
Coverity Desktop Analysis 2020.12: User Guide
Copyright 2020 Synopsys, Inc. All rights reserved worldwide.

Table of Contents
1. Desktop Analysis overview ... 1

1.1. Choosing a user interface ... 1
1.2. Requirements ... 2

2. Desktop Analysis quick start guide ... 3
2.1. What you will need ... 3
2.2. Installing Coverity Analysis tools .. 4
2.3. Desktop Analysis on the command line .. 4
2.4. Running Desktop Analysis from an editor or IDE .. 8

3. Coverity Connect integration .. 12
3.1. Using an authentication key .. 12
3.2. Disconnected mode .. 12

4. Administering Desktop Analysis .. 14
4.1. Creating coverity.conf for a code base ... 14
4.2. Editing the coverity.conf configuration file with a JSON code editor 15
4.3. Add data-coverity to the SCM exclusion list .. 16

5. Desktop Analysis Reference .. 17
5.1. Concepts .. 17
5.2. The cov-run-desktop command .. 19
5.3. Defining the analysis scope ... 20
5.4. Source code management system integration .. 21
5.5. Analyzing non-primary source files (C/C++) .. 21
5.6. Compiling files on demand .. 22
5.7. Running security checkers with cov-run-desktop ... 23
5.8. Analyzing your whole program with cov-run-desktop ... 23
5.9. Local defect owner assignment ... 24
5.10. Desktop Analysis usage tracking ... 24
5.11. Reasons for results differences .. 25
5.12. Effect of component permissions ... 26
5.13. Desktop Analysis JSON output syntax ... 27
5.14. coverity.conf file format ... 37

6. Troubleshooting Desktop Analysis .. 58

ii

Chapter 1. Desktop Analysis overview

Table of Contents
1.1. Choosing a user interface .. 1
1.2. Requirements ... 2

Coverity Desktop Analysis is a feature that allows source code to be checked for defects as it is written,
on the developer's metaphorical "desktop".

This guide provides the following information for Coverity Desktop Analysis:

• Quick start Desktop Analysis guide.

• Key concepts and use cases that describe typical end-to-end workflows.

• Description of Desktop Analysis options for advanced use.

• Troubleshooting for common issues.

1.1. Choosing a user interface

Coverity Desktop Analysis tools can be used from the command line, an IDE, or from various text editors.
The following sections provide instructions for getting started with Desktop Analysis using your preferred
development environment.

Eclipse IDE
Desktop Analysis is offered as a plug-in to the Eclipse, WindRiver, and QNX Momentics IDEs. For
complete use instructions, see Coverity 2020.12 for Eclipse, Wind River Workbench, and QNX
Momentics: User Guide .

Visual Studio
Desktop Analysis is offered as a plug-in to the Visual Studio IDE. For complete use instructions, see
Coverity Desktop 2020.12 for Microsoft Visual Studio: User Guide .

IntelliJ IDEA
Desktop Analysis is offered as a plug-in to IntelliJ IDEA and Android Studio. For complete use
instructions, see Coverity Desktop 2020.12 for IntelliJ IDEA and Android Studio: User Guide .

Command line
Desktop Analysis can be used to analyze your code for issues directly on the command line. See
Chapter 2, Desktop Analysis quick start guide to get started.

Editor or other IDE
Desktop Analysis can be configured to run from your editor or IDE without the Coverity Desktop
plug-in. Complete the steps in Chapter 2, Desktop Analysis quick start guide, then see Section 2.4,
“Running Desktop Analysis from an editor or IDE” for configuration and use instructions.

1

desktop_eclipse_user_guide.html
desktop_eclipse_user_guide.html
desktop_vs_user_guide.pdf
desktop_intellij_user_guide.pdf

Desktop Analysis overview

1.2. Requirements

Desktop Analysis runs on all of the platforms and compilers supported for use with Coverity Analysis ,
except AIX.

Desktop Analysis requires a minimum of 1.5 GB of RAM. We recommend at least 4 GB of RAM and 4
processor cores.

2

cov_deploy_install_guide.pdf#static_analysis_platform_support

Chapter 2. Desktop Analysis quick start guide

Table of Contents
2.1. What you will need .. 3
2.2. Installing Coverity Analysis tools .. 4
2.3. Desktop Analysis on the command line .. 4
2.4. Running Desktop Analysis from an editor or IDE .. 8

The following sections highlight the steps for configuring and running Coverity Desktop Analysis.

2.1. What you will need

Make sure that you have access to the following:

Coverity Connect stream name
Coverity Connect must be configured in advance to provide analysis summary data to Desktop
Analysis users. Desktop Analysis relies on a "reference snapshot" to provide analysis summary data.
This requires an initial analysis and commit to a stream enabled for Desktop Analysis. You will need
the name of that stream.

