flow of the default owner, User1. From the User1's
perspective, the work-flow does not greatly differ from a "normal" work-flow; that is, one without
component definitions. So, this scenario describes the specifics of how the component mechanism works
within the flow.

Filtering issues:

1. user1 signs into Coverity Connect and selects the busybox project.

2. Observes Component as a default column in the Issues: By Snapshot list.

3. Observes that either core_libs or IO (the components to which user1 belongs) is the component
name for each issue.

Note

If more than one component map exists in the project, the component name is identified as
follows:

<component_map_name>.<component_name>

For example, busybox.core_libs

In this case, only one component map exists, so the name displays as core_libs.

4. Observes that user1 is the owner for all issues that occur in core_libs.

user1 was designated as the default owner during the component's configuration.

5. Selects core_libs and Include in the Components filter.

The issues list displays only the issues contained in core_libs.

Component filtering is CID-based, so an issue is included even if only one of its occurrences is in the
included component. Components that are invisible to user1 (through access control or exclusion)
do not appear in the filter.

The Include selection displays only the issues for the component specified in the filter. The Exclude
button displays all of the issues that user1 has access to outside of the specified component.

Examining, locating, and triaging issues:

1. Clicks the Files view type and then the In Latest Snapshot view to observe the correct issue markers
and file trees that indicate the existence of issues in files, directories, and components.

211

Managing data on software issues

user1 can only view and open the files and issues to which he or she is assigned access.

2. Observes issues that are not in the latest snapshot (fixed/dismissed) as associated with components
according to the current component mapping.

3. Clicks the gear icon to edit filters.

4. Selects core_libs and Include in the Components filter to focus the list of issues. This includes
issue links in source file display (when no issue is open). Filtering is CID-based; that is, an issue is
included even if only one of its occurrences happens to be in the included component.

5. Observes the issue markers in the file tree, which was filtered according to issue filtering criteria.

6. After the list of issues is filtered and a group of issues is selected into the desired order, user1
begins to triage the list of issues.

The process of triaging issues is described in Section 2.2.4, “Triaging issues”. However, the following
notes apply to triaging issues through the use of components:

• user1 can only select an owner for the issue from the list of users that can access the issue
based on their component assignment.

• user1 can only retrieve or update stream issues that are contained in the assigned components
(core_libs and IO).

• user1 can only view issues that are contained in the assigned components (core_libs and IO)
in the issue history.

Monitoring issues:

Monitoring issues allows user1 to track and create reports of the issues in the components to which he
or she is assigned. For more information, see Part 2, “Coverity Connect Usage”.

Setting up component-based notification:

1. Clicks Preferences from the User Session tool bar.

2. Clicks the Components Subscriptions tab.

Note

Component notification requires the setup of a notification script using the Web Services API.

3. Subscribes to new issue notification by selecting the busybox component map, and the core_libs
and IO components.

212

Managing data on software issues

Figure 3.3.11. Component Subscriptions window

4. Clicks Done.

user1 will receive new issue notifications when new issues are committed.

Users are alerted if they subscribe to a restricted component to which they have no access.

3.3.4. Managing triage stores

A triage store is a repository for the current and historical triage values of CIDs. The state of triage
values for a CID changes when a user triages a CID, for example, by changing its classification from
Unclassified to Bug.

In Coverity Connect, each stream must be associated with a single triage store so that users can triage
issues (instances of CIDs) found in the streams. You can use one triage store for all Coverity Connect
streams, or you can associate streams with separate triage stores. When streams are associated with the
same triage store, any instances of a CID that are found in the streams will share the same triage values,
regardless of the project to which the streams belong.

Triage store configuration and management takes place through the Triage Stores menu.

Figure 3.3.12. Example: Triage Stores menu

213

Managing data on software issues

Figure 3.3.12, “Example: Triage Stores menu” shows a Default Triage Store configuration.

Note

The Triage Stores menu is viewable but not editable on Coverity Connect Subscribers. Subscribers
are instances of Coverity Connect that share their triage values through one or more triage stores
that are set up in a Coordinator instance. For details, see Section 3.5.1, “Synchronizing multiple
Coverity Connect instances”.

The Coordinator instance of Coverity Connect can only manage streams that are local to the
Coordinator. For example, it is not possible to use the Coordinator instance to associate a stream
from a Subscriber instance with a triage store. Instead, an administrator would need to use the
Projects & Streams menu on the Subscriber for this purpose. The Coverity Connect Web Services
API also supports this functionality (see the Coverity Connect Web Services Reference).

The Triage Store menu supports the following actions:

• Adding a triage store:
Creates a triage store. The new store does not contain any triage values, triage history, or stream
associations. Note that if you associate a stream with a newly created triage store, any CIDs found
in the stream will acquire the default triage values.

For required permissions, see Assigning roles. A user who adds a triage store becomes the Triage
Store Owner of the new triage store. The new store does not have any other role associations.

The Add button supports this functionality.

• Associating one or more streams with a triage store:
Assigns the triage values that are stored in a triage store to CIDs in the associated stream (or
streams). Note that these CIDs will not retain triage data from any triage store with which their
stream was previously associated. If a CID has not been triaged in a triage store with which a
stream is associated, the CID will receive the default triage values. For example, assume Scenario
1: Triage Stores:

Scenario 1: Triage Stores

• Stream A is currently associated with TS1, and Stream A contains an instance of CID 123 and
CID 456, both with a classification of Pending in TS1.

• The instances of CID 123 in streams currently associated with TS2 are classified as Bug. CID
456 has never been triaged in TS2.

In this case, if you change the association of Stream A from TS1 to TS2, the classification of CID
123 in Stream A will change from Pending to Bug. However, the classification of CID 456 will be
Unclassified, the default triage value for the Classification issue attribute.

If you disassociate a stream from a triage store, the store will retain the triage values for CIDs in
that stream.

For required permissions, see Assigning roles.

214

Managing data on software issues

The Streams tab supports this functionality.

Note

Stream links are associated with a triage store through the streams that they reference,
so stream links share the same triage data as the streams they reference. For this reason,
stream links are not listed in the Triage Stores menu. Triaging a CID in a project that, for
example, contains only a stream link will update the triage store with which the referenced
stream is associated.

For additional information about the relationship of stream links to projects, see
Section 3.2.3.1.5, “Primary projects and stream links”.

• Deleting a triage store:
Removes a triage store from Coverity Connect along with all its triage data and role associations.
Note that you cannot delete the Default Triage Store or a triage store that has streams associated
with it. If you need to delete a triage store, you must first associate its streams with another triage
store.

For required permissions, see Assigning roles.

The Delete button supports this functionality.

Note that if you delete a triage store on a Coordinator instance of Coverity Connect when streams
from a Subscriber instance are associated with the store, Coverity Connect will associate the
streams from the Subscriber instance with the Empty Triage Store.

• Exporting a triage store:
The Export button creates a JSON file with all relevant triage data from the selected triage store.
All triage history and attribute information, including any custom attributes, is included in the
exported file.

See Section 3.3.4.5, “Exported triage store JSON elements” for details on the exported JSON
elements.

• Importing a triage store:
The Import button accepts a JSON triage data file and uses it to create a new triage store.
Section 3.3.4.5, “Exported triage store JSON elements” contains information on the various triage
store JSON elements.

There are several important considerations for formatting the import file:

• In general, if a triage data file does not specify a value for a particular field, it will be given the
default value (e.g. owner will be “unassigned”).

• Validation of imported triage data will only succeed when all the referenced data, such as users
and custom triage attributes, are already available on the target Coverity Connect instance.

• Importing the JSON triage data file creates a new triage store, it does not overwrite an existing
one.

215

Managing data on software issues

• Import is not available to subscriber instances of Coverity Connect. Coordinators may import
triage stores, which will be reflected on subscriber instances.

• The importing of triage data will create Merged Defects (identified by their merge key value) if
they do not yet exist on the target Coverity Connect instance. If a CID is specified, the merged
defect will be assigned that CID value.

This can cause collision errors in the following scenarios:

1. The merged defect already exists on the target Coverity Connect instance, but has a CID
value that differs from the imported triage data.

2. The merged defect does not yet exist on the target Coverity Connect instance, but its
specified CID value is already used by an existing defect.

In the event of a collision, the error will be flagged, and the user should edit the import file to
remove or modify the offending CID value.

• Assigning roles:
Allows you to assign to users or groups one or more roles that have permissions to a triage store
(or to other features in the UI).

To add a triage store, a user or group requires the Create Triage Stores permission. The System
Admin and Project Admin roles have this permission by default.

To delete triage stores, a user or group requires the Manage Triage Stores permission. The
System Admin and Triage Store Owner role have this permission by default.

To associate a stream with a triage store, a user or group requires the Manage Streams
permission on the stream. The user or group also must have one of the following permissions to
the triage store: Manage Triage Stores, View issues, or Triage issues. To discover the built-in roles
that have these permissions by default, see Figure 3.2.1, “Built-in roles”.

To triage CIDs found in streams that are associated with a triage store, a user (or group to which
the user belongs) requires the View issues and Triage issues permissions at the global level or
at three separate lower levels (a triage store, a component, and a project or stream). By default,
the User group is assigned the Developer role, which has this permission at the global level. To
use the permission at lower levels, you might add to a triage store, component, and stream a user
(or group) with a role that includes the Triage issues and View issues permissions. (Note that you
also need to assign any additional permissions that the user requires to work with the stream and
component, such as the ability to view issues and view the source.) For a detailed example, see
Section 3.2.3.2.1, “Scenario: Granting triage permissions on a synchronized Coverity Connect
enterprise cluster ”. To understand permissions and associate them with a role, see Section 3.2.3,
“Roles and role based access control”.

The Roles menu supports this functionality.

Coverity Connect provides two built-in triage stores.

Built-in Triage Stores

216

Managing data on software issues

• Default Triage Store:
Serves as a default store for new streams (though it is possible to associate a stream with a
different store when creating or editing the stream). In addition, this built-in triage store cannot be
deleted.

If you decide that all your streams should share a single triage store, Coverity recommends that
you use this store instead of creating a new one for that purpose. For details on this topic, see
Section 3.3.4.1, “Scenario: Sharing triage data across code branches (Recommended)”.

For required permissions to the Default Triage Store, see Assigning roles.

• Empty Triage Store
This store will be empty except in the case that it contains orphaned streams.

Users cannot triage instances of CIDs contained in streams that are associated with this store.
To enable triage, you need to associate the streams with another triage store. This is the only
operation you can perform with the Empty Triage Store.

Coverity Connect associates streams with this store under the following conditions:

• When creating a stream, if a user or administrator does not have permission to any triage stores.
In other words, the user is not assigned a role that has the Manage Triage Stores, View issues,
or Triage issues permission on any triage store.

• After deleting a triage store on a Coordinator instance when streams from a Subscriber instance
are associated with the store. Coverity Connect will associate the streams from the Subscriber
instance with the Empty Triage Store.

Triage scope. When a user triages a CID in a project, the update applies by default to all triage stores
that are associated with streams (in the project) that contain that CID. However, it is possible for users to
perform triage on select triage stores. See ???TITLE??? for more information.

User-set attributes for CIDs:

• Classification attribute (default value: Unclassified)

• Severity attribute (default value: Unspecified)

• Action attribute (default value: Undecided)

• Fix Target attribute (default value: Untargeted). This built-in attribute is hidden from the Triage pane by
default.

• Ext. Reference attribute (default value: an empty field)

• Owner attribute (default value: Unassigned)

• Comment attribute (default value: an empty field)

• Custom issue attributes

For more information about issue attributes and values, see Section 2.4.5, “Triage attributes”.

217

Managing data on software issues

Note

Users do not set the Status of a CID (New, Triaged, Dismissed, or Fixed), which is set by Coverity
Connect.

3.3.4.1. Scenario: Sharing triage data across code branches (Recommended)

Issues share the same CID when Coverity determines that the same fix is required for them, and most
instances of a given CID are very similar issues that are found in separate code branches.

In general, managing and tracking issues is simplified if all instances of a given CID are triaged in the
same way, regardless of the code branches in which they are found. Historically, Coverity customers
have usually triaged the same CID differently (for example, marking the CID as a Bug in the main
development branch but as Intentional in the maintenance branch) when it was risky to fix the CID in the
maintenance branch. However, the Fix Target attribute (introduced in version 6.0.2) diminishes the need
to triage the same CID differently (for details, see Alternative to using separate triage stores). Further, in
many cases, the same developer is the Owner of a given CID. Because of such considerations, Coverity
recommends using a single triage store (the Default Triage Store) for all streams.

In the simplest case, where all streams across projects in a given Coverity Connect instance share the
same triage store, the triage values for a CID that occurs in these streams will always be unified across
streams in all projects.

In Figure 3.3.13, “Example: Updating Triage Value, Single Triage Store”, the Coverity Connect
streams share the same triage store (Default Triage Store). When a user triages CID 123 in the
CodeBranch_1.0 project (by changing the classification from Unclassified to Bug), the Default Triage
Store is updated with the new triage values for CID 123. Because the streams rel_1.0_p1 and
rel_2.0_p1 are associated with the same triage store, they share the same triage values for CID 123.

Figure 3.3.13. Example: Updating Triage Value, Single Triage Store

The following procedure explains how to set up the scenario described in Figure 3.3.13, “Example:
Updating Triage Value, Single Triage Store”.

To use a single triage store:

1. When creating a stream, always associate the stream with the Default Triage Store.

218

Managing data on software issues

For information about creating streams, see Section 3.3.1.2.2, “Setting up streams”.

2. If any streams are currently associated with another (non-default) triage store, determine whether
to re-associate the streams with the Default Triage Store. You can use the drop-down menu in the
Streams tab to associate the streams with the Default Triage Store.

3. If necessary, use the Roles tab for the Default Triage Store to assign any necessary roles to users or
groups.

If a user or group needs a different set of roles, you can use the Edit button to select or deselect its
roles.

For example, one role might allow your developer groups to triage issues in the store, while another
role might allow an administrative group to manage the Default Triage Store.

4. Click Done to save your changes and exit.

3.3.4.2. Scenario: Separating triage data by code branch

A company might decide to create separate triage stores for the currently active (main) and maintenance
(for example, hotfix or patch) code branches so that users can triage the same CID differently depending
on the code branch. Figure 3.3.14, “Example: Updating Triage Value, Multiple Triage Stores” shows an
example of such a case. Here, there is a single Coverity Connect project for streams that contain issue
data from active branches and maintenance branches of the code base. This setup allows users (with
the appropriate permissions) to triage instances of a CID (for example, CID 123) in both triage stores (the
default) or only in one of them by selecting the triage stores. (See ???TITLE??? for more information.)
For example, users might decide to ignore an instance of a CID in the maintenance branch (setting the
Action attribute to Ignore) but fix the CID in the main branch (setting the Action attribute to Fix Required).

Figure 3.3.14. Example: Updating Triage Value, Multiple Triage Stores

To complete the scenario:

1. When setting up Coverity Connect for the first time, the administrator uses the Add button to create
the triage store that is intended for streams that contain issues from the active code branch.

219

Managing data on software issues

The example calls this triage store the Main store for convenience only. A company could give it any
name that fits its naming conventions. Here, an active code branch is the branch for an upcoming
release of the products.

2. The administrator makes sure that the streams are associated with the correct triage store:

• When creating a stream for the active code base (here, release branch 2.0), the administrator
associates the stream with Main triage store.

For information about creating streams, see Section 3.3.1.2.2, “Setting up streams”.

• When putting a branch of the code base into maintenance, the administrator creates a branch of
the Main triage store, then associates the streams that contain issues for the maintenance release
(here, rel_1.0_p1 and rel_1.0_p2) with this copy (here, named the Maintenance store for
convenience).

This action creates a triage store that contains the current triage history of the Main triage store.
The administrator associates the *_1.0_* streams with the Maintenance triage store so that users
will be able use the Advanced Triage feature to update CIDs in the Main triage store without
triaging CIDs in the Maintenance triage store (and vice versa).

Alternative to using separate triage stores

To avoid using separate triage stores for the streams shown in the example, you could
use a single triage store along with a Fix Target attribute that identifies the releases (for
example, rel_1.0 or rel_2.0) in which a given CID could be fixed. In this way, a user who
triages CID 123 could set the Fix Target attribute to rel_2.0 and set the Action attribute
to Fix Required. Though the CID would be marked as Fix Required for both branches, the
Fix Target attribute would tell developers to fix the CID only in the active (rel_2.0) code
branch, not in the maintenance branch. Such a scenario might be required to minimize the
testing of the maintenance branch that is required prior to releasing a hotfix or patch.

With this configuration, users no longer need to use advanced triage to triage the Action
attribute of the CID differently in two triage stores. For more about issue attributes, see
Section 3.3.2, “Configuring triage attributes”.

3. To provide or restrict access to the Maintenance streams, the administrator can use the Roles menu
for the Maintenance store to assign any necessary roles to users or groups.

If a user or group requires a particular role, the administrator can use the Edit button to select
that role. For example, in some cases, a company might not want users to triage CIDs in the
Maintenance store. In such a case, the administrator could assign a role that gives the a developer
group permission to view (View issues) but not triage (or see the triage history of) the CIDs in the
maintenance streams, or that prevents the group from viewing or triaging instances of CIDs that are
in the maintenance streams. For details about roles and permissions, see Section 3.2.3, “Roles and
role based access control”.

4. Click Done to save your changes and exit.

220

Managing data on software issues

Note

In Figure 3.3.14, “Example: Updating Triage Value, Multiple Triage Stores”, streams for the different
code branches are stored in the same project so that users can take advantage of advanced triage.
However, if there is no need for advanced triage, the set of streams for each release could be in
separate project. Assuming the same triage store associations, such a configuration would keep the
triage data for each set of streams separate. However, triaging instances of a CID that occur in both
projects would require triaging the CID twice, once in the 2.0 project, another time in the 1.0 project.

3.3.4.3. Scenario: Separating triage data in product-based projects

A company might keep the streams for each product in a separate project. Figure 3.3.15, “Example:
Updating Triage Value, Multiple Stores, Product-based Projects” illustrates such a case. Each stream in
a project is for issues from a separate branch (here, rel_1.0_* and rel_2.0_* streams) of the code base
for a given product (here, *_p1 or *_p2). Streams for the active branch of the code base (here, rel_2.0_*
streams) for all products share the Main triage store, while streams for the maintenance branch (here,
rel_1.0_* streams) share the Maintenance triage store. As in Section 3.3.4.2, “Scenario: Separating triage
data by code branch”, when triaging a CID in a project, users (with the appropriate permissions) can
triage the CID in all triage stores (the default) or only in a subset of them by selecting triage stores. (See
???TITLE??? for more information.)

Figure 3.3.15. Example: Updating Triage Value, Multiple Stores, Product-based Projects

To complete the scenario:

1. Use the procedure in Section 3.3.4.2, “Scenario: Separating triage data by code branch” as a guide.

The only difference to keep in mind is that streams for each release branch (rather than for each
product) are in separate projects. Nevertheless, both scenarios use triage stores in the same way.

2. Click Done to save your changes and exit.

221

Managing data on software issues

3.3.4.4. Configuring triage stores after upgrading from version 6.0 or 6.0.1

All triage store configurations from version 6.0 or 6.0.1 are retained after the upgrade. However, the
Roles menu is new in version 2020.12. After upgrading to version 2020.12 from version 6.0 or 6.0.1, you
can assign roles manually, as needed.

3.3.4.5. Exported triage store JSON elements

The following table lists and describes the elements contained in the JSON file that is produced when you
use the Export button in the Triage Store menu.

Table 3.3.5. Exported triage store JSON elements

Element Description

<Name> The root element of the JSON file is a string containing the name of
the triage store. The triage store may contain multiple defect objects,
which each consist of the following attributes:

checker, cid, dateOriginated, detectedBy,
domain, mergeKey, preventVersionExternal,
preventVersionInternal, and triageStates.

 checker The name of the checker that found the defect.

 cid The CID (Coverity ID) of the defect.

 dateOriginated The date and time that the defect was originally committed to
Coverity Connect.

 detectedBy The process that was responsible for reporting the defect.

 domain The defect's programming language.

 mergeKey A unique identifier that maps a CID across multiple projects or
Coverity Connect instances.

 preventVersionExternal The version of the Coverity Analysis tools that found the defect.

 preventVersionInternal The internal identifier for the Coverity Analysis version.

 triageStates A group of name/value pairs for the defect's triage attributes.
triageStates contains the following child attributes:

action, classification, comments,
customTriage, dateCreated, dateEnded,
fixTarget, legacy, severity, userCreated, and
userCreatedLdapServerName.

 action Triage attribute used to specify the action to take with regard to the
defect.

 classification Triage attribute that identifies the classification of the defect.

 comments User comments (if any) included by a user during triage of the defect.

 customTriage The customTriage object contains two child objects,
picklistAttributes and stringAttributes, which contain

222

Managing data on software issues

Element Description
any custom triage attributes and values created by the user or
administrator.

 dateCreated Date and time when the current triage attribute values were stored.

 dateEnded Date and time when the current triage attribute values were updated
or replaced.

 fixTarget Triage attribute used to set the release in which to fix an issue.

 legacy Triage attribute used to indicate whether a defect is a legacy issue or
not.

 severity Triage attribute that identifies the severity of the defect.

 userCreated The user name that created the current defect triage state.

 userCreatedLdapServerName

The LDAP server associated with the userCreated user name.

Export Summary The Export Summary object contains information on the success
or failure of the export process. It contains the following child objects:

failCount, successCount, and totalProcessed.

 failCount The number of defect objects within the triage store that failed to
export properly.

 successCount The number of defect objects within the triage store that exported
properly.

 totalProcessed The total number of defect objects within the triage store.

3.3.5. Configuring legacy issues

A legacy issue is any issue that existed in a company's code base prior to adopting Coverity Analysis, or
one that was undetected prior to completing a Coverity Analysis upgrade. Differentiating legacy issues
from others returned by Coverity Analysis can be helpful for prioritizing newly introduced issues over
those which were part of the company's backlog.

An issue's legacy status is defined by it's legacy attribute, which is set to false by default. To set
the legacy status of a set of issues to true, use the cov-manage-im command in update mode, with
--set legacy:True as an argument. See cov-manage-im in the Coverity 2020.12 Command
Reference for more details on legacy issues and the cov-manage-im command.

3.3.5.1. Setting all new issues to legacy status

The most common scenario for using the legacy attribute is identifying all issues in a code base which
existed before the adoption of Coverity Analysis. A company may want to implement a policy where
all code check-ins have been checked by Coverity Analysis and are free of new issues. To do so, all
existing issues in a given stream must be highlighted as legacy by running the following command after
committing your first analysis to Coverity Connect:

223

cov_command_ref.pdf#cov-manage-im

Managing data on software issues

> cov-manage-im --mode defects --stream <streamName> --update --set legacy:True

This will set the legacy status of all previously existing issues to true.

3.3.5.2. Creating legacy issues after upgrading Coverity Analysis

When a company upgrades to a newer version of Coverity Analysis, improvements in Coverity checkers
may reveal additional issues that existed in the company's code base prior to upgrading. To mark these
newly revealed issues as legacy issues, complete the following steps:

1. Run an analysis on your code base using the original Coverity Analysis version, and commit the
results.

2. Complete the upgrade to the newer Coverity Analysis version.

3. Run the analysis again, and commit the results. Any issues introduced in this step are the cause of
improvements in the Coverity checkers.

4. Use the following command to mark the issues found after upgrade as legacy issues:

> cov-manage-im --mode defects --stream <streamName> --update --newest --set
 legacy:True

The --newest option makes sure that only the issues introduced in the most recent snapshot (after
the upgrade) are marked as legacy issues.

Note

An optional [snapshotId] parameter can be added after the --newest option to compare
the newest snapshot directly against the specified older snapshot. In the following example, all
issues that are present in the latest snapshot but not present in snapshot 10001 will be marked
as Legacy issues.

> cov-manage-im --mode defects --stream <streamname> --update --newest 10001
 --set legacy:True

3.3.5.3. Working with legacy issues in Coverity Connect

Coverity Connect provides the ability to assign the legacy attribute to individual issues, as you would
triage any other attribute. The legacy attribute doesn't appear in the triage panel by default, but can be
added by completing these steps:

1. Navigate to the Configuration → Attributes menu.

2. Click on Legacy in the left pane.

3. In Attribute Details, click Edit.

4. For Display, select On (Shown in triage panel).

5. Click OK and Done to exit from the Attributes menu.

224

Managing data on software issues

Now you can select an issue's legacy status directly in Coverity Connect's triage panel. You can also
update the legacy status of multiple issues at once by highlighting all the issues to be updated and
selecting the new legacy value in the triage panel.

225

Chapter 3.4. Configuring automatic owner assignment

Table of Contents
3.4.1. Overview of the automatic owner assignment process .. 226
3.4.2. Setting global SCM rules and the SCM user map .. 227
3.4.3. Setting stream-level rules ... 233

You can configure Coverity Connect to automatically assign an owner to an unassigned issue when that
issue is committed to a new snapshot. After the username is determined, it is displayed in the Owner field
in the triage pane.

This feature alleviates the cumbersome process of inspecting issues and manually assigning each one to
a developer who has the expertise to investigate and fix it.

Consult the subsequent implementation instructions to configure owner assignment.

3.4.1. Overview of the automatic owner assignment process

The following steps provide an overview of the automatic owner assignment configuration process, as
well as pointers to specific configuration/implementation details:

1. Determine the method in which you want Coverity Connect to automatically assign owners:

• By retrieving SCM (Source Code Management) history to determine the assigned owner.

The SCM history consists of when, where, and by whom the code was changed and the
assignment rules derive the owner of an issue based on the SCM history. Determining the owner
using SCM data is accomplished by a combination of configuring Coverity Connect UI properties
and Coverity Analysis command utilities. Coverity Connect supports the same SCM tools that are
supported by the Test Advisor product. See Coverity Test Advisor SCM and Platform Support for
a list of supported SCM tools.

There are two types of users that are referred to in this section:

• SCM user - A user identity that modified or checked the code into the SCM system.

• Coverity Connect user - A user identity that exists in the Coverity Connect database.

• By defining the default owner in a component.

This method uses the functionality associated with Coverity Connect components. If you choose
this method, skip to Step 4.

• Alternatively, you can choose not to enable automatic owner assignment at all.

This allows organizations with multiple code bases to gradually transition to automatic owner
assignment, one code base at a time and according to a schedule convenient to each development
team.

226

cov_deploy_install_guide.pdf#test_advisor_support

Configuring automatic owner assignment

2. If you are planning to use SCM data for owner assignment, define the global SCM derivations rule
under the system configurations. See Section 3.4.2, “Setting global SCM rules and the SCM user
map”.

3. Configure the SCM to Coverity Connect user map file. See Section 3.4.2.2, “Configuring the SCM to
Coverity Connect user map”.

4. At the stream level, define the owner assignment rule. See Section 3.4.3, “Setting stream-level
rules”.

If you configure owner assignment with SCM data, continue to the next step in this workflow.

If you are using the component mechanism, or choose not to enable owner assignment, the
remaining steps are not applicable.

5. Update your Coverity Analysis scripts(s)/commit process to include the SCM options to cov-
commit-defects.

If you are not already using the cov-import-scm command to retrieve SCM data, then you will
need to add the --scm option (and other optional SCM-related options) for cov-commit-defects.
For more information, see cov-commit-defects .

6. Optionally test the results of different derivation rules without having to commit them to Coverity
Connect by using the cov-blame command. For more information, see the cov-blame .

3.4.2. Setting global SCM rules and the SCM user map

If you have made the decision to enable Coverity tools to assign owners based on SCM data, the first
step is to configure the following globally-defined items:

1. Go to Configuration → System → Automatic Owner Assignment.

2. Choose a global SCM derivation rule.

3. Define an SCM to Coverity Connect user map file.

227

cov_command_ref.pdf#cov-commit-defects
cov_command_ref.pdf#cov-blame

Configuring automatic owner assignment

Figure 3.4.1. SCM system settings for automatic owner assignment

Note

In a Coverity Connect clustered environment, all of these settings are synchronized, so you
can only set them on the coordinator and not on the subscribers. For more information, see
Section 3.5.1, “Synchronizing multiple Coverity Connect instances”.

3.4.2.1. SCM derivation rules

Coverity Connect can apply one of a number of rules to derive the owner of an issue based on SCM
history. The rule that you choose is applied to all streams in the project that are configured to accept SCM
data for owner assignment (see Section 3.4.3, “Setting stream-level rules”).

It is not required that you configure this property, as there is the default setting, Set to last user to modify
any line in the event tree. However, you might find that a different rule is more appropriate for assigning
owners within your system.

The following table lists the derivation rules available for configuration in Coverity Connect and shows the
corresponding rule name used in the cov-blame --owner-assignment-rules command line option.
For descriptions of the rules, see the --owner-assignments-rules option for cov-blame .

228

cov_command_ref.pdf#cov-blame

Configuring automatic owner assignment

Table 3.4.1. Automatic ownership assignment rules

SCM rule cov-blame rule

Set to last user to modify file of main event file

Set to last user to modify line of main event line

Set to last user to modify the function of main event function

Set to last user to modify top of the event tree top_events

Set to last user to modify any line in the event tree all_events

Set to last user to modify any function in the event tree all_functions

Set to last user to modify any file in the event tree all_files

3.4.2.2. Configuring the SCM to Coverity Connect user map

When owners are assigned based on SCM history, Coverity Connect maps user identities from the SCM
data to users in Coverity Connect through an imported file.

The default user map file is in JSON format. It is set globally, so it is shared by all streams in Coverity
Connect that are configured to accept owners derived from SCM data.

Coverity Connect provides a default user map file that you can access by clicking the Export and then
saving to your preferred location. After you finish editing the file, use the Import button to import it for use
by Coverity Connect.

The file template is as follows:

{
 "map" : [{
 "scmUsername" : "(.*)",
 "cimUsername" : "$1"
 }]
 }

The JSON elements for user mapping are:

"scmUsername"
Represents the SCM username expressed as a regular expression using full string matching. It uses
Java's built-in regular expression syntax. For more information about the regular expression syntax,
see the Javadoc at http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html .

The following table describes the username mapping format for supported SCM tools:

Table 3.4.2. SCM username mapping format

SCM tool username format description Example
regex for
Coverity
Connect
mapping

Accurev The "user" of the transaction. (.*)

229

http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

Configuring automatic owner assignment

SCM tool username format description Example
regex for
Coverity
Connect
mapping

Clearcase The "login name" and "group" of the user for the revision, in the form
<user>.<group>.

(.*)\\.(.*)

CVS The "author" of the revision. (.*)

Git The "author-mail" (user.email) of the revision, in the form
<user>@<domain>.

(.*)@(.*)

Hg (Mercurial) The short representation of the "author" of the changeset. (.*)

Perforce The "user" of the revision. (.*)

Plastic The "owner" of the changeset. (.*)

SVN The "username" of the revision. (.*)

TFS The "author" of the changeset. (.*)

Note

For all SCM tools except for Clearcase and Git, you might have an informal policy for the value
of the relevant field that Coverity Connect chooses for the username. This might allow for a
more specific regex to be used in the Coverity Connect user map.

"cimUsername"
Represents the user in the Coverity Connect database to which the SCM user is transformed. In
the example below, the value is represented as a reference to a captured subsequence . For
information about capturing, see the Javadoc for Groups and Capturing .

This element can not be used in the same mapping as "cimEmail".

Note

Values for the Coverity Connect username field are stored in lower case.

"cimEmail"
This optional element represents the email address of the user in the Coverity Connect database to
which the SCM user is transformed. This is useful for cases where the scmUsername is the user's
email address.

This element can not be used in the same mapping as "cimUsername".

"ldapServer"
This element is optional and is only required if you have duplicate user names from LDAP servers
or a combination of LDAP users and local users. You can also explicitly specify a local user with
"ldapServer" : "local" in the case that a user exists on both the local Coverity Connect server
and the LDAP server. When "ldapServer" is left blank, is null, or is absent, the entry will only
match if there is exactly one Coverity Connect user with the expected username.

230

http://docs.oracle.com/javase/7/docs/api/java/util/regex/Matcher.html#replaceFirst%28java.lang.String%29
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html#cg

Configuring automatic owner assignment

Mapping rules are processed in order until a match is found, or there are no more rules to process. If
"scmUsername" matches the username of the SCM user, but the corresponding "cimUsername"
(after variable expansion) is not a valid Coverity Connect user, the process continues to the next
"scmUsername" rule.

231

Configuring automatic owner assignment

Example 3.4.1. Example - SCM user mapping

In the following example, the mapping file attempts to match an SCM user in the format
of <first_name>.<last_name> and transform it to a Coverity Connect user in the form
of <first_letter_first_name><last_name>. Otherwise, the file attempts to match
<username>@<domain.com> and transform it to <username> at an LDAP server <domain.com>.

{
 "map" : [{
 "scmUsername" : "([a-z])[a-z]*\\.([a-z]+)",
 "cimUsername" : "$1$2"
 }, {
 "scmUsername" : "(.*)@(.*)",
 "cimUsername" : "$1",
 "ldapServer" : "$2"
 }]
}

The following example demonstrates literal mappings as well (jdoe -> john.doe):

{
 "map" : [{
 "scmUsername" : "([a-z])[a-z]*\\.([a-z]+)",
 "cimUsername" : "$1$2"
 }, {
 "scmUsername" : "(.*)@(.*)",
 "cimUsername" : "$1",
 "ldapServer" : "$2"
 }, {
 "scmUsername" : "jdoe",
 "cimUsername" : "john.doe"
 }]
 }

The following example attempts to match an SCM <username> and transform it to the Coverity Connect
user's <email_address>:

{
 "map" : [{
 "scmUsername" : "(.*)",
 "cimEmail" : "$1"
 }]
}

The following example shows how to map DOMAIN\username to username.

{
 "map" : [{
 "scmUsername" : "(.*)\\\\(.*)",
 "cimUsername" : "$2"
 }]
}

In the above example, the backslash character must be escaped twice. The backslash is escaped once
to be properly interpreted by the regular expression parser: DOMAIN\\username. Next, because that
expression is encoded in JSON, each backslash must be escaped again: DOMAIN\\\\username.

232

Configuring automatic owner assignment

Note

All SCM to Coverity Connect user map debugging messages are registered in the cim.log file.
You can view these debug messages by enabling the Commit option in Coverity Connect’s logging
configuration settings.

3.4.3. Setting stream-level rules

The Owner Assignment tab allows you to set the owner assignment rule that will compute automatic
owner assignment for issues displayed in Coverity Connect.

Figure 3.4.2. Stream settings for automatic owner assignment

1. Go to Configuration → Projects & Streams.

2. Expand a project to see the list of streams.

3. Select the stream for which you want to apply the rule.

4. Select the Owner Assignment tab.

5. Click Edit and choose one of the following rules:

Set to component's default owner.
The owner will be the default component owner for a component configuration. This option is
the default and will not trigger Coverity Analysis to attempt to retrieve any SCM historical data. If
this option is selected, but the component to which the stream belongs does not have the default
owner assigned, the owner will be left as Unassigned for the issue.

For more information, see Section 3.3.3, “Using components”.

233

Configuring automatic owner assignment

Derived from SCM (Source Code Management)
The owner will be based on the SCM Derivation Rule set in Table 3.4.1, “Automatic ownership
assignment rules”.

None (leave issues unassigned)
Unassigned Issues will not automatically be assigned an owner. The Owner field in Coverity
Connect will be left as Unassigned.

This tab assigns owners for unassigned issues in the selected stream. Owners will be assigned when
new snapshots are added based on the owner assignment rules.

234

Chapter 3.5. Configuring Coverity Connect enterprise
clusters

Table of Contents
3.5.1. Synchronizing multiple Coverity Connect instances ... 235
3.5.2. Managing multiple database instances .. 243

3.5.1. Synchronizing multiple Coverity Connect instances

Coverity Connect Coordination allows you to deploy clusters of Coverity Connect instances on which
centrally managed data is synchronized. Importantly, developer-set triage data can be updated
automatically across the cluster. For Coverity Connect to synchronize data, it is necessary to set up
one instance of Coverity Connect as the central Coordinator and to configure other Coverity Connect
instances into a cluster of Subscribers with which the Coordinator can communicate.

Coordinator Responsibilities

The following functionality (available through the Configuration menu) is viewable but not
configurable on the Subscribers so that the Coordinator can manage it centrally:

• Configuration - Users & Groups: All users in the cluster are set up and managed in the
Coordinator. Note that the triage options available to developers include the Owner
attribute, which is populated by a comprehensive list of all users in the cluster. All
users that are managed by the Coordinator belong to at least one group, so all groups
in the cluster are also created and managed in the Coordinator. See Section 3.2.1,
“Managing users” and Section 3.2.2, “Managing groups” for details.

For LDAP settings, also use System - Configuration on the Coordinator. Note that
Subscribers cannot modify LDAP configurations in the System configuration. You must
contact the Coordinator to make changes.

• Configuration - Roles: RBAC permissions and roles are configured on the Coordinator.
However, roles for projects and streams can be applied on each Subscriber through
the Projects & Streams menu item. See Section 3.2.3, “Roles and role based access
control” for details.

• Configuration - Triage Stores: One or more Triage Stores in the Coordinator support
the developer-set triage data that gets synchronized across the cluster. When you
set up a stream in a Subscriber, you select from a list of these Triage Stores. See
Section 3.3.4, “Managing triage stores” for details.

• Configuration - Component Maps: All component maps and components are managed
through the Coordinator. See Section 3.3.3, “Using components” for details.

• Configuration - Attributes: The custom attributes and attribute values that are available
to each Coverity Connect instance in the cluster are set up and managed in the
Coordinator. When a developer who is triaging an issue changes an attribute value

235

Configuring Coverity Connect enterprise clusters

for an issue, that change gets propagated through the cluster. See Section 3.3.2,
“Configuring triage attributes” for details.

• Configuration - System features: The Coordinator supports Issue Categorization and
LDAP Configuration (if you are using LDAP). See Section 3.1.1.6, “Configuring custom
issue categories” and Section 3.1.1.9, “Integrating with LDAP servers” for details.