See Coverity Platform 2020.12 User and Administrator Guide for information on configuring
Coverity Connect for use with Desktop Analysis.

Coverity Connect access information

• Host name

• Port number and type (HTTP or HTTPS)

• User name

• Password

Source code to analyze
You can use Desktop Analysis with C, C++, C#, Java, JavaScript, PHP, Python, Ruby, Scala, or Swift
code.

For C, C++, C#, Java, Scala, and Swift, you need to know the command to build the software, and
which compilers your project uses.

Coverity Analysis installer and license file
The Coverity Analysis installer and license file are available from the Coverity customer portal, and
may also be made available from the Coverity Connect downloads page by your Coverity Connect
administrator. This is the recommended configuration.

Instructions for adding the installer and license file to the Coverity Connect downloads page are
found in the Coverity Platform 2020.12 User and Administrator Guide .

3

cov_platform_use_and_admin_guide.html#cim_config_for_FD
cov_platform_use_and_admin_guide.html#cim_desktop_install

Desktop Analysis quick start guide

2.2. Installing Coverity Analysis tools

Coverity Desktop Analysis is included in the Coverity Analysis tool set. To install it, run the installer and
follow the on-screen prompts. When asked which installation mode to run, choose "Desktop Analysis"
mode. For additional information, see the Coverity 2020.12 Installation and Deployment Guide .

2.3. Desktop Analysis on the command line

The following sections will walk you through initial configuration and use of Desktop Analysis from the
command line. The process is broken down into the following general tasks:

• Create coverity.conf

• Add the "bin" directory to your PATH

• Run cov-run-desktop --setup

• Analyze a specific source file

• Review returned defects

2.3.1. Creating coverity.conf

The coverity.conf file contains settings required to run desktop analysis. It should be checked into
your Source Code Management (SCM) repository, usually in the root directory. The cov-run-desktop
command searches upward in the file tree from wherever it is invoked to find this file. If your code base
already has a coverity.conf file, skip this section.

This file should contain at least:

• The host name and port number of the Coverity Connect server.

• The name of the stream on Coverity Connect that is associated with the particular code base.

• Shell command lines to perform a clean build (compile) of the code.

The configuration file uses JSON syntax , but unlike standard JSON, comments are allowed.

Create a coverity.conf file with the following contents:

 {
 "type": "Coverity configuration",
 "format_version": 1,
 "settings": {
 "server": {
 "host": "coverity-server-name" // CC host name
 },
 "stream": "stream-name", // CC stream name
 "cov_run_desktop": {
 "build_cmd": ["make", "-j", "$(num_cores)"], // build command

4

cov_deploy_install_guide.pdf#cic_install
http://www.json.org/

Desktop Analysis quick start guide

 "clean_cmd": ["make", "clean"] // clean command
 }
 }
 }

In place of "coverity-server-name", enter the host name of the machine running Coverity Connect. If
it is using a non-default port number, for example 1234, add another attribute "port" : "1234" to the
server section.

In place of "stream-name", enter the name of the stream that contains the reference snapshots that
desktop analysis should use to get interprocedural summary information from.

In place of "make" and "make clean", enter shell commands to build and clean your code base. If you
are not going to analyze any compiled code, use "build_cmd": [] in your coverity.conf file to
indicate that you do not have a build to capture. Even if you have a build command, the clean command
can be set to [] or omitted, but you should include it if the build command omits calling the compiler
when object files are newer than source files, as with make. Note that separate shell command words
must be written as separate strings.

See Section 5.14, “coverity.conf file format” for full details on the structure and meaning of the
configuration file. Note in particular the compiler_configurations element if you are using a
compiler other than GNU C/C++ as "gcc" or "g++", Microsoft C/C++/C#, or Oracle Java.

2.3.2. Adding the "bin" to your PATH

In order to run cov-run-desktop from the command line, it is recommended (although not required) to
add the "bin" directory of the cov-analysis installation directory to your PATH.

On Windows:

1. Go to Control Panel → System Properties → Advanced → Environment Variables.

2. Select PATH and click Edit.

3. Append a semi-colon (;) followed by the "bin" directory path.

4. Click OK twice to save.

5. Start a new command shell window.

On Unix, edit your shell startup file (for example, "$HOME/.bashrc") and add a line like:

PATH=$PATH:/path/to/cov-analysis/bin

where "/path/to/cov-analysis" is the directory where you chose to install the Coverity Analysis
tools. Then save that file and start a new shell.

2.3.3. Run cov-run-desktop --setup

Run the following command:

5

Desktop Analysis quick start guide

> cov-run-desktop --setup

This will first attempt to create an "authentication key". It prompts for your Coverity Connect password.
Once the key is created, you will not have to enter your password again to use desktop analysis.