• Configuration - System - Automatic Owner Assignment: The Coordinator controls
Automatic Owner Assignment. See Chapter 3.4, Configuring automatic owner
assignment.

Locally Configured Coordinator and Subscriber Features

• System - Projects & Streams: You set up and manage separate sets of projects and
streams locally. Note that sharing projects and streams on both the Coordinator and a
Subscriber is not a supported use case. See Section 3.3.1, “Working with projects and
streams” for details.

Each stream is associated with a Triage Store that is set up on the Coordinator.
You create this association through the Configuration - Projects & Streams on each
Coverity Connect instance. For guidance, see Section 3.3.1.3, “Editing projects and
streams”.

If possible, the coordinator instance should act solely as coordinator, and have no
projects, streams, or snapshots configured. This will ensure that no individual project or
stream information is lost in the event of failure.

Local configuration outside the scope of the Coordinator/Subscriber model:

Local System - Configuration features: Except when setting up Issue
Categorization and LDAP Configuration, you perform system configuration locally.
See Chapter 3.1, Performing system configurations.

Configuration - Hierarchies: This page is accessible only if your license covers
Coverity Policy Manager. See Part 5, “Coverity Policy Manager Administration”.

Version requirements

The Subscriber Coverity Connect servers must be the same or previous release as the Coordinator
server. For example, if the Coordinator is version 8.0, the Subscriber servers may be version 8.0 or
7.7.

To set up Coverity Connect Coordination:

1. Take time to understand the synchronization process.

Review Section 3.5.1.1, “Synchronizing data across the cluster”

2. Set up shared features.

For guidance, see Coordinator Responsibilities.

236

Configuring Coverity Connect enterprise clusters

3. Configure synchronization properties.

For guidance, see Section 3.5.1.2, “Configuring data synchronization across the cluster”.

Note

If the Coverity Connect coordinator goes down, it will synchronize data on the subscribers once it
becomes available again. During the time the coordinator is down, new issues that are committed
to a subscriber are marked as Pending in the subscriber UI. Such issues will receive a CID after the
coordinator becomes available again.

If one of the Coverity Connect subscribers in the cluster becomes unavailable (for example, due
to a network failure), the coordinator will update that instance once it becomes available again.
The coordinator will also receive the latest configuration settings and triage values for the instance
that was down once that instance becomes available again. After receiving the updated data, the
coordinator will propagate it to the other subscribers, as needed.

3.5.1.1. Synchronizing data across the cluster

When a developer triages an issue through the Coordinator or through a Subscriber, the update
propagates by way of one or more Triage Stores in the Coordinator to other members of the cluster. In
this way, the Coordinator is responsible for synchronizing triage data updates across Coverity Connect
Subscribers.

Figure 3.5.1. Example: Coverity Connect Coordination

As Figure 3.5.1, “Example: Coverity Connect Coordination” shows, a developer triages CID 123
in Stream X of CIM1 (a Subscriber), a stream that is associated with Triage Store 1 (TS1) on the
Coordinator. After receiving notification of the change in triage data from the Subscriber, the Coordinator
updates the other Subscribers (CIM2 and CIM3). The new triage data is synchronized for each matching
issue found in TS1 streams.

237

Configuring Coverity Connect enterprise clusters

Note that the triage data of the matching issue in Stream C of Project 2 (CIM 3) is not updated because
Stream C belongs to TS2, not TS1. For this reason, the Stream C issue appears in a different color than
the others in the figure.

Table 3.5.1, “Triage Data Updates” identifies the updates to the triage data of CID 123 that are shown in
Figure 3.5.1, “Example: Coverity Connect Coordination”.

Table 3.5.1. Triage Data Updates

Coverity
Connect

Location Project Matching
issues

Stream Triage
Store 1

Data

Subscriber
CIM1

New York — ✓ X ✓ updated

Coordinator
CIM

London — ✓ A ✓ updated

✓ E updatedSubscriber
CIM2

Tokyo —

no F

✓
not updated

✓ Y ✓ updated1

no B no not updated

Z ✓ updated

Subscriber
CIM3

Bangalore

2 ✓
C no not updated

Note

It is possible that the CIDs will not display properly on the subscriber if the coordinator is
unavailable. The CIDs will display correctly when the coordinator becomes available again.

3.5.1.2. Configuring data synchronization across the cluster

Setting up data synchronization across the cluster requires identifying the Coordinator and Subscribers
and setting up SSL certificates and TrustStores.

3.5.1.2.1. Identifying the Coordinator and Subscribers

This section describes how to edit the cim.properties file to identify the Coordinator and Subscribers in a
cluster. It also describes how to remove a Subscriber from the cluster.

To identify the Coordinator and Subscribers:

This configuration takes place through settings in a configuration file (cim.properties) on each
Coverity Connect instance. Each Subscriber instance must specify the address of the Coordinator in this
file.

Important Subscriber Requirement

If you are setting up a new Subscriber instance, the instance should not contain any pre-existing
issue data or any settings or records that will be managed by the Coordinator. As Coordinator

238

Configuring Coverity Connect enterprise clusters

Responsibilities explains, the Coordinator handles all centrally managed configurations, so they
should not be set up on any of the Subscribers.

1. Configure one instance of Coverity Connect as the Coordinator.

You need to add the following properties to <install_dir>/config/cim.properties on the
Coordinator:

• remoteconfig.mode: Set the remote configuration mode to coordinator.

Coordinator configuration example:

remoteconfig.mode=coordinator

• Set up SSL communications.

2. Configure one or more clean instances of Coverity Connect as Subscribers.

You need to add the following properties to <install_dir>/config/cim.properties on each
Subscriber:

• remoteconfig.mode: Set the remote configuration mode to subscriber.

• remoteconfig.coordinator: Provide the IP address or fully qualified domain name (not
an alias) followed by the Commit port number (the Coverity Connect default is 9090) for the
Coordinator on each Subscriber in the cluster.

Note

Even if you use the Coverity Connect HTTPS port for commiting defect data, you must
continue to use the Commit port for Coordinator to Subscriber communication.

Subscriber configuration example:

remoteconfig.mode=subscriber
remoteconfig.coordinator=cim.london.ex.com:9090

• Set up SSL communications.

Since the remoteconfig SSL negotiation uses the operating system's host name resolution system to
validate SSL certificates from other hosts in the cluster, that infrastructure must be capable of resolving
the host names of the peers in the cluster.

Normally this is not an issue since Coverity Connect servers are assumed to be installed in an
environment with a working host name resolution system. However, in some environments this may not
be the case. In such environments, you may need to enable host name resolution on your server or edit /
etc/hosts.

Removing a subscriber from the cluster

In order to remove a Coverity Connect instance from the cluster, navigate to <install_dir>/config/
cim.properties and set the remoteconfig.mode property to none.

239

Configuring Coverity Connect enterprise clusters

 remoteconfig.mode=none

After your properties file is updated, restart Coverity Connect.

Note

Once a subscriber changes to a non-subscriber, it cannot be changed back. So it is recommended
that you back up all subscriber data before configuration.

3.5.1.2.2. Setting up SSL certificates and TrustStores

This section describes how to set up SSL certificates and TrustStores to configure a cluster for secured
communication.

Coverity Connect uses SSL to authenticate and encrypt communication between the Coordinator and
Subscribers. Unlike in the HTTPS protocol, authentication is mutual, meaning that the Subscriber
authenticates the Coordinator, and the Coordinator authenticates to the Subscriber. This authentication
can use self-signed SSL certificates generated by each Coverity Connect instance, however you can also
implement SSL certificates that are applicable to your system. This section only describes how to set up
SSL with Coverity-generated certs.

To establish the trusted relationship between the Coordinator and the Subscribers, you must exchange
the SSL certificates between them. The procedure in this section describes how to do so.

Figure 3.5.2. Coverity Connect certificate exchange between Coordinator and Subscribers

Initial installation setup

The first time you start Coverity Connect it automatically creates these files in <install_dir_cp>/config:

• keystore.jks--The Java KeyStore file is a repository of a private key and certificate. The certificate is
essentially the “lock” that requires the key to establish SSL communication. To set up SSL between two
hosts, the hosts must first exchange their certificates.

• truststore.jks--The Java TrustStore file is used to store certificates of trusted hosts. Those trusted
hosts can authenticate using their private key. For a Subscriber, the TrustStore will store one

240

Configuring Coverity Connect enterprise clusters

certificate: the Coordinator’s. For a Coordinator, the TrustStore will store one certificate for each
Subscriber. Deleting a TrustStore invalidates all trust relationships that it had recorded.

• <truststore.jks--The certificate file is a copy of the certificate in the KeyStore. The file is created to
make it easy to transport the certificate to other hosts in the cluster.

After these files are created on all of the instances in a cluster, you can exchange certificates between
the Coordinator and Subscribers as described later in this section.

Post-upgrade manual setup

The trust relationships define which Coverity Connect instances can participate in the cluster. If you make
a copy of an instance, using an Intermachine or Backup-and-restore upgrade, both the copy and the
original will be able to participate in the cluster. Having that duplication can damage the cluster. You have
to prevent that from happening by re-forming the trust relationships to exclude the original instance.

A Coverity Connect Intermachine upgrade copies non-database state to a new host. Therefore, after you
perform an Intermachine upgrade on an instance, the old KeyStore, certificate, and TrustStore will exist
on the old and new instance. This is undesirable and requires deleting and re-creating the KeyStore,
certificate, and TrustStore on the new host. That change also necessitates updates to the TrustStores of
other instances in the cluster. The same can be true when you perform a Backup-and-restore upgrade to
a new location on the same host, except that the KeyStore, certificate, and TrustStore are mirrored in a
new directory location on the same host.

Given the duplication of KeyStores, certificates, and TrustStores that result from Intermachine upgrades
and Backup-and-restore upgrades to new directory locations, it’s critical to delete and re-create
KeyStores, certificates, and TrustStores as necessary after upgrading Coverity Connect.

You can force a Coverity Connect instance to re-generate its certificate by removing the current certificate
file and keystore.jks from the config/ directory and then re-starting Coverity Connect. Also,
when re-starting Coverity Connect, if truststore.jks is absent Coverity Connect will create a new, empty
truststore.jks.

Once you have established the desired KeyStores, certificates, and TrustStores on the upgraded
instances, you can proceed with exchanging certificates between the Coordinator and Subscribers as
described in the following procedure.

Note

You can add the remoteconfig.localHostName property to cim.properties to define
the hostname returned by the system when Coverity Connect generates certificates for remote
configurations. Specifying this property in the configuration file overrides the hostname value that
Coverity Connect automatically searches for when the certificate is generated. The automatic
mechanism sometimes can not resolve hostnames, so setting this property allows you make the
hostname explicit.

To exchange SSL certificates between a Coordinator and a Subscriber:

1. On the Coordinator go to the <install_dir_cp>/config directory and copy the certificate to the
Subscriber. For example:

241

Configuring Coverity Connect enterprise clusters

scp Coord.cert subscriber1.domain.com:S1/cov-platform/cim/config

2. On the Subscriber go to the <install_dir_cp>/config directory and copy the certificate to the
Coordinator. For example:

scp S1.cert Coordinator.domain.com:/Coord/cov-platform/cim/config

3. On the Coordinator, import the Subscriber's certificate into the Coordinator's trust store. For example:

cov-import-cert S1.cert truststore.jks

4. On the Subscriber, import the Coordinator's certificate into the Subscriber's trust store. For example:

cov-import-cert Coord.cert truststore.jks

5. Restart both the Coordinator and Subscriber instances of Coverity Connect.

6. To ensure that the Coordinator and Subscriber are correctly communicating, examine the
<install_dir_cp>/logs/cim.log file on both the Coordinator and the Subscriber.

If there are no exceptions in the log file, encrypted communication should be functioning as
expected.

7. Apply your updates by restarting all Coverity Connect instances on which you updated
cim.properties.

On Linux:

> cd <install_dir>/bin
> ./cov-stop-im
> ./cov-start-im

On Windows:

• Go to <install_dir>\bin, and double-click cov-stop-im.

• After Coverity Connect stops, restart it by double-clicking cov-start-im.

Repeat these steps for each new Subscriber on your system.

3.5.1.2.3. Synchronizing Coverity Policy Manager data across the cluster

All Policy Manager data is synchronized across the cluster once a day, for each subscriber in the cluster
(function counts are excluded). The coordinator aggregates the data collected from all of its subscribers,
but the subscribers do not receive any Policy Manager data back from the coordinator. This process is
detailed in the following steps:

1. The daily trend report update runs on Subscriber 1. This starts sometime between midnight and 1:00
am local time for the subscriber, and may take several hours to finish.

242

Configuring Coverity Connect enterprise clusters

2. Once the update is complete on Subscriber 1, the Coordinator (which checks periodically for any newly
available data from its subscribers) requests the new data, and Subscriber 1 sends it.

3. Extract Transform Load (ETL) runs on the Coordinator and picks up the new data from Subscriber
1. The Coordinator runs ETL periodically throughout the day, waiting one hour after the end of each
update to start the next one. So if the ETL run takes 30 minutes, the Coordinator will be updated
approximately every 90 minutes.

Note

The Policy Manager needs to run the ETL process whether a cluster is in use, or not. See
Chapter 5.3, Scheduling the Extract Transform Load (ETL) Process.

Note

Hierarchies are not synchronized between subscribers and coordinators. Instead, when creating or
editing a hierarchy on the coordinator, you can create individual nodes that contain projects from
subscriber instances of Coverity Connect. See Section 5.1.2, “Configuring a Hierarchy” for more
information.

3.5.2. Managing multiple database instances

When backing up and restoring databases in a clustered Coverity Connect deployment, use the
workflows in this section to ensure Coverity Connect data integrity.

3.5.2.1. Workflow for backing up databases in a cluster

Important notes:

• A Coordinator database backup must be made from the same or later point in time than from when the
Subscriber database backup is made.

• If possible, put Subscriber and Coordinator database instances into maintenance mode (cov-im-ctl
maintenance) prior to using this workflow. Do this when the cluster is not synchronizing data and
when commits are not runnning. If you can put the database instances into maintenance mode, start
with the Subscriber databases and put the Coordinator database in maintenance mode last.

• If your cluster’s workload does not provide a convenient time when data is not synchronizing and
commits are not running, schedule the backups to a time with the least activity and make sure the
Subscriber database backups complete before backing up the Coordinator database.

To back up the embedded PostgreSQL database for a Subscriber instance or a Coordinator
instance in a clustered deployment:

1. Read the important notes above.

2. Back up the database. See Section 3.1.2.3, “Backing up the database”

3. Regularly test the integrity of the backups by restoring them as described in Section 3.1.2.3,
“Backing up the database”

243

Configuring Coverity Connect enterprise clusters

3.5.2.2. Workflow for restoring databases in a cluster

To restore the embedded PostgreSQL database for a Subscriber instance or a Coordinator
instance in a clustered deployment:

1. On each Subscriber instance, put the embedded database into maintenance mode:

> cov-im-ctl maintenance

2. After all Subscriber databases are in maintenance mode, put the Coordinator database into
maintenance mode:

> cov-im-ctl maintenance

3. On each Subscriber instance, run the following commands to restore the database and immediately
put it back into maintenance mode:

> cov-im-ctl maintenance
> cov-admin-db restore <archive_file>
> cov-im-ctl maintenance

4. On the Coordinator instance, run the following commands to restore the database.

> cov-im-ctl maintenance
> cov-admin-db restore <archive_file>

5. After running the cov-admin-db restore command on the Coordinator instance, wait until the
Coordinator instance starts.

6. Start each Subscriber instance:

Note

Wait until each instance has started before starting the next instance.

> cov-im-ctl start

7. After all Subscriber instances have started, allow the cluster synchronization process to complete
before carrying out new commits, triage, or other updates on the Subscriber instances.

244

Chapter 3.6. Configuring a Server to Support Code Sight

Table of Contents
3.6.1. Server administration for the Synopsys Code Sight Plug-in ... 245
3.6.2. Configuring a Coverity Connect server to support Code Sight clients 245

3.6.1. Server administration for the Synopsys Code Sight Plug-in

Coverity Connect requires specific configuration in order to provide analysis summary data to users
of the Code Sight plug-in. This chapter describes the administrative tasks required to enable proper
communication with Code Sight.

3.6.2. Configuring a Coverity Connect server to support Code Sight
clients

The Coverity Connect server needs to deploy both the installer for Coverity Analysis, and the customer’s
license.dat file.

• The server administer must ensure that both the installer for Coverity Analysis and the license.dat
file are located in a directory named as follows: <server-install-dir>/server/base/webapps/
downloads.

These are the specific file names:

• license.dat

• cov-analysis-win64-2018.12.exe

• cov-analysis-linux64-2018.12.sh

• cov-analysis-macosx-2018.12.sh

Note

If you are using a different version of Coverity Analysis, use the file names for that specific
version instead of the ones associated with version 2018.12.

245

Chapter 3.7. Server administration for Desktop Analysis

Table of Contents
3.7.1. Setting up streams .. 246
3.7.2. Creating analysis summaries .. 247
3.7.3. Summary expiration ... 247
3.7.4. Desktop Analysis usage tracking .. 248
3.7.5. Analysis license service .. 248

Coverity Connect requires specific configuration in order to provide analysis summary data to Desktop
Analysis users. This chapter describes the administrative tasks required to enable proper communication
with Desktop Analysis.

Note

The Developer role is required for using Desktop Analysis.

3.7.1. Setting up streams

Desktop Analysis relies on a "reference snapshot" to provide analysis summary data. Reference
snapshots should be organized into one or more streams for user convenience. As a Coverity Connect
administrator, you must choose that stream organization.

As a general principle, if you choose to use more streams, developers will be able to select a reference
snapshot that is more similar to the code they are developing, and hence get more accurate analysis
results. However, the cost of more streams is the necessity to set up and run more central analysis jobs,
also requiring more storage space on the Coverity Connect server.

The following list describes some of the most common stream design options.

One stream (simplest)
The simplest solution is to have only one stream enabled for Desktop Analysis. In this scenario, each
Desktop Analysis user uses the same stream for analysis summaries.

Stream per branch (recommended)
The recommended organization is to have one stream per branch of your code base that is under
active development. For example, you may have a separate branch for version X, Y, and Z of your
code. By setting up a stream for each branch, developers working on separate versions will get the
most accurate summary data for their version of the code.

Stream per branch and platform (most accurate)
By setting up one stream per platform, the analysis summary data will be specific not only to the
version of your project, but also to its relative platform. While this configuration offers the most
accurate summary information, it also requires the most maintenance. Unless your project contains
significant differences between platforms, it is recommended that you use the "stream per branch"
configuration.

246

Server administration for Desktop Analysis

Make sure that you select Enable Desktop Analysis from the Desktop Analysis tab for each stream that
will used by Desktop Analysis developers. Any stream that is not meant for use with Desktop Analysis
should leave the Enable Desktop Analysis box unchecked, as checking this box will cause more
storage space to be used.

As a rough guide to space usage, if your code base has 10 million non-blank, non-comment lines of
code, the first snapshot with analysis summary data will require 2 GB of storage space. Each additional
snapshot will require another 100 MB of storage space.

See Section 3.3.1, “Working with projects and streams” for additional information on creating and editing
streams.

3.7.2. Creating analysis summaries

Desktop Analysis relies on analysis summary data for accurate and efficient analysis results. In order to
provide this data, it is required that each stream used by Desktop Analysis have at least one snapshot
containing analysis summaries.

Therefore, as part of the stream configuration process, you must complete a full Coverity Analysis for
each stream in your configuration, and commit the results before any developers can start using Desktop
Analysis.

Note

Analysis summaries will be captured and committed by default, unless the cov-analyze --
export-summaries option is explicitly set to false.

3.7.3. Summary expiration

The Coverity Connect database can become quite sizeable when it contains multiple streams and
summary data. To mitigate this, you can configure your streams to purge summary data after a set
number of days. To do so, complete the following steps:

1. Navigate to Configuration → Projects & Streams.

2. Select the correct stream from the Projects & Streams file explorer.

3. Open the Desktop Analysis tab.

4. Click Edit and enter the desired number in the Days before Summary Purge field.

5. Click Done.

Note

Analysis summaries are generated by cov-run-desktop and used by Fast Desktop Analysis.
If Fast Desktop is being used, purging Analysis summaries is recommended prior to Snapshot
purging because it reduces database size. Analysis Summaries belonging to Streams that do not
have a configured expiration value will be purged with the default scope set here.

247

Server administration for Desktop Analysis

3.7.4. Desktop Analysis usage tracking

You can use Coverity Connect to get information on the defects found specifically by Desktop Analysis
users. You may wish to know, for example, how many defects are detected and fixed locally, before ever
being committed to the server. See the Coverity Desktop Analysis 2020.12: User Guide for information
on tracking Desktop Analysis usage data.

3.7.5. Analysis license service

Coverity Connect allows you to associate projects with analysis license files so that Desktop Analysis
users don't need to keep license files locally. See Section 3.1.1.14, “Analysis license files” for
configuration information.

248

desktop_analysis_user_guide.pdf#fast_desktop_local_fixes

Chapter 3.8. Coverity Connect URL construction

To reconstruct Coverity Connect URLs so that you can query for issues programmatically, you can use
the following query prefix followed by the parameters that you need:

/query/defects.htm

Supported parameters:

• cid

• mergeKey

• outstanding

• project or projectId

• snapshotId

• stream

All parameters are optional, but you must specify at least one of project, projectId, or stream.
If you do not specify a project, by name or ID, Coverity Connect will use the default project for the first
named stream. Both project and stream expect names, while projectId accepts the numeric
project ID. The stream and cid parameters can both appear multiple times. The outstanding
parameter is boolean (true/false); an absent value means false. Only a single mergeKey parameter can
be specified at one time.

If a project is not specified, and the first named stream does not belong to any projects, the URL will
redirect to the Projects list. If an unrecognized project or stream name is given, Coverity Connect will
return an error page.

Examples:

Show CIDs 1, 2 and 3 in project ProjectA:
http://machine1.eng.company.com:8080/query/defects.htm?
project=ProjectA&cid=1&cid=2&cid=3

Show all outstanding CIDs from streams StreamA and StreamB inside project ID 10001:
http://machine1.eng.company.com:8080/query/defects.htm?
projectId=10001&stream=StreamA&stream=StreamB&outstanding=true

Show CIDs 1, 2 and 3 from stream StreamA:
http://machine1.eng.company.com:8080/query/defects.htm?
stream=StreamA&cid=1&cid=2&cid=3

Show a single issue in project ID 10001 using the issue's mergeKey:
http://machine1.eng.company.com:8080/query/defects.htm?
projectId=10001&mergeKey=f7e9b5e82a9046ca51c136e8786c20b2

249

Coverity Connect URL construction

Show all outstanding issues in stream StreamA:
http://machine1.eng.company.com:8080/query/defects.htm?
stream=StreamA&outstanding=true

Show issues for the specified snapshotId
/query/defects.htm?project=ProjectA&snapshotId=10040&snapshotId=10041

/query/defects.htm?project=ProjectA&cid=10020&snapshotId=10040

You can pass multiple shapshot ids to the url, and you can combine the snapshot id with other
parameters.

250

Chapter 3.9. Exported defect output

Table of Contents
3.9.1. Exported defect URL variables .. 251
3.9.2. Exported defect XML elements .. 251
3.9.3. Exported defect XML file .. 253

3.9.1. Exported defect URL variables

The following table lists and describes the variables supplied to your chosen URL (specified in the
cim.properties export.issue.url property) when you click the Export button.

If you have configured an export-defect-handler program to work with your exported defect data,
see Section 3.9.2, “Exported defect XML elements”.

Table 3.9.1. Exported defect URL replacement strings

Variable Description

{mergedDefectId} If the issue being shown has a numeric CID, its
ASCII decimal representation; otherwise returns an
empty string.

{projectId} The ASCII decimal representation of the numeric
project ID.

{userName} The user name of the logged in user who presses
Export.

{userLdapDisplayName} If the logged in user is an LDAP user, the
administrator-provided "display name" of the LDAP
server; otherwise returns an empty string.

{mergeKey} The merge key of the issue shown, as 32
hexadecimal characters in [0-9a-f].

{projectName} The name of the Coverity Connect project
associated with the issue.

3.9.2. Exported defect XML elements

The following table lists and describes the elements contained in the XML file that is produced when you
use the Export button in the Defect Listing pane. The XML file is saved to the following location:

<install_dir_cc>/server/base/temp/

Because a defect can exist in multiple streams, and can be in different states, the XML file displays the
merged state information, as well as the state information for each stream in which the defect exists.

251

Exported defect output

Table 3.9.2. Exported defect XML elements

Element Description

<cxp:exportedDefect> Root element of the XML file containing a single
exported (merged) defect.

 <user> The name of the user that exported the defect XML
file.

 <ldapDomain> The LDAP domain of the user that exported the
defect XML file. If the user is local, the LDAP
domain will also be local.

 <project> The name of the project that contains the exported
defect.

 <timeStamp> The date and time that the defect export file was
created.

 <cxp:mergedDefect> Container element that represents the merged
defect.

 <checkerName> The name of the checker that found this defect.

 <checkerSubcategory> The sub-category of the defect reported by
<checkerName>.

 <cid> The CID (Coverity ID) of this defect.

 <componentName> The map and name of the component, joined by a
period, that contains this defect. If the defect is in
multiple components, the name is Various.

 <defectStateAttributeValues> The name and value an assigned defect attribute.
This element contains the following child elements:

 <attributeDefinitionId> The name of the attribute, inside <name> tags.

 <attributeValueId> The value of the given attribute, inside <name>
tags.

 <domain> The type of analysis performed to find this defect:
static C/C++, static C#, static Java, or dynamic.

 <filePathname> The complete path to the file that contains the
defect.

 <firstDetected> The date and time in which the defect was first
detected by the analysis.

 <firstDetectedSnapshotId> The snapshot in which the defect was first
detected.

 <functionDisplayName> The name of the function that contains the defect.

 <lastDetected> The date and time in which the analysis most
recently detected the defect.

252

Exported defect output

Element Description

 <lastDetectedSnapshotId> The most recent snapshot containing
the defect. This is the same value as in
<latestSnapshotId>.

 <mergeKey> A unique identifier that maps a CID across multiple
projects or Coverity Connect instances.

 <occurrenceCount> The number of streams where the defect is found.

 <latestSnapshotId> The most recent snapshot containing
the defect. This is the same value as in
<lastDetectedSnapshotId>.

 <streamDefects> Container element that represents the occurrences
of this CID in all streams within the project.

 <cxp:streamDefect> Container element that represents a single stream
defect.

 <checkerSubcategoryId> The sub-category of this defect within the class
of defects that are discoverable by the checker
reported in the <checker> element.

 <subcategory> The sub-category of the defect reported by the
checker.

 <checkerName> The name of the checker that caught this defect.

 <domain> The type of analysis performed to find this defect:
static C/C++, static C#, static Java, or dynamic.

 <subcategory> The sub-category of the defect reported by the
checker.

 <cid> The CID (Coverity ID) of this defect.

 <id> The identification container for information
identifying the stream defect.

 <defectTriageId> Internal reference to latest triage ID.

 <defectTriageVerNum> The version number of the latest triage.

 <id> The ID of this stream defect.

 <verNum> An internal field used to prevent data corruption.

 <streamId> The name of the stream containing the stream
defect, inside <name> tags.

3.9.3. Exported defect XML file

This example shows a defect (CID 310001) that exists in stream emp_java and stream ns1.
The triage states differ in each stream. The exported XML file shows the merged triage state in
the <cxp:mergedDefect> element, as well as the defect's triage state for each stream in the
<cxp:streamDefect> elements.

253

Exported defect output

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<cxp:exportedDefect xmlns:cxp="http://export.coverity.com/v9">
 <user>admin</user>
 <ldapDomain>local</ldapDomain>
 <project>EMPv2.0</project>
 <timeStamp>2015-10-01T14:49:10.916-07:00</timeStamp>
 <cxp:mergedDefect>
 <checkerName>FORWARD_NULL</checkerName>
 <checkerSubcategory>deref_constant_null</checkerSubcategory>
 <cid>310001</cid>
 <componentName>Default.Other</componentName>
 <defectStateAttributeValues>
 <attributeDefinitionId>
 <name>DefectStatus</name>
 </attributeDefinitionId>
 <attributeValueId>
 <name>New</name>
 </attributeValueId>
 </defectStateAttributeValues>
 <defectStateAttributeValues>
 <attributeDefinitionId>
 <name>Classification</name>
 </attributeDefinitionId>
 <attributeValueId>
 <name>Unclassified</name>
 </attributeValueId>
 </defectStateAttributeValues>
 <defectStateAttributeValues>
 <attributeDefinitionId>
 <name>Action</name>
 </attributeDefinitionId>
 <attributeValueId>
 <name>Undecided</name>
 </attributeValueId>
 </defectStateAttributeValues>
 <defectStateAttributeValues>
 <attributeDefinitionId>
 <name>Severity</name>
 </attributeDefinitionId>
 <attributeValueId>
 <name>Unspecified</name>
 </attributeValueId>
 </defectStateAttributeValues>
 <defectStateAttributeValues>
 <attributeDefinitionId>
 <name>Fix Target</name>
 </attributeDefinitionId>
 <attributeValueId>
 <name>Untargeted</name>
 </attributeValueId>
 </defectStateAttributeValues>
 <defectStateAttributeValues>
 <attributeDefinitionId>

254

Exported defect output

 <name>Legacy</name>
 </attributeDefinitionId>
 <attributeValueId>
 <name>False</name>
 </attributeValueId>
 </defectStateAttributeValues>
 <defectStateAttributeValues>
 <attributeDefinitionId>
 <name>Owner</name>
 </attributeDefinitionId>
 <attributeValueId>
 <name>Unassigned</name>
 </attributeValueId>
 </defectStateAttributeValues>
 <defectStateAttributeValues>
 <attributeDefinitionId>
 <name>TranslatedOwner</name>
 </attributeDefinitionId>
 <attributeValueId>
 <name>Unassigned</name>
 </attributeValueId>
 </defectStateAttributeValues>
 <defectStateAttributeValues>
 <attributeDefinitionId>
 <name>OwnerName</name>
 </attributeDefinitionId>
 <attributeValueId>
 <name></name>
 </attributeValueId>
 </defectStateAttributeValues>
 <defectStateAttributeValues>
 <attributeDefinitionId>
 <name>Comment</name>
 </attributeDefinitionId>
 <attributeValueId>
 <name></name>
 </attributeValueId>
 </defectStateAttributeValues>
 <defectStateAttributeValues>
 <attributeDefinitionId>
 <name>ExternalReference</name>
 </attributeDefinitionId>
 <attributeValueId>
 <name></name>
 </attributeValueId>
 </defectStateAttributeValues>
 <domain>STATIC_JAVA</domain>
 <filePathname>/users/sample/document/Test2.java</filePathname>
 <firstDetected>2015-07-16T07:55:31.241-07:00</firstDetected>
 <firstDetectedSnapshotId>10031</firstDetectedSnapshotId>
 <functionDisplayName>Test2.main(java.lang.String[])</functionDisplayName>
 <lastDetected>2015-10-01T14:47:17.347-07:00</lastDetected>
 <lastDetectedSnapshotId>10031</lastDetectedSnapshotId>

255

Exported defect output

 <mergeKey>d9228ebd8c4a79e6f152e6e700e1ef95</mergeKey>
 <occurrenceCount>1</occurrenceCount>
 </cxp:mergedDefect>
 <latestSnapshotId>10031</latestSnapshotId>
 <streamDefects>
 <cxp:streamDefect>
 <checkerSubcategoryId>
 <checkerName>FORWARD_NULL</checkerName>
 <domain>STATIC_JAVA</domain>
 <subcategory>deref_constant_null</subcategory>
 </checkerSubcategoryId>
 <cid>310001</cid>
 <defectStateAttributeValues>
 <attributeDefinitionId>
 <name>DefectStatus</name>
 </attributeDefinitionId>
 <attributeValueId>
 <name>New</name>
 </attributeValueId>
 </defectStateAttributeValues>
 <defectStateAttributeValues>
 <attributeDefinitionId>
 <name>Classification</name>
 </attributeDefinitionId>
 <attributeValueId>
 <name>Unclassified</name>
 </attributeValueId>
 </defectStateAttributeValues>
 <defectStateAttributeValues>
 <attributeDefinitionId>
 <name>Action</name>
 </attributeDefinitionId>
 <attributeValueId>
 <name>Undecided</name>
 </attributeValueId>
 </defectStateAttributeValues>
 <defectStateAttributeValues>
 <attributeDefinitionId>
 <name>Fix Target</name>
 </attributeDefinitionId>
 <attributeValueId>
 <name>Untargeted</name>
 </attributeValueId>
 </defectStateAttributeValues>
 <defectStateAttributeValues>
 <attributeDefinitionId>
 <name>Severity</name>
 </attributeDefinitionId>
 <attributeValueId>
 <name>Unspecified</name>
 </attributeValueId>
 </defectStateAttributeValues>
 <defectStateAttributeValues>

256

Exported defect output

 <attributeDefinitionId>
 <name>Legacy</name>
 </attributeDefinitionId>
 <attributeValueId>
 <name>False</name>
 </attributeValueId>
 </defectStateAttributeValues>
 <defectStateAttributeValues>
 <attributeDefinitionId>
 <name>Comment</name>
 </attributeDefinitionId>
 <attributeValueId>
 <name></name>
 </attributeValueId>
 </defectStateAttributeValues>
 <id>
 <defectTriageId>1</defectTriageId>
 <defectTriageVerNum>0</defectTriageVerNum>
 <id>310001</id>
 <verNum>0</verNum>
 </id>
 <streamId>
 <name>ns1</name>
 </streamId>
 </cxp:streamDefect>
 <cxp:streamDefect>
 <checkerSubcategoryId>
 <checkerName>FORWARD_NULL</checkerName>
 <domain>STATIC_JAVA</domain>
 <subcategory>deref_constant_null</subcategory>
 </checkerSubcategoryId>
 <cid>310001</cid>
 <defectStateAttributeValues>
 <attributeDefinitionId>
 <name>DefectStatus</name>
 </attributeDefinitionId>
 <attributeValueId>
 <name>New</name>
 </attributeValueId>
 </defectStateAttributeValues>
 <defectStateAttributeValues>
 <attributeDefinitionId>
 <name>Classification</name>
 </attributeDefinitionId>
 <attributeValueId>
 <name>Unclassified</name>
 </attributeValueId>
 </defectStateAttributeValues>
 <defectStateAttributeValues>
 <attributeDefinitionId>
 <name>Action</name>
 </attributeDefinitionId>
 <attributeValueId>

257

Exported defect output

 <name>Undecided</name>
 </attributeValueId>
 </defectStateAttributeValues>
 <defectStateAttributeValues>
 <attributeDefinitionId>
 <name>Fix Target</name>
 </attributeDefinitionId>
 <attributeValueId>
 <name>Untargeted</name>
 </attributeValueId>
 </defectStateAttributeValues>
 <defectStateAttributeValues>
 <attributeDefinitionId>
 <name>Severity</name>
 </attributeDefinitionId>
 <attributeValueId>
 <name>Unspecified</name>
 </attributeValueId>
 </defectStateAttributeValues>
 <defectStateAttributeValues>
 <attributeDefinitionId>
 <name>Legacy</name>
 </attributeDefinitionId>
 <attributeValueId>
 <name>False</name>
 </attributeValueId>
 </defectStateAttributeValues>
 <defectStateAttributeValues>
 <attributeDefinitionId>
 <name>Comment</name>
 </attributeDefinitionId>
 <attributeValueId>
 <name></name>
 </attributeValueId>
 </defectStateAttributeValues>
 <id>
 <defectTriageId>1</defectTriageId>
 <defectTriageVerNum>0</defectTriageVerNum>
 <id>310007</id>
 <verNum>0</verNum>
 </id>
 <streamId>
 <name>emp_java</name>
 </streamId>
 </cxp:streamDefect>
 </streamDefects>
 <cxp:checkerProperties>
 <subcategoryShortDescription>Explicit null dereferenced</
subcategoryShortDescription>
 </cxp:checkerProperties>
</cxp:exportedDefect>

258

Chapter 3.10. Suppressing built-in views for new users

Coverity Connect allows you prevent the display of any of the built-in views from new users. This feature
is useful for any views that are not needed by your company. This process requires you to modify a
Coverity Connect properties file.

For example, if you want to suppress the built-in Low Impact Outstanding and Medium Impact
Outstanding views, you need to add the following line to cim.properties (located in
<install_dir>/config):

suppressedFactoryViews=issues.mediumimpactoutstanding,issues.lowimpactoutstanding

Note

You do not need to restart Coverity Connect after suppressing views through cim.properties.

This change affects new users only. You cannot suppress the views from users who already have
them. However, the users could delete the views through the UI. See Section 2.4.2.5, “Delete”.

Table 3.10.1. Coverity Connect View Properties

View Type Internal View
Type Property

View Name Internal View Property

High Impact
Outstanding

highimpactoutstanding

Outstanding
Untriaged

alluntriaged

My Outstanding myoutstanding

Outstanding
Defects

outstandingdefects

Outstanding
Security Risks

outstandingsecurityrisks

Issues: By
Snapshot

issues

Outstanding Test
Rules Violations

outstandingtestruleviolations

Issues: Project
Scope

issues All in Project allinproject

In Latest Snapshot inlatestsnapshotFiles files

Uncovered By
Tests

uncoveredbytests

High CCM (>15) highccm

In Latest Snapshot inlatestsnapshot

Functions functions

Uncovered By
Tests

uncoveredbytests

Components components All In Project allinproject

259

Suppressing built-in views for new users

View Type Internal View
Type Property

View Name Internal View Property

High Issue Density
(> 1)

highdefectdensity

With Outstanding
Issues

withoutstandingissues

With Untriaged
Issues

withuntriagedissues

Checkers checkers All In Project allinproject

Owners owners All In Project allinproject

Snapshots snapshots All In Project allinproject

All Tests inlatestsnapshotTests tests

Currently Failing currentlyfailing

260

Chapter 3.11. Changing the date format display in Coverity
Connect

You can change the way in which the date format is displayed for the English, Japanese, Chinese, and
Korean locales in certain view types and columns in Coverity Connect.

You can change the date format as follows:

1. Create a new properties file.

For the English locale:

<install_dir_cp>/config/format_en.properties

For the Japanese locale:

<install_dir_cp>/config/format_ja.properties

For the Chinese locale:

<install_dir_cp>/config/format_zh_CN.properties

For the Korean locale:

<install_dir_cp>/config/format_ko.properties

2. Add a new date format to the dateFormat property in the format_<locale>.properties file.
The following table lists the date format properties that can be changed, their defaults, and where in
Coverity Connect they will be displayed.

3. Restart the Coverity Connect server to enable the changes.

Table 3.11.1. Date properties

Date property Defaults to Displayed in

dateFormat MM/dd/yy for English,
yyyy/MM/dd for
Japanese, Chinese,
and Korean

• Date-valued columns in the
Issues: by Snapshot view
type (First Detected, Last
Detected, Last Triaged) and
the Issues: Project Scope
view type (First Detected,
Last Detected).

• The same columns (as
above) in email notification
table data.

• Dates for Detection History
and Triage History sidebars.

261

Changing the date format display in Coverity Connect

Date property Defaults to Displayed in

timeFormat hh:mm a for English,
Japanese, Chinese,
and Korean

Date and time values in
Coverity Connect configuration
(that is, through the
Configuration menu). The
following use a combination
of dateFormat and
timeFormat:

• Projects & Streams →
Snapshot → Created column

• System → Sign In Log →
Session Start column

timeStampFormat yyyy-MM-dd
HH:mm:ss for English,
Japanese, Chinese,
and Korean

Date+time-valued columns
in Functions views (Last
Impacted, Last Modified) and
Snapshots (Date) views

scmDateFormat Defaults to MMM d,
yyyy for English,
yyyy/MM/dd for
Japanese, Chinese,
and Korean

SCM display from the Show
Source Gutter Menu in the
source browser.

emailNotificationDateFormat MMMM d, yyyy for
English, yyyy年M月d
日 for Japanese, yyyy
年M月d天for Chinese,
and yyyy년 M월 d일
for Korean

The date used in the body text
of an email notification (table
data uses dateFormat like
the web view).

policyManagerTrend.dayFormat MMM dd for English,
Japanese, Chinese,
and Korean

The date used for day-to-day
Policy Manager trend reports.

policyManagerTrend.weekFormat MMM dd for English,
Japanese, Chinese,
and Korean

The date used for weekly
Policy Manager trend reports.

policyManagerTrend.monthFormat MMM yyyy for English,
Japanese, Chinese,
and Korean

The month format used for
monthly Policy Manager trend
reports.

policyManagerTrend.yearFormat yyyy for English,
Japanese, Chinese,
and Korean

The year format used for year-
to-year Policy Manager trend
reports.

The following example shows the format_ja.properties file, with the date format set to the
American date format.

262

Changing the date format display in Coverity Connect

dateFormat=MM/dd/yy
timeFormat=hh:mm
timeStampFormat=yyyy-MM-dd HH:mm:ss
scmDateFormat=yyyy/MM/dd
emailNotificationFormat=MMMM d, yyyy
policyManagerTrend.dayFormat=MMM dd
policyManagerTrend.weekFormat=MMM dd
policyManagerTrend.monthFormat=MMM yyyy
policyManagerTrend.yearFormat=yyyy

For more information about how date time strings function, see http://docs.oracle.com/javase/8/docs/api/
java/text/SimpleDateFormat.html .

263

http://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html

Chapter 3.12. Configuring Coverity Desktop and Architecture
Analysis through Coverity Connect

Table of Contents
3.12.1. Configuring Coverity Desktop and shared files through the Downloads page 264
3.12.2. Downloading a CVA file for Architecture Analysis ... 267

3.12.1. Configuring Coverity Desktop and shared files through the
Downloads page

This chapter provides the following information about configuring Coverity Connect to work with Coverity
Desktop and shared custom files:

• Configuring Coverity Connect for use with Desktop Analysis.

• Configuring the Coverity Desktop download packages and including shared files on the Coverity
Connect Downloads page.

3.12.1.1. Configuring the Coverity Connect Downloads page

The Downloads page is available through the Coverity Connect User menu. This page provides a central
location in which users can:

• Download the Coverity Desktop product packages for Eclipse, QNX Momentics, Wind River
Workbench, IBM RTC, Visual Studio, IntelliJ, and Android Studio.

• Eclipse Update site

• Coverity Desktop Analysis Tools

• Gradle Plug-In

• Coverity Desktop Reports, which include the MISRA Report, Security Report, and Coverity Integrity
Report

• Software Development Kits

• Other content, such as scripts or additional documentation. For information about making this content
available, see Section 3.12.1, “Configuring Coverity Desktop and shared files through the Downloads
page”.

By default, the Coverity Connect installer includes the Coverity Desktop 2020.12 packages so that they
are ready to download. There is no extra configuration required. A user with appropriate credentials can
sign into Coverity Connect, go to the Downloads page, and download the appropriate Coverity Desktop

264

Configuring Coverity Desktop and Architecture Analysis through Coverity Connect

installation file. Eclipse and Visual Studio users can also obtain a link to the Coverity Desktop update
or gallery site, so the IDE can search for and install the most current version of the plug-in that is made
available through the Downloads page.

In order for the Eclipse update site to work properly with an SSL connection, the update site requires a
valid certificate installed for the Coverity Connect server. Otherwise users will have to download the plug-
ins and install them locally.

3.12.1.1.1. Adding Coverity Analysis to the Downloads page

Coverity Connect allows you to add Coverity Analysis product packages and license files to the
Downloads page, so that Coverity Desktop users can obtain and install Coverity Analysis from a central
location:

1. Obtain the Coverity Analysis packages (.exe for Windows systems or .sh for Unix) that you want to
make available to your users.

2. Copy the Coverity Analysis installer packages into the <install_dir_cc>/server/base/
webapps/downloads directory.

3. Optionally copy the Coverity Analysis license (license.dat) file into same directory.

Users with proper sign-in credentials and permissions can now download the Coverity Analysis package
and install it on their system.

Note

Make sure the Coverity Analysis package version is compatible with the Coverity Connect version.
Version mismatches can cause runtime failures. For more information, see Coverity 2020.12
Installation and Deployment Guide

3.12.1.1.2. Adding Coverity Desktop updates

If an incremental release of the Coverity Desktop product becomes available, you can update the central
download page with the new packages by completing the following:

1. Go to the <install_dir_cc>/server/base/webapps/ directory.

2. Remove the following files:

a. In the downloads directory, remove the following files:

• cov-desktop-eclipse-2020.12.zip

• cov-desktop-windriver-2020.12.zip

• cov-desktop-qnx-2020.12.zip

• cov-desktop-microsoft-visual-studio-2020.12.zip (for Visual Studio versions
2008-2010)

265

cov_deploy_install_guide.pdf#cc_and_ca_compat
cov_deploy_install_guide.pdf#cc_and_ca_compat

Configuring Coverity Desktop and Architecture Analysis through Coverity Connect

• Coverity.Desktop.vsix (for Visual Studio 2013-2017)

b. Remove the following directories:

• coverity-desktop-eclipse/update

• coverity-desktop-windriver/update

• coverity-desktop-qnx/update

• coverity-desktop-visual-studio/gallery

3. Download updated Eclipse, Wind River WorkBench, QNX Momentics, and Visual Studio .zip
packages.

4. For Eclipse, Wind River, QNX, and Visual Studio versions 2008-2010, save the .zip packages in
the <install_dir_cc>/server/base/webapps/downloads directory.

For Visual Studio 2013-2017, extract the cov-desktop-microsoft-visual-studio-
gallery-2020.12.zip file. Then copy Coverity.Desktop.vsix into the downloads directory.

Note

Coverity.Desktop.vsix is found in the extracted .zip package, under coverity-
desktop-vs/gallery.

5. For Eclipse, unpack cov-desktop-eclipse-2020.12.zip, then move the extracted directories
to coverity-desktop-eclipse/update.

For Wind River, unpack cov-desktop-windriver-2020.12.zip, then move the extracted
directories to coverity-desktop-windriver/update.

For QNX, unpack cov-desktop-qnx-2020.12.zip, then move the extracted directories to
coverity-desktop-qnx/update.

For Visual Studio 2013-2017, copy the extracted gallery directory to coverity-desktop-
visual-studio/gallery.

The user can now download the new versions of the plug-in files and also point at a new version of the
Eclipse update or Visual Studio 2013-2017 gallery site.

3.12.1.1.3. Adding and removing custom files

Coverity Connect administrators can add custom files, such as configuration files, documentation, scripts,
and so forth. Developers can then access these files from the central Downloads page.

To add a custom file:

1. Copy your file to the following directory:

<install_dir_cc>/server/base/webapps/downloads

266

Configuring Coverity Desktop and Architecture Analysis through Coverity Connect

2. In the /downloads directory, edit the fileConfig.xml and add new file nodes for each custom
file. For example:

 <customFiles>
 <!-- example file node entry -->
 <file>
 <fileName>example.txt</fileName> <!-- mandatory field -->
 <displayName>example display</displayName> <!-- optional field -->
 <fileDescription>example description</fileDescription> <!-- optional
 field -->
 </file>
 </customFiles>

• The <fileName> tag is mandatory and corresponds to the name of the hosted file. If this is
the only entry is present in the <file> node, then a link to this file name is displayed on the
Downloads page.

• The <displayName> tag is optional and when it is defined, it overwrites the <fileName> tag in
the link that is displayed on the Downloads page.

• The <fileDescription> tag is optional and when it is defined, it adds a description to the link
on the Downloads page for the file in the same <file> tag.

To remove a custom file:

1. Remove file from the /downloads directory.

2. Edit the fileConfig.xml in the /downloads directory and remove the corresponding <file>
tag.

3.12.2. Downloading a CVA file for Architecture Analysis

After you use cov-export-cva with the --output-file option to commit issues into a Coverity
Connect stream, you need to navigate to the stream configuration in Coverity Connect.

This task requires a user role that has administrative permissions to the stream.

To download a CVA file:

1. Navigate to Configuration → Projects & Streams.

2. Select the stream to which the issues were committed.

3. Click the Snapshots tab for that stream.

4. Scroll to the snapshot record for the commit from which you need the CVA file.

The snapshot record will contain a CVA column that contains a *.cva file entry.

5. Click the CVA file name (for example, 10002.cva).

6. Download the CVA file.

267

Part 4. Coverity Policy Manager Usage
Leaders of software development teams and developers use Coverity Policy Manager charts to monitor
issues found by Coverity Analysis and third-party tools.

Important

In general, Policy Manager does not store data indefinitely. In the absence of other activity, daily
data is kept for 40 days, weekly data is kept for 30 weeks, monthly data is kept for 24 months,
and only yearly data is kept indefinitely. However, Policy Manager does not save historical data in
terms of previous configurations of component map and stream settings, and if the current project
configurations are changed, Policy Manager data is recomputed based on those changes.

Chapter 4.1. Coverity Policy Manager Overview

Table of Contents
4.1.1. Hierarchies ... 269
4.1.2. Metrics ... 270
4.1.3. Filters .. 270
4.1.4. Reports .. 271
4.1.5. Dashboards ... 274
4.1.6. Heatmaps .. 274
4.1.7. Policies .. 278
4.1.8. Summary Metrics ... 278
4.1.9. Views .. 281

Coverity Policy Manager charts (reports and heatmaps) use metrics (and filters on metrics) to get
information about data that is stored in the Coverity Connect database. For example, a chart might
display the number of outstanding, high-impact issues found in a portion of the code base that is
associated with a certain Coverity Connect project. Charts get their structure from a hierarchy that is set
up by a Coverity Policy Manager administrator.

After an administrator configures one or more hierarchies, it becomes possible to navigate to them
through the Main Menu (see Figure 1.3.2, “Example: All Hierarchies”) and then set up and view Coverity
Policy Manager heatmaps, reports, and dashboards. (Permissions pertaining to viewing and managing
Coverity Policy Manager apply; see Chapter 5.5, Coverity Policy Manager Roles and Permissions).

4.1.1. Hierarchies

Coverity Policy Manager administrators specify one or more hierarchies through the Hierarchies
configuration screen. For details, see Section 5.1.2, “Configuring a Hierarchy”.

A hierarchy is a tree data structure (a node tree) that underlies one or more Coverity Policy Manager
heatmaps or reports. Each node in a hierarchy represents some part of your code base that has been
analyzed and committed to an instance of Coverity Connect that shares data with Coverity Policy
Manager.

269

Coverity Policy Manager Overview

Figure 4.1.1. Example: Node Tree for a Hierarchy

The terminal (leaf) nodes in a hierarchy are the source of data for the higher level nodes, which
aggregate data from lower level nodes. This aggregation allows you to examine the code base at
increasingly inclusive levels, as described in the Coverity Policy Manager Use Case in Chapter 5.1,
Managing a Coverity Policy Manager Hierarchy.

Leaf nodes are associated with a Coverity Connect project. Coverity Policy Manager Administrators can
limit the scope of data for a leaf node to one or more Coverity Connect components that are associated
with the selected project.

4.1.2. Metrics

Coverity Policy Manager metrics provide numeric information on data that is stored in the Coverity
Connect database. Metrics are available for use in Coverity Policy Manager heatmaps and reports.
Examples include outstanding issue count and lines of code. For information about all the metrics that are
available in Coverity Policy Manager, see Chapter 4.3, Coverity Policy Manager Metrics.

See also Summary Metrics.

4.1.3. Filters

Coverity Policy Manager filters narrow the scope of the data found by a metric. For example, you might
want to see data on issues of medium impact only, excluding the data on issues of high and low impact.
For descriptions of filters, see Chapter 4.4, Coverity Policy Manager Filter and Segmentation Properties.

270

Coverity Policy Manager Overview

4.1.4. Reports

Coverity Policy Manager reports display numerical data that is derived from metrics. Reports can display
data in bar, column, pie, table, line, and area formats. All reports provide navigation breadcrumbs
(located above each report) so that you can view report data for a node at any level in the hierarchy (from
the root, to any branch, to any leaf). You can also save a report to file and print out hard copies of the
file (see Figure 4.2.5, “Printer Icon”). In addition, you can add one or more reports to a Coverity Policy
Manager dashboard.

• Status Reports: Status reports show one or more specified metrics plotted against either
components or hierarchy child nodes, as a bar chart, column chart, pie chart, or table.

Figure 4.1.2. Example: Status Report

271

Coverity Policy Manager Overview

The example shows data for each child node of the root node (My Hierarchy). In the report, the
Common pop-up window displays data on the selected portion of the Common node, Outstanding
issue count.

To set up a Status Report, see Section 4.2.5, “Setting up Coverity Policy Manager Status Reports”.

• Trend Reports: Trend reports display changes in data points over time.

272

Coverity Policy Manager Overview

Figure 4.1.3. Example: Trend Report

The example selects a data point. The pop-up window associated with the selected data point displays
details on that data.

To set up a Trend Report, see Section 4.2.6, “Setting up Coverity Policy Manager Trend Reports”.

273

Coverity Policy Manager Overview

4.1.5. Dashboards

Dashboards display a collection of reports and/or heatmaps. You can save a dashboard to file and print
out hard copies of the file (see Figure 4.2.5, “Printer Icon”).

Figure 4.1.4. Example: Dashboard

To set up a dashboard, see Section 4.2.3, “Setting up Coverity Policy Manager Dashboards”.

4.1.6. Heatmaps

Tree, Sunburst, and Banded Trend maps divide your code base into segments that are color-coded
according to their level of compliance with policies that you specify for them. Higher-level map nodes
reflect overall compliance based on policy-related data that is aggregated from lower-level segments.

In addition to containing red (in violation), yellow (at risk), and green (in compliance) segments, heatmaps
can also contain gray segments. Data within the scope of a gray segment (for example, the Libraries
node in the following figure) is excluded from higher-level segments that contain the gray segment.
The gray segments might include uninteresting or peripheral data on libraries, certain third-party code,
infrequently used legacy code, or some other area of your code base. (Note that the Other node is blue
because it has been selected.)

Tree Map

• Tree maps contain an all-inclusive root with branching segments.

274

Coverity Policy Manager Overview

Figure 4.1.5. Example: Tree Map

Sunburst Map

• The Sunburst map displays data in rings, with the center ring as the most inclusive node (for example,
the root node) and the surrounding rings as segments of the parent ring. The segments of the Sunburst
are sized according to the relative number of lines of code they represent. Otherwise, the Tree and
Sunburst maps provide identical data.

275

Coverity Policy Manager Overview

Figure 4.1.6. Example: Sunburst Map

Notice that the Other node is selected in both Figure 4.1.6, “Example: Sunburst Map” and Figure 4.1.5,
“Example: Tree Map” to display information about it in the Other pop-up window. In addition to showing
the issue density value, this window provides a link to the issue list (see View issues) for this node and
allows you to display this node and any subnodes it contains (see Go to this level).

Banded Trend Map

• The Banded Trend map applies policy bands to data in a trend report. Figure 4.1.7, “Example: Banded
Trend Map” shows the issue density for the past 10 weeks. It also shows the selection of the data point
to reveal the precise issue density on the selected day.

276

Coverity Policy Manager Overview

Figure 4.1.7. Example: Banded Trend Map

The Tree and Sunburst maps can display up to four levels of the node tree. However, all heatmaps
provide navigation breadcrumbs (located above each heatmap) so that you can view heatmap data

277

Coverity Policy Manager Overview

for a node at any level in the hierarchy (from the root, to any branch, to any leaf). You can also save a
heatmap to file and print out hard copies of the file (see Figure 4.2.5, “Printer Icon”). In addition, you can
add one or more heatmaps to a Coverity Policy Manager dashboard.

To set up a heatmap, see Section 4.2.4, “Setting up Coverity Policy Manager Heatmaps”.

4.1.7. Policies

Coverity Policy Manager policies are thresholds you set in heatmaps so that you can evaluate the
integrity of your code base, and so that you can check other information, such as Coverity Connect
activity levels. In Coverity Policy Manager, a policy is expressed as a simple formula that, when applied
to report data, determines whether a given data point is compliant (displayed in green), at risk (displayed
in yellow), or in violation (displayed in red) of your standards. For example, an Issue Density report might
display in a yellow band the data points that fall within 1.0-1.8 software issues per thousand lines of
code (issues/KLOC) and show in a red band the data points that exceed 1.8 issues/KLOC. Data points
below 1.0 issues/KLOC would appear in a green band. Coverity Policy Manager permits one policy per
heatmap.

For an example that shows how to set a policy for a heatmap, see Figure 4.2.8, “Example: Heatmap Edit
Settings Window”.

4.1.8. Summary Metrics

Summary metrics aggregate data from built-in metrics. An example is the built-in summary metric,
Technical Debt, which by default aggregates data from metrics on outstanding issue and function
counts. Like all Summary metrics, its contributor metrics can be filtered (see Section 4.1.3, “Filters”) and
weighted. As shown in Table 4.1.1, “Built-in Summary Metric: Technical Debt”, outstanding issue metrics
are filtered according to their impact, and the function count metric is filtered according to Cyclomatic
Complexity (CCM). The value of each contributor to the summary metric is weighted by a multiplier to
produce a relative value for each metric.

Table 4.1.1. Built-in Summary Metric: Technical Debt

Metrics Labela Filterb Multiplierc

Outstanding Issue
Count

High-impact issues Impact=High 20

Outstanding Issue
Count

Medium-impact issues Impact=Medium 10

Outstanding Issue
Count

Low-impact issues Impact=Low 5

Outstanding Issue
Count

Audit-impact issues Impact=Audit 1

Function Count Functions with CCM >
15

CCM > 15 10

aAdministrator-provided name of a filtered metric that serves as a contributor to a summary metric. The name appears in charts and
heatmaps.

278

Coverity Policy Manager Overview

bDefault filters: Filter outstanding issues by impact, and filter functions by complexity.
cDefault weight applied to each filtered metric.

Note

Before using the Technical Debt summary metric, you should find out if an administrator has tuned
it to meet the needs of your organization. Alternatively, you can create a test report and select
a data point to see what values are set (see Figure 4.1.8, “Example: Summary Metric used in a
Heatmap”).

Technical Debt
Technical debt often accrues in code where the demand for rapid development can take
precedence over established code design and development standards. High levels of technical
debt can make a code base difficult and time-consuming for development teams to successfully
maintain, modify, and troubleshoot.

Just as the weighted values of the contributor metrics can serve as a data points in your Coverity Policy
Manager charts and heatmaps, so too can the sum of these values. In the following Technical Debt
example (Table 4.1.2, “Example: Technical Debt of 80”), the summary metric value of 80 is simply the
sum of its contributor values. The value of each contributor is equal to the product of its filtered metric and
multiplier.

Table 4.1.2. Example: Technical Debt of 80

Technical Debt Contributorsa (A) Filtered
Metric Value

(B) Multiplier
Value

(A x B)
Contributor
Value

Summary
Metric Value

High-impact issues 1 20 20

Medium-impact issues 2 10 20

Low-impact issues 4 5 20

CCM > 15 2 10 20

80 (= Sum of
Contributor
Values)

a Contributors: Set of one or more filtered metrics and the multipliers used to weight their values.

In charts, Summary metrics look and behave much like other metrics. You can select them as data
sources for reports and heatmaps. As shown in the following examples, you can click nodes and other
data points in charts to see their properties, including the values of contributors that make up Summary
metrics.

279

Coverity Policy Manager Overview

Figure 4.1.8. Example: Summary Metric used in a Heatmap

As shown in the following example, it is possible to segment reports by contributors to a summary metric.
(See also, Section 4.3.4, “Summary Metrics: Technical Debt”.)

280

Coverity Policy Manager Overview

Figure 4.1.9. Example: Summary Metric used in a Status Report

Coverity Policy Manager administrators are responsible for creating and modifying Summary metrics (see
Chapter 5.4, Creating Summary Metrics).

4.1.9. Views

The left-side pane of a Coverity Policy Manager Hierarchy window lists views under the following view
types: Dashboards, Heatmaps, Status Reports, and Trends.

When you create a heatmap, dashboard, or report, you generate a specification (a view) that is
associated with your username and only visible to you (unless you share it with another user or group).
The name and specification of a view appears in all hierarchies. For example, if you create a status report
called Outstanding Issues, a link to the report will appear under the STATUS REPORTS heading for all
the hierarchies in Coverity Policy Manager, not just in the hierarchy where you created the report.

281

Coverity Policy Manager Overview

Figure 4.1.10. Example: View Pane in Coverity Policy Manager Window

At a higher level in the UI (Projects & Hierarchies), the Coverity Policy Manager Hierarchies view type
(and Coverity Connect Projects view type) heading contain their own views (for example, the default All
Hierarchies view). In Coverity Policy Manager, each of these high-level views supports the collection of
hierarchies.

For information about using views, see Section 4.2.2, “Performing Common Coverity Policy Manager
Actions”.

282

Chapter 4.2. Using Coverity Policy Manager Hierarchies

Table of Contents
4.2.1. Navigating through Charts ... 283
4.2.2. Performing Common Coverity Policy Manager Actions .. 283
4.2.3. Setting up Coverity Policy Manager Dashboards .. 286
4.2.4. Setting up Coverity Policy Manager Heatmaps .. 288
4.2.5. Setting up Coverity Policy Manager Status Reports ... 291
4.2.6. Setting up Coverity Policy Manager Trend Reports .. 297

Coverity Policy Manager allows you to create, edit, share, duplicate, and delete Coverity Policy Manager
heatmaps, reports, and dashboards. Creating and editing consists of specifying the metrics, filters and/or
split-by and group-by options, policies (for heatmaps only), and other properties to use and display.

Navigation
For guidance with navigation to hierarchies, see Chapter 1.3, Shared Navigation and Main menu
tools.

4.2.1. Navigating through Charts

Navigation breadcrumbs located above each report and heatmap allow you display data that falls within
the scope of any node in the hierarchy. The following figure shows how to navigate from the root node
(Java) of a hierarchy, through a branch node (Desktop Projects), to leaf nodes (Developer Streams).

Figure 4.2.1. Example: Chart Navigation Breadcrumbs (Java → Desktop Projects → Developer
Streams)

4.2.2. Performing Common Coverity Policy Manager Actions

High-level views (such as All Hierarchies) provide a menu that you can use to perform the same sort
of actions that Coverity Connect views support (see Section 2.4.2, “View Management” for Coverity

283

Using Coverity Policy Manager Hierarchies

Connect). Though the particulars (such as filters and column names) differ between Coverity Policy
Manager and Coverity Connect, the functionality of each menu item is largely the same.

Figure 4.2.2. Example: High-level View Menu

Add New Report...

Figure 4.2.3. Example: Add Report

This option allows you to generate a new heatmap, report, or dashboard. You can find it by clicking
the section title in the left-side Hierarchy view pane (for example, HEATMAPS or DASHBOARDS),
then clicking the down arrow on the right side of the item.

Note that you can also create a new report by selecting the Duplicate button in the Action Menu (see
Figure 4.2.4, “Example: Action Menu”.)

284

Using Coverity Policy Manager Hierarchies

At the level of a particular hierarchy (for example, the Java Projects hierarchy), you can use Coverity
Policy Manager heatmap, report, and dashboard views to perform the actions described in Table 4.2.1,
“Common Actions”. The following features support these actions:

Action Menu

Figure 4.2.4. Example: Action Menu

This menu supports common actions. You can open this menu by mousing over any heatmap, report,
or dashboard listed in the left-side pane and clicking the down arrow on the right side of the item.

Table 4.2.1. Common Actions

Action Description

Create, Edit
Settings

To set up Coverity Policy Manager dashboards, reports, and heatmaps, see the
following:

• Section 4.2.3, “Setting up Coverity Policy Manager Dashboards”.

• Section 4.2.4, “Setting up Coverity Policy Manager Heatmaps”.

• Section 4.2.5, “Setting up Coverity Policy Manager Status Reports”.

• Section 4.2.6, “Setting up Coverity Policy Manager Trend Reports”

Share Selecting users and/or groups with which to share your view of a Coverity Policy
Manager dashboard, report, or heatmap.

Duplicate Making a copy of a Coverity Policy Manager dashboard, report, or heatmap.

285

Using Coverity Policy Manager Hierarchies

Action Description

Delete Deleting a Coverity Policy Manager dashboard, report, or heatmap. Note that this action
deletes the item from all hierarchies, not just the hierarchy from which you are deleting
it. See Views.

You can also print a dashboard, heatmap, or report to file and print out a report. You use the printer icon
in the chart for this purpose.

Figure 4.2.5. Printer Icon

For an example of the printer icon in a chart, see Figure 4.1.2, “Example: Status Report”.

4.2.3. Setting up Coverity Policy Manager Dashboards

You can create, edit, share, duplicate, and delete one or more dashboards.

286

Using Coverity Policy Manager Hierarchies

Figure 4.2.6. Example: Dashboard Edit Settings Window

To create a new dashboard, click the main DASHBOARDS label and from the drop-down list, choose Add
New Report. To add items to the new dashboard, click the gear-shaped Properties icon.

Table 4.2.2. Dashboard Properties

Property Description

Name Unique name for a Coverity Policy Manager dashboard.

Description Description of the dashboard.

287

Using Coverity Policy Manager Hierarchies

Property Description

Layout Layout in which to display columns of selected heatmaps or reports. The window
provides multiple layout options.

You can delete a chart from the dashboard by clicking it in the Edit Settings window, then clicking the
Remove chart button.

Figure 4.2.7. Example: Dashboard Chart Deletion

For additional information about creating, editing, sharing, duplicating, and deleting dashboards, see
Section 4.2.2, “Performing Common Coverity Policy Manager Actions”.

4.2.4. Setting up Coverity Policy Manager Heatmaps

You can create, edit, share, duplicate, and delete one or more heatmaps. You can also save a heatmap
to a file and print out hard copies of the file (see Figure 4.2.5, “Printer Icon”).

288

Using Coverity Policy Manager Hierarchies

Figure 4.2.8. Example: Heatmap Edit Settings Window

The example shows a heatmap specification in an Edit Settings window. This heatmap sets an issue
density policy where a density between 40 and 43 issues per 1000 lines of code (1 KLOC) is at risk of
violating the policy (and appears in yellow on the heatmap), and a density over 43 issues per KLOC
violates the policy (and appears in red on the heatmap). A density below 40 issues per KLOC meets the
specified policy criteria (and appears in green on the heatmap). For an example of a heatmap with this
specification, see Figure 4.1.5, “Example: Tree Map”.

Table 4.2.3. Heatmap Properties

Property Description

Name Unique name for a Coverity Policy Manager heatmap.

289

Using Coverity Policy Manager Hierarchies

Property Description

Metric Metric to use for data in the heatmap. For an example, see the metric in Figure 4.2.8,
“Example: Heatmap Edit Settings Window”.

Filter One or more filters on the data to display in the heatmap.

Figure 4.2.9. Example: Filter Edit Settings Window

To open the Edit window for filters, you click the Edit button in the Filters area (see
Figure 4.2.8, “Example: Heatmap Edit Settings Window” for an example of this button).

Note

Summary Metrics do not provide filters.

290

Using Coverity Policy Manager Hierarchies

Property Description

Policy Policy that applies to the data in your heatmap. For an example, see the policy setting in
Figure 4.2.8, “Example: Heatmap Edit Settings Window”.

Render As Display option for a heatmap: Sunburst, Tree, or Trend (Banded Trend map).

For the Banded Trend map, you can specify a number of days, weeks, or months over
which to plot data. The map displays a data point for each day in the specified period.

For additional information about creating, editing, sharing, duplicating, and deleting heatmaps, see
Section 4.2.2, “Performing Common Coverity Policy Manager Actions”.

4.2.5. Setting up Coverity Policy Manager Status Reports

You can create, edit, share, duplicate, and delete status reports. You can also save a status report to file
and print out hard copies of the file (see Figure 4.2.5, “Printer Icon”).

The Edit Settings window in the following figure specifies a single metric for a status report.

291

Using Coverity Policy Manager Hierarchies

Figure 4.2.10. Example: Status Report Edit Settings Window (Single Metric)

The chart that results from the preceding example:

292

Using Coverity Policy Manager Hierarchies

Figure 4.2.11. Example: Resulting Status Report (Single Metric)

Notice that in the report above, the primary segmentation of the issues is classification (Unclassified,
Pending, Bug) and the secondary segmentation is based on the checkers that found the issues. The
checkers are listed at the bottom of the report.

The Edit Settings window in the following figure specifies two metrics for a status report. Note that when
two metrics are being compared, the secondary segmentation is automatically set to Metrics.

293

Using Coverity Policy Manager Hierarchies

Figure 4.2.12. Example: Status Report Edit Settings Window (Two Metrics)

294

Using Coverity Policy Manager Hierarchies

Figure 4.2.13. Example: Resulting Status Report (Two Metrics)

The following table describes the properties that you can specify in the Edit Settings window for a status
report.

Table 4.2.4. Status Report Properties

Property Description

Name Unique name for the report.

Available to all chart types.

Description Description for the report.

Available to all chart types.

Metrics One or more metrics to use in the report. The metric specifies the type
of data to use in the data. For example, the chart in Figure 4.2.11,
“Example: Resulting Status Report (Single Metric)” reports issues by
their classification, and the chart in Figure 4.1.2, “Example: Status
Report” reports outstanding and resolved issues.

295

Using Coverity Policy Manager Hierarchies

Property Description
You can use the Edit button to set one or more filters on data for a
selected metric. For an example, see Figure 4.2.9, “Example: Filter Edit
Settings Window”.

Available to all chart types.

Chart Type Chart display options: Bar (data graphed in horizontal bars), Column
(data graphed in vertical columns), Pie (data divided into a standard pie
chart), table (data listed in a standard table format).

[Primary] Segmentation Primary division of the data found through the specified metric.

Available to Bar, Column, and Pie charts only.
See also, Secondary Segmentation.

Secondary Segmentation Secondary division of the data found through the specified metric. If
multiple metrics are selected, this option will be disabled, and the chart
will divide data by metric.

Available to Bar and Column charts only.
See also, [Primary] Segmentation.

Rows Primary division of the data found through the specified metric, listed as
rows in a table.

Available to Table charts only.
See also, Columns.

Columns Secondary division of the data found through the specified metric,
represented as the columns in a table.

Available to Table charts only.
See also, Rows.

Stack sections For reports that specify a Split By property, this property stacks the
resulting data segments together (see Figure 4.2.11, “Example:
Resulting Status Report (Single Metric)”), instead of presenting them
side-by-side. .

Available to Bar and Column charts only.

Sort by Value Option to sort data points from highest to lowest.

Available to all chart types.

Limit chart to
[specified_number_of]
categories

Option to limit the number of Group By categories to display in the
chart. Typically used for items such as users or checkers, where it might
be impractical to display all of them. Defaults to the maximum of 40.

See also, Show remainder as "Other".

Available to all chart types.

296

Using Coverity Policy Manager Hierarchies

Property Description

Show remainder as "Other" When using Limit chart to [number_of] categories, you can select this
option to generate a single Other data point that aggregates values from
all categories not otherwise displayed.

Available to all chart types.

Value axis label Name that you can prepend to the subtitle of the report. By default,
the subtitle displays the values of the Group By and Split By fields. For
example, Figure 4.2.10, “Example: Status Report Edit Settings Window
(Single Metric)” specifies Issue Count as the value of this property, so
the subtitle displays the following: Issue Count by Classification and
Checker.

Available to Bar and Column charts only.

Value axis range Numeric range of values to display in the chart. If you set the values to
0, Coverity Policy Manager will automatically determine the range to
use. If the actual values exceed the specified range, the chart will crop
the data.

Available to Bar and Column charts only.

Log Scale Option to scale data points logarithmically. Typically used to display of
large-scale differences between the data points in a practical way.

Available to Bar and Column charts only.

For additional information about creating, editing, sharing, duplicating, and deleting status reports, see
Section 4.2.2, “Performing Common Coverity Policy Manager Actions”.

4.2.6. Setting up Coverity Policy Manager Trend Reports

You can create, edit, share, duplicate, and delete Trend reports.

297

Using Coverity Policy Manager Hierarchies

Figure 4.2.14. Example: Trend Report Edit Settings Window

The chart that results from the preceding example:

298

Using Coverity Policy Manager Hierarchies

Figure 4.2.15. Example: Resulting Trend Report

The following table describes the properties that you can specify in the Edit Settings window for a trend
report.

Table 4.2.5. Trend Report Properties

Property Description

Name Unique name for the report.

Available to all chart types.

Description Description for the report.

Available to all chart types.

Metrics One or more metrics to use in the report. The metric supplies the
report data. For example, see the metric in Figure 4.2.14, “Example:
Trend Report Edit Settings Window”.

You can use the Edit button to set one or more filters on data for a
selected metric. For an example, see Figure 4.2.9, “Example: Filter
Edit Settings Window”.

299

Using Coverity Policy Manager Hierarchies

Property Description
Available to all chart types.

Chart Type Trend report display options: Area (data graphed in a standard area
chart), Line (data points on a standard line graph), Table (data listed
in a standard table format).

Segmentation Filter used to subdivide the data points or segments. For example,
the trend report in Figure 4.2.15, “Example: Resulting Trend Report”
subdivides the data points by triage Action values (Undecided, Fix
Required, Fix Submitted, Modeling Required, and Ignore).

Note that trend reports automatically group their data by day, so
they do not provide a configurable Secondary Segmentation field
(which is available to status reports).

Available to all chart types.

Limit chart to
[specified_number_of] categories

Option to limit the number of Split By categories to display in the
chart. Typically used for items such as users or checkers, where it
might be impractical to display all of them. Defaults to the maximum
of 40.

See also, Show remainder as "Other".

Available to all chart types.

Show remainder as "Other" When using Limit chart to [number_of] categories, you can select
this option to generate a single Other data point that aggregates
values from all categories not otherwise displayed.

Available to all chart types.

Time Period Number of days, weeks, or months over which to track changes to
the data. Note that each data point in the trend report will represent
a day in the specified time period.

Available to all chart types.

Range Numeric range of data values to display in the charts. If you set the
values to 0, Coverity Policy Manager will automatically determine
the range to use. If the actual values exceed the specified range,
the chart will crop the data.

Available to Bar and Column charts only.

For additional information about creating, editing, sharing, duplicating, and deleting trend reports, see
Section 4.2.2, “Performing Common Coverity Policy Manager Actions”.

300

Chapter 4.3. Coverity Policy Manager Metrics

Table of Contents
4.3.1. Metrics: User Activity .. 301
4.3.2. Metrics: Analysis .. 302
4.3.3. Metrics: Code .. 304
4.3.4. Summary Metrics: Technical Debt ... 305

The tables in the following sections describe Coverity Policy Manager metrics, list charts to which you can
apply the metrics, and identify the filter and segmentation properties that you can use with the metrics.

4.3.1. Metrics: User Activity

User activity metrics track usage of the Coverity Connect UI as it pertains software issues, which are
identified by a CID.

Table 4.3.1. Coverity Policy Manager User Activity Metrics

Metric Description Available Toa Filtersb Segmentation
| Primary
Segmentation
| Secondary
Segmentation
c

Daily unique
users

Number of unique users within the
set of Daily unique issue views on a
given day. For example, assume that
a total of 2 different users viewed one
or more CIDs on a day that the Daily
unique issue views is 5. In this case,
Daily unique users is 2 for that day.
See also, Monthly unique users.

Daily unique
issue views

Total number of unique issues viewed
by a unique user in the Coverity
Connect Triage pane on a given day.
If 5 different users view the same CID
on the same day, this metric counts 5
separate unique views (of that CID). If
a single user views 5 different CIDs on
the same day, this metric counts these
actions as 5 separate unique views.
If a single user views the same CID a
total of 5 separate times in one day,
this metric counts only 1 unique view
(of this CID for this user).

Trend Reports Component,
Owner, Owner
Name

None, Child
Nodes,
Component,
Owner, Owner
Name

301

Coverity Policy Manager Metrics

Metric Description Available Toa Filtersb Segmentation
| Primary
Segmentation
| Secondary
Segmentation
c

Daily unique
issue views
per user

Number of Daily unique issue views
divided by the Daily unique users.
Assume the following occurs on the
same day: User 1 inspects CID 11 and
CID 22. User 2 inspects CID 22. In this
case, this metric is 1.5 (because the
Daily unique issue views is 3, and the
Daily unique users is 2).

Daily unique
issue triages

Total number of unique CIDs that have
been triaged by a unique user on a
given day. Like Daily unique issue
views, this metric counts unique CID
and user combinations. If the same
CID is triaged by the same user more
than once on a given day, this metric
counts only one triage action (for this
CID), regardless of whether the user
changed the values of different triage
attributes.

Monthly
unique users

The number of unique users per
month. For example, if for ten days
there is only one unique user per day
(and the rest of the days in the month
have zero unique users), the monthly
unique users could be anywhere
betwen 1 and 10, depending on
whether the same user visited on ten
different days (monthly unique users =
1), or ten different users visited during
that period (monthly unique users =
10), or some number between 1 and
ten.

a Lists of charts to which the metric is available: Heatmaps, Status Reports, and/or Trend Reports.
b List of filters that you can apply to the data retrieved by the metric. For descriptions of filters, see Chapter 4.4, Coverity Policy
Manager Filter and Segmentation Properties.
c List of Segmentation, Primary Segmentation or Secondary Segmentation properties that you can apply to the chart data. For
descriptions of these properties, Chapter 4.4, Coverity Policy Manager Filter and Segmentation Properties.

4.3.2. Metrics: Analysis

Analysis metrics provide information about the state of software issues (CIDs).

302

Coverity Policy Manager Metrics

Table 4.3.2. Coverity Policy Manager Analysis Metrics

Metric Description Available To Filtersb Segmentation
| Primary
Segmentation
| Secondary
Segmentation
c

All issues Total number of issues in a given node
of a hierarchy.

Outstanding
issue count

Number of CIDs that are classified
in Coverity Connect as Unclassified,
Pending, Bug, or for Test Advisor,
Untested.

Heatmaps,
Status
Reports, Trend
Reports

Daily issues
introduced

The number of CIDs introduced to a
particular stream for the first time in a
day.

Daily issues
dismissed

Number of CIDs that were dismissed
on a given day.

Daily issues
fixed

Number of CIDs that were fixed on a
given day.

Trend Reports

None, Child
Nodes,
Action, CWE,
Category,
Checker,
Classification,
Coding
standards and
vulnerability
reports,Component,
Fix Target,
Impact,
Legacy,
Owner,
Owner Name,
Severity,
Status, Type

Also lists
any picklist-
type custom
attributes.

Outstanding
issue density

Number of outstanding issues per 1000
lines of code.

Heatmaps,
Status
Reports, Trend
Reports

Action,
Category,
Checker,
Classification,
Coding
standards and
vulnerability
reports,
Component,
CWE, First
Detected,
Fix Target,
Impact, Issue
Kind, Legacy,
Owner,
Owner Name,
Severity,
Status, Type

Also lists
any picklist-
type custom
attributes.
a

Node,
Component

Daily commit
count

Number of snapshots committed to a
given node of a hierarchy on a given
day.

Daily issues
committed

Number of issues committed to a given
node of a hierarchy on a given day.
Returns a raw number of issues, with
duplicate issues counted separately.

Daily lines
of code
committed

Total number of lines of code
committed to a given node of a
hierarchy on a given day. Returns a
raw number of lines, with duplicate
lines of code counted separately.

Trend Reports Description,
Target,
Version

Stream, Node

303

Coverity Policy Manager Metrics

Metric Description Available To Filtersb Segmentation
| Primary
Segmentation
| Secondary
Segmentation
c

Daily files
committed

Number of source code files committed
to a given node of a hierarchy on a
given day. Returns a raw number
of files, with duplicate files counted
separately.

aPicklist attributes provide a preconfigured set of values.

4.3.3. Metrics: Code

Code metrics provide information about the source code used in your analyses.

Table 4.3.3. Coverity Policy Manager Code Metrics

Metric Description Available To Filtersb Segmentation
| Primary
Segmentation
| Secondary
Segmentation
c

Lines of code Number of lines of code in the source
code files within the scope of a given
node of a hierarchy. Does not include
lines fully composed of comments
or blank lines in the source code.
However, any line that includes both
code and a comment counts as a line
of code.

Comment lines Number of lines of comments in the
source code files within the scope of
a given node of a hierarchy. Does not
include comments that occur on lines
that also contain source code.

Comment
density

Comment lines as a proportion of the
total lines of code in the source code
files. The density is equal to number
of comment lines divided by the sum
of comment lines and lines of source
code. This metric does not include
blank lines in the density calculation.

Heatmaps,
Status
Reports, Trend
Reports

Component None, Child
Nodes,
Component,
Detected Ina

304

Coverity Policy Manager Metrics

Metric Description Available To Filtersb Segmentation
| Primary
Segmentation
| Secondary
Segmentation
c

Policy
coverage

Test Advisor metric for the percentage
that is equal to the count of lines
covered by tests divided by coverable
lines.

Policy covered
lines

Test Advisor measure of the number of
lines covered by tests.

Policy
uncovered
lines

Test Advisor measure of the number of
lines not covered by tests.

Raw coverage Test Advisor metric for the percentage
that is equal to the raw covered lines
divided by raw coverable lines.

Raw covered
lines

Test Advisor measure of the number of
lines covered by tests, as reported by
the coverage tool.

Raw
uncovered
lines

Test Advisor measure of the number of
lines not covered by tests, as reported
by the coverage tool.

File count Number of source code files within the
scope of a given node of a hierarchy.
Note that files with the same name and
file path count as a single file.

Code Lines
(LOC), Issue
Density,
Oustanding,
Policy
Coverage,
Raw Coverage

Function count Number of functions in the source code
files within the scope of a given node
of a hierarchy. Returns a raw number
of functions, with duplicate functions
counted separately.

CCM None, Child
Nodes,
Component,
Cyclomatic
Complexity

aSee Detected In.

4.3.4. Summary Metrics: Technical Debt

The Technical Debt summary metric is built into Coverity Policy Manager. Administrators can create
additional summary metrics, as needed.

You will see a label when adding a Summary metric to a heatmap, status report, or trend report. Note that
Summary metrics provide no filters. Instead, their contributor metrics can be filtered.

305

Coverity Policy Manager Metrics

Table 4.3.4. Coverity Policy Manager Code Metrics

Summary
Metric

Label Available To Filtersb Primary Segmentation | Secondary
Segmentation c

Technical Debt Technical Debt Heatmaps,
Status
Reports, Trend
Reports

(No Filters) None, Child Nodes, Component,
Contributor

Only Summary metrics offer the
Contributor segmentation property. It is
never available to reports that include
other metrics.

For more detail on this topic, see Section 4.1.8, “Summary Metrics”.

306

Chapter 4.4. Coverity Policy Manager Filter and
Segmentation Properties

This section describes the filters, split-by values, and group-by values that you can use when specifying a
Coverity Policy Manager chart. The availability of these items varies by metric and chart type.

A group-by value sets the primary division of the data in a chart. A split-by value sets a secondary
division of data in a map. For an example, see Figure 4.2.10, “Example: Status Report Edit Settings
Window (Single Metric)”.

Table 4.4.1. Coverity Policy Manager Filters

Filter or
Segmentation
Property

Filterb Segmentationc Description

Action Yes Yes Triage attribute used to specify the action to
take with regard to a software issue.

Category Yes Yes Category of software issue found by a checker.
Examples include Memory - corruptions,
Resource leaks, Null pointer dereferences.

Checker Yes Yes Name of a Coverity checker.

Coding standards
and vulnerability
reports

Yes Yes Coding standards and vulnerability reports,
such as MISRA-C and OWASP Top Ten.

Component Yes Yes Coverity Connect component. If a hierarchy
configuration component filter is enabled, then
the Component acts as a secondary filter.

Contributors No Yes Filtered and weighted metrics that make up a
summary metric. If a chart includes a summary
metric and one or more regular (non-summary)
metrics, this segmentation property will not be
available.

Custom Attributes Yes Yes Custom picklist-type triage attributes. Such
attributes contain a preconfigured list of one or
more attribute values.

CWE Yes Yes Common Weakness Enumeration
documentation of a software issue. The
Coverity Connect Triage pane displays a CWE
for a software issue.

Detected In (Not a Filter) Yes Name of a Coverity Connect stream in which
the issue was detected.

First Detected Yes (Not a *-by Option) Filter for narrowing the scope of issues
detected (or not detected) in snapshots up to

307

http://cwe.mitre.org/

Coverity Policy Manager Filter and Segmentation Properties

Filter or
Segmentation
Property

Filterb Segmentationc Description

40 days in the past. Accepts a value of zero (0)
to 40.

Fix Target Yes Yes Triage attribute used to set the release in which
to fix an issue. See Fix Target.

Impact Yes Yes Issue impact as determined by Coverity
Connect: High, Medium, Low, or Audit.

Issue Kind Yes (Not a *-by Option) Any of the following kinds of issues: Quality,
Security, Test, or Various issue.

Legacy Yes Yes Triage attribute used to indicate whether an
issue is a legacy issue or not. Some companies
mark as Legacy those issues that existed
undetected in the code base prior to a Coverity
Analysis upgrade or change to checkers used
to analyze the code base.

LOC Yes (Not a *-by Option) Lines of code in the source code files.

Owner Yes Yes Filter for entering the username of the owner of
software issues.

Owner Name Yes Yes Filter for entering a glob pattern that matches
the first or last name (or names) of the owner of
software issues.

Severity Yes Yes Triage attribute that identifies the severity
of software issues. Built-in Severity values:
Unspecified, Major, Minor, Moderate.
Alternative custom values are possible.

Status Yes Yes Triage attribute that identifies the status of
software issues. Status values: New, Triaged,
Dismissed, Fixed.

Type Yes Yes Descriptions of software issues (sometimes
called checker subcategories) found by a
checker.

308

Part 5. Coverity Policy Manager Administration
Coverity Policy Manager administrators set up the hierarchies that are used to specify the data source
and structure of Coverity Policy Manager heatmaps and charts. For your organization to use Coverity
Policy Manager, it is necessary to specify at least one hierarchy and to assign the appropriate Coverity
Policy Manager role to users and/or groups (see Chapter 5.5, Coverity Policy Manager Roles and
Permissions).

Coverity Policy Manager is a companion product to Coverity Connect that shares the Coverity Connect
user database and servlet container and is fully integrated into the Coverity Connect UI.

Licensing

If you need to update or import a license for Coverity Policy Manager, you need to import
it through Coverity Connect. For details, see Section 3.1.1.13, “Coverity Connect license
information”.

Daily data synchronization

Coverity Policy Manager synchronizes Trend Report data with the Coverity Connect
database once per day, starting between midnight and 1:00 am. The time needed to
complete the data synchronization depends on the amount of data being transferred.

Alternately, Status Reports are updated periodically throughout the day, waiting one hour
after the end of each update to start the next one. For example, if an update takes 30
minutes to run, the Status Reports will be updated approximately every 90 minutes.

Important

In general, Policy Manager does not store data indefinitely. In the absence of other
activity, daily data is kept for 40 days, weekly data is kept for 30 weeks, monthly
data is kept for 24 months, and only yearly data is kept indefinitely. However,
Policy Manager does not save historical data in terms of previous configurations of
component map and stream settings, and if the current project configurations are
changed, Policy Manager data is recomputed based on those changes.

For information about data synchronization between coordinators and subscribers, see
Section 3.5.1.2.3, “Synchronizing Coverity Policy Manager data across the cluster”.

Chapter 5.1. Managing a Coverity Policy Manager Hierarchy

Table of Contents
5.1.1. Planning a Hierarchy ... 310
5.1.2. Configuring a Hierarchy .. 320

When you set up Coverity Policy Manager, it is necessary to specify at least one hierarchy.

5.1.1. Planning a Hierarchy

Before you attempt to create or modify a hierarchy, it is important to understand the needs of your
Coverity Policy Manager users so that you can determine a useful way of organizing the data that the
hierarchy will support. Though it is possible to create a hierarchy that simply organizes each Coverity
Connect project into a separate node in the hierarchy, Coverity Policy Manager users are likely to require
a different structure. As a basic goal, your hierarchy should allow Coverity Policy Manager users to see
data that matters to them.

It helps to start by thinking of your development organization from the top down, rather than from the
bottom up. For example, a vice president of engineering might want to see information on all products. A
manager who reports to the vice president might need to check data that is aggregated from all the teams
that build one of the products. A team lead primarily needs to get the status of code managed by that
group. Most likely, the vice president and managers also need to be able to navigate to the areas of the
code base that concern them. So it would be helpful to build one or more hierarchies that could support
such views.

Coverity Policy Manager Use Case

Scenario
Assume that company has used Coverity products for several years. Twenty project managers
oversee a total of sixty software development projects, some of which are separate Coverity Connect
projects, while others (about half) are components of a single Coverity Connect project.

The director who is in charge of this project management team wants to see charts (Status Reports
and Trend Reports) that organize data on software issues (for example, impact, count, density, and
so on) by project manager:

1. You need to set up a hierarchy in which the analyzed source code files than contain issues from
the company's software projects are associated with the appropriate project manager.

a. You create a separate branch node for each project manager (for example, the node might
name the project manager).

b. For each branch that represents a separate project manager, you create one or more leaf
nodes, and associate the leaves with the project or component for which each project
manager is responsible.

In the case that a given project manager is reponsible for managing all software issues in a
given Coverity Connect project, you can associate the leaf with the entire project.

310

Managing a Coverity Policy Manager Hierarchy

In the case that the project manager is responsible for managing software issues from a
subset of source files from a Coverity Connect project, you can associate the leaf with a
component. If the components do not exist, a Coverity Connect administrator will need to set
them up for you (see Section 3.3.3, “Using components”).

The following figure represents a portion of the node tree for the hierarchy described in this step.

Figure 5.1.1. Example: Organizing a Hierarchy by Management Personnel

For guidance, see Section 5.1.2, “Configuring a Hierarchy”. For additional node tree examples,
see the figures below.

2. You need to assign a Coverity Connect role to the director (or to a Coverity Connect user group
to which the director belongs) that allows the director access to the Coverity Policy Manager user
interface (see Chapter 5.5, Coverity Policy Manager Roles and Permissions).

The director can then use the Coverity Policy Manager heatmap and charts that are supported
by the hierarchy to view and compare data on issues associated with each project manager.

The Coverity Policy Manager charts (heatmaps and reports) allow users to navigate to data that
is associated with the entire set of project managers, with an individual project manager, and
with individual project or component data that is associated with a leaf node. For example, the
director can configure the heatmap to show policy violations on defect density. A trend chart
might show changes to issues over time (for example, how many issues are introduced and
resolved each day). A status report might show the number outstanding issues that are of high
impact.

Other ways of organizing data are possible. Coverity Policy Manager users might need to see data
organized in any of the following ways:

By geography

311

Managing a Coverity Policy Manager Hierarchy

• A company might have engineering groups in the United States, India, and Japan. In such a case,
the root node of the hierarchy could be called Worldwide, and child nodes could be called U.S., India,
Japan. Further subdivisions might identify the various cities where the development takes place. In this
way, an executive in charge of worldwide development and managers in charge of the various regions
could get the status of all code bases in aggregate or broken down by country or city.

Figure 5.1.2, “Example: Organizing a Hierarchy by Geographical Regions” divides the hierarchy by
geography. The leaf nodes of this hierarchy contain Coverity Connect projects and components that
are associated with the cities.

Figure 5.1.2. Example: Organizing a Hierarchy by Geographical Regions

By functionality

• A company might divide its code base into functional units such as front end, back end, and so on. In
such a case, the children of the root node could be named according to those functional divisions, and,
if needed, their children could be named according to subdivisions of those functional units.

Figure 5.1.3, “Example: Organizing a Hierarchy by Functionality” divides the hierarchy into functional
units. The leaf nodes of this hierarchy contain Coverity Connect projects and components that are
associated with them.

312

Managing a Coverity Policy Manager Hierarchy

Figure 5.1.3. Example: Organizing a Hierarchy by Functionality

By product or project

• A company might build multiple products. In such a case, the children of the root node could be named
according to product name then subdivided further by product modules and, if needed, by submodules.

Figure 5.1.4, “Example: Organizing a Hierarchy by Product” divides the hierarchy by product. The leaf
nodes of this hierarchy contain Coverity Connect projects and components that are associated with the
product modules.

313

Managing a Coverity Policy Manager Hierarchy

Figure 5.1.4. Example: Organizing a Hierarchy by Product

By company department or division

• A company might have engineering teams that span multiple departments or corporate divisions. In
such a case, the children of the root node could be named according those departments or divisions.
Each department could be made up of further subdivisions, such as teams.

Figure 5.1.5, “Example: Organizing a Hierarchy by Department” divides the hierarchy by department.
The leaf nodes of this hierarchy contain Coverity Connect projects and components that are associated
with the teams in each department.

314

Managing a Coverity Policy Manager Hierarchy

Figure 5.1.5. Example: Organizing a Hierarchy by Department

By a hybrid structure

• A company might have separate front end and back end teams for different products. In such a case,
the children of the root node could represent each product, and the subdivisions of each product could
identify the functional units of the product. Alternatively, the children of the root could be the front end
and back end nodes, and the subdivisions of these functional units could identify the products. The leaf
nodes of this hierarchy could contain Coverity Connect projects and components that are associated
with submodules of each product or with subdivisions of the functional units.

Figure 5.1.6, “Example 1: Organizing a Hierarchy by a Hybrid Structure” divides the hierarchy first by
function, then by product.

315

Managing a Coverity Policy Manager Hierarchy

Figure 5.1.6. Example 1: Organizing a Hierarchy by a Hybrid Structure

Figure 5.1.7, “Example 2: Organizing a Hierarchy by a Hybrid Structure” divides the hierarchy first by
product, then by function.

316

Managing a Coverity Policy Manager Hierarchy

Figure 5.1.7. Example 2: Organizing a Hierarchy by a Hybrid Structure

By Coverity Connect instance

• A company might host multiple instances of Coverity Connect that pass data to Coverity Policy
Manager. In this case, the hierarchy could get data from projects and components in each Coverity
Connect instance. Though the children of the root node could identify each Coverity Connect instance,
they need not do so. The children could represent any other organizational structure that makes sense
for the company.

For example, assume a case in which one instance of Coverity Connect contains projects for a set
of front end modules that are used by multiple products. Assume another instance contains projects
for back end modules used by those products. A third instance might contain other modules for these
and other products. In this case, the hierarchy could divide the code base by product and then break
down each product by module and submodule. The leaf nodes could contain Coverity Policy Manager
projects and components that are associated with the submodules of each product.

A simpler example, Figure 5.1.8, “Example: Organizing a Hierarchy Explicitly by Coverity Connect
Instance”, explicitly divides the hierarchy by Coverity Connect instance.

317

Managing a Coverity Policy Manager Hierarchy

Figure 5.1.8. Example: Organizing a Hierarchy Explicitly by Coverity Connect Instance

Figure 5.1.9, “Example: Organizing a Hierarchy Implicitly by Coverity Connect Instance” incorporates
projects and components from multiple Coverity Connect instances without explicitly identifying

318

Managing a Coverity Policy Manager Hierarchy

the instances. Note that this figure includes the same projects and components that Figure 5.1.8,
“Example: Organizing a Hierarchy Explicitly by Coverity Connect Instance” includes.

Figure 5.1.9. Example: Organizing a Hierarchy Implicitly by Coverity Connect Instance

With peripheral code bases

• Perhaps a company uses common libraries, third party code, or legacy code that managers want to
examine separately from the primary code base. It is possible to create separate, high-level nodes in
the hierarchy that are just for these items. In this case, one of the children of the root could be called
Peripheral, and its children could be called Libraries, Third Party, and Legacy. The leaf nodes could
then contain the projects and components that make up the divisions of the peripheral code bases.

A simpler example, Figure 5.1.10, “Example: Configuring Peripheral Code Bases in a Hierarchy”,
contains all the peripheral code in a single, high-level node.

319

Managing a Coverity Policy Manager Hierarchy

Figure 5.1.10. Example: Configuring Peripheral Code Bases in a Hierarchy

Note that if users do not need to get status of some or all of the peripheral code base, Coverity
Connect projects and components for that code can be omitted from the hierarchy. It is also possible to
specify peripheral code bases within subnodes that use the Exclude from rollup feature; for instance,
see the Libraries node in Figure 4.1.5, “Example: Tree Map”.

With new or modified code bases

• Perhaps a company has added a product or an engineering group. It is possible to add nodes for them
to an existing hierarchy. It is also possible to delete or reorganize existing nodes in the hierarchy.

For procedures on specifying one or more hierarchies, see Section 5.1.2, “Configuring a Hierarchy”.

5.1.2. Configuring a Hierarchy

In Coverity Policy Manager, a hierarchy specifies an ordered tree data structure (a node tree) for
heatmaps and charts. You can create and maintain hierarchies through the Coverity Policy Manager UI
or through a JSON file (see Chapter 5.2, Importing/Exporting a Coverity Policy Manager Hierarchy). The
JSON import/export feature is preferred for large hierarchies or large-scale changes. The UI is preferred
when creating smaller hierarchies or when making small-scale modifications to existing hierarchies.

320

Managing a Coverity Policy Manager Hierarchy

Figure 5.1.11. Example: Hierarchy Configuration Window

As shown in Figure 5.1.11, “Example: Hierarchy Configuration Window”, the Name column (top-left
portion of the window) lists all hierarchies that have been created. Selecting a name in this list allows you
to use the edit settings fields for the hierarchy.

Hierarchy Buttons

• Add: Generates a new hierarchy. See Section 5.1.2.1, “Creating a Hierarchy”. Note the other Add
button (located at the bottom of the screen) is for the node tree (see Node Tree Buttons).

• Duplicate: Creates a copy of the selected hierarchy that is identical except for the name. For example,
a duplicate of C and C++ is named C and C++ Copy.

• Delete: Deletes the hierarchy along with its node tree.

• Import: Uploads a hierarchy configuration to Coverity Policy Manager. See Chapter 5.2, Importing/
Exporting a Coverity Policy Manager Hierarchy.

• Export: Downloads a hierarchy configuration to a JSON file. This file is convenient for large-scale
hierarchy configurations in which you edit this file and then import it back to Coverity Policy Manager
instead of using the node configuration functionality in the UI. See Chapter 5.2, Importing/Exporting a
Coverity Policy Manager Hierarchy.

321

Managing a Coverity Policy Manager Hierarchy

5.1.2.1. Creating a Hierarchy

Before creating a hierarchy, take time to plan. Think about the kind of data that your Coverity Policy
Manager users need to see in the heatmaps and charts. For guidance, see Section 5.1.1, “Planning a
Hierarchy”.

To create a hierarchy:

1. Navigate to the Configuration - Hierarchies window by selecting Hierarchies from the Configuration
menu.

Figure 5.1.12. Example: Configuration Menu

Note

If Hierarchies does not appear in this menu, you need to get permission to view and manage
hierarchies from your Coverity Connect administrator (for more details, see Chapter 5.5,
Coverity Policy Manager Roles and Permissions).

2. Use the Add button (in the top-left portion of the Configuration - Hierarchies window) to create the
hierarchy.

See an example of this window in Figure 5.1.11, “Example: Hierarchy Configuration Window”.

This action opens a pop-up window in which you can type a name and description for the hierarchy
(recommended), and opt to generate a flat hierarchy that contains a single root node with a separate
leaf node for each Coverity Connect project. If you do not select this option, the new hierarchy will
contain a single root node.

322

Managing a Coverity Policy Manager Hierarchy

You can also select which server you would like the data to be drawn from. Your local server will be
selected by default, but additional servers will be available to Coverity Connect instances that serve
as Coordinators to one or more Subscribers. See Section 3.5.1, “Synchronizing multiple Coverity
Connect instances” for more details.

Figure 5.1.13. Example: Hierarchy Creation Window

The name and description of the hierarchy will appear to end users in the Coverity Policy Manager
list of hierarchies and in navigation menus. For examples, see the figures in Chapter 1.3, Shared
Navigation and Main menu tools. The name must be unique.

Note

The following characters are not allowed in the name of a hierarchy: : \ / * ' "

3. Specify the node tree for the hierarchy:

a. [Recommended] Change the automatically generated name of the root node for the hierarchy
(New Hierarchy Node) by typing it into the lower-right Name field.

The name of the root name will appear in Coverity Policy Manager charts (see the Sample
Company root node in Figure 4.2.1, “Example: Chart Navigation Breadcrumbs (Java → Desktop
Projects → Developer Streams)”). Note that the name of the root node can differ from the name
of the hierarchy.

The name of the root often indicates the relationship of the root to the children (for examples,
see Section 5.1.1, “Planning a Hierarchy”). Note that it is not possible to create a sibling of the
root node.

b. Use the buttons at the bottom of the screen to generate nodes (add or duplicate) or delete
nodes (along with all descendants of the deleted node).

Note that nodes located at the same level in the tree must have different names.

Node Tree Buttons

• Add: Generates a child node for the selected node. You can opt to make this child a branch
node or a leaf node. If you choose to generate a leaf node, you will be able to associate it with
a project and, if applicable, a specific server.

323

Managing a Coverity Policy Manager Hierarchy

Figure 5.1.14. Example: Node Creation Pop-up Window

• Duplicate: Generates a sibling node that is identical to the selected node except for the
name. For example, a duplicate of Front End is named Front End Copy. This sibling will
contain copies of any descendants of the duplicated node.

It is not possible to create a duplicate of the root node.

• Delete: Deletes a node from the selected hierarchy. Deleting a node also deletes any
descendents of that node. However, it is not possible to delete the root node.

If you delete all the descendents of a given branch node, the node will have no data
associated with it until you associate it with a project or create a leaf node for it that is
associated with a project.

Tip

In general, the following limits are recommended:

• 1-100 child nodes for a single branch node.

• Upper bound of 2000 nodes for the entire node tree.

• Node depth of 1-10 levels, where 1 is the level of a child of the root node, 2 is a
"grandchild" of the root node, and so on.

Drag and Drop functionality
You can move a node to a new location in a hierarchy by selecting it, then dragging and
dropping it to the desired location. Any descendents of a branch node will move along with
the branch you select.

c. If you do not want data from a given node to contribute to data values of its parent and ancestor
nodes, check Exclude from rollup for that node.

324

Managing a Coverity Policy Manager Hierarchy

Figure 5.1.15. Example: Exclude Node From Rollup

In the example, values from the selected, third party node are excluded from rollup.

This functionality can be useful for excluding data on issues from peripheral code bases
(perhaps some third-party source) that your organization does not need to assess. For example,
see With peripheral code bases.

d. Associate your leaf nodes with a project (and any components).

Figure 5.1.16. Example: Associating a Project and Component with a Node

325

Managing a Coverity Policy Manager Hierarchy

To support any data, a leaf must be associated with a single Coverity Connect project.
Optionally, a leaf can narrow the scope of the project data by specifying a list of components.
You can opt to Include or Exclude data that is derived from the specified components.

Note

If you add a node to a leaf node, the leaf will become a branch node and lose any
association with a project (and components). The new node will become a leaf to which
you can associate a project and any components.

The leaf will retain its association with a project or component even if the name of the
project or component changes.

If the project with which a leaf is associated gets deleted, the leaf will no longer have data
associated with it. Similarly, if the leaf is associated with a single component, and that
component gets deleted, the leaf will no longer have data associated with it. The UI will
indicate when a project or a component with which a leaf is associated gets deleted.

4. Click the Done button to save your changes.

5.1.2.2. Editing a Hierarchy

You can change the name and/or description of a selected hierarchy and change properties of any
selected node in the hierarchy. For guidance with this process, see Section 5.1.2.1, “Creating a
Hierarchy”.

326

Chapter 5.2. Importing/Exporting a Coverity Policy Manager
Hierarchy
You can import and export one or more hierarchy files through the Configuration - Hierarchies window
in Coverity Policy Manager (see Hierarchy Buttons). These editable JSON files specify the name,
description, and node tree for the hierarchy.

Use Case
To expedite the specification of a hierarchy with many nodes, you might export an existing hierarchy
to a file so that you can edit it manually (instead of using the UI for this purpose) and then import the
edited version of the file to Coverity Policy Manager.

To see working examples of a hierarchy configuration in the file, you might want to to create a small,
representative portion of the hierarchy through the Coverity Policy Manager UI before exporting it.
For details, see Section 5.1.2.1, “Creating a Hierarchy”.

Hierarchy Objects use the following schema notation (not JSON):

• Braces and Brackets (examples: { }, []): These characters are verbatim.

• Italics (example: hierarchy): Items in italics represent objects defined elsewhere in the schema.

• Ellipsis (example: thing...): An item followed by an ellipsis represents zero or more repetitions of
the item, separated by commas.

• Colon after word (example: foo:): A word followed by a colon represents that word in double quotes.

• Quotes (example: "leaf"): A string in quotes represents itself.

• string: This token represents a UTF-8 string in double quotes.

• Boolean (examples: true, false): This token represents either true or false.

• (text): Text in parentheses is a comment. For example: (constrained)

All strings can be up to 256 characters long. Strings notated as (constrained) cannot include control
characters or the following characters: \ : / * ` ‘ “

Hierarchy Objects

Top-level object

{ hierarchies : [<emphasis>hierarchy...</emphasis>] (You can import/export one or
 more hierarchies) }

hierarchy object

{
 name : string, (constrained)
 description : string,
 tree : <emphasis>tree</emphasis>

327

Importing/Exporting a Coverity Policy Manager Hierarchy

}

tree object
Either a leaf or a branch object.

leaf object

{
 class : “leaf”,
 components : [<emphasis>component</emphasis> …],
 projectName : string, (constrained, may be null)
 componentsIncluded : boolean,
 name : string, (constrained)
 includeInPolicyEvaluation : boolean
}

branch object

{
 class : “branch”,
 children : [<emphasis>tree</emphasis> …],
 name : string, (constrained)
 includeInPolicyEvaluation : boolean
}

component object

{
 componentMap : string, (constrained)
 componentName : string (constrained)
}

Example

{
 "hierarchies" : [{
 "name" : "A tiny hierarchy",
 "description" : "Has 3 nodes",
 "tree" : {
 "class" : "branch",
 "children" : [{
 "class" : "leaf",
 "components" : [],
 "projectName" : "sample-ces-app",
 "componentsIncluded" : true,
 "name" : "sample-ces-app",
 "includeInPolicyEvaluation" : true
 }, {
 "class" : "leaf",
 "components" : [],
 "projectName" : null,
 "componentsIncluded" : false,
 "name" : "i18n",

328

Importing/Exporting a Coverity Policy Manager Hierarchy

 "includeInPolicyEvaluation" : true
 }],
 "name" : "Java",
 "includeInPolicyEvaluation" : true
 }
 }]
}

Note

If you import a hierarchy and export it again, the JSON will be the same with one exception: Branch
nodes with no children will be converted to leaf nodes with null projects.

If you import a hierarchy that has a name that matches an existing hierarchy, the existing hierarchy
will be replaced by the imported one.

An error occurs under the following conditions:

• If Coverity Connect cannot parse your JSON.

• If a node name in the tree is not unique within its container.

• If a project or component name does not refer to an existing project or component.

329

Chapter 5.3. Scheduling the Extract Transform Load (ETL)
Process

During the Extract Transform Load (ETL) process, Policy Manager extracts and aggregates raw data
from the database, updating the information in the PM tables. You can schedule the ETL process to
run at any (designated) time. By default, an ETL task is scheduled to run one hour after completion of
the previous run. Note that this process can be time-consuming, however, and often requires extra disk
space.

You can switch to cron-based scheduling by setting property values in config/cim.properties. You
can either use the same schedule for both status and trend ETL processes, or you can set up separate
schedules, depending on which properties you set.

Note

Data aggregated by the ETL process does not last indefinitely. Daily data is kept for 40 days,
weekly data is kept for 30 weeks, monthly data is kept for 24 months, and yearly data is kept
indefinitely. Older data is deleted after new data is inserted.

Also, be aware that the ETL process does not save a history of previous configurations (that is,
component map and stream settings). Whenever the current project configuration is changed,
Policy Manager data is recomputed based on the new settings.

To set up a single schedule for both status and trend ETL processes, set the following properties
as indicated:

• policymanager.etl.scheduled.disable=false

• policymanager.etl.cron.enable=true

• policymanager.etl.cron.schedule=date-and-time

Note

The scheduled cron job follows a specific syntax. For example:

policymanager.etl.cron.schedule=0 30 2 * * *

The example above represents a cron job scheduled to run every night at 0230 hours.

You can disable this schedule by setting the properties as follows:

• policymanager.etl.scheduled.disable=true

• policymanager.etl.cron.enable=false

To set up separate schedules for status and trend ETL processes, set the following optional
properties in addition to the three properties listed above:

• policymanager.etl.trend.scheduled.disable=false

330

Scheduling the Extract Transform Load (ETL) Process

• policymanager.etl.trend.cron.enable=true

• policymanager.etl.trend.cron.schedule=date-and-time

These properties control the schedule only for trend ETL processes. Once you set these trend properties,
the previous three properties control only status ETL processes.

With all six properties set, you can specify different schedules for status and trend ETL processes. You
can also enable and disable the status and trend schedules separately. For example, to disable the trend
schedule, set the following properties as indicated:

• policymanager.etl.trend.scheduled.disable=true

• policymanager.etl.trend.cron.enable=false

Note

You can set only some of the trend properties, if you desire. For example, if you want separate
status and trend schedules, but want to enable/disable them together, then set only this property (in
addition to the first three):

• policymanager.etl.trend.cron.schedule=date-and-time

Similarly, if you want to use the same schedule for status and trend ETL processes but want to
separately enable/disable them, set only these properties (in addtion to the first three):

• policymanager.etl.trend.scheduled.disable=false

• policymanager.etl.trend.cron.enable=true

331

Chapter 5.4. Creating Summary Metrics
You use the Configuration - Summary Metrics screen to create and maintain Summary metrics that
Coverity Policy Manager users can select for their heatmaps and charts.

By default, you can add up to 10 contributor metrics to a summary metric. You can change this default
through the summary.metric.contributor.limit property in <install_dir>/config/
cim.properties.

Recommended: Tuning the Technical Debt summary metric

You should tune the default values of the Technical Debt metric to match the needs of your
organization, preferably before users can begin to incorporate the metric into their charts. You can
change contributor properties (multipliers, metrics, and/or filters), remove contributors, or add new
contributors, as needed.

Figure 5.4.1. Configuration - Summary Metrics screen

Summary metrics consist of the following components:

• Summary Metric Name: The name that you use to identify the metric to users.

• Description: A description that you can add to the Summary metric.

• Prefix Unit: Optional label (such as the "$" in $100) that precedes the value of a given summary metric.
This unit is visible in the Coverity Policy Manager UI, for example, in the axes of graphs, in table

332

Creating Summary Metrics

column or row headers, and in information boxes that identify data points that appear in a chart or
heatmap.

• Suffix Unit: Optional label (such as the "K" in 100K, which is used an abbrevation used for 100,000)
that follows the value of a given summary metric. This unit is visible in the Coverity Policy Manager
UI, for example, in the axes of graphs, in table column or row headers, and in information boxes that
identify data points that appear in a chart or heatmap.

• Contributors: List of one or more filtered metrics that you select for your summary metric. To establish
the relative importance of a given contributor, you need to assign a non-negative, numeric weight as
a multiplier. For example, the default multipliers used in the built-in summary metric, Technical Debt,
weight the impact of issues and complexity of functions (where CCM refers to Cyclomatic Complexity).

To add a contributor to a summary metric:

1. Click the Add Contributor button to open the associated edit screen.

Figure 5.4.2. Example: Edit screen for a contributor

2. Select a metric and filter.

3. Provide a label and multiplier for the contributor.

Using a multiplier of zero (0) will disable a contributor.

Removing Summary Metrics

Use caution when deleting a summary metric. Deleted Summary metrics disappear without
notification from any reports that use them. Obviously, this change can affect the meaning of a
report or, in the case that the report used only one metric, lead to a completely empty report.

333

Chapter 5.5. Coverity Policy Manager Roles and Permissions

Coverity Connect controls user (and user group) access to Coverity Policy Manager components through
role-based permissions described in Global Permissions. The username of all Coverity Policy Manager
administrators and users must exist in a Coverity Connect user database. If not, you need to contact your
Coverity Connect administrator.

By default, the Policy Manager User role allows you to log in and view Policy Manager The latter
permission allows you to create and edit Coverity Policy Manager reports and heatmaps that you can
share with other users. The default Hierarchy Administrator role allows you to log in, view Coverity Policy
Manager, perform administrator-level configurations (which include creating Hierarchies and Summary
Metrics), and use the Web services.

For details about additional role assignment options, see Step 5 in Section 3.2.1.2, “Editing a local or
LDAP user”. For detailed information about roles, see Section 3.2.3, “Roles and role based access
control”.

334

Part 6. Coverity Report Generators

Table of Contents
6.1. Configuring Report Generators .. 336

6.1.1. Configuration overview .. 336
6.1.2. General considerations ... 336
6.1.3. Unified configuration file .. 349

Chapter 6.1. Configuring Report Generators

Table of Contents
6.1.1. Configuration overview .. 336
6.1.2. General considerations .. 336
6.1.3. Unified configuration file ... 349

6.1.1. Configuration overview

The Report Generators must be configured by using a unified .yaml configuration file, which indicates
how the reports should be generated. The unified configuration file must contain the standard schema
elements, as well as any additional schema elements that are required for a particular report. This section
provides information about the different schema elements that should be used when configuring a report.

6.1.2. General considerations

The configuration file uses standard .yaml syntax as described in https://docs.ansible.com/ansible/latest/
reference_appendices/YAMLSyntax.html. In addition, please observe the following:

• All configuration settings for various reports can be included in one .yaml file per project.

• Each Coverity project requires its own .yaml configuration file with a unique filename. For example:

coverityprojectconfig1.yaml, coverityprojectconfig2.yaml,
coverityprojectconfig3.yaml

• Configuration settings (or customized schema elements) that stand alone in the .yaml configuration
file can be expressed outside of a nested block.

• Some elements that are required for a particular report are not present in the schemas because they
must be provided via command line. For example, the password must be entered via command line.

• Some fields are file pathnames. A relative pathname is interpreted relative to the directory containing
the configuration file. If the configuration did not come from a file, the pathname would be relative to the
Report Generators' working directory.

Pathnames may use a slash or backslash as a separator, whichever is more appropriate for their
platform.

6.1.2.1. Standard schema elements

The standard schema is the same for all reports and is required for all reports. It looks like this:

version:
 schema-version: 5

336

https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html
https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html

Configuring Report Generators

connection:
 url: https://coverity.example.com:8443/
 username: admin
 ssl-ca-certs:
project:
title-page:
 company-name:
 project-name:
 project-version: 0.9
 logo:
 organizational-unit-name: Widgets
 organizational-unit-term: Division
 prepared-for:
 project-contact-email:
 prepared-by:
locale:
issue-cutoff-count: 200
snapshot-id:
snapshot-date:
issue-kind:
components:

The following sections describe these fields in alphabetical order.

6.1.2.1.1. Connection schema elements

The connection schema should include the following keys:

Key Class Type Description Default Required?

ssl-ca-certs String Lists the pathname
to a file containing
additional CA
certificates that are
used in establishing
a secure HTTPS
connection through
an SSL handshake.
Pathnames must
be entered in PEM
format.

N/A No

url String Lists the URL of the
Coverity Connect
instance. This URL
must not include
user name and
password.

N/A Yes

username String Lists the user name
that is used to
connect to Coverity.

N/A Yes

337

Configuring Report Generators

6.1.2.1.2. Issue cutoff schema element

The issue cutoff schema should include the following key:

Key Class Type Description Default Required?

issue-cutoff-
count

Integer Sets the limit for the
maximum number
of issues displayed
in a report. This
setting helps to
control the size
of the generated
report.

It is used for the
CVSS, Security,
PCIDSS, Mobile
OWASP, and
OWASP 2017
reports.

For the Security
Report, the
maximum value is
10,000.

200 No

6.1.2.1.3. Locale schema element

The locale schema should include the following key:

Key Class Type Description Default Required?

locale String Sets the language
or locale in which
the report will be
generated.

The following
locale settings are
available:

• en_US (English)

• ja_JP
(Japanese)

• ko_KR (Korean)

en_US No

338

Configuring Report Generators

Key Class Type Description Default Required?
• zh_CN

(Simplified
Chinese)

6.1.2.1.4. Project schema elements

The project schema must include the following key:

Key Class Type Description Default Required?

project String Lists the name
of the Coverity
Connect project.

N/A Yes

Note

The project name you specify with the --project command option on the command line will
override this key setting.

6.1.2.1.5. Snapshot schema elements

Elements for snapshot-id and snapshot-date are described below. If both keys are defined, snapshot-
id will get the highest priority.

Key Class Type Description Default Required?

snapshot-id Long Retrieves the
defects of a specific
snapshot id,
instead of using the
latest snapshot id
of all the streams
associated with the
project.

N/A No

snapshot-date String using the
format MM/DD/YYY

Retrieves the most
recent snapshot
of each stream in
the project whose
date is less than or
equal to the given
date.

N/A No

6.1.2.1.6. Report-filtering elements

Key Class Type Description Default Required?

components String An optional
comma-separated
list of Coverity
Connect

The report includes
data for all
components.

No

339

Configuring Report Generators

Key Class Type Description Default Required?
component names,
which include
component map
names. If the
components are
listed here, the
report will include
data only for the
listed components;
for example:
Default.lib or
Default.src.

issue-kind String An optional
comma-separated
list of Coverity
Connect issue
kinds. If issue kinds
are listed here, the
report will include
only issues of the
listed kinds.

The possible values
for issue-kind
are as follows:

• Quality

• Security

The following line
is an example of
using this option:

issue-kind:
 Quality

The report includes
both quality and
security issues.

No

6.1.2.1.7. Title page schema elements

The schema for the title page should include the following key:

Key Class Type Description Default Required?

company-name String Lists the customer's
company name.

N/A Yes

logo String Lists the file
pathname to
display the logo of

N/A No

340

Configuring Report Generators

Key Class Type Description Default Required?
the company. Valid
image types are
.bmp, .gif, .jpg,
and .png. The
maximum image
size allowed is 210
pixels wide by 70
pixels high.

(If a backslash
character is used in
the file pathname,
then it must be a
double backslash.
For example:
C:\\logo\
\ourlogo.jpg.
You can also use
a single forward
slash, like this:
/var/logo/
ourlogo.png.)

organizational-
unit-name

String Lists the name
of your division,
group, team, or
organizational unit.

N/A Yes

organizational-
unit-term

String Lists the unit
term used for the
organization.

N/A Yes

prepared-by String Lists the name
of the entity or
individual that
prepared the report.

N/A Yes

prepared-for String Lists the name
of the entity or
individual for which
the report was
prepared.

N/A Yes

project-
contact-email

String Lists the email
address of the
project contact; the
email address of
the recipient of the
report.

N/A Yes

341

Configuring Report Generators

Key Class Type Description Default Required?
This element
is used by the
following reports:
CIR, CVSS,
PCIDSS, Mobile
OWASP, and
OWASP 2017.

project-name String Lists the project
name for the report.

N/A Yes

project-
version

String Lists the project
version number.

N/A Yes

6.1.2.1.8. Schema version element

The schema version element must include the following key:

Key Class Type Description Default Required?

schema-version Integer Sets the version
number for the
schema. Changes
that alter the
semantics of
the parts of the
schema that are
independent of
the report in a
non-additive way
must trigger an
increment of this
number.

N/A Yes

6.1.2.2. Schema elements for specific reports

In addition to the standard schema elements that are required for all of the report generators, some
reports also require report-specific configuration settings. This section describes the different report-
specific schema elements.

6.1.2.2.1. CERT Report

The CERT Report has an additional key for specifying and defining target levels:

Key Class Type Description Default Required?

target-level String Specifies the
compliance
standards for

F No

342

Configuring Report Generators

Key Class Type Description Default Required?
calculating the
report. The
following values are
available:

• F: Fully
Compliant

• L2: L2 Compliant

• L1: L1 Compliant

For more information about the CERT Report configuration, see Section 12.2.3, “Configuring the Coverity
CERT Report”.

6.1.2.2.2. Coverity Integrity Report

The CIR Report has additional keys for report specification:

cir-report:
 project-description:
 project-details:
 target-integrity-level:
 high-severity-name:
 unspecified-severity-name:
 trial:
 loc-multiplier:

Key Class Type Description Default Required?

high-severity-
name

String Lists the name of
the highest severity
value.

Major No

loc-multiplier String Sets the LOC
multiplier for the
number of lines
of code that have
been inspected.

1 No

project-
description

String States the project
description.

CIM description No

project-
details

String States the details of
the project.

N/A No

target-
integrity-
level

Integer Defines the target's
integrity levels.

These are the
standard target
integrity levels:

1 No

343

Configuring Report Generators

Key Class Type Description Default Required?
• 1: < 1 defect per

thousand lines of
code

• 2: < .1 defects
per thousand
lines of code

• 3: < .01 defects
per thousand
lines of code,
and other
requirements

trial Boolean Activates the trial
flag. The trial flag
should be set
to True if page
three of the report
should not be
printed. (Page three
contains severity
data which is not
applicable to a
trial.)

false No

unspecified-
severity-name

String Lists the names
of any unspecified
severity values.

Unspecified No

For more information about the Integrity Report configuration, see Chapter 7.3, Updating the Coverity
Integrity Report configuration file.

6.1.2.2.3. Security Report

The Security Report has additional keys for defining assurance levels and severity mappings:

security-report:
 assurance-level-score: 90
 assurance-level: AL1
 severity-mapping: Carrier Grade
 severity-mapping-description:
 custom-severity-mapping:
 modify-data: very high
 read-data: very high
 dos-unreliable-execution: very high
 dos-resource-consumption: very high
 execute-unauthorized-code: very high
 gain-privileges: very high
 bypass-protection-mechanism: very high

344

Configuring Report Generators

 hide-activities: very high

Assurance level

Key Class Type Description Default Required?

assurance-
level

String Indicates the level
and its minimum
acceptable score
for the report to
be considered
passing.

The following
values are
available: AL1,
AL2, AL3, and AL4.

AL1 Yes

assurance-
level-score

Integer Indicates the
assurance level
score.

There are four
assurance levels,
representing
security scores that
are greater than or
equal to 60, 70, 80,
and 90.

When choosing the
proper assurance
level, consider
its potential for
damage to life,
property, or
reputation. For
example, an
application with
high damage
potential should
have a high
assurance level.

90 No

Custom severity mapping

Field Class Type Description Default Required?

bypass-
protection-
mechanism

String Indicates if
the attacker
tries to bypass

Very high No

345

Configuring Report Generators

Field Class Type Description Default Required?
application or
system protection
mechanisms. The
following values
are available: very
high, high, medium,
low, very low, and
informational.

custom-
severity-
mapping

String If the severity
mapping is set
to Custom,
then update
the custom-
severity-
mapping with
specific settings
and values.

The following
values are
available: very
high, high,
medium, low,
very low, and
informational.

Very high No

dos-resource-
consumption

String Indicates when
a weakness
creates a denial
of service due to
excessive resource
consumption by the
application.

The following
values are
available: very
high, high,
medium, low,
very low, and
informational.

Very high No

dos-
unreliable-
execution

String Indicates when the
weakness creates
a denial of service
due to unreliable

Very high No

346

Configuring Report Generators

Field Class Type Description Default Required?
execution of the
application.

The following
values are
available: very
high, high,
medium, low,
very low, and
informational.

execute-
unauthorized-
code

String Indicates when
an attacker tries
to execute code
that they do not
have authority to
execute.

The following
values are
available: very
high, high,
medium, low,
very low, and
informational.

Very high No

gain-
privileges

String Indicates when
an attacker tries
to gain privileges
that should not be
available to them.

The following
values are
available: very
high, high,
medium, low,
very low, and
informational.

Very high No

hide-
activities

String Indicates that an
attacker might try to
hide activities from
visibility in an audit.

The following
values are
available: very
high, high,

Very high No

347

Configuring Report Generators

Field Class Type Description Default Required?
medium, low,
very low, and
informational.

modify-data String Indicates when an
attacker tries to
modify data in the
application.

The following
values are
available: very
high, high,
medium, low,
very low, and
informational.

Very high No

read-data String Prevents the
attacker from
reading data that
is private to the
application.

The following
values are
available: very
high, high,
medium, low,
very low, and
informational.

Very high No

severity-
mapping-
description

String Indicates the
description for the
custom severity
mapping.

N/A No

Severity mapping

This standalone mapping specifies the name of the severity map (formerly known as a vignette), which is
used to calculate an issue's severity values.

Key Class Type Description Default Required?

severity-
mapping

String Indicates the
name of the set of
severity mappings
used to determine
the score of each
issue. The first

N/A Yes

348

Configuring Report Generators

Key Class Type Description Default Required?
three mappings are
built-in.

For more information about Security Report configuration, see Section 8.2.3, “Configuring the Security
Report”.

6.1.2.2.4. Synopsys Software Integrity Report

The Synopsys Software Integrity Report has additional keys for specifying and defining analysis date and
legal text:

ssir-report:
 analysis-date: 01/15/2019
 legal-text:

Key Class Type Description Default Required?

analysis-date String Specifies when the
analysis has been
completed. Dates
should be entered
in MM/DD/YYYY
format.

N/A Yes

legal-text String Includes legal text.
Multiline text should
be placed inside
double quotes. (For
example: "This
is Multiline legal
text.")

N/A No

For more information about the Synopsys Software Integrity Report configuration, see Section 10.3.2,
“Configuring the Synopsys Software Integrity Report”.

6.1.3. Unified configuration file

You can use the same .yaml configuration file to configure all of the reports for the same project. You
can have multiple configuration files (saved under different .yaml file names) for different projects.

Here is what the unified configuration file looks like with all sections included.

################## Sections that apply to all reports #############
version:
 schema-version: 4

connection:
 url: https://coverity.example.com:8443/
 username: admin
 ssl-ca-certs:

349

Configuring Report Generators

project:
title-page:
 company-name:
 project-name:
 project-version: 0.9
 logo:
 organizational-unit-name: Widgets
 organizational-unit-term: Division
 prepared-for:
 project-contact-email:
 prepared-by:

locale:
issue-cutoff-count: 200
snapshot-id:
snapshot-date:
issue-kind:
components:

################## CERT report #############
cert-report:
 target-level: F

################## Synopsys Software Integrity Report #############
ssir-report:
 analysis-date: 01/15/2019
 legal-text:

################## Coverity Integrity Report #############
cir-report:
 project-description:
 project-details:
 target-integrity-level:
 high-severity-name:
 unspecified-severity-name:
 trial:
 loc-multiplier:

################## Coverity Security Report #############
security-report:
 assurance-level-score: 90
 assurance-level: AL1
 severity-mapping: Carrier Grade
 severity-mapping-description:
 custom-severity-mapping:
 modify-data: very high
 read-data: very high
 dos-unreliable-execution: very high
 dos-resource-consumption: very high
 execute-unauthorized-code: very high
 gain-privileges: very high
 bypass-protection-mechanism: very high
 hide-activities: very high

350

Part 7. Coverity Integrity Report Generation
Leaders of software development teams use Coverity Integrity Report PDF-based charts to see the
current impact of Coverity Connect issues. Administrators set up and run Coverity Integrity Report to
produce these reports.

For extensive web-based charts that you can print to file, see Part 4, “Coverity Policy Manager Usage ”.

Chapter 7.1. Overview

Table of Contents
7.1.1. Defect ratings ... 352
7.1.2. Recommended analysis configuration ... 353
7.1.3. Requirements ... 353

Software Integrity Report is included with Coverity Analysis and Coverity Connect. The Software Integrity
Report tool generates a high-level assessment of the code in a C/C++ application and its components.
The report:

• Rates the integrity of the code and its components in relation to industry standards.

• Identifies the number of occurrences of important classes of high-risk and medium-risk defects in the
code.

• Provides an overview of defect severity ratings and triage states that developers have assigned to the
defects in Coverity Connect. The report identifies the number of:

• High-severity, unspecified, and other defects in the code and code components.

• Outstanding, dismissed, and fixed defects in the code.

• Can be localized.

Important

In order to invoke the Coverity Integrity Report, you must be assigned a role that contains, at
minimum, the following permissions:

• Access web services

• View project

• View defects

For more information about RBAC roles and permissions, see the Coverity Platform 2020.12 User
and Administrator Guide.

7.1.1. Defect ratings

To rate your code and code components in relation to the software industry, the report relies on defect
density, which is equal to the number of high-risk and medium-risk defects found in 1000 lines of code
(LOC). For example, 100 defects in 100,000 LOC yields a defect density of 1 (because 100/100000 = 1
defect per 1000 LOC). The defect densities identified in the report exclude low-risk defects, as well as
defects that developers dismissed as intentional in Coverity Connect. Except for the Level 3 rating, the
report also excludes defects that developers report as false positives.

352

Overview

Table 7.1.1. Software Integrity Report levels

Level Description

Level Not
Achieved

Indicates that the target level rating criteria are not met because the software has too many
unresolved static analysis defects. To achieve the target integrity level rating, more defects
should be reviewed and fixed.

Level 1 The defect density is close to the average for the software industry average: < 1 defect per
1000 lines of code.

Level 2 The defect density is in the 90th percentile for the software industry: < 0.1 defect per 1000
LOC.

Level 3 The defect density is in the 99th percentile for the software industry (< 0.01 defect per 1000
LOC). Developers have marked fewer than 20% of the defects as false positives and set no
defects to major severity in Coverity Connect. A Coverity audit of the false positives can alter
the 20% limit.

The report contains additional information about these levels. You can view this information in a sample
report after extracting the Software Integrity Report file in Chapter 7.2, Generating a Coverity Integrity
Report.

Note

The results of checkers that developers create by using the Coverity Software Development Kit
or the earlier Coverity Extend are excluded from the defect density because they do not have risk
categories.

7.1.2. Recommended analysis configuration

For optimal report results, Coverity recommends that you use the following options to the cov-analyze
command when you use Coverity Analysis for C/C++ to run an analysis on your code:

cov-analyze --dir <intermediate_directory> --security --concurrency
 [--enable-constraint-fpp] [--enable-fnptr]

For details about these options, see the cov-analyze command documentation in the Coverity 2020.12
Command Reference. Note that the options that are surrounded by square brackets are optional.

7.1.3. Requirements

Software Integrity Report version 2020.12 is compatible with Coverity Connect version 2020.12. It is
incompatible with prior versions of Coverity Connect. Similarly, an older version of Software Integrity
Report is incompatible with Coverity Connect version 2020.12.

353

Chapter 7.2. Generating a Coverity Integrity Report

In this chapter, you install the Coverity Reports, configure the config.yaml file, and then run the bin/
cov-generate-integrity-report executable.

The following procedure assumes that someone has already used Coverity Analysis to analyze your code
base (see Section 7.1.2, “Recommended analysis configuration”) and commit the resulting defect data to
Coverity Connect. For guidance with this process, see Coverity Analysis 2020.12 User and Administrator
Guide.

To create a Coverity Integrity Report:

1. You can download the Coverity Reports installer from the Downloads page in Coverity Connect.

Alternatively, obtain the installer for Coverity Reports from the Coverity Connect installation directory
(for example, cov-reports-linux64-2020.12.sh or cov-reports-win64-2020.12.exe).
Run the installer on a system that can connect to the Coverity Connect server.

The installer files are located in the Coverity Platform installation directory: <install_dir>/
server/base/webapps/downloads directory.

Note

After running the installer, you can find a sample Integrity Report in <reports
installation dir>/docs/.

2. Open the directory where the Coverity Reports were installed.

This directory contains a configuration file and a command that you need to use in subsequent steps:

• Configuration file: config.yaml

• Command: bin/cov-generate-integrity-report

3. Configure config.yaml.

The config.yaml file contains pre-populated and customizable parameters that the bin/cov-
generate-integrity-report command uses to generate a defect report.

4. Make sure that Coverity Connect is running.

To start Coverity Connect, you can use the following command, which is located in the Coverity
Platform <install_dir>/bin:

> cov-start-im

5. Run the bin/cov-generate-integrity-report command.

For example, on Linux:

> bin/cov-generate-integrity-report

354

Generating a Coverity Integrity Report

For example, on Windows:

> bin\cov-generate-integrity-report

Note

If you need to create a report more than once, close all open PDF-based reports before
regenerating the report.

For summary information about the cov-generate-integrity-report command-line
options, use the --help option.

355

Chapter 7.3. Updating the Coverity Integrity Report
configuration file

You can specify configuration information using a .yaml file. A sample config.yaml file is shipped with
the Report Generators and installed in the config directory.

Here is an example .yaml configuration file:

version:
 schema-version: 5
connection:
 url: https://coverity.example.com:8443/
 username: admin
 ssl-ca-certs:
project:
title-page:
 company-name:
 project-name:
 project-version: 0.9
 logo:
 organizational-unit-name: Widgets
 organizational-unit-term: Division
 prepared-for:
 project-contact-email:
 prepared-by:
locale:
issue-cutoff-count: 200
snapshot-id:
snapshot-date:
issue-kind:
components:

################## Coverity Integrity Report #############
cir-report:
 project-description:
 project-details:
 target-integrity-level:
 high-severity-name:
 unspecified-severity-name:
 trial:
 loc-multiplier:
 include-low-impact:

Note

The Coverity Integrity Report requires the additional report configuration settings listed in the
example above. This ensures that the Coverity Integrity Report results are properly included in the
output.

The following table describes each key in the file:

356

Updating the Coverity Integrity Report configuration file

Key Description

cir-report Declares the configuration settings for the Coverity Integrity Report.

company-name Name of your company. This is a mandatory field.

components An optional comma-separated list of Coverity Connect component names, which include component
map names. If the components are listed here, the report will include data only for the listed
components; for example: Default.lib or Default.src.

connection The URL of the Coverity Connect instance.

high-severity-name Name of the highest severity value. The default value is Major.

include-low-impact Whether to include Low impact for calculating the defect density; this would be in addition to the High
and Medium impact items shown in the report. Specify true to include Low impact, or false to
exclude.

Default is false.

issue-cutoff-count Some reports display information about individual issues. These reports bound the number of issues
displayed in order to control the size of the report. This bound is called the issue cutoff count. It is used
for CVSS, Security, PCIDSS, MobileOwasp, and Owasp2017 reports. Default value is 200. Maximum is
10000 for Security report.

issue-kind An optional comma-separated list of Coverity Connect issue kinds. If issue kinds are listed here, the
report will include only issues of the listed kinds.

The possible values for issue-kind are as follows:

• Quality

• Security

The following line is an example of using this option:

issue-kind: Quality

locale Locale of the report. Valid values are the following: en_US, ja_JP, ko_KR, and zh_CN. Default value is
en_US.

loc-multiplier LOC multiplier for the number of lines of code that have been inspected. Default value is 1.

logo Optional path to a logo file for your company. Valid image types are bmp, gif, jpg, and png. The
maximum allowed image size is 210 pixels wide by 70 pixels high. Note that backslash characters in a
path must be doubled.

on-cert-trust Allows users to trust self-signed certificates sent by Coverity Connect. There are two possible values:
trust or distrust. Use trust to accept, use, and store a self-signed certificate for reuse. Use
distrust to reject connections from servers using self-signed certificates. The default value is trust.

organizational-unit-name Name of your division, group, team or other organizational unit. This is a mandatory field.

organizational-unit-term Organizational unit term (e.g., division, group, team). This is a mandatory field.

prepared-for Name of the entity for which the report was prepared. This is a mandatory field.

prepared-by Name of the entity that prepared the report. This is a mandatory field.

357

Updating the Coverity Integrity Report configuration file

Key Description

project Name of the Coverity Connect project.

project-contact-email Project contact email address. It is used for the following reports: CIR, CVSS, PCIDSS, MobileOwasp,
and OWASP2017. This is a mandatory field.

project-description A short description of the project. The project description defaults to its description in Coverity Connect,
if there is one available.

project-details This field lists the details of the project.

project-name Name of the software development project. May be distinct from the Coverity Connect project name.
This is an optional field.

project-version Lists the project version number. This is a mandatory field.

snapshot-date Retrieves the most recent snapshot of each stream in the project whose date is less than or equal to
the given date. Format is "DD/MM/YYYY".

snapshot-id Retrieves the defects of a specific snapshot id, instead of using the latest snapshot id of all the streams
associated with the project.

target-integrity-level Sets the target integrity level. The default value is 1.

The following target integrity levels are available:

• 1: < 1 defect per thousand lines of code

• 2: < .1 defects per thousand lines of code

• 3: < .01 defects per thousand lines of code, and other requirements

title-page Describes the fields in the title page of the report.

trial This setting enables the trial flag. Uses the value true if page three of the report is not to be
generated. (Page 3 contains severity data which is not relevant for projects that do not use severity.)
The default value is false.

username Coverity Connect username. Password or other authentication key

unspecified-severity-name Name of the unspecified severity value. The default value is Unspecified.

version The version of the .yaml file's schema.

For more information about schema configurations, see Chapter 6.1, Configuring Report Generators

358

Part 8. Coverity Security Report

Table of Contents
8.1. Security Report Overview .. 360

8.1.1. Basic Workflow ... 360
8.1.2. Interpreting the Security Report ... 361

8.2. Working with the Security Report Generator ... 365
8.2.1. Installing the Report Generator ... 365
8.2.2. Connecting to Coverity Connect .. 366
8.2.3. Configuring the Security Report ... 367
8.2.4. Generating a Report ... 372
8.2.5. Customizing Security reports ... 373

Chapter 8.1. Security Report Overview

Table of Contents
8.1.1. Basic Workflow ... 360
8.1.2. Interpreting the Security Report .. 361

The Security Report generator uses analysis results for a Coverity Connect project to evaluate the
analyzed codebase. Based on this evaluation, it creates a Security Report. The codebase is evaluated
against a policy, a set of rules or standards for determining pass or fail. The policy has 4 elements, and
each element must pass for the policy to pass. The result for each element is presented in the Scorecard
in the Executive Summary of the report. The elements include:

• Security score represents the severity levels of the issues found as a numerical value from 0 to 100,
with issues of the highest reported severity level having the greatest impact on lowering the score.

• OWASP Top 10 Count specifies the number of security issues found that are included in OWASP's
top ten count.The Top 10 from the year 2017 will be used.

The OWASP (Open Web Application Security Project) Foundation publishes a report of the most
critical web application security flaws, in a ranked order based on input from a worldwide group of
security experts.

• CWE/SANS Top 25 Count specifies the number of security issues found that are included in the CWE/
SANS Top 25 list.

CWE (Common Weakness Enumeration) is a software community project responsible for creating a
catalog of software weaknesses and vulnerabilities. The CWE/SANS Top 25 is a list of weaknesses,
taken from the CWE, that are deemed to be the most widespread and critical errors that can lead to
serious software vulnerabilities.

• Analysis date specifies the date when the analysis produced the data upon which the report is based.

The severity of the issues found during analysis is determined by a severity mapping that maps security
flaws to severity levels. The report generator can use one of three default severity mappings, or it can use
a custom severity mapping that you define when you configure the report generator.

In addition to providing a summary of findings, the report also includes sections that list the remediation
actions required and increasingly detailed views of the issues found. The report also provides a detailed
breakdown and cross references between technical findings and analysis results.

This chapter describes the workflow needed for generating a Security Report and explains how you
interpret report findings.

8.1.1. Basic Workflow

The basic workflow for working with security reports is as follows:

360

Security Report Overview

1. Install the Security Report generator using the Coverity Reports Installer. See Installing the Security
Report Generator for more information.

2. Set up a connection to Coverity Connect.

You need to do this only the first time you run the report generator. See Connecting to Coverity
Connect for more information.

3. Configure the report. This allows you to select the severity mapping you want to use and to specify
other customization information.

See Configuring a Security report for more information.

4. Generate the report.

8.1.2. Interpreting the Security Report

The report is divided into six basic sections that describe the issues found in increasing amount of detail:

• Executive Summary provides tabular and graphic summary information for the issues found.

• Action Items explains how the code base was evaluated and provides a summary of recommended
remediation actions.

• Security Details shows the number of issues associated with each Technical Impact category.

• Analysis Details shows the number of issues associated with each OWASP Top 10 category and
each CWE/SANS Top 25 category.

• Detailed Issues Ranked by Severity lists all issues, the name of the source file for that issue and the
line number where the issue can be found. It also describes the Technical Impact associated with each
group of issues and recommends remediation actions.

• Methodology describes basic elements associated with report output.

To interpret report results, you must understand the basic categories used to classify issues and
how report output might vary depending on the severity mapping used when you configure the report
generator. The following sections describe this basic information.

8.1.2.1. Severity mapping: Mapping technical defects to severity levels

A severity mapping is a mapping that determines the severity level of a given technical impact associated
with a software issue. Technical impacts categorize the negative effects that can occur if an attacker
exploits a particular weakness in the target software. Not all weaknesses are exploitable, and not all
exploitable weaknesses are easy to exploit.

The Security Report is preconfigured with three built-in severity mappings (Carrier grade, Web
application, and Desktop application): the Carrier grade severity mapping is the most stringent, and
the Desktop application is the least stringent. When you configure the report generator, you can

361

Security Report Overview

also specify that it use a custom severity mapping in which you can redefine severity levels for each
Technical Impact category.

Technical Impacts are divided into eight categories (as defined by CWE):

Impact type Meaning

Modify data A weakness that could allow an attacker to modify memory or files on the
host computer.

Read data A weakness that could allow an attacker to read data that is not intended to
be accessible to a user of the application.

Denial of service,
unreliable execution

A weakness that can lead to crashes, freezes, and other malfunctions that
can make the application unavailable to users.

Denial of service, resource
consumption

A weakness that causes the application to use excessive CPU, memory, or
storage resources, which degrades application performance.

Execute unauthorized code A weakness that might allow an attacker to cause the application to execute
code within or outside of the application in unintended ways.

Gain privileges A weakness that might allow an attacker to perform privileged operations
that are not intended to be available to a user of the application.

Bypass protection
mechanism

A weakness that might allow an attacker to defeat or skirt protections that
keep application users from reading, writing, or executing unauthorized
resources.

Hide activities A weakness that might allow an attacker to avoid detection.

The severity mapping associates each Technical Impact with one of the following severity levels:

• Informational (not included when calculating the Security Score)

• Very Low

• Low

• Medium

• High

• Very High

Issues that are found by Coverity Analysis might be associated with a CWE (Common Weakness
Enumeration) ID number. CWE ID numbers refer to CWE records, each of which might have one or more
Technical Impacts. If an issue has an Issue Kind of Quality or Security and its CWE record contains
one or more of the eight types of Technical Impacts, that issue will be included in the Security Report.

For an issue where its CWE ID maps to more than one of the eight technical impact values, a single
technical impact value will be assigned to the issue, where the highest relevant severity level will
determine which technical impact value gets assigned, with ties for the highest severity level being
broken arbitrarily.

362

Security Report Overview

Some issues found might not have a CWE ID; in that case, that issue cannot be associated with
a Technical Impact value and cannot be included in the Security Score. In this case, the issue will
be included in the Issues Without CWE Numbers count of a Security Report's "Additional Quality
Measures" section. That section might also include issues that do have CWE IDs if the given CWE ID
cannot be mapped to at least one of the eight Technical Impact categories.

Note

Setting the same severity level for different tehnical impacts might result in an issue being
associated with different technical impacts from one generation of the report to the next. This
should not affect the overall security score.

8.1.2.1.1. Creating a custom severity mapping

The first time you use the Security Report Generator, you should use one of the standard severity
mappings to understand how the report is calculated. Thereafter, you might want to create a custom
severity mapping. Consider the context in which your application is used, and select the severity of each
technical impact with regard to the likelihood of its having a damaging effect. Because it is difficult to
estimate the likelihood of a particular weakness being activated, likelihood should not be considered
when choosing the severity level.

You can create a Security Report Plug-in that allows you to reuse customised severity mapping. For more
information, see "Coverity Reports Customization Plugins."

8.1.2.1.2. Security scores, severity mappings, and assurance levels

The Security Report application analyzes the issues returned by Coverity Connect and calculates a
Security Score, based on the severity mapping selected when you configure the report. The Security
Report Generator compares this value to the required Assurance Level and determines if the Security
Score passes or fails. For more information, see the next section.

When you configure the report generator, you select the Assurance Level. There are four Assurance
Levels, representing Security Scores of greater than or equal to 60, 70, 80, and 90. When choosing the
Assurance Level, consider the potential for damage to life, property, or reputation. An application with
high damage potential should have a high Assurance Level.

8.1.2.2. Understanding scorecards

The report opens with an Executive Summary that features a Scorecard showing the target for each
policy category, the actual result, and whether the codebase has passed for that category. Policy
categories are described next; for detailed information on how each value is calculated, see the
Methodology section of a generated report.

Security Score
This is a numerical value (0 to 100) calculated from the severity mapping specified when the report is
configured. The score is compared to the configured Assurance Level to determine pass or fail.

Severity levels are used to determine the security score: possible severity levels are Very High,
High, Medium, Low, and Very Low. The highest severity level that has at least one issue
associated with it will greatly influence the security score. Additional issues with a relatively higher

363

Security Report Overview

severity level will have a greater impact on reducing the security score than will additional issues with
a relatively lower severity level. As such, it's important to address issues with the highest severity
level.

While the full range of a possible security score is from 0 to 100, a project would need to contain
more than 30 000 Very High severity level issues to receive a score lower than 30. Meanwhile, a
project with a highest severity level of Very Low would need to contain more than 30 000 Very
Low severity level issues to receive a score lower than 70.

To give some further context, consider the standard Target Assurance Levels plus their
corresponding Target Security Score values of AL1 (90), AL2 (80), AL3 (70), and AL4 (60) relative to
the highest severity level that has at least one issue associated with it.

• If Very High severity level issues exist, it will be nearly impossible to achieve AL3 (70), and it will
be quite a challenge to achieve AL4 (60).

• If all of the Very High severity level issues have been addressed, but at least one High severity
level issue exists, it will be nearly impossible to achieve AL2 (80), and it will be a reasonable
challenge to achieve AL3 (70), with AL4 (60) being within easier reach.

If all of the Very High and High severity level issues have been addressed, but at least one
Medium severity level issue exists, it will be nearly impossible to achieve AL1 (90) and quite
challenging to achieve AL2 (80), while AL3 (70) is more likely to be within reach, and AL4 (60)
should be a relatively easy target to reach.

OWASP Top 10
This is a list of prioritized security weaknesses relating to web application security. If the policy
prohibits these weaknesses, the target would be zero.

CWE/SANS Top 25
This is a list of software weaknesses that are thought to be widespread and critical. If the policy
prohibits these weaknesses, the target would be zero.

Analysis Date
The codebase must have been analyzed within the last 30 days for this item to pass.

364

Chapter 8.2. Working with the Security Report Generator

Table of Contents
8.2.1. Installing the Report Generator .. 365
8.2.2. Connecting to Coverity Connect .. 366
8.2.3. Configuring the Security Report .. 367
8.2.4. Generating a Report ... 372
8.2.5. Customizing Security reports .. 373

The following sections explain how you install the Security Report generator and how you configure it.

8.2.1. Installing the Report Generator

The Security Report Generator is installed separately from Coverity Connect. You can obtain the Coverity
Reports installer from the Downloads page in Coverity Connect. The Coverity Reports installer installs
Security Report.

1. In Help → Downloads, select the Coverity Reports installer that is appropriate for your system.

2. Save the installer application to a folder in your system.

3. You have the option to use the install wizard or to install from the command line.

• To use the wizard, launch the installer, and follow the instructions in the wizard.

• To use the command line, proceed to the next step.

4. To run the installer from the command line, execute one of the following commands, using either
quiet mode (-q) or console mode (-c):

Operating System Command

Windows start /wait "" cov-reports-win64-<version_number>.exe -c

Windows - quiet
mode

cov-reports-win64-<version_number>.exe -q -dir C:/target-
dir

Linux ./cov-reports-linux64-<version_number>.sh -c

Linux - quiet mode ./cov-reports-linux64-<version_number>.sh -q -dir ~/
target-dir

If you do not specify a target-dir for the installation, a default installation directory is used. The
directory name is shown at runtime.

You can use the following parameters in the command line:

Parameter Action

-c Run in console mode. User interaction is performed in the terminal window
where the installer (or uninstaller) is invoked.

365

Working with the Security Report Generator

Parameter Action

-console On Windows, use with -q to open a console window to display output in
quiet mode.

-dir [directory] Set the installation directory in quiet mode.

-Dname=value Set system properties.

-h Display help.

-manual On Windows, in GUI mode only, manually select a Java Runtime
Environment.

-overwrite Overwrite all files in quiet mode.

-q Run in unattended (quiet) mode. There is no user interaction, and installation
is performed automatically using default values.

-splash [title] Display a progress bar in quiet mode.

-varfile Use a response file.

8.2.2. Connecting to Coverity Connect

In <installation-directory>/bin, locate the application executable, cov-security-report.
The first time you run the application, you must set up the connection to your instance of Coverity
Connect, which contains the issue information to include in the report.

1. Double-click on the application icon to launch it. It starts in New Configuration mode.

If you have a saved configuration file, double-click the configuration file to launch the application with
that configuration.

2. On the Connection tab, enter the Host Name and Port Number. If your Coverity Connect
administrator has enabled SSL, enter the HTTPS port number associated with your Coverity Connect
host. The default HTTPS port is 8443.

366

Working with the Security Report Generator

3. Check the Coverity Connect URL to make sure it is correct.

4. If SSL is used with the connection, select Secured using SSL.

Note

If an additional CA certificate is needed, select Use Extra CA Certificate, and click Browse to
upload the file.

5. Enter the Username and Password for Coverity Connect.

6. Click Check Connection to test the connection to Coverity Connect.

8.2.3. Configuring the Security Report

You can configure a security report using the command line or using the GUI.

• If you use the GUI, you can save the resulting file as a .yaml file.

• Otherwise, you can modify the .yaml file described in the next section and use it from the command
line or within a script.

The cov-generate-security-report command supports both types of config files.

8.2.3.1. Command-line configuration

You can specify configuration information using a .yaml file. A sample config.yaml file is shipped with
the report generator and installed in the config directory.

367

Working with the Security Report Generator

Here is an example .yaml configuration file:

################## Sections that apply to all reports #############
version:
 schema-version: 5

connection:
 url: https://coverity.example.com:8443/
 username: admin
 ssl-ca-certs:

project:
title-page:
 company-name:
 project-name:
 project-version: 0.9
 logo:
 organizational-unit-name: Widgets
 organizational-unit-term: Division
 prepared-for:
 project-contact-email:
 prepared-by:

locale:
issue-cutoff-count: 200
snapshot-id:
snapshot-date:
issue-kind:
components:

################## Coverity Security Report #############
security-report:
 assurance-level-score: 90
 assurance-level: AL1
 severity-mapping: Carrier Grade
 severity-mapping-description:
 custom-severity-mapping:
 modify-data: very high
 read-data: very high
 dos-unreliable-execution: very high
 dos-resource-consumption: very high
 execute-unauthorized-code: very high
 gain-privileges: very high
 bypass-protection-mechanism: very high
 hide-activities: very high

Note

The Security Report requires the additional report configuration settings listed in the example
above. This ensures that the Security Report results are properly included in the output.

The following table describes each key in the file:

368

Working with the Security Report Generator

Key Description

assurance-level A level indicating the minimum acceptable score for the report to be considered passing. Possible
values are the following: AL1, AL2, AL3, and AL4. Default value is AL1.

assurance-level-score There are four Assurance Levels, representing Security Scores of greater .than or equal to 60, 70, 80,
and 90. When choosing the Assurance Level, consider the potential for damage to life, property, or
reputation. An application with high damage potential should have a high Assurance Level. Default
value is 90.

company-name Name of your company. This is a mandatory field.

connection The URL of the Coverity Connect instance.

components An optional comma-separated list of Coverity Connect component names, which include component
map names. If the components are listed here, the report will include data only for the listed
components; for example: Default.lib or Default.src.

custom-severity-mapping If the severity mapping is set to Custom, then update the custom-severity-mapping with specific
settings and values.

The following values are available: very high, high, medium, low, and very low. Default is very
high.

issue-cutoff-count Some reports display information about individual issues. These reports bound the number of issues
displayed in order to control the size of the report. This bound is called the issue cutoff count. It is used
for CVSS, Security, PCIDSS, MobileOwasp, and Owasp2017 reports. Default value is 200. Maximum is
10000 for Security report.

You can increase the maximum of 10,000 to a number as large as 50,000 by setting the
ISSUE_CUTOFF_COUNT environment variable to the desired value.

issue-kind An optional comma-separated list of Coverity Connect issue kinds. If issue kinds are listed here, the
report will include only issues of the listed kinds.

The possible values for issue-kind are as follows:

• Quality

• Security

The following line is an example of using this option:

issue-kind: Quality

locale Locale of the report. Valid values are the following: en_US, ja_JP, ko_KR, and zh_CN. Default value is
en_US.

logo Optional path to a logo file for your company. Valid image types are bmp, gif, jpg, and png. The
maximum allowed image size is 210 pixels wide by 70 pixels high. Note that backslash characters in a
path must be doubled.

on-cert-trust Allows users to trust self-signed certificates sent by Coverity Connect. There are two possible values:
trust or distrust. Use trust to accept, use, and store a self-signed certificate for reuse. Use
distrust to reject connections from servers using self-signed certificates. The default value is trust.

369

Working with the Security Report Generator

Key Description

organizational-unit-name Name of your division, group, team or other organizational unit. This is a mandatory field.

organizational-unit-term Organizational unit term (e.g., division, group, team). This is a mandatory field.

prepared-for Name of the entity for which the report was prepared. This is a mandatory field.

prepared-by Name of the entity that prepared the report. This is a mandatory field.

project Name of the Coverity Connect project.

project-contact-email Project contact email address. It is used for the following reports: CIR, CVSS, PCIDSS, MobileOwasp,
and OWASP2017. This is a mandatory field.

project-name Name of the software development project. May be distinct from the Coverity Connect project name.
This is an optional field.

project-version Lists the project version number. This is a mandatory field.

severity-mapping The name of the set of severity mappings used to determine the score of each issue. See the
documentation for a description of the severity mapping. The first three mappings are built-in. Custom
indicates that the mapping identified by custom-severity-mapping and severity-mapping-
description should be used. Valid values are Carrier Grade, Web application, Desktop
application, and Custom. Default value is Carrier Grade.

security-report severity-mapping-description

Optional descriptive text for custom severity mapping.

snapshot-date Retrieves the most recent snapshot of each stream in the project whose date is less than or equal to
the given date. Format is "DD/MM/YYYY".

snapshot-id Retrieves the defects of a specific snapshot id, instead of using the latest snapshot id of all the streams
associated with the project.

title-page Describes the fields in the title page of the report.

username Coverity Connect username. Password or other authentication key

version The version of the .yaml file's schema.

custom-severity-mapping If the severity mapping is set to Custom, then this entry introduces some specific custom settings,
whose descriptions follow.

Each custom field can be set to one of the following values: very high, high, medium, low, very
low, or informational.

dos-unreliable-execution Custom field. Indicates when a weakness creates a denial of service due to unreliable execution of the
application. Default value is very high

dos_resource-consumption Custom field. Indicates when a weakness creates a denial of service due to excessive resource
consumption by the application. Default value is very high

execute-unauthorized-code Custom field. Indicates when an attacker tries to execute code that it does not have authority to
execute. Default value is very high

gain-privileges Custom field. Indicates when an attacker tries to gain privileges that should not be available to it.
Default value is very high

370

Working with the Security Report Generator

Key Description

bypass-protection-mechanism Custom field. Indicates that an attacker has tried to bypass application or system protection
mechanisms. Default value is very high

hide-activities Custom field. Indicates when an attacker tries to modify data in the application. Default value is very
high

For more information about schema configurations, see Chapter 6.1, Configuring Report Generators

8.2.3.2. GUI configuration

To configure a new security report, you use one of four panes to specify information:

• Coverity Connect to specify connection information.

• Assurance Level to specify the minimum passing score for the project.

• Severity Mapping to select one of the default severity mapping or to specify a custom severity
mapping.

• Customization to specify company and organizational unit information; you can also select the locale
for the report.

Note

Some reports display information about individual issues. These reports bound the number of
issues displayed in order to control the size of the report. This bound is called the issue cutoff
count. It is used for CVSS, Security, PCIDSS, MobileOwasp, and Owasp2017 reports. Default
value is 200. Maximum is 10000 for Security report.

You can increase the maximum of 10,000 to a number as large as 50,000 by setting the
ISSUE_CUTOFF_COUNT environment variable to the desired value.

To configure a report:

1. Select Settings → Coverity Connect.

2. Select Coverity Connect Project.

The projects available through the connection to Coverity Connect are displayed in the drop-down
list. If the list is empty, click Refresh.

3. In the Assurance Level pane, select the minimum passing score for the project.

4. In the Severity mapping pane, select a severity mapping. Default severity mappings are read-only. If
you select Custom, you can edit the Severity level of each Technical Impact.

5. In the Customization pane, enter information to customize the report. The names and terms are used
throughout the report, and the company name and logo are featured on the cover page.

371

Working with the Security Report Generator

Note

The Project mentioned here refers to the corporate project name, and should not be confused
with the Coverity Connect project.

The company logo is optional.

You can use this pane to set the locale for your report

6. Click File → Save to save the configuration for future use.

7. You can now generate a report as described in the following section.

8.2.4. Generating a Report

After you have saved your report configuration, you can generate a report by clicking Create Report.

The configuration for a report can be saved as a .yaml file. This document can be used to regenerate
the report, with the same settings, when the analysis data is updated. The report can be regenerated
through the GUI or with the command line. The following sections describe each method.

8.2.4.1. Generating a previously configured report using the GUI

To regenerate a report through the GUI:

1. Launch the cov-security-report application.

2. Click File → Open Configuration, and select the saved .yaml configuration file.

3. Click Create Report to generate the report.

8.2.4.2. Generating a previously configured report from the command line

You can generate a report using a previously saved configuration by using the headless mode. On the
command line, use cov-generate-security-report with the following settings.

cov-generate-security-report <config file> [--auth-key-file <filename>][--
company-logo <logo>] [--help] [--includeCusp] [--locale <locale>] [--on-new-
cert trust|distrust] [--output <filename>] [--password <spec>] [--project
<project-name>] [--user <username>]

Parameter Meaning

--auth-
key-file
<filename>

Coverity Connect authentication key file.

--company-
logo <logo>

Path to company logo file.

<config-file> Security Report .yaml configuration file.

372

Working with the Security Report Generator

Parameter Meaning

--help Displays this help message and exits.

--includeCusp Include CWE/SANS Cusp in SANS top25 list.

--locale
<locale>

Locale of the report: one of en_US (English, default), ja_JP (Japanese), ko_KR
(Korean), or Simplified Chinese (zh_CN).

--on-new-
cert trust|
distrust

When the value is distrust (the default), an attempt to connect to the server using
SSL might fail if the server provides an untrusted self-signed certificate.

--output
<output-file>

Name of the PDF output file. The file will be replaced if present.

--password
<spec>

Coverity Connect password specifier.

The password <<spec>> argument is required, and has four forms:

console
The password is read from the keyboard without echoing to the console.

file:<<filename>>
The password is read from the first line of the file <filename>.

file:-
The password is read from standard input. This is for use with pipes and
redirection, not for keyboard input.

env:<<variable>>
The password is read from the environment variable <<variable>>.

--project
<project-
name>

Name of the project in Coverity Connect.

--user <user-
name>

Coverity Connect user name.

8.2.5. Customizing Security reports

You can customize reports in the following ways:

• You can localize reports.

• You can specify one of several additional output formats: xml, json, or csv.

• You can customize reports using Java plugins

8.2.5.1. Localizing reports

You can now localize Security reports for Japanese, Korean, and Chinese. When you configure the
report, select your locale from the Report's Locale drop-down list in the Customization pane.

373

Working with the Security Report Generator

Important

You must have the same locale configured in Coverity Connect as you set for your report.
Otherwise, portions of the report will be presented in the user's locale rather than the desired one.
(Use the drop down list from Admin User > Preferences > Locale to select the desired locale.)

8.2.5.2. Using system environment variables

In addition to the PDF report output, the Security Report generator can also output three additional files:

• A .csv (Severities CSV) file that provides a mapping from CID and CWE values to the assigned
Technical Impact and Severity Level values that are found in the Security Details’ Technical Impact
Table of a generated security report. This information is presented in a form that can be easily imported
into an Excel spreadsheet.

• An .xml file that provides the report output in a form that makes it easy for you to include reported data
in your own documentation or reports.

• A .yaml file that lists the CWE IDs with their respective severity values. Each line will list a name
and value pair, where the CWE ID (an integer value) is listed next to name of the severity. The report
generation will fail either because the file is invalid or because the user does not have proper read/write
permissions.

You must use environment variables to specify which of these files you want the report generator to
create and where it should be stored.

For example, on Windows, you'd set the environment variable like this:

set WRITE_REPORT_XML=<filename>

On Linux, you'd set the environment variable like this:

export WRITE_REPORT_XML=<filename>

For the Security Report, the following five environment variables are available:

• IGNORE_ISSUES_DETAIL=true: This variable produces a PDF report that only includes high level
defect and issue data, omitting issue details. If this environment variable is set to true, then the
Detailed Issues Ranked by Severity section is omitted from the generated report.

• WRITE_ISSUES_JSON: This variable writes defect and issue data to the JSON output file. If a file with
the same filename exists, it will be overwritten. A warning is issued if the file cannot be opened.

• WRITE_REPORT_XML: This variable writes properties from the report’s configuration to the XML output
file. If a file with the same filename exists, it will be overwritten. A warning is issued if the file cannot be
opened.

• WRITE_SEVERITIES_CSV: This variable writes severities and technical impacts of each CID to a CSV
file. If a file with the same filename exists, it will be overwritten. A warning is issued if the file cannot be
opened.

374

Working with the Security Report Generator

• WRITE_CWES_YAML: This variable writes CWE Partition data to the YAML output file. If a file with the
same filename exists, it will be overwritten. A warning is issued if the file cannot be opened.

375

Part 9. MISRA Report

Table of Contents
9.1. MISRA Report Overview .. 377

9.1.1. MISRA Compliance .. 377
9.2. Installing the MISRA Report Generator ... 379

9.2.1. Connecting to Coverity Connect .. 380
9.2.2. Configuring a MISRA Report ... 381
9.2.3. Using system environment variables .. 383
9.2.4. Generating a previously configured report .. 384
9.2.5. Generating a report from the command line ... 385
9.2.6. Localizing reports ... 386

Chapter 9.1. MISRA Report Overview

Table of Contents
9.1.1. MISRA Compliance ... 377

The MISRA Report uses analysis results for a project in Coverity Connect to evaluate a codebase
and create a formatted report. The codebase is evaluated against a policy, which is a set of rules for
determining whether the project's issues are consistent with MISRA compliance. The result is presented
in the MISRA Compliance section in the Executive Summary of the report.

Certain elements of the report can be customized by means of Java plugins. For more information, see
"Coverity Reports Customization Plugins" in the Coverity Platform 2020.12 User and Administrator Guide.

Important

To support report generation, you must use the --coding-standard-config option to the cov-
analyze command. This option provides the path to a configuration file for a coding standard to
run as part of the analysis. The configuration file can specify one of several MISRA standards; for
example,

{ version : "2.0",
 standard : "misrac2012",
 title: "your_title_here",
 deviations : []
}

9.1.1. MISRA Compliance

The MISRA Compliance section of the report states whether the project was found to be MISRA
compliant or not, and shows the number of violations in each of the following categories. For detailed
information on how each scorecard element is calculated, see the Methodology section of a generated
report.

Mandatory violation count
This is the number of violations found that fall in the MISRA Mandatory category.

Required violation count
This is the number of violations found that fall in the MISRA Required category.

Document violation count
This is the number of violations found that fall in the MISRA Document category.

Advisory violation count
This is the number of violations found that fall in the MISRA Advisory category.

Additional Quality Measures
Additional measures are not considered in evaluating MISRA compliance, but are provided for
informational purposes. They include:

377

MISRA Report Overview

• Issues marked "False Positive" or "Intentional"

• Non-MISRA Issues

• The codebase must have been analyzed within the last 30 days

Note

The way in which the MISRA report counts violations has changed. Previously, all violations of
a given rule, were counted on the basis of the rule violated not on the basis of the number of
occurrences. For example, if we detected 1000 violations of rule x, this was reported as 1 for
the same instance. We now report 1000 to paint a realistic picture and to comply with MISRA
standards.

378

Chapter 9.2. Installing the MISRA Report Generator

Table of Contents
9.2.1. Connecting to Coverity Connect .. 380
9.2.2. Configuring a MISRA Report .. 381
9.2.3. Using system environment variables ... 383
9.2.4. Generating a previously configured report ... 384
9.2.5. Generating a report from the command line .. 385
9.2.6. Localizing reports ... 386

The MISRA Report Generator is installed separately from Coverity Connect. You can obtain the Coverity
Reports installer from the Downloads page in Coverity Connect. The Coverity Reports installer installs
MISRA Report.

1. In Help → Downloads, select the Coverity Reports installer that is appropriate for your system.

2. Save the installer application to an appropriate folder in your system.

3. You have the option to use the install wizard or to install from the command line. To use the wizard,
launch the installer, and follow the instructions in the wizard.

To use the command line, proceed to the next step.

4. To run the installer from the command line, execute one of the following commands, using either
quiet mode (-q) or console mode (-c):

Operating System Command

Windows start /wait "" cov-reports-win64-<version_number>.exe -c

Windows - quiet
mode

cov-reports-win64-<version_number>.exe -q -dir C:/target-
dir

Linux ./cov-reports-linux64-<version_number>.sh -c

Linux - quiet mode ./cov-reports-linux64-<version_number>.sh -q -dir ~/
target-dir

If you do not specify a target-dir for the installation, a default installation directory is used. The
directory name is shown at runtime.

You can use the following parameters in the command line:

Parameter Action

-c Run in console mode. User interaction is performed in the terminal window
where the installer (or uninstaller) is invoked.

-console On Windows, use with -q to open a console window to display output in
quiet mode.

-dir [directory] Set the installation directory in quiet mode.

379

Installing the MISRA Report Generator

Parameter Action

-Dname=value Set system properties.

-h Display help.

-manual On Windows, in GUI mode only, manually select a Java Runtime
Environment.

-overwrite Overwrite all files in quiet mode.

-q Run in unattended (quiet) mode. There is no user interaction, and installation
is performed automatically using default values.

-splash [title] Display a progress bar in quiet mode.

-varfile Use a response file.

9.2.1. Connecting to Coverity Connect

In <installation-directory>/bin, locate the application executable, cov-misra-report. The
first time you run the application, you set up the connection to your instance of Coverity Connect, which
contains the issue information to include in the report.

1. Double-click on the application icon to launch it. It starts in New Configuration mode. Alternatively,
double-click on a previously-created configuration file to launch the application with that
configuration.

2. On the Connection tab, enter the Host Name and Port Number. If your Coverity Connect
administrator has enabled SSL, enter the HTTPS port number associated with your Coverity Connect
host. The default HTTPS port is 8443.

380

Installing the MISRA Report Generator

3. Check the Coverity Connect URL to make sure it is correct.

4. If SSL is used with the connection, select Secured using SSL.

Note

If an additional CA certificate is needed, select Use Extra CA Certificate, and click Browse to
upload the file.

5. Enter the Username and Password for Coverity Connect.

6. Click Check Connection to test the connection to Coverity Connect.

9.2.2. Configuring a MISRA Report

To configure a MISRA Report:

1. Select Settings → Coverity Connect.

2. Select Coverity Connect Project. The projects available through the connection to Coverity
Connect are displayed in the drop-down list.

Note

Before creating a report, make sure that the MISRA project has been analyzed with Coverity
Analysis version 2020.12 prior to commit. MISRA analysis in previous versions will not work
with this report.

3. In the Customization pane, enter information to customize the report. The names and terms are
used throughout the report, and the company name and logo are featured on the cover page. The
company logo is optional.

Note

The Project mentioned here refers to the corporate project name, and should not be confused
with the Coverity Connect project.

4. Click File → Save to save the .yaml configuration file for future use.

Note

This document can be used to regenerate a report with the same settings whenever the
analysis data is updated.

5. Click Create Report to generate the report.

9.2.2.1. Command-line configuration

You can specify configuration information using a .yaml file. A sample config.yaml file is shipped with
the report generator and installed in the config directory.

381

Installing the MISRA Report Generator

The following shows a sample .yaml file:

################## Sections that apply to all reports #############
version:
 schema-version: 5

connection:
 url: https://coverity.example.com:8443/
 username: admin
 ssl-ca-certs:

project:
title-page:
 company-name:
 project-name:
 project-version: 0.9
 logo:
 organizational-unit-name: Widgets
 organizational-unit-term: Division
 prepared-for:
 project-contact-email:
 prepared-by:

locale:
issue-cutoff-count: 200
snapshot-id:
snapshot-date:
issue-kind:
components:

Note

The MISRA Report does not require any additional report settings to be configured.

The following table describes each key in the file.

Key Description

company-name Name of your company. This is a mandatory field.

connection The URL of the Coverity Connect instance.

components An optional comma-separated list of Coverity Connect component names, which include component
map names. If the components are listed here, the report will include data only for the listed
components; for example: Default.lib or Default.src.

issue-cutoff-count Some reports display information about individual issues. These reports bound the number of issues
displayed in order to control the size of the report. This bound is called the issue cutoff count. It is used
for CVSS, Security, PCIDSS, MobileOwasp, and Owasp2017 reports. Default value is 200. Maximum is
10000 for Security report.

issue-kind An optional comma-separated list of Coverity Connect issue kinds. If issue kinds are listed here, the
report will include only issues of the listed kinds.

The possible values for issue-kind are as follows:

382

Installing the MISRA Report Generator

Key Description
• Quality

• Security

The following line is an example of using this option:

issue-kind: Quality

locale Locale of the report. Valid values are the following: en_US, ja_JP, ko_KR, and zh_CN. Default value is
en_US.

logo Optional path to a logo file for your company. Valid image types are bmp, gif, jpg, and png. The
maximum allowed image size is 210 pixels wide by 70 pixels high. Note that backslash characters in a
path must be doubled.

on-cert-trust Allows users to trust self-signed certificates sent by Coverity Connect. There are two possible values:
trust or distrust. Use trust to accept, use, and store a self-signed certificate for reuse. Use
distrust to reject connections from servers using self-signed certificates. The default value is trust.

organizational-unit-name Name of your division, group, team or other organizational unit. This is a mandatory field.

organizational-unit-term Organizational unit term (e.g., division, group, team). This is a mandatory field.

prepared-for Name of the entity for which the report was prepared. This is a mandatory field.

prepared-by Name of the entity that prepared the report. This is a mandatory field.

project Name of the Coverity Connect project.

project-contact-email Project contact email address. It is used for the following reports: CIR, CVSS, PCIDSS, MobileOwasp,
and OWASP2017. This is a mandatory field.

project-name Name of the software development project. May be distinct from the Coverity Connect project name.
This is an optional field.

project-version Lists the project version number. This is a mandatory field.

snapshot-date Retrieves the most recent snapshot of each stream in the project whose date is less than or equal to
the given date. Format is "DD/MM/YYYY".

snapshot-id Retrieves the defects of a specific snapshot id, instead of using the latest snapshot id of all the streams
associated with the project.

title-page Describes the fields in the title page of the report.

username Coverity Connect username. Password or other authentication key

version The version of the .yaml file's schema.

For more information about schema configurations, see Chapter 6.1, Configuring Report Generators

9.2.3. Using system environment variables

To use a system environment variable for your report generator, write the path and filename where you’d
like the output file to be created and stored.

On Windows, you'd set the environment variable like this:

383

Installing the MISRA Report Generator

set WRITE_REPORT_XML=<filename>

On Linux, you'd set the environment variable like this:

export WRITE_REPORT_XML=<filename>

For the MISRA Report Generator, you can use these two environment variables:

• WRITE_ISSUES_JSON: This variable writes defect or issue data to the JSON output file. If a file with
the same filename exists, it will be overwritten. A warning is issued if the file cannot be opened.

• WRITE_REPORT_XML: This variable writes properties from the report’s configuration to the XML output
file. If a file with the same filename exists, it will be overwritten. A warning is issued if the file cannot be
opened.

9.2.4. Generating a previously configured report

The report can either be regenerated through the GUI or via command line.

To regenerate a report through the GUI:

1. Launch the cov-misra-report application.

2. Click File → Open Configuration, and select the configuration file that was previously made.

3. Click Create Report to generate the report.

To regenerate a report via command line, use cov-generate-misra-report with the following
settings:

cov-generate-misra-report <configuration-file> [--help] --on-new-cert [trust
| distrust] --output <output-file> --password <spec> [--project <project-
name>]

Parameter Meaning

<configuration-
file>

config.yaml configuration file.

--help Displays this help message and exits.

--on-new-cert
<value>

<<value>> can be trust or distrust.

When the value is distrust (the default), an attempt to connect to the server using
SSL might fail if the server provides an untrusted self-signed certificate.

--output
<output-file>

Name of the PDF output file. The file will be replaced if present.

--password
<spec>

Coverity Connect password specifier.

The password <<spec>> argument is required, and has four forms:

384

Installing the MISRA Report Generator

Parameter Meaning
console

The password is read from the keyboard without echoing to the console.

file:<<filename>>
The password is read from the first line of the file <filename>.

file:-
The password is read from standard input. This is for use with pipes and
redirection, not for keyboard input.

env:<<variable>>
The password is read from the environment variable <<variable>>.

9.2.5. Generating a report from the command line

You can generate a report using a previously saved configuration by using the headless mode. On the
command line, use cov-generate-misra-report with the following settings.

cov-generate-misra-report <configuration file> [--help] --on-new-cert [trust
| distrust] --output <output-file> --password <spec> [--project <project-
name>]

<configuration file>
MISRA Report .yaml configuration file

--help
Display this help message and exit.

--on-new-cert <value>
<value> can be "trust" or "distrust". If "distrust" (the default), an attempt to connect to the server using
SSL will fail if the server provides an untrusted self-signed certificate.

--output <output-file>
Name of the PDF output file. The file will be replaced if present.

--password <spec>
Coverity Connect password specifier

The password <spec> argument is required, and has three forms:

console
The password is read from the keyboard without echoing to the console.

file:<filename>
The password is read from the first line of the file <filename>.

env:<variable>
The password is read from the environment variable <variable>.

385

Installing the MISRA Report Generator

9.2.6. Localizing reports

You can now localize MISRA reports for Japanese, Korean, and Chinese. To localise the report, make
your selection from the Report's Locale dropdown list in the Customization pane.

Important

You must have the same locale configured in Coverity Connect as you set for your report.
Otherwise, portions of the report will be presented in the user's locale rather than the desired one.
(Use the drop down list from Admin User > Preferences > Locale to select the desired locale.)

386

Part 10. Synopsys Software Integrity Report

Table of Contents
10.1. Introduction ... 388
10.2. Installation ... 389
10.3. Setup and configuration ... 390

10.3.1. Setting up the Synopsys Software Integrity Report Generator 390
10.3.2. Configuring the Synopsys Software Integrity Report ... 391
10.3.3. Updating the report configuration file ... 391
10.3.4. Using system environment variables .. 394
10.3.5. Generating a report through the GUI ... 394
10.3.6. Generating a report via command line ... 394

10.4. PDF report outline ... 396
10.5. Detailed results ... 397

10.5.1. Coverity Results ... 397

Chapter 10.1. Introduction

The Synopsys Software Integrity Report summarizes integrity issues existing in a software development
project. The report takes input from the Coverity Analysis testing tools. A report generator application
pulls issue data from each contributing tool, aggregates the information, and generates data files and a
formatted PDF report.

388

Chapter 10.2. Installation

The Synopsys Software Integrity Report software is available in the cov-reports installer. You can
obtain the installer from the Downloads page in Coverity Connect. The Coverity Reports installer installs
Synopsys Software Integrity Report.

389

Chapter 10.3. Setup and configuration

Table of Contents
10.3.1. Setting up the Synopsys Software Integrity Report Generator .. 390
10.3.2. Configuring the Synopsys Software Integrity Report ... 391
10.3.3. Updating the report configuration file ... 391
10.3.4. Using system environment variables ... 394
10.3.5. Generating a report through the GUI ... 394
10.3.6. Generating a report via command line ... 394

10.3.1. Setting up the Synopsys Software Integrity Report Generator

To set up the Synopsys Software Integrity Report Generator, perform the following steps:

1. Navigate to the Reports installation directory.

2. In the /bin subdirectory, launch syn-integrity-report.

3. On the Report Settings tab, in the Tools subtab, select the contributing tools to use for the report.

4. Select Cover Page, and enter information on terminology to use in the report.

5. Select Legal Text, and enter or upload any legal disclaimers to be shown on the summary page of
the report.

6. Select the tab for each enabled analysis tool.

390

Setup and configuration

7. In the Connection page, enter the URL and Username for the tool’s server (Coverity Connect). Click
Check Connection to test.

8. In the Settings page, click Refresh to get a list of projects from the server. Select the desired project
or product from the drop-down menu.

9. Repeat the settings for each enabled tool.

10.3.2. Configuring the Synopsys Software Integrity Report

To configure a new SSIR report:

1. Select Settings → Coverity Connect.

2. Select Coverity Connect Project. The projects available through the connection to Coverity
Connect are displayed in the drop-down list.

Note

Before creating a report, make sure that the Synopsys Software Integrity Report project has
been analyzed with Coverity Analysis version 2020.12 prior to commit. SSIR analysis in
previous versions will not work with this report.

3. In the Customization pane, enter information to customize the report. The names and terms are
used throughout the report, and the company name and logo are featured on the cover page. The
company logo is optional.

Note

The Project mentioned here refers to the corporate project name, and should not be confused
with the Coverity Connect project.

4. Click File → Save to save the .yaml configuration file for future use.

Note

This document can be used to regenerate a report with the same settings whenever the
analysis data is updated.

5. Click Create Report to generate the report.

10.3.3. Updating the report configuration file

You can specify and update configuration information in a .yaml configuration file. A sample
config.yaml file is shipped with the report generator and installed in the config directory.

Here is an example .yaml file:

################## Sections that apply to all reports #############
version:
 schema-version: 5

391

Setup and configuration

connection:
 url: https://coverity.example.com:8443/
 username: admin
 ssl-ca-certs:

project:
title-page:
 company-name:
 project-name:
 project-version: 0.9
 logo:
 organizational-unit-name: Widgets
 organizational-unit-term: Division
 prepared-for:
 project-contact-email:
 prepared-by:

locale:
issue-cutoff-count: 200
snapshot-id:
snapshot-date:
issue-kind:
components:

################## Synopsys Software Integrity Report #############
ssir-report:
 analysis-date: 01/15/2019
 legal-text:

Note

The Synopsys Software Integrity Report requires the additional report configuration settings listed in
the example above. This ensures that the Synopsys Software Integrity Report results are properly
included in the output.

The following table describes each key in the file:

Key Description

analysis-date Lists date of report generation. The date should be written in MM/DD/YYYY format. This is a mandatory
field.

company-name Name of your company. This is a mandatory field.

components An optional comma-separated list of Coverity Connect component names, which include component
map names. If the components are listed here, the report will include data only for the listed
components; for example: Default.lib or Default.src.

connection The URL of the Coverity Connect instance.

issue-cutoff-count Some reports display information about individual issues. These reports bound the number of issues
displayed in order to control the size of the report. This bound is called the issue cutoff count. It is used
for CVSS, Security, PCIDSS, MobileOwasp, and Owasp2017 reports. Default value is 200. Maximum is
10000 for Security report.

392

Setup and configuration

Key Description

issue-kind An optional comma-separated list of Coverity Connect issue kinds. If issue kinds are listed here, the
report will include only issues of the listed kinds.

The possible values for issue-kind are as follows:

• Quality

• Security

The following line is an example of using this option:

issue-kind: Quality

legal-text This setting displays legal text in the report. For example, it will display something like this: "This is the
first line of multiline legal text and this is the second line." This field is optional.

locale Locale of the report. Valid values are the following: en_US, ja_JP, ko_KR, and zh_CN. Default value is
en_US.

logo Optional path to a logo file for your company. Valid image types are bmp, gif, jpg, and png. The
maximum allowed image size is 210 pixels wide by 70 pixels high. Note that backslash characters in a
path must be doubled.

on-cert-trust Allows users to trust self-signed certificates sent by Coverity Connect. There are two possible values:
trust or distrust. Use trust to accept, use, and store a self-signed certificate for reuse. Use
distrust to reject connections from servers using self-signed certificates. The default value is trust.

organizational-unit-name Name of your division, group, team or other organizational unit. This is a mandatory field.

organizational-unit-term Organizational unit term (e.g., division, group, team). This is a mandatory field.

prepared-for Name of the entity for which the report was prepared. This is a mandatory field.

prepared-by Name of the entity that prepared the report. This is a mandatory field.

project Name of the Coverity Connect project.

project-contact-email Project contact email address. It is used for the following reports: CIR, CVSS, PCIDSS, MobileOwasp,
and OWASP2017. This is a mandatory field.

project-name Name of the software development project. May be distinct from the Coverity Connect project name.
This is an optional field.

project-version Lists the project version number. This is a mandatory field.

snapshot-date Retrieves the most recent snapshot of each stream in the project whose date is less than or equal to
the given date. Format is "DD/MM/YYYY".

snapshot-id Retrieves the defects of a specific snapshot id, instead of using the latest snapshot id of all the streams
associated with the project.

ssir-report Declares the Synopsys Software Integrity Report configuration settings.

title-page Describes the fields in the title page of the report.

username Coverity Connect username. Password or other authentication key

version The version of the .yaml file's schema.

393

Setup and configuration

Once you have entered your settings, click File → Save As to save the configuration information for later
use. The setting values (except passwords) are saved in a configuration file.

For more information about schema configurations, see Chapter 6.1, Configuring Report Generators

10.3.4. Using system environment variables

To use a system environment variable for your report generator, write the path and filename where you’d
like the output file to be created and stored.

On Windows, you'd set the environment variable like this:

set WRITE_REPORT_XML=<filename>

On Linux, you'd set the environment variable like this:

export WRITE_REPORT_XML=<filename>

For the Synopsys Software Integrity Report Generator, you can use the following environment variable:

• WRITE_REPORT_XML: This variable writes properties from the report’s configuration to the XML output
file. If a file with the same filename exists, it will be overwritten. A warning is issued if the file cannot be
opened.

10.3.5. Generating a report through the GUI

Click Create Report to start the data collection process. The report generator will access each analysis
tool server, collect the data, and then compose the detailed results and PDF files.

1. In the Configuration tool, click Create Report.

2. In each Password Entry dialog, enter the password for the respective server.

3. In the Save Detailed Data dialog, enter the name and location of the .zip file.

4. In the Save Report dialog, enter the name and location of the .pdf file.

5. In the Report Generation Completed dialog, optionally open the PDF file.

10.3.6. Generating a report via command line

The syn-generate-integrity-report command line tool is used to generate a report based on an
existing configuration file (.yaml) generated by syn-integrity-report. A password file must also be
created in the following format using a text editor:

Coverity=Coverity_password

Note

Be sure to make this file readable only by the owner.

394

Setup and configuration

Execute the application (in the /bin subdirectory) from the command line as follows:

syn-generate-integrity-report <configuration-file> [--help] --output <output> --
password <console> | file:<filename> | file:- | env:variable>
 [--project <project-name>] --on-new-cert [trust | distrust]

Note

If the server is using SSL, the --on-new-cert option can be used to indicate whether to trust
self-signed certificates, presented by the server, that the application has not seen before. Default is
distrust.

The command uses the name specified by --output to generate .pdf and .zip files. The .zip file contains
data files used to populate the PDF report.

395

Chapter 10.4. PDF report outline

The PDF report explains the data provided by the contributing tools in graphs and tables. Text is provided
to clearly explain each category of data and the methodology of the report. The report is divided into the
following sections:

Product Results
Shows a high level summary of issues found by each contributing tool.

Coverity Summary
Shows the results in terms of CWE vulnerabilities, OWASP Top 10 issues, and CWE/SANS Top 40
issues. A Methodology section explains the Coverity tools and issue categories.

396

Chapter 10.5. Detailed results

Table of Contents
10.5.1. Coverity Results .. 397

The report generator outputs a zip file containing detailed results for each contributing tool. The data is
provided in a machine-readable form, for use by the developers tasked with fixing the issues.

10.5.1. Coverity Results

The Coverity results consist of a single table in CSV format (coverity-issues.csv). The table has
one row per issue detected by Coverity analysis.

Table 10.5.1. Coverity Results

Column Title Content Notes

CID The CID number of the issue. This is the ID number of the
issue, managed by Coverity
Connect.

CWE The CWE number of the issue, if
any.

Not all issues have CWE
numbers.

OWASP Top 10 rank The rank of the issue in the
OWASP Top 10, if any.

The Top 10 of 2017 is used.

CWE/SANS Top 40 rank The rank of the issue in the CWE/
SANS Top 40, if any.

The Top 40 of 2019 is used. The
Top 40 weaknesses include the
weaknesses in the Top 25 list,
and 15 additional weaknesses
that are considered important
under various criteria.

file name Name of the file where the main
event occurs.

line number Line number of the main event in
the above file.

type A short description of a checker. E.g., “Unsigned compared
against 0.”

category Coverity category of the issue. E.g., “Control flow issues.”

description The English text describing the
main event.

E.g., “This less-than-zero
comparison of an unsigned value
is never true. "i < 0U"”

397

Part 11. Coverity CVSS Report

Table of Contents
11.1. Introduction ... 399

11.1.1. Scorecard elements .. 399
11.1.2. Triage attributes ... 400
11.1.3. CVSS Report profile ... 401

11.2. Installing the Coverity CVSS Report Report Generator .. 403
11.2.1. Working with the Coverity CVSS Report Report Generator .. 403
11.2.2. Downloading the Coverity Reports Installer .. 404
11.2.3. Configuring a CVSS Report .. 405
11.2.4. Generating a CVSS Report ... 407
11.2.5. Using system environment variables .. 409
11.2.6. CVSS Report Input Files ... 409

Chapter 11.1. Introduction

Table of Contents
11.1.1. Scorecard elements .. 399
11.1.2. Triage attributes ... 400
11.1.3. CVSS Report profile ... 401

The Coverity Common Vulnerability Scoring System (CVSS) Report details the application security
activities carried out to assess software vulnerabilities. Based upon the CVSS framework, it calculates
CVSS scores and provides a summary of findings. It uses CWE data and input from the master file
or user-defined profile. The codebase is then evaluated against published policy requirements and its
results are described in the report, along with required remediation actions. The CVSS Report also
analyzes the issues returned by Coverity and calculates a CVSS Score, based on the triage attributes.
Each policy element (or attribute) must pass for the policy to pass.

You can now localize a CVSS report using your .yaml file.

To use a .yaml file, specify one of the following for the locale field:

• en_US for English

• ja_JP for Japanese

• ko_KR for Korean

• zh_CN for Chinese

Important

You must have the same locale configured in Coverity Connect as you set for your report.
Otherwise, portions of the report will be presented in the user's locale rather than the desired one.

11.1.1. Scorecard elements

The scorecard shows the Target for each category and the actual result, and indicates if the element
passes or fails. For detailed information on how each scorecard element is calculated, see the
Methodology section of a generated report.

CVSS Critical Count
This is a list of security vulnerabilities that have scored as Critical (between 9.0-10.0 on the CVSS
score calculator). The policy prohibits these weaknesses, so the target is zero.

CVSS High Count
This is a list of security vulnerabilities that have scored as High (between 7.0-8.9 on the CVSS score
calculator). The policy prohibits these weaknesses, so the target is zero.

CWE/SANS Top 25
This is a list of software weaknesses that are thought to be widespread and critical. The policy
prohibits these weaknesses, so the target is zero.

399

Introduction

OWASP Top 10
This is a list of prioritized security weaknesses relating to web application security. The Top 10 from
the year 2017 will be used. The policy prohibits these weaknesses, so the target is zero.

11.1.2. Triage attributes
11.1.2.1. CVSS_Audited ... 400
11.1.2.2. CVSS_Score .. 400
11.1.2.3. CVSS_Severity ... 400
11.1.2.4. CVSS_Vector ... 400

Coverity administrators or users with proper permissions must create and configure the custom triage
attributes or CVSS fields. Once the CVSS attributes have been configured, the cov-generate-cvss-
report --scores command syntax updates the attributes and changes the values with the CWE-
CVSS metric mappings.

Note

The following four attributes must be created prior to running the CVSS Report Generator.

11.1.2.1. CVSS_Audited

CVSS_Audited is a pick list type attribute. This field overrides generated vectors from the CVSS metric
values in the master file and/or profile.

There are also two possible values: Yes and No. The default value should be set to No. When
CVSS_Vector is reviewed and CVSS_Audited is set to Yes, the CVSS_Score is then calculated
according to the CVSS_Vector value that is stored in Coverity Connect.

Note

If CVSS_Audited is set to Yes, CVSS_Vector pulls data from Coverity Connect instead of
calculating it. If it is set to No, CVSS_Audited calculates CVSS_Vector based on the config/
Master_CWE_CVSS_Base_Score_Mapping-v1.json file or <SECURITY-PROFILE>.JSON file.

11.1.2.2. CVSS_Score

CVSS_Score is a text type attribute. This field is computed from the CVSS_Vector. There is no default
value. At each run, the CVSS score generator sets the field.

11.1.2.3. CVSS_Severity

CVSS_Severity is a pick list type attribute. This score is computed from the CVSS_Score.

CVSS_Severity has five possible values: Critical, High, Medium, Low, and None. There is no
default value. At each run, the CVSS score generator sets the field.

11.1.2.4. CVSS_Vector

CVSS_Vector is a text type attribute. This value drives all of the other computations and is based on
static analysis data. There is no default value. At each run, the field is set by the report generator but can
be modified if the CVSS score needs to be adjusted.

400

Introduction

11.1.3. CVSS Report profile

A CVSS Report profile contains application-specific CWE-CVSS vector mappings. It is based on
application type and is created by the security expert. Examples include web applications, mobile
applications, and embedded applications.

The CVSS Report profile should be structured like the following:

{
 "version" : 1,
 "type" : "CVSS profile",
 "AV" : "N",
 "AC" : "L",
 "PR" : "L",
 "UI" : "N",
 "cweMap" : [{
 "cwe" : 4,
 "cvssMetrics" : {
 "S" : "U",
 "C" : "N",
 "I" : "N",
 "A" : "N"
 }
 },
 {
 "cwe" : 7,
 "cvssMetrics" : {
 "S" : "U",
 "C" : "N",
 "I" : "H",
 "A" : "H"
 }
 }
]
}

In creating your CVSS Report profile, please note the following:

• For initial validation, the version field should be set to the CVSS Report Generator product version
number. The type field should be set to CVSS profile. If a user’s profile contains a mismatch for
these values, an error will occur causing CVSS Report Generator to quit.

• The values AC, AV, PR, and UI are independent of CWE. They differ based on application type.

• The CWEMap contains CWE-CVSS metric mappings.

• If a given defect has a CWE value of C and you provide F, a CWE-to-CVSS-vector mapping file, then
the CVSS vector will be taken from:

1. The value for C in F, or, if none,

2. The value for the ancestor with the highest CVSS score of C defined in F, or, if none,

401

Introduction

3. The value for C in the built-in configuration (master .json file) or, if none,

4. The value for the ancestor with the highest CVSS score of C in the built-in configuration, or, if none

5. A vector whose CVSS score is zero (i.e. CWE value of 0).

Note

These profiles do not need to cover OWASP Top 10/ CWE CANS Top 25 CWEs, as they are
already covered in the Coverity CVSS Report.

402

Chapter 11.2. Installing the Coverity CVSS Report Report
Generator

Table of Contents
11.2.1. Working with the Coverity CVSS Report Report Generator .. 403
11.2.2. Downloading the Coverity Reports Installer .. 404
11.2.3. Configuring a CVSS Report .. 405
11.2.4. Generating a CVSS Report ... 407
11.2.5. Using system environment variables ... 409
11.2.6. CVSS Report Input Files .. 409

The Coverity CVSS Report software is available with the cov-reports installer. Therefore, it is
recommended that you download the cov-reports installer first. You can obtain the installer from the
Downloads page in Coverity Connect. For more information, see Downloading the Coverity Reports
installer.

11.2.1. Working with the Coverity CVSS Report Report Generator

This section describes the different user workflows for getting started with Coverity CVSS Report
Generator.

Security Team:

1. From the Coverity Connect Downloads page, download the Coverity Reports installer. The Coverity
Reports installer contains the cov-generate-cvss-report tool.

2. Create the following CVSS attributes: CVSS_Audited, CVSS_Score, CVSS_Severity, and
CVSS_Vector.

3. Create the <SECURITY-PROFILE>.JSON file for your users. This file overrides the config/
Master_CWE_CVSS_BASE_SCORE_PROFILE_V1.json file.

Note

The <SECURITY-PROFILE>.JSON file path must be specified in the config/config.yaml
file.

4. Use the scores option to update the CVSS attributes. For example:

/bin/cov-generate-cvss-report --password <spec> --project <project-name> --profile
 <security-profile-file> --scores config/config.yaml

5. Verify that the CVSS_Vector value for each defect is correct.

6. Once you have verified that the CVSS_Vector value is correct, set the CVSS_Audited field to Yes.

7. [Optional:] If a change needs to be made, update <SECURITY-PROFILE>.JSON and run the scores
option again.

403

Installing the Coverity CVSS Report Report Generator

Development Team:

1. Download the Coverity Reports installer from the Coverity Connect Downloads page. The Coverity
Reports installer includes the cov-generate-cvss-report tool.

2. Create the following CVSS attributes: CVSS_Audited, CVSS_Score, CVSS_Severity, and
CVSS_Vector.

3. In Coverity Connect, create a project with snapshots.

4. Use the <SECURITY-PROFILE>.JSON file for your CWE-CVSS vector mappings. The <SECURITY-
PROFILE>.JSON file is created by the security team.

5. [Optional:] If the <SECURITY-PROFILE>.JSON file has not been created for you, then use the default
config/Master_CWE_CVSS_Base_Score_Mapping-v1.json file.

6. Update the config/config.yaml file to reflect the users' settings.

7. Use the scores option to update the CVSS attributes. For example:

/bin/cov-generate-cvss-report --password <spec> --project <project-name> --profile
 <security-profile-file> --scores config/config.yaml

8. Once all the updates are made, use the report option to generate the CVSS Report. For example:

/bin/cov-generate-cvss-report --output <output-file> --password <spec> --project
 <project-name> --report config/config.yaml

11.2.2. Downloading the Coverity Reports Installer

1. In Help → Downloads, select the Coverity Reports installer that is appropriate for your system.

2. Save the installer application to an appropriate folder in your system.

3. You have the option to use the install wizard or to install from the command line. To use the wizard,
launch the installer, and follow the instructions in the wizard.

To use the command line, proceed to the next step.

4. To run the installer from the command line, execute one of the following commands, using either
quiet mode (-q) or console mode (-c):

Operating System Command

Windows start /wait "" cov-reports-win64-<version_number>.exe -c

Windows - quiet
mode

cov-reports-win64-<version_number>.exe -q -dir C:/target-
dir

Linux ./cov-reports-linux64-<version_number>.sh -c

Linux - quiet mode ./cov-reports-linux64-<version_number>.sh -q -dir ~/
target-dir

404

Installing the Coverity CVSS Report Report Generator

If you do not specify a target-dir for the installation, a default installation directory is used. The
directory name is shown at runtime.

You can use the following parameters in the command line:

Parameter Action

-c Run in console mode. User interaction is performed in the terminal window
where the installer (or uninstaller) is invoked.

-console On Windows, use with -q to open a console window to display output in
quiet mode.

-dir [directory] Set the installation directory in quiet mode.

-Dname=value Set system properties.

-h Display help.

-manual On Windows, in GUI mode only, manually select a Java Runtime
Environment.

-overwrite Overwrite all files in quiet mode.

-q Run in unattended (quiet) mode. There is no user interaction, and installation
is performed automatically using default values.

-splash [title] Display a progress bar in quiet mode.

-varfile Use a response file.

11.2.3. Configuring a CVSS Report

You can specify configuration information using a .yaml file. A sample config.yaml file is shipped with
the report generator and installed in the config directory.

The following shows a sample .yaml file:

################## Sections that apply to all reports #############
version:
 schema-version: 5

connection:
 url: https://coverity.example.com:8443/
 username: admin
 ssl-ca-certs:

project:
title-page:
 company-name:
 project-name:
 project-version: 0.9
 logo:
 organizational-unit-name: Widgets
 organizational-unit-term: Division

405

Installing the Coverity CVSS Report Report Generator

 prepared-for:
 project-contact-email:
 prepared-by:

locale:
issue-cutoff-count: 200
snapshot-id:
snapshot-date:
issue-kind:
components:

Note

The CVSS Report does not require any additional report settings to be configured.

The following table describes each key in the file:

Key Description

company-name Name of your company. This is a mandatory field.

components An optional comma-separated list of Coverity Connect component names, which include component
map names. If the components are listed here, the report will include data only for the listed
components; for example: Default.lib or Default.src.

connection The URL of the Coverity Connect instance.

issue-cutoff-count Some reports display information about individual issues. These reports bound the number of issues
displayed in order to control the size of the report. This bound is called the issue cutoff count. It is used
for CVSS, Security, PCIDSS, MobileOwasp, and Owasp2017 reports. Default value is 200. Maximum is
10000 for Security report.

issue-kind An optional comma-separated list of Coverity Connect issue kinds. If issue kinds are listed here, the
report will include only issues of the listed kinds.

The possible values for issue-kind are as follows:

• Quality

• Security

The following line is an example of using this option:

issue-kind: Quality

locale Locale of the report. Valid values are the following: en_US, ja_JP, ko_KR, and zh_CN. Default value is
en_US.

logo Optional path to a logo file for your company. Valid image types are bmp, gif, jpg, and png. The
maximum allowed image size is 210 pixels wide by 70 pixels high. Note that backslash characters in a
path must be doubled.

on-cert-trust Allows users to trust self-signed certificates sent by Coverity Connect. There are two possible values:
trust or distrust. Use trust to accept, use, and store a self-signed certificate for reuse. Use
distrust to reject connections from servers using self-signed certificates. The default value is trust.

406

Installing the Coverity CVSS Report Report Generator

Key Description

organizational-unit-name Name of your division, group, team or other organizational unit. This is a mandatory field.

organizational-unit-term Organizational unit term (e.g., division, group, team). This is a mandatory field.

prepared-for Name of the entity for which the report was prepared. This is a mandatory field.

prepared-by Name of the entity that prepared the report. This is a mandatory field.

project Name of the Coverity Connect project.

project-contact-email Project contact email address. It is used for the following reports: CIR, CVSS, PCIDSS, MobileOwasp,
and OWASP2017. This is a mandatory field.

project-name Name of the software development project. May be distinct from the Coverity Connect project name.
This is an optional field.

project-version Lists the project version number. This is a mandatory field.

snapshot-date Retrieves the most recent snapshot of each stream in the project whose date is less than or equal to
the given date. Format is "DD/MM/YYYY".

snapshot-id Retrieves the defects of a specific snapshot id, instead of using the latest snapshot id of all the streams
associated with the project.

title-page Describes the fields in the title page of the report.

username Coverity Connect username. Password or other authentication key

version The version of the .yaml file's schema.

For more information about schema configurations, see Chapter 6.1, Configuring Report Generators

11.2.4. Generating a CVSS Report

The CVSS Report can only be generated via command line, as it is unavailable in GUI mode.

Note

Before you begin, make sure the following CVSS attributes are configured in Coverity Connect:
CVSS_Audited, CVSS_Score, CVSS_Severity, and CVSS_Vector.

To generate a CVSS Report, use the cov-generate-cvss-report command along with the following
options:

cov-generate-cvss-report <configuration-file> [--company-logo <path-to-
company-logo>] [--help] [--on-new-cert <value>] [--output <output-path-to-
pdf>] --password <spec> [--profile <profile.json>] [--project <project-name>]
[--report] [--scores]

Note

When generating a report, it is recommended that you use the --profile <security-
profile-file> and --scores options in the same command as the --output <output-
file> and --report options.

407

Installing the Coverity CVSS Report Report Generator

You can also generate a report without using the --profile <security-profile-file>
and --scores options, but you should ensure that the CVSS_* attributes are updated before
generating the report.

Assign the CVSS score to your defects and generate a report.

Optional arguments:

--company-logo
Path to the company logo file.

--help
Shows the help message and exits.

--on-new-cert <value>
<value> can be trust or distrust. If the server provides an untrusted self-signed certificate and
the value is set to distrust (which is the default), an attempt to connect to the server using SSL
may fail.

--output <output-path-to-pdf>
The name of the PDF output file. The --output <output-file> option replaces any existing
<output-file> files with the same name. Must be used in conjunction with the --report option.

--profile <PROFILE>.JSON
A .json file with CWE-CVSS vector mappings.

--project <project-name>
Name of the Coverity project to assign CVSS defect metrics. This can be set via command line or
entered directly in the YAML configuration file.

Note that if a user has already set the project in the config.yaml file and also tries to set the --
project name through the command line, the command line will supercede what is written in the
configuration file.

--report
Must be specified with the --output <output-file> option. Can also be used with the --
profile <security-profile-file> and --scores options. When specified without the --
scores option, it generates a CVSS Report and does not update the CVSS_* attributes.

When specified with the --scores option, the --report option generates the CVSS Report and
also updates the CVSS_* attributes in Coverity Connect.

--scores
When specified with the --report option, the --scores option updates the CVSS_* attributes in
Coverity Connect when generating a report.

Required arguments:

<configuration-file>
A .yaml file containing server configuration, Coverity Connect project, and other report-related
parameters.

408

Installing the Coverity CVSS Report Report Generator

For detailed information about configuration values, please see the "Coverity Report Generators"
section of the Release Notes and the README to which it refers.

--password <spec>
Coverity Connect password specifier

The password <spec> argument is required, and has four forms:

1. console

The password is read from the keyboard without echoing to the console.

2. file:<filename>

The password is read from the first line of the file <filename>.

3. file:-

The password is read from standard input. This is used with pipes and redirection.

4. env:<variable>

The password is read from the environment variable <variable>.

11.2.5. Using system environment variables

To use a system environment variable for your report generator, write the path and filename where you’d
like the output file to be created and stored.

On Windows, you'd set the environment variable like this:

set WRITE_REPORT_XML=<filename>

On Linux, you'd set the environment variable like this:

export WRITE_REPORT_XML=<filename>

For the CVSS Report Generator, you can use these two environment variables:

• WRITE_ISSUES_JSON: This variable writes defect or issue data to the JSON output file. If a file with
the same filename exists, it will be overwritten. A warning is issued if the file cannot be opened.

• WRITE_REPORT_XML: This variable writes properties from the report’s configuration to the XML output
file. If a file with the same filename exists, it will be overwritten. A warning is issued if the file cannot be
opened.

11.2.6. CVSS Report Input Files

The CVSS Report input files use input data from the following files to update the CVSS metrics and
generate the PDF report:

• config/config.yaml

409

Installing the Coverity CVSS Report Report Generator

This template file should be created or updated by the user via command line. Changes to the file
name and content are allowed.

• <SECURITY-PROFILE>.JSON

A .json file that is created by the security team (and not the user). Its structure is similar to the
Master_CWE_CVSS_Base_Score_Mapping-v1.json file. Comments are allowed.

• config/Master_CWE_CVSS_Base_Score_Mapping-v1.json

The master .json file which contains default mappings between CWE and CVSS metrics. This file must
remain in the config/ folder and should not be removed.

410

Part 12. Coverity CERT Report Guide

Table of Contents
12.1. Overview ... 412
12.2. Installing the CERT Report Generator .. 413

12.2.1. Connecting to Coverity Connect .. 413
12.2.2. Working with the CERT Report ... 414
12.2.3. Configuring the Coverity CERT Report .. 415
12.2.4. Using system environment variables .. 417
12.2.5. Generating a previously configured report .. 418
12.2.6. Generating the a report from the command line ... 418
12.2.7. Interpreting the CERT Report .. 418

Chapter 12.1. Overview

The Coverity CERT Report aggregates the results of Coverity Static Analysis performed on a particular
project. A project is a collection of one or more streams containing separately analyzed snapshots. The
latest snapshot in each stream is used when reporting results for a project. A CERT Report provides
information about CERT vulnerabilities detected by the Coverity CERT checkers described in the Coverity
2020.12 Checker Reference.

The CERT Report provides summary information for outstanding violations by component and rule, and
for dismissed violations. Additionally, for each rule defined in the standard, the CERT Report describes
the rule, its priority and level, and specifies whether it is supported and enabled, and the number of times
that rule has been violated.

The Methodology section of the report explains in detail how rules are defined, and how their priority and
level are determined. It also explains how CERT terminology for violations maps to Coverity terminology
for defects.

The basic workflow for working with CERT reports is as follows:

1. Install the CERT Report Generator.

2. Connect to Coverity.

3. Configure the CERT Report.

4. Generate the report.

5. Interpret the report.

The sections that follow explain each of these steps.

Important

To support report generation, you must use the --coding-standard-config option to the cov-
analyze command. This option provides the path to a configuration file for a coding standard to
run as part of the analysis. For CERT, it might look like this:

{ version : "2.0",
 standard : "cert-c",
 title: "your_title_here",
 deviations : []
}

412

Chapter 12.2. Installing the CERT Report Generator

Table of Contents
12.2.1. Connecting to Coverity Connect .. 413
12.2.2. Working with the CERT Report ... 414
12.2.3. Configuring the Coverity CERT Report .. 415
12.2.4. Using system environment variables ... 417
12.2.5. Generating a previously configured report ... 418
12.2.6. Generating the a report from the command line ... 418
12.2.7. Interpreting the CERT Report ... 418

The Coverity CERT Report Generator is installed by the Coverity Reports installer. You can obtain the
Coverity Reports installer from the Downloads page in Coverity Connect.

Follow these steps to install Coverity Reports:

1. In Help → Downloads, select the Coverity Reports installer that is appropriate for your system.

2. Save the installer application to an appropriate folder in your system.

3. Launch the installer using the GUI or the command line.

• To run the installer using the GUI, follow the instructions in the wizard.

• To run the installer from the command line, execute one of the following commands depending
on your operating system and your preference for quiet mode (-q) or console mode (-c). In quiet
mode, there is no user interaction: installation is performed automatically using default values.

Windows cov-reports-win64-<version_number>.exe -q -dir C:/target-dir

Windows start /wait "" cov-reports-win64-<version_number>.exe -c

Linux ./cov-reports-linux64-<version_number>.sh -q -dir ~/target-dir

Linux ./cov-reports-linux64-<version_number>.sh -c

If you do not specify a target directory for the installation, a default installation directory is used. The
directory name is shown at runtime.

12.2.1. Connecting to Coverity Connect

Before you can configure and generate a report, you must set up a connection to your instance of
Coverity Connect, which stores the information that is included in the report. Follow these steps to create
your connection:

1. Locate the application executable cov-cert-report in <installation-directory>/bin

2. Double-click on the application icon to launch it. It starts in New Configuration mode. (Alternatively,
double-click on a previously-created configuration file to launch the application with that
configuration.)

413

Installing the CERT Report Generator

3. On the Connection tab, enter the Host Name and Port Number. If your Coverity Connect
administrator has enabled SSL, enter the HTTPS port number associated with your Coverity Connect
host. The default HTTPS port is 8443.

4. Check the Coverity Connect URL to make sure it is correct.

5. If SSL is used with the connection, select Secured using SSL.

Note

If an additional CA certificate is needed, select Use Extra CA Certificate, and click Browse to
identify the file.

6. Enter the Username and Password for Coverity Connect. The password is not stored in the
configuration file.

7. Click Check Connection to test the connection to Coverity Connect.

If you want to regenerate a report using the same input data, you do not have to reconnect to Coverity.

12.2.2. Working with the CERT Report

The user workflow for working with the CERT Report is as follows:

1. In the Settings pane, select Coverity Connect.

2. Use the Coverity Connect Project drop-down list to select a project in Coverity Connect. This
requires a valid connection, as established in the previous step.

414

Installing the CERT Report Generator

3. In the Customization pane, enter information to customize the report. The names and terms you
specify are used throughout the report, and the company name and logo (if specified) are featured
on the cover page.

If you elect to use a logo, click Choose File button to specify the name of an image file containing
the logo. (Coverity can handle most standard image files. If it cannot handle the image you provide, it
returns an error specifying the formats it can handle.)

4. Click File → Save to save the .yaml configuration file for future use.

5. Click Create Report to generate the report.

12.2.3. Configuring the Coverity CERT Report

You can specify configuration information using a .yaml file. A sample config.yaml file is shipped with
the report generator and installed in the config directory.

Here is an example .yaml configuration file:

################## Sections that apply to all reports #############
version:
 schema-version: 5

connection:
 url: https://coverity.example.com:8443/
 username: admin
 ssl-ca-certs:

project:
title-page:
 company-name:
 project-name:
 project-version: 0.9
 logo:
 organizational-unit-name: Widgets
 organizational-unit-term: Division
 prepared-for:
 project-contact-email:
 prepared-by:

locale:
issue-cutoff-count: 200
snapshot-id:
snapshot-date:
issue-kind:
components:

################## CERT report #############
cert-report:
 target-level: F

415

Installing the CERT Report Generator

Note

The CERT Report requires the additional CERT Report settings listed in the example above. This
ensures that the CERT Report results are properly included in the output.

The following table describes each key in the file:

Key Description

cert-report Declares the CERT Report settings.

company-name Name of your company. This is a mandatory field.

components An optional comma-separated list of Coverity Connect component names, which include component
map names. If the components are listed here, the report will include data only for the listed
components; for example: Default.lib or Default.src.

connection The URL of the Coverity Connect instance.

issue-cutoff-count Some reports display information about individual issues. These reports bound the number of issues
displayed in order to control the size of the report. This bound is called the issue cutoff count. It is used
for CVSS, Security, PCIDSS, MobileOwasp, and Owasp2017 reports. Default value is 200. Maximum is
10000 for Security report.

issue-kind An optional comma-separated list of Coverity Connect issue kinds. If issue kinds are listed here, the
report will include only issues of the listed kinds.

The possible values for issue-kind are as follows:

• Quality

• Security

The following line is an example of using this option:

issue-kind: Quality

locale Locale of the report. Valid values are the following: en_US, ja_JP, ko_KR, and zh_CN. Default value is
en_US.

logo Optional path to a logo file for your company. Valid image types are bmp, gif, jpg, and png. The
maximum allowed image size is 210 pixels wide by 70 pixels high. Note that backslash characters in a
path must be doubled.

on-cert-trust Allows users to trust self-signed certificates sent by Coverity Connect. There are two possible values:
trust or distrust. Use trust to accept, use, and store a self-signed certificate for reuse. Use
distrust to reject connections from servers using self-signed certificates. The default value is trust.

organizational-unit-name Name of your division, group, team or other organizational unit. This is a mandatory field.

organizational-unit-term Organizational unit term (e.g., division, group, team). This is a mandatory field.

prepared-for Name of the entity for which the report was prepared. This is a mandatory field.

prepared-by Name of the entity that prepared the report. This is a mandatory field.

project Name of the Coverity Connect project.

416

Installing the CERT Report Generator

Key Description

project-contact-email Project contact email address. It is used for the following reports: CIR, CVSS, PCIDSS, MobileOwasp,
and OWASP2017. This is a mandatory field.

project-name Name of the software development project. May be distinct from the Coverity Connect project name.
This is an optional field.

project-version Lists the project version number. This is a mandatory field.

snapshot-date Retrieves the most recent snapshot of each stream in the project whose date is less than or equal to
the given date. Format is "DD/MM/YYYY".

snapshot-id Retrieves the defects of a specific snapshot id, instead of using the latest snapshot id of all the streams
associated with the project.

target-level This setting is used to determine the CERT configuration for target levels. The default value is F. The
following values are valid:

• F: Fully Compliant

• L2: L2 Compliant

• L1: L1 Compliant

title-page Describes the fields in the title page of the report.

username Coverity Connect username. Password or other authentication key

version The version of the .yaml file's schema.

For more information about schema configurations, see Chapter 6.1, Configuring Report Generators

12.2.4. Using system environment variables

To use a system environment variable for your report generator, write the path and filename where you’d
like the output file to be created and stored.

On Windows, you'd set the environment variable like this:

set WRITE_REPORT_XML=<filename>

On Linux, you'd set the environment variable like this:

export WRITE_REPORT_XML=<filename>

For the CERT Report Generator, you can use these two environment variables:

• WRITE_ISSUES_JSON: This variable writes defect or issue data to the JSON output file. If a file with
the same filename exists, it will be overwritten. A warning is issued if the file cannot be opened.

• WRITE_REPORT_XML: This variable writes properties from the report’s configuration to the XML output
file. If a file with the same filename exists, it will be overwritten. A warning is issued if the file cannot be
opened.

417

Installing the CERT Report Generator

12.2.5. Generating a previously configured report

You can save the configuration for a report as a .yaml file, and then use this document to regenerate the
report, with the same settings, when the analysis data is updated. You can regenerate the report using
the GUI or the command line.

To regenerate a report through the GUI:

1. Launch the cov-cert-report application.

2. Click File → Open Configuration, and select an existing configuration file.

3. Click Create Report to generate the report.

12.2.6. Generating the a report from the command line

You can generate a report based on a previously saved configuration by running cov-generate-cert-
report with the following settings:

cov-generate-cert-report <config-file> [--help] --on-new-cert {trust |
distrust} --output <output-file> --password <spec>

<[config-file]> The name of a Coverity CERT Report configuration (.yaml) file. This is the
configuration values you defined using the GUI.

[--help] Display this help message and exit.

[--on-new-cert <value>] <value> can be trust or distrust.

If distrust (the default), an attempt to connect to the server using SSL will
fail if the server provides an untrusted self-signed certificate.

[--output
<output_file>]

Name of the PDF output file. The file will be replaced if present.

[--password <spec>] Coverity Connect password specifier. <spec> has one of the following forms:

console
The password is read from the keyboard without echoing.

file:<filename>
The password is read from the first line of <filename>.

env:<variable>
The password is read from the environment variable <variable>.

12.2.7. Interpreting the CERT Report

The CERT division of the SEI (Software Engineering Institute) defines coding standards for commonly-
used programming languages such as C, C++, Java, and Perl, and the Android platform. These
standards provide a set of rules and recommendations to help you develop safe, reliable, and secure

418

Installing the CERT Report Generator

systems. It is important to understand how CERT rules are evaluated in order to understand reported
violations and summaries.

CERT standards, described in Appendix B of the Coverity Checker Reference, divide their compliance
tests into a set of rules. Not all rules can be checked using static analysis. Each rule has an assigned
priority, which is the product of three risk assessment values multiplied together. These values are
assigned on a scale of 1 to 3 for likelihood, severity, and remediation cost. This product is used to
prioritize rules.

Priorities, in turn, may have ten possible values: from lowest to highest (1, 2, 3, 4, 6, 8, 9, 12, 18, 27).
Each rule also has a level, which divides priorities into one of three buckets:

• L3 for the lowest priorities of 1, 2 ,3 ,4

• L2 for priorities 6, 8, 9

• L1 for the highest priorities of 12, 18, 27

Software can be assessed as L1, L2, or L3 fully conforming, depending on the set of rules used to
validate the software. Compliance is evaluated as follows, from lowest to highest:

• Not conformant: has one or more L1 rule violations.

• L1 conforming: complies with all L1 rules, but has L2 violations.

• L2 conforming: complies with all L1 and L2 rules, but has L3 violations.

• Fully conformant: has no violations.

The software team should validate code by proceeding from the highest to the lowest priority level. CERT
compliance requires that a software product have no defects or exploitable vulnerabilities.

Following several summaries, the CERT Report provides detailed information about CERT rules and your
code's compliance. Each entry provides information like the following:

• A rule identifier that specifies the rule being validated; for example, PRE30-C.

• A description that explains the rule that is being validated; for example "Do not create a universal
character name through concatenation."

A reason might be provided if the rule is currently disabled in the analysis configuration.

• The priority of the rule.

• The level of the rule.

• Whether the rule is supported by the analysis.

• Whether the rule is enabled in the analysis configuration.

• The number of times the rule has been violated. This number is a count of individual occurrences of
violations. By contrast, the violation (or issue) count in Coverity Connect counts "merged," or fully
distinct, groups of violations.

419

Part 13. Coverity OWASP Web Top 10

Table of Contents
13.1. Overview ... 421

13.1.1. Working with the OWASP Web Top 10 Report Generator ... 422
13.1.2. Interpreting the OWASP Web Top 10 Report ... 422

13.2. Working with the OWASP Web Top 10 Report Generator .. 423
13.2.1. Installing the Report Generator .. 423
13.2.2. Configuring an OWASP Web Top 10 Report .. 423
13.2.3. Generating an OWASP Top 10 Report .. 425

Chapter 13.1. Overview

Table of Contents
13.1.1. Working with the OWASP Web Top 10 Report Generator ... 422
13.1.2. Interpreting the OWASP Web Top 10 Report ... 422

The OWASP Web Top 10 report generator uses analysis results for a Coverity Connect project to
evaluate the analyzed codebase. Based on this evaluation, it creates a OWASP Top Ten report, which
details the assessments that were done, provides a summary of findings, and specifies the remediations
needed. Information from this report is of special interest to application security assurance teams and
their clients.

The OWASP (Open Web Application Security Project) Foundation is an international organization whose
mission is to advance the cause of secure software. As part of its activities, OWASP publishes a report of
the most critical web application security flaws in rank order based on the input of a worldwide group of
security experts. The most recent version of this list and accompanying report is the OWASP Top 10 List
for 2017; The OWSAP Top 10 List is referenced by many standards including MITRE, PCI DSS, DISA,
and the FTC. For more information, see https://owasp.org.

The OWASP top ten include the following categories:

• Injection (A1:2017)

• Broken Authentication and Session Management (A2:2017)

• Sensitive Data Exposure (A3:2017)

• XML External Entities (A4:2017)

• Broken Access Control (A5:2017)

• Security Misconfiguration (A6:2017)

• Cross-site Scripting (A7:2017)

• Insecure Deserialization (A8:2017)

• Using Components with Known Vulnerabilities (A9:2017)

• Insufficient Logging and Monitoring (A10:2017)

The report provides additional information about each of these categories.

You can localize reports by setting the locale filed of your report generation configuration file.

This chapter describes the workflow needed for generating an OWASP Web Top 10 report and explains
how you interpret report findings.

421

https://owasp.org

Overview

13.1.1. Working with the OWASP Web Top 10 Report Generator

The user workflow for working with the OWASP Web Top 10 Report Generator is as follows:

1. Install the Report Generator using the Coverity Reports Installer. See Installing the Security Report
Generator for more information.

2. Configure the report. This allows you to specify information that is displayed on the report's cover page
and to specify notification information.

See Configuring a OWASP Web Top 10 report for more information.

3. Generate the report.

13.1.2. Interpreting the OWASP Web Top 10 Report

The report is divided into three basic sections that describe the issues found in increasing amount of
detail:

• Executive Summary provides tabular and graphic summary information for the issues found.

• Analysis Details shows the number of issues associated with each OWASP Top 10 category. For
each defect found, the report describes the issue type, the file name, and line number and the date it
was first detected.

• Methodology describes basic elements associated with report output.

Each section of the report includes detailed information about the vulnerabilities found and remediation
action.

422

Chapter 13.2. Working with the OWASP Web Top 10 Report
Generator

Table of Contents
13.2.1. Installing the Report Generator .. 423
13.2.2. Configuring an OWASP Web Top 10 Report .. 423
13.2.3. Generating an OWASP Top 10 Report .. 425

The following sections explain how you install the OWASP Web Top 10 report generator and how you
configure it.

13.2.1. Installing the Report Generator

The OWASP Web Top 10 report generator is installed separately from Coverity Connect. You can obtain
the installer for the OWASP Web Top 10 report generator installer from the Downloads page in Coverity
Connect.

To install on Windows or Linux

1. Log in to Coverity Connect.

In Help → Downloads, download the cov-report installer.

2. Install cov-reports.

3. Navigate to the Coverity report installation directory: for example,

C:\Program Files\Coverity\Coverity Reports\bin

4. Verify that the file cov-generate-owasp2017-report exists.

5. Before you run the cov-generate-owasp2017-report command to generate the report, you
must configure report generation, as explained in Configuring a OWASP Top Ten report .

13.2.2. Configuring an OWASP Web Top 10 Report

Configuration values determine the information displayed on the title page of your report and specify
notification information for your project. You can configure a security report by setting specifications in
your config.yaml configuration file. (A config.yaml template file is shipped with the report generator
and is installed in the config directory.)

Here is an example .yaml configuration file:

################## Sections that apply to all reports #############
version:
 schema-version: 5

connection:

423

Working with the OWASP Web Top 10 Report Generator

 url: https://coverity.example.com:8443/
 username: admin
 ssl-ca-certs:

project:
title-page:
 company-name:
 project-name:
 project-version: 0.9
 logo:
 organizational-unit-name: Widgets
 organizational-unit-term: Division
 prepared-for:
 project-contact-email:
 prepared-by:

locale:
issue-cutoff-count: 200
snapshot-id:
snapshot-date:
issue-kind:
components:

Note

The OWASP Top 10 Report does not require any additional report settings to be configured.

The following table describes each key in the file:

Key Description

company-name Name of your company. This is a mandatory field.

components An optional comma-separated list of Coverity Connect component names, which include component
map names. If the components are listed here, the report will include data only for the listed
components; for example: Default.lib or Default.src.

connection The URL of the Coverity Connect instance.

issue-cutoff-count Some reports display information about individual issues. These reports bound the number of issues
displayed in order to control the size of the report. This bound is called the issue cutoff count. It is used
for CVSS, Security, PCIDSS, MobileOwasp, and Owasp2017 reports. Default value is 200. Maximum is
10000 for Security report.

issue-kind An optional comma-separated list of Coverity Connect issue kinds. If issue kinds are listed here, the
report will include only issues of the listed kinds.

The possible values for issue-kind are as follows:

• Quality

• Security

The following line is an example of using this option:

424

Working with the OWASP Web Top 10 Report Generator

Key Description
issue-kind: Quality

locale Locale of the report. Valid values are the following: en_US, ja_JP, ko_KR, and zh_CN. Default value is
en_US.

logo Optional path to a logo file for your company. Valid image types are bmp, gif, jpg, and png. The
maximum allowed image size is 210 pixels wide by 70 pixels high. Note that backslash characters in a
path must be doubled.

on-cert-trust Allows users to trust self-signed certificates sent by Coverity Connect. There are two possible values:
trust or distrust. Use trust to accept, use, and store a self-signed certificate for reuse. Use
distrust to reject connections from servers using self-signed certificates. The default value is trust.

organizational-unit-name Name of your division, group, team or other organizational unit. This is a mandatory field.

organizational-unit-term Organizational unit term (e.g., division, group, team). This is a mandatory field.

prepared-for Name of the entity for which the report was prepared. This is a mandatory field.

prepared-by Name of the entity that prepared the report. This is a mandatory field.

project Name of the Coverity Connect project.

project-contact-email Project contact email address. It is used for the following reports: CIR, CVSS, PCIDSS, MobileOwasp,
and OWASP2017. This is a mandatory field.

project-name Name of the software development project. May be distinct from the Coverity Connect project name.
This is an optional field.

project-version Lists the project version number. This is a mandatory field.

snapshot-date Retrieves the most recent snapshot of each stream in the project whose date is less than or equal to
the given date. Format is "DD/MM/YYYY".

snapshot-id Retrieves the defects of a specific snapshot id, instead of using the latest snapshot id of all the streams
associated with the project.

title-page Describes the fields in the title page of the report.

username Coverity Connect username. Password or other authentication key

version The version of the .yaml file's schema.

For more information about schema configurations, see Chapter 6.1, Configuring Report Generators

13.2.3. Generating an OWASP Top 10 Report

After you have saved your report configuration, you can generate an OWASP Top Report by running the
following command:

cov-generate-owasp2017-report <configuration-file>
 [--on-new-cert <value>]
 [--output <output-file>]
 [--password <spec> | --auth-key-file <filename>]
 [--project <project-name>]

The parameters for this report generator are as follows:

425

Working with the OWASP Web Top 10 Report Generator

<configuration-file>
The path to the config.yaml file you created

--on-new-cert
(Optional) When connecting to the Coverity Connect server via SSL/TLS, this parameter specifies
how to handle a new certificate. The <value> parameter can have one of two values:

distrust
(The default) If the certificate is self-signed, the connect attempt will fail.

trust
The certificate will be accepted, even if it is self-signed.

--output <output-file>
(Optional) Specifies a PDF file in which to save the report.

If a file of this name already exists, the new report overwrites the old one.

--password <spec>
(Required if --auth-key-file is not present.) Specifies how to provide your Coverity Connect
password.

The password <spec> has a few possible forms, listed here:

console
Tells Coverity Connect to prompt for the password from standard input. Coverity Connect does
not echo the password characters.

file:<filename>
Tells Coverity Connect to read the password from the specified file.

Entering file:- tells Coverity Connect to prompt for the file name from standard input.

env:<variable>
Tells Coverity Connect to read the password from the specified environment variable.

--auth-key-file <filename>
(Required if --password is not present.) Specifies a file that contains your Coverity Connect
authentication key.

Authenticating via a key value is an alternative to using a password. See Section 3.2.1.6, “Working
with authentication keys”.

--project <project-name>
(Optional) Sets the project name.

The value is optional in this location: This option sets the project name here, at the command line. As
an alternative, you can set the project name in the YAML configuration file.

For example,

426

Working with the OWASP Web Top 10 Report Generator

cov-generate-owasp2017-report mydir/config.yaml --password console --project demo

To get help with command syntax, enter:

cov-generate-owasp2017-report --help

427

Part 14. Coverity Mobile OWASP Top 10

Table of Contents
14.1. Overview ... 429

14.1.1. User workflow ... 429
14.1.2. Interpreting the Mobile OWASP Top 10 Report .. 429

14.2. Working with the Mobile OWASP Top 10 Report Generator ... 431
14.2.1. Installing the Report Generator .. 431
14.2.2. Configuring a Mobile OWASP Top 10 Report ... 431
14.2.3. Generating a Mobile OWASP Report ... 433

Chapter 14.1. Overview

Table of Contents
14.1.1. User workflow ... 429
14.1.2. Interpreting the Mobile OWASP Top 10 Report .. 429

The Mobile OWASP Top 10 report generator uses analysis results for a Coverity Connect project to
evaluate the analyzed codebase. Based on this evaluation, it creates a Mobile OWASP Top Ten report,
which details the assessments that were done, provides a summary of findings, and specifies the
remediations needed. Information from this report is of special interest to application security assurance
teams and their clients.

The Mobile OWASP Security Project provides developers and security teams the resources they need to
build and maintain secure mobile applications. The project's goal is to classify mobile security risks and
provide developmental controls to reduce their impact or likelihood of exploitation. The Mobile OWASP
Top 10 lists the ten top security risks to mobile applications: The most recent version of this list is the
Mobile Top 10 for 2017.

You can localize reports by setting the locale filed of your report generation configuration file.

This chapter describes the workflow needed for generating a Mobile OWASP Top 10 report and explains
how you interpret report findings.

14.1.1. User workflow

The user workflow for working with the Mobile OWASP Top 10 report generator is as follows:

1. Install the Report Generators using the Coverity Reports Installer. See Installing the Security Report
Generator for more information.

2. Configure the report. This allows you to specify information that is displayed on the report's cover page
and to specify notification information.

See Configuring a Mobile OWASP Top 10 report for more information.

3. Generate the report.

14.1.2. Interpreting the Mobile OWASP Top 10 Report

The report is divided into four basic sections that describe the issues found in increasing amount of detail:

• Executive Summary provides tabular and graphic summary information for the issues found.

• Analysis Details shows the number of issues associated with each Mobile OWASP Top 10 category.

• Detailed Issues Ranked by Mobile OWASP Category lists all issues, the name of the source file for
that issue and the line number where the issue can be found.

429

Overview

• Methodology describes basic elements associated with report output.

Each section of the report includes detailed information about the vulnerabilities found and remediation
action.

430

Chapter 14.2. Working with the Mobile OWASP Top 10 Report
Generator

Table of Contents
14.2.1. Installing the Report Generator .. 431
14.2.2. Configuring a Mobile OWASP Top 10 Report ... 431
14.2.3. Generating a Mobile OWASP Report .. 433

The following sections explain how you install the Mobile OWASP Top 10 report generator and how you
configure it.

14.2.1. Installing the Report Generator

The Mobile OWASP Top 10 report generator is installed separately from Coverity Connect. You can
obtain the installer for the Mobile OWASP Top 10 report generator installer from the Downloads page in
Coverity Connect.

To install on Windows or Linux

1. Log in to Coverity Connect.

In Help → Downloads, download the cov-report installer.

2. Install cov-reports.

3. Navigate to the Coverity report installation directory: for example,

C:\Program Files\Coverity\Coverity Reports\bin

4. Verify that the file cov-generate-mobileowasp-report exists.

5. Before you run the cov-generate-mobileowasp-report command to generate the report, you
must configure report generation, as explained in Configuring a Mobile OWASP Top 10 report .

14.2.2. Configuring a Mobile OWASP Top 10 Report

Configuration values determine the information displayed on the title page of your report and specify
notification information for your project. You can configure a security report by setting specifications in
your config.yaml configuration file. (A config.yaml template file is shipped with the report generator
and is installed in the config directory.)

Here is an example .yaml configuration file:

version:
 schema-version: 5
connection:
 url: https://coverity.example.com:8443/
 username: admin

431

Working with the Mobile OWASP Top 10 Report Generator

 ssl-ca-certs:
project:
title-page:
 company-name:
 project-name:
 project-version: 0.9
 logo:
 organizational-unit-name: Widgets
 organizational-unit-term: Division
 prepared-for:
 project-contact-email:
 prepared-by:
locale:
issue-cutoff-count: 200
snapshot-id:
snapshot-date:
issue-kind:
components:

Note

The Mobile OWASP Report does not require any additional report settings to be configured.

The following table describes each key in the file:

Key Description

company-name Name of your company. This is a mandatory field.

components An optional comma-separated list of Coverity Connect component names, which include component
map names. If the components are listed here, the report will include data only for the listed
components; for example: Default.lib or Default.src.

connection The URL of the Coverity Connect instance.

issue-cutoff-count Some reports display information about individual issues. These reports bound the number of issues
displayed in order to control the size of the report. This bound is called the issue cutoff count. It is used
for CVSS, Security, PCIDSS, MobileOwasp, and Owasp2017 reports. Default value is 200. Maximum is
10000 for Security report.

issue-kind An optional comma-separated list of Coverity Connect issue kinds. If issue kinds are listed here, the
report will include only issues of the listed kinds.

The possible values for issue-kind are as follows:

• Quality

• Security

The following line is an example of using this option:

issue-kind: Quality

locale Locale of the report. Valid values are the following: en_US, ja_JP, ko_KR, and zh_CN. Default value is
en_US.

432

Working with the Mobile OWASP Top 10 Report Generator

Key Description

logo Optional path to a logo file for your company. Valid image types are bmp, gif, jpg, and png. The
maximum allowed image size is 210 pixels wide by 70 pixels high. Note that backslash characters in a
path must be doubled.

on-cert-trust Allows users to trust self-signed certificates sent by Coverity Connect. There are two possible values:
trust or distrust. Use trust to accept, use, and store a self-signed certificate for reuse. Use
distrust to reject connections from servers using self-signed certificates. The default value is trust.

organizational-unit-name Name of your division, group, team or other organizational unit. This is a mandatory field.

organizational-unit-term Organizational unit term (e.g., division, group, team). This is a mandatory field.

prepared-for Name of the entity for which the report was prepared. This is a mandatory field.

prepared-by Name of the entity that prepared the report. This is a mandatory field.

project Name of the Coverity Connect project.

project-contact-email Project contact email address. It is used for the following reports: CIR, CVSS, PCIDSS, MobileOwasp,
and OWASP2017. This is a mandatory field.

project-name Name of the software development project. May be distinct from the Coverity Connect project name.
This is an optional field.

project-version Lists the project version number. This is a mandatory field.

snapshot-date Retrieves the most recent snapshot of each stream in the project whose date is less than or equal to
the given date. Format is "DD/MM/YYYY".

snapshot-id Retrieves the defects of a specific snapshot id, instead of using the latest snapshot id of all the streams
associated with the project.

title-page Describes the fields in the title page of the report.

username Coverity Connect username. Password or other authentication key

version The version of the .yaml file's schema.

For more information about schema configurations, see Chapter 6.1, Configuring Report Generators

14.2.3. Generating a Mobile OWASP Report

After you have saved your report configuration, you can generate a Mobile OWASP Report by running
the following command:

cov-generate-mobile-owasp-report <configuration-file> --password <spec> [--project
 <project-name>]

• For <configuration-file>, specify the path to the config.yaml file you created.

• For password, specify the password you use when you connect to Coverity Connect.

• The project name can either be set (via command line) with the --project option or it can be entered
directly into the YAML configuration file.

For example,

433

Working with the Mobile OWASP Top 10 Report Generator

cov-generate-mobile-owasp-report mydir/config.yaml --password console --project demo

To get help with command syntax, enter:

cov-generate-mobile-owasp-report --help

434

Part 15. Coverity PCI DSS

Table of Contents
15.1. Overview ... 436

15.1.1. Working with the PCI DSS Report Generator ... 436
15.1.2. Interpreting the PCI DSS Report ... 436

15.2. Working with the PCI DSS Report Generator .. 438
15.2.1. Installing the Report Generator .. 438
15.2.2. Configuring a PCI DSS Report .. 438
15.2.3. Generating a PCI DSS Report .. 440

Chapter 15.1. Overview

Table of Contents
15.1.1. Working with the PCI DSS Report Generator ... 436
15.1.2. Interpreting the PCI DSS Report .. 436

The PCI DSS report generator uses analysis results for a Coverity Connect project to evaluate the
analyzed codebase. Based on this evaluation, it creates a report, which details the assessments that
were done, provides a summary of findings, and specifies the remediations needed. Information from this
report is of special interest to application security assurance teams and their clients.

The PCI Security Standards Council is a global forum for the ongoing development, enhancement,
storage, dissemination and implementation of security standards for account data protection. The
Payment Card Industry Data Security Standard (PCI DSS) was developed to encourage and enhance
cardholder data security and facilitate the broad adoption of consistent data security measures globally.
PCI DSS provides a baseline of technical and operational requirements designed to protect account data.

Important

You are required to generate a CVSS report before you can use the PCI DSS report generator
because the latter depends upon the vulnerability scoring system defined by CVSS. For information
about generating a CVSS report, see "Coverity CVSS Report" in the Coverity Platform User and
Administrator Guide.

You can localize reports by setting the locale filed of your report generation configuration file.

This chapter describes the workflow needed for generating a PCI DSS report and explains how you
interpret report findings.

15.1.1. Working with the PCI DSS Report Generator

The user workflow for working with the PCI DSS Report Generator is as follows:

1. Install the report generator using the Coverity Reports Installer. See Installing the Security Report
Generator for more information.

2. Configure the report. This allows you to specify information that is displayed on the report's cover page
and to specify notification information.

See Configuring a PCI DSS report for more information.

3. Generate the report.

15.1.2. Interpreting the PCI DSS Report

The report is divided into three basic sections that describe the issues found in increasing amount of
detail:

436

Overview

• Executive Summary provides tabular and graphic summary information for the issues found.

• Analysis Details shows the number of issues associated with each OWASP Top 10 category and
PCI DSS v3.2 catgegory. For each defect found, the report describes the issue type, remediation
information, the file name, and line number and the date it was first detected.

• Methodology describes basic elements associated with report output.

Each section of the report includes detailed information about the vulnerabilities found and remediation
action.

437

Chapter 15.2. Working with the PCI DSS Report Generator

Table of Contents
15.2.1. Installing the Report Generator .. 438
15.2.2. Configuring a PCI DSS Report .. 438
15.2.3. Generating a PCI DSS Report .. 440

The following sections explain how you install the PCI DSS report generator and how you configure it.

15.2.1. Installing the Report Generator

The PCI DSS report generator is installed separately from Coverity Connect. You can obtain the installer
for the PCI DSS report generator installer from the Downloads page in Coverity Connect.

To install on Windows or Linux

1. Log in to Coverity Connect.

In Help → Downloads, download the cov-report installer.

2. Install cov-reports.

3. Navigate to the Coverity report installation directory: for example,

C:\Program Files\Coverity\Coverity Reports\bin

4. Verify that the file cov-generate-pci-dss-report exists.

5. Before you run the cov-generate-pci-dss-report command to generate the report, you must
configure report generation, as explained in Configuring a PCI DSS report.

15.2.2. Configuring a PCI DSS Report

Configuration values determine the information displayed on the title page of your report and specify
notification information for your project. You can configure a security report by setting specifications in
your config.yaml configuration file. (A config.yaml template file is shipped with the report generator
and is installed in the config directory.)

Here is an example .yaml configuration file for the PCI DSS Report:

version:
 schema-version: 5
connection:
 url: https://coverity.example.com:8443/
 username: admin
 ssl-ca-certs:
project:
title-page:
 company-name:

438

Working with the PCI DSS Report Generator

 project-name:
 project-version: 0.9
 logo:
 organizational-unit-name: Widgets
 organizational-unit-term: Division
 prepared-for:
 project-contact-email:
 prepared-by:
locale:
issue-cutoff-count: 200
snapshot-id:
snapshot-date:
issue-kind:
components:

Note

The PCI DSS Report does not require any additional report settings to be configured.

The following table describes each key in the file:

Field Description

company-name Name of your company. This is a mandatory field.

components An optional comma-separated list of Coverity Connect component names, which include component
map names. If the components are listed here, the report will include data only for the listed
components; for example: Default.lib or Default.src.

connection The URL of the Coverity Connect instance.

issue-cutoff-count Some reports display information about individual issues. These reports bound the number of issues
displayed in order to control the size of the report. This bound is called the issue cutoff count. It is used
for CVSS, Security, PCIDSS, MobileOwasp, and Owasp2017 reports. Default value is 200. Maximum is
10000 for Security report.

issue-kind An optional comma-separated list of Coverity Connect issue kinds. If issue kinds are listed here, the
report will include only issues of the listed kinds.

The possible values for issue-kind are as follows:

• Quality

• Security

The following line is an example of using this option:

issue-kind: Quality

locale Locale of the report. Valid values are the following: en_US, ja_JP, ko_KR, and zh_CN. Default value is
en_US.

logo Optional path to a logo file for your company. Valid image types are bmp, gif, jpg, and png. The
maximum allowed image size is 210 pixels wide by 70 pixels high. Note that backslash characters in a
path must be doubled.

439

Working with the PCI DSS Report Generator

Field Description

on-cert-trust Allows users to trust self-signed certificates sent by Coverity Connect. There are two possible values:
trust or distrust. Use trust to accept, use, and store a self-signed certificate for reuse. Use
distrust to reject connections from servers using self-signed certificates. The default value is trust.

organizational-unit-name Name of your division, group, team or other organizational unit. This is a mandatory field.

organizational-unit-term Organizational unit term (e.g., division, group, team). This is a mandatory field.

prepared-for Name of the entity for which the report was prepared. This is a mandatory field.

prepared-by Name of the entity that prepared the report. This is a mandatory field.

project Name of the Coverity Connect project.

project-contact-email Project contact email address. It is used for the following reports: CIR, CVSS, PCIDSS, MobileOwasp,
and OWASP2017. This is a mandatory field.

project-name Name of the software development project. May be distinct from the Coverity Connect project name.
This is an optional field.

project-version Lists the project version number. This is a mandatory field.

snapshot-date Retrieves the most recent snapshot of each stream in the project whose date is less than or equal to
the given date. Format is "DD/MM/YYYY".

snapshot-id Retrieves the defects of a specific snapshot id, instead of using the latest snapshot id of all the streams
associated with the project.

title-page Describes the fields in the title page of the report.

username Coverity Connect username. Password or other authentication key

version The version of the .yaml file's schema.

For more information about schema configurations, see Chapter 6.1, Configuring Report Generators

15.2.3. Generating a PCI DSS Report

Now that you've configured your report and set your environment variable, you can generate the PCI
DSS Report by running the following command:

cov-generate-pci-dss-report <configuration-file> --password <spec> [--project
 <project-name>] --report

• For <configuration-file>, specify the path to the config.yaml file you created.

• For password, specify the password you use when you connect to Coverity Connect.

• The project name can either be set (via command line) with the --project option or it can be entered
directly into the YAML configuration file.

For example,

cov-generate-pci-dss-report mydir/config.yaml --password console --project demo

To get help with command syntax, enter:

440

Working with the PCI DSS Report Generator

cov-generate-pci-dss-report --help

441

	Coverity Platform 2020.12 User and Administrator Guide
	Table of Contents
	Part 1. Coverity Platform Overview
	Chapter 1.1. Installation, Product Licenses, and Supported Platforms
	Chapter 1.2. Login
	Chapter 1.3. Shared Navigation and Main menu tools
	Chapter 1.4. Help Menu
	1.4.1. Keyboard Shortcuts
	1.4.2. Product downloads
	1.4.3. Customer feedback for Coverity
	1.4.4. Coverity Connect platform details
	1.4.5. Coverity Connect documentation set

	Part 2. Coverity Connect Usage
	Chapter 2.1. Getting Started with Coverity Connect
	Chapter 2.2. Managing issues
	2.2.1. Understanding the primary Coverity Connect workflows
	2.2.1.1. Development workflow
	2.2.1.2. Management workflow

	2.2.2. Finding issues
	2.2.2.1. Searching for issues by CID
	2.2.2.2. Using views to find issues

	2.2.3. Managing Issues
	2.2.3.1. Show Source Gutter Menu
	2.2.3.2. File tree

	2.2.4. Triaging issues
	2.2.4.1. Event-driven triage notifications

	Chapter 2.3. Monitoring issues
	2.3.1. Dashboards
	2.3.2. View-level Charts

	Chapter 2.4. User Reference
	2.4.1. Views
	2.4.1.1. View Types
	2.4.1.1.1. Issues: By Snapshot
	2.4.1.1.2. Issues: Project Scope
	2.4.1.1.3. Files
	2.4.1.1.4. Functions
	2.4.1.1.5. Components
	2.4.1.1.6. Checkers
	2.4.1.1.7. Owners
	2.4.1.1.8. Snapshots
	2.4.1.1.9. Trends
	2.4.1.1.10. Tests

	2.4.2. View Management
	2.4.2.1. Edit Settings
	2.4.2.1.1. Save as a Copy
	2.4.2.1.2. Filters
	2.4.2.1.3. Group By
	2.4.2.1.4. Columns
	2.4.2.1.5. Snapshot scope

	2.4.2.2. Creating and editing views
	2.4.2.3. Sharing
	2.4.2.3.1. Relative user

	2.4.2.4. Notification
	2.4.2.5. Delete
	2.4.2.6. Export CSV
	2.4.2.7. Export XML
	2.4.2.8. Get Link

	2.4.3. Snapshot comparison
	2.4.3.1. Snapshot comparison scope grammar
	2.4.3.1.1. Snapshot selection grammar usage notes
	2.4.3.1.2. Grammar for time filter usage

	2.4.3.2. Examples

	2.4.4. View-specific email notifications
	2.4.4.1. Use cases
	2.4.4.1.1. Scenario: Weekly team email to reflect all outstanding issues for the release
	2.4.4.1.2. Scenario: User specific email to catch each new software issue
	2.4.4.1.3. Scenario: Email to single user illustrating newly triaged issues
	2.4.4.1.4. Scenario: Notification upon completed commit

	2.4.4.2. Scheduling a view-specific email notification
	2.4.4.3. Manually triggering a notification email

	2.4.5. Triage attributes
	2.4.5.1. Classification
	2.4.5.2. Severity
	2.4.5.3. Action
	2.4.5.4. Legacy
	2.4.5.5. Fix Target
	2.4.5.6. Owner
	2.4.5.7. Ext. Reference
	2.4.5.8. Comment

	2.4.6. Preferences

	Part 3. Coverity Connect Administration
	Chapter 3.1. Performing system configurations
	3.1.1. Configuring and managing the Coverity Connect server
	3.1.1.1. Configuring Coverity Analysis Updates
	3.1.1.1.1. Storage Capacity and Management
	3.1.1.1.2. Developer Workflow
	3.1.1.1.3. External Network Access

	3.1.1.2. Configuring global owner assignment rules
	3.1.1.3. Integrating with Jira
	3.1.1.3.1. Requirements
	3.1.1.3.2. Configuring Jira export
	3.1.1.3.2.1. Server configuration
	3.1.1.3.2.2. Project mapping
	3.1.1.3.2.3. Adding a project mapping
	3.1.1.3.2.4. Using templates for the Constant static field

	3.1.1.4. Integrating with other (non-JIRA) bug tracking systems
	3.1.1.4.1. Requirements
	3.1.1.4.2. Server Configuration
	3.1.1.4.3. Configuring the project mapping from Coverity Connect to Bugzilla
	3.1.1.4.3.1. Maintaining or replacing project mappings

	3.1.1.4.4. Variable Substitution
	3.1.1.4.4.1. Example: Map Coverity fields to Bugzilla fields

	3.1.1.4.5. Connecting to a Bugzilla instance using SSL

	3.1.1.5. Configuring custom checker descriptions
	3.1.1.6. Configuring custom issue categories
	3.1.1.6.1. Issue categorization map JSON format

	3.1.1.7. Configuring sign-in settings
	3.1.1.8. Configuring Coverity Connect for TLS/SSL
	3.1.1.8.1. Commit encryption use cases

	3.1.1.9. Integrating with LDAP servers
	3.1.1.9.1. LDAP server requirements
	3.1.1.9.2. Read-only access to LDAP data
	3.1.1.9.3. LDAP server types
	3.1.1.9.4. LDAP server configuration overview
	3.1.1.9.5. Configuring LDAP server settings
	3.1.1.9.5.1. Connection settings
	3.1.1.9.5.2. Pre-fill settings
	3.1.1.9.5.3. User search settings
	3.1.1.9.5.4. Group Search Settings

	3.1.1.9.6. LDAP security
	3.1.1.9.6.1. Configuring Coverity Connect with SSL and TLS-enabled LDAP servers
	3.1.1.9.6.1.1. Using a truststore
	3.1.1.9.6.1.2. LDAP server authentication
	3.1.1.9.6.1.3. Client authentication

	3.1.1.9.7. Upgrading LDAP server configuration settings
	3.1.1.9.8. Stopping and starting Coverity Connect
	3.1.1.9.9. LDAP debugging tools
	3.1.1.9.9.1. Integrating Coverity Connect with Active Directory (AD) Global Catalog

	3.1.1.10. Configuring Coverity Connect to use Kerberos
	3.1.1.10.1. Kerberos Overview
	3.1.1.10.2. Key Concepts
	3.1.1.10.3. Setup
	3.1.1.10.4. Configuring the Browser
	3.1.1.10.4.1. Configuring the Firefox browser on Linux and Mac OS
	3.1.1.10.4.2. Configuring the Chrome browser on Linux and Mac OS
	3.1.1.10.4.3. Obtaining an initial Kerberos ticket

	3.1.1.10.5. Troubleshooting
	3.1.1.10.5.1. How can I test that my Kerberos-enabled client is working with a Kerberos-enabled web server?
	3.1.1.10.5.2. Why am I getting errors about unsupported encryption types?

	3.1.1.11. Adding and configuring a reverse proxy server
	3.1.1.11.1. Setup using Apache HTTP Server

	3.1.1.12. Adding Reverse Proxy Authentication
	3.1.1.12.1. RPA key concepts
	3.1.1.12.2. Setting up RPA
	3.1.1.12.3. Configuring Coverity Connect for RPA

	3.1.1.13. Coverity Connect license information
	3.1.1.14. Analysis license files
	3.1.1.15. Configuring email notification and delivery
	3.1.1.15.1. Setting up component subscription notification
	3.1.1.15.2. Setting the maximum included defects in notification emails
	3.1.1.15.3. Changing the URL for email notifications
	3.1.1.15.4. Configuring Coverity Connect with an SSL-enabled mail server
	3.1.1.15.5. Configuring your default email to send view-specific notification emails

	3.1.1.16. Configuring logging
	3.1.1.16.1. Coverity Connect log files
	3.1.1.16.2. Enhanced Usage Logging

	3.1.1.17. Collecting and delivering Use and Compliance data (UDC)
	3.1.1.17.1. Administering Use and Compliance data

	3.1.1.18. Enabling Issue Export by URL or Export Defect Handler
	3.1.1.19. Disabling project dashboards in the Coverity Connect interface
	3.1.1.20. Specifying commit options
	3.1.1.21. System Diagnostics
	3.1.1.21.1. System Diagnostics Overview
	3.1.1.21.2. Custom Database Queries

	3.1.1.22. Securing Coverity Connect

	3.1.2. Configuring and managing the embedded database
	3.1.2.1. Important notes
	3.1.2.2. Maintaining the size of the database
	3.1.2.2.1. Database optimization
	3.1.2.2.2. Purge snapshot details
	3.1.2.2.2.1. Configuring Purge Snapshot Details
	3.1.2.2.2.2. Important upgrade notes

	3.1.2.3. Backing up the database
	3.1.2.3.1. Important notes
	3.1.2.3.2. Using the Coverity Connect UI
	3.1.2.3.3. Using the command line

	3.1.2.4. Restoring the database

	3.1.3. Client-side SSL Certificate Management
	3.1.3.1. Overview
	3.1.3.2. SSL Key Concepts
	3.1.3.3. Server Certificate Use Cases
	3.1.3.4. Improvements in Certificate Management
	3.1.3.5. Self-signed certificates and Trust-First-Time SSL
	3.1.3.6. Types of Coverity Trust Stores
	3.1.3.7. Procedures for propagating CA certificates
	3.1.3.8. Obtaining the CA's certificate

	Chapter 3.2. Managing users, groups, and roles
	3.2.1. Managing users
	3.2.1.1. Setting up a local or LDAP user
	3.2.1.2. Editing a local or LDAP user
	3.2.1.2.1. Assigning a user to a group
	3.2.1.2.2. Managing roles for a user
	3.2.1.2.3. Locking and unlocking a user account
	3.2.1.2.4. Unlocking all temporarily locked user accounts
	3.2.1.2.5. Disabling a user account

	3.2.1.3. Deleting a user
	3.2.1.4. Importing users
	3.2.1.5. Limiting the scope of data collection
	3.2.1.6. Working with authentication keys
	3.2.1.6.1. Creating keys
	3.2.1.6.2. Using keys
	3.2.1.6.3. Viewing and revoking keys
	3.2.1.6.4. Use cases

	3.2.2. Managing groups
	3.2.2.1. Built-in groups
	3.2.2.2. Setting up a group
	3.2.2.2.1. Assigning one or more users to a group
	3.2.2.2.2. Managing roles for a group

	3.2.2.3. Editing a group
	3.2.2.4. Importing LDAP groups
	3.2.2.5. Deleting a group

	3.2.3. Roles and role based access control
	3.2.3.1. Key concepts
	3.2.3.1.1. Coverity Connect Permissions
	3.2.3.1.2. Coverity Connect roles
	3.2.3.1.2.1. Managing built-in roles
	3.2.3.1.2.2. Managing custom roles
	3.2.3.1.2.3. Creating new roles

	3.2.3.1.3. Understanding how Coverity Connect applies roles
	3.2.3.1.3.1. Permissions for triaging issues
	3.2.3.1.3.2. Triaging workflows and classifying issues
	3.2.3.1.3.3. Assigning roles to users and groups
	3.2.3.1.3.4. Assigning roles to levels

	3.2.3.1.4. Assigning RBAC roles on a synchronized Coverity Connect cluster
	3.2.3.1.5. Primary projects and stream links

	3.2.3.2. Use cases
	3.2.3.2.1. Scenario: Granting triage permissions on a synchronized Coverity Connect enterprise cluster
	3.2.3.2.2. Scenario: Delegating project management
	3.2.3.2.3. Scenario: Limiting access for project and stream administration
	3.2.3.2.4. Scenario: Managing roles through primary projects
	3.2.3.2.5. Scenario: Granting access to create streams
	3.2.3.2.6. Scenario: Restricting project access for Coverity Desktop users

	3.2.3.3. Guidelines for restricting access

	Chapter 3.3. Managing data on software issues
	3.3.1. Working with projects and streams
	3.3.1.1. Planning your project and stream configuration
	3.3.1.2. Creating, copying, and deleting projects and streams
	3.3.1.2.1. Setting up projects
	3.3.1.2.2. Setting up streams
	3.3.1.2.3. Associating a stream with multiple projects
	3.3.1.2.4. Copying and deleting projects and streams
	3.3.1.2.5. Exporting and importing streams
	3.3.1.2.6. Assigning roles per project or stream
	3.3.1.2.7. Selecting an issue categorization map for a stream
	3.3.1.2.8. Associating an analysis license with a project
	3.3.1.2.9. Using search filters to find projects and streams

	3.3.1.3. Editing projects and streams
	3.3.1.3.1. Associating a stream with a project
	3.3.1.3.2. Managing daily trend records at the project level
	3.3.1.3.3. Designating a stream for auto-deletion of expired streams

	3.3.1.4. Managing snapshots of streams
	3.3.1.4.1. Viewing snapshot data
	3.3.1.4.2. Deleting snapshots

	3.3.1.5. Setting automatic issue ownership in streams
	3.3.1.6. Setting Desktop Analysis options for streams

	3.3.2. Configuring triage attributes
	3.3.2.1. Creating a custom triage attribute
	3.3.2.1.1. Custom attribute limits

	3.3.2.2. Copying a triage attribute
	3.3.2.3. Editing triage attributes

	3.3.3. Using components
	3.3.3.1. Configuring components
	3.3.3.2. Importing and exporting component maps
	3.3.3.2.1. Exported component map JSON elements

	3.3.3.3. User scenarios: components
	3.3.3.3.1. System overview
	3.3.3.3.2. Scenario 1: Component configuration
	3.3.3.3.3. Scenario 2: User work-flow

	3.3.4. Managing triage stores
	3.3.4.1. Scenario: Sharing triage data across code branches (Recommended)
	3.3.4.2. Scenario: Separating triage data by code branch
	3.3.4.3. Scenario: Separating triage data in product-based projects
	3.3.4.4. Configuring triage stores after upgrading from version 6.0 or 6.0.1
	3.3.4.5. Exported triage store JSON elements

	3.3.5. Configuring legacy issues
	3.3.5.1. Setting all new issues to legacy status
	3.3.5.2. Creating legacy issues after upgrading Coverity Analysis
	3.3.5.3. Working with legacy issues in Coverity Connect

	Chapter 3.4. Configuring automatic owner assignment
	3.4.1. Overview of the automatic owner assignment process
	3.4.2. Setting global SCM rules and the SCM user map
	3.4.2.1. SCM derivation rules
	3.4.2.2. Configuring the SCM to Coverity Connect user map

	3.4.3. Setting stream-level rules

	Chapter 3.5. Configuring Coverity Connect enterprise clusters
	3.5.1. Synchronizing multiple Coverity Connect instances
	3.5.1.1. Synchronizing data across the cluster
	3.5.1.2. Configuring data synchronization across the cluster
	3.5.1.2.1. Identifying the Coordinator and Subscribers
	3.5.1.2.2. Setting up SSL certificates and TrustStores
	3.5.1.2.3. Synchronizing Coverity Policy Manager data across the cluster

	3.5.2. Managing multiple database instances
	3.5.2.1. Workflow for backing up databases in a cluster
	3.5.2.2. Workflow for restoring databases in a cluster

	Chapter 3.6. Configuring a Server to Support Code Sight
	3.6.1. Server administration for the Synopsys Code Sight Plug-in
	3.6.2. Configuring a Coverity Connect server to support Code Sight clients

	Chapter 3.7. Server administration for Desktop Analysis
	3.7.1. Setting up streams
	3.7.2. Creating analysis summaries
	3.7.3. Summary expiration
	3.7.4. Desktop Analysis usage tracking
	3.7.5. Analysis license service

	Chapter 3.8. Coverity Connect URL construction
	Chapter 3.9. Exported defect output
	3.9.1. Exported defect URL variables
	3.9.2. Exported defect XML elements
	3.9.3. Exported defect XML file

	Chapter 3.10. Suppressing built-in views for new users
	Chapter 3.11. Changing the date format display in Coverity Connect
	Chapter 3.12. Configuring Coverity Desktop and Architecture Analysis through Coverity Connect
	3.12.1. Configuring Coverity Desktop and shared files through the Downloads page
	3.12.1.1. Configuring the Coverity Connect Downloads page
	3.12.1.1.1. Adding Coverity Analysis to the Downloads page
	3.12.1.1.2. Adding Coverity Desktop updates
	3.12.1.1.3. Adding and removing custom files

	3.12.2. Downloading a CVA file for Architecture Analysis

	Part 4. Coverity Policy Manager Usage
	Chapter 4.1. Coverity Policy Manager Overview
	4.1.1. Hierarchies
	4.1.2. Metrics
	4.1.3. Filters
	4.1.4. Reports
	4.1.5. Dashboards
	4.1.6. Heatmaps
	4.1.7. Policies
	4.1.8. Summary Metrics
	4.1.9. Views

	Chapter 4.2. Using Coverity Policy Manager Hierarchies
	4.2.1. Navigating through Charts
	4.2.2. Performing Common Coverity Policy Manager Actions
	4.2.3. Setting up Coverity Policy Manager Dashboards
	4.2.4. Setting up Coverity Policy Manager Heatmaps
	4.2.5. Setting up Coverity Policy Manager Status Reports
	4.2.6. Setting up Coverity Policy Manager Trend Reports

	Chapter 4.3. Coverity Policy Manager Metrics
	4.3.1. Metrics: User Activity
	4.3.2. Metrics: Analysis
	4.3.3. Metrics: Code
	4.3.4. Summary Metrics: Technical Debt

	Chapter 4.4. Coverity Policy Manager Filter and Segmentation Properties

	Part 5. Coverity Policy Manager Administration
	Chapter 5.1. Managing a Coverity Policy Manager Hierarchy
	5.1.1. Planning a Hierarchy
	5.1.2. Configuring a Hierarchy
	5.1.2.1. Creating a Hierarchy
	5.1.2.2. Editing a Hierarchy

	Chapter 5.2. Importing/Exporting a Coverity Policy Manager Hierarchy
	Chapter 5.3. Scheduling the Extract Transform Load (ETL) Process
	Chapter 5.4. Creating Summary Metrics
	Chapter 5.5. Coverity Policy Manager Roles and Permissions

	Part 6. Coverity Report Generators
	Chapter 6.1. Configuring Report Generators
	6.1.1. Configuration overview
	6.1.2. General considerations
	6.1.2.1. Standard schema elements
	6.1.2.1.1. Connection schema elements
	6.1.2.1.2. Issue cutoff schema element
	6.1.2.1.3. Locale schema element
	6.1.2.1.4. Project schema elements
	6.1.2.1.5. Snapshot schema elements
	6.1.2.1.6. Report-filtering elements
	6.1.2.1.7. Title page schema elements
	6.1.2.1.8. Schema version element

	6.1.2.2. Schema elements for specific reports
	6.1.2.2.1. CERT Report
	6.1.2.2.2. Coverity Integrity Report
	6.1.2.2.3. Security Report
	6.1.2.2.4. Synopsys Software Integrity Report

	6.1.3. Unified configuration file

	Part 7. Coverity Integrity Report Generation
	Chapter 7.1. Overview
	7.1.1. Defect ratings
	7.1.2. Recommended analysis configuration
	7.1.3. Requirements

	Chapter 7.2. Generating a Coverity Integrity Report
	Chapter 7.3. Updating the Coverity Integrity Report configuration file

	Part 8. Coverity Security Report
	Chapter 8.1. Security Report Overview
	8.1.1. Basic Workflow
	8.1.2. Interpreting the Security Report
	8.1.2.1. Severity mapping: Mapping technical defects to severity levels
	8.1.2.1.1. Creating a custom severity mapping
	8.1.2.1.2. Security scores, severity mappings, and assurance levels

	8.1.2.2. Understanding scorecards

	Chapter 8.2. Working with the Security Report Generator
	8.2.1. Installing the Report Generator
	8.2.2. Connecting to Coverity Connect
	8.2.3. Configuring the Security Report
	8.2.3.1. Command-line configuration
	8.2.3.2. GUI configuration

	8.2.4. Generating a Report
	8.2.4.1. Generating a previously configured report using the GUI
	8.2.4.2. Generating a previously configured report from the command line

	8.2.5. Customizing Security reports
	8.2.5.1. Localizing reports
	8.2.5.2. Using system environment variables

	Part 9. MISRA Report
	Chapter 9.1. MISRA Report Overview
	9.1.1. MISRA Compliance

	Chapter 9.2. Installing the MISRA Report Generator
	9.2.1. Connecting to Coverity Connect
	9.2.2. Configuring a MISRA Report
	9.2.2.1. Command-line configuration

	9.2.3. Using system environment variables
	9.2.4. Generating a previously configured report
	9.2.5. Generating a report from the command line
	9.2.6. Localizing reports

	Part 10. Synopsys Software Integrity Report
	Chapter 10.1. Introduction
	Chapter 10.2. Installation
	Chapter 10.3. Setup and configuration
	10.3.1. Setting up the Synopsys Software Integrity Report Generator
	10.3.2. Configuring the Synopsys Software Integrity Report
	10.3.3. Updating the report configuration file
	10.3.4. Using system environment variables
	10.3.5. Generating a report through the GUI
	10.3.6. Generating a report via command line

	Chapter 10.4. PDF report outline
	Chapter 10.5. Detailed results
	10.5.1. Coverity Results

	Part 11. Coverity CVSS Report
	Chapter 11.1. Introduction
	11.1.1. Scorecard elements
	11.1.2. Triage attributes
	11.1.2.1. CVSS_Audited
	11.1.2.2. CVSS_Score
	11.1.2.3. CVSS_Severity
	11.1.2.4. CVSS_Vector

	11.1.3. CVSS Report profile

	Chapter 11.2. Installing the Coverity CVSS Report Report Generator
	11.2.1. Working with the Coverity CVSS Report Report Generator
	11.2.2. Downloading the Coverity Reports Installer
	11.2.3. Configuring a CVSS Report
	11.2.4. Generating a CVSS Report
	11.2.5. Using system environment variables
	11.2.6. CVSS Report Input Files

	Part 12. Coverity CERT Report Guide
	Chapter 12.1. Overview
	Chapter 12.2. Installing the CERT Report Generator
	12.2.1. Connecting to Coverity Connect
	12.2.2. Working with the CERT Report
	12.2.3. Configuring the Coverity CERT Report
	12.2.4. Using system environment variables
	12.2.5. Generating a previously configured report
	12.2.6. Generating the a report from the command line
	12.2.7. Interpreting the CERT Report

	Part 13. Coverity OWASP Web Top 10
	Chapter 13.1. Overview
	13.1.1. Working with the OWASP Web Top 10 Report Generator
	13.1.2. Interpreting the OWASP Web Top 10 Report

	Chapter 13.2. Working with the OWASP Web Top 10 Report Generator
	13.2.1. Installing the Report Generator
	13.2.2. Configuring an OWASP Web Top 10 Report
	13.2.3. Generating an OWASP Top 10 Report

	Part 14. Coverity Mobile OWASP Top 10
	Chapter 14.1. Overview
	14.1.1. User workflow
	14.1.2. Interpreting the Mobile OWASP Top 10 Report

	Chapter 14.2. Working with the Mobile OWASP Top 10 Report Generator
	14.2.1. Installing the Report Generator
	14.2.2. Configuring a Mobile OWASP Top 10 Report
	14.2.3. Generating a Mobile OWASP Report

	Part 15. Coverity PCI DSS
	Chapter 15.1. Overview
	15.1.1. Working with the PCI DSS Report Generator
	15.1.2. Interpreting the PCI DSS Report

	Chapter 15.2. Working with the PCI DSS Report Generator
	15.2.1. Installing the Report Generator
	15.2.2. Configuring a PCI DSS Report
	15.2.3. Generating a PCI DSS Report