It then configures your compilers and filesystem capture. The default configuration works for GNU,
Microsoft, Oracle Java, and Clang compilers, as well as all filesystem capture languages that Coverity
supports on your platform. See compiler_configurations if you are using another compiler or need
customizations such as different file extensions for filesystem capture.

Finally, it runs the clean_cmd and build_cmd in coverity.conf (if non-empty) to capture a clean
build of your compiled code so that Coverity tools know how to compile all of your compiled source files.
You will need to run cov-run-desktop --setup again if new source files are added, or the command
lines to compile them change. Interpreted code does not depend on compiler invocations, so will be
captured automatically later, as needed.

To capture compiled code not captured during --setup, such as adding new files to your project,
use cov-run-desktop --build <build_cmd>, where <build_cmd> only has to compile the
uncaptured files. You can avoid this manual step by configuring a script to compile specific files on
demand (see Section 5.6, “Compiling files on demand” for details). However, if you change how files are
compiled, such as defined preprocessor directives, and need Coverity to capture those changes, you
must re-capture a build using cov-run-desktop --build.

2.3.4. Analyzing a source file

To analyze a source file, run:

> cov-run-desktop <source_file_name>

If everything is configured correctly, this will parse the named source file and analyze it for defects, using
a previously created reference snapshot with interprocedural summaries in order to understand how that
file relates to the code around it.

<source_file_name> is the path and file name of the source file to be analyzed. You can pass as
many files as you want to analyze.

For C and C++, <source_file_name> is typically the name of a .c or .cpp file. If you want to analyze
a header file, see Section 5.5, “Analyzing non-primary source files (C/C++)”.

When the analysis completes, it prints the defects it has detected to the console, less any defects
removed by the filtering options. The cov-run-desktop command reference explains how to adjust
the output, including formatting and filtering.

Note

Depending on what file you choose, there may not be any defects detected. You can log into
Coverity Connect, select a file that has defects detected by the central analysis, and pass it to cov-
run-desktop to confirm those defects.

After your initial analysis, you can make additional changes to the source file and run cov-run-
desktop again on the same file, or any other file in the project.

6

cov_command_ref.pdf#cov-run-desktop

Desktop Analysis quick start guide

2.3.5. Reviewing defects

Once cov-run-desktop has completed, the console will display the standard output, which will consist
of a completion message followed by a list of all defects found. For example, see the code below, which
contains two defects:

int nullBug(int *p)
{
 if (p != NULL) {
 // ...
 }
 // ...
 return *p; // oops, 'p' might be NULL here
}

int compareBug(char const *a, char const *b)
{
 if (strcmp == 0) { // oops, forgot to actually call 'strcmp'
 return 1;
 }
 else {
 return 0;
 }
}

When run on this code sample, cov-run-desktop will return the following console output:

Detected 2 defect occurrences that pass the filter criteria.

test.c:7: CID 10029 (#1 of 1):
 Type: Dereference after null check (FORWARD_NULL)
 Classification: Unclassified
 Severity: Unspecified
 Action: Undecided
 Owner: admin
 Defect only exists locally.
test.c:3:
 1. path: Condition "p != NULL", taking false branch
test.c:3:
 2. var_compare_op: Comparing "p" to null implies that "p" might be null.
test.c:7:
 3. var_deref_op: Dereferencing null pointer "p".

test.c:12: CID 10028 (#1 of 1):
 Type: Function address comparison (BAD_COMPARE)
 Classification: Unclassified
 Severity: Unspecified
 Action: Undecided
 Owner: admin
 Defect only exists locally.
test.c:12:
 func_conv: This implicit conversion to a function pointer is suspicious: "strcmp ==
 NULL".

7

Desktop Analysis quick start guide

test.c:12:
 remediation: Did you intend to call "strcmp"?

cov-run-desktop took 12.4 seconds.

As the first line indicates, this output shows two defect occurrences (separated by a blank line), and
a final message which says how long cov-run-desktop took to run - in this case, 12.4 seconds.
Figure 2.1, “Defect output explained” provides detail on the output for an individual defect occurrence.

Figure 2.1. Defect output explained

For additional information about checkers, and the defects they produce, see the Coverity 2020.12
Checker Reference .

2.4. Running Desktop Analysis from an editor or IDE

It is possible to run Desktop Analysis from your editor or integrated development environment (IDE).
Usage and configuration options are provided for some of the most common platforms in the following
sections. Some basic configuration is needed prior to running local analysis from your editor, such
as creating a coverity.conf configuration file, setting up your PATH, and running the --setup
command. Be sure to complete these steps, as described in Section 2.4.3, “Desktop Analysis in the IDE”,
prior to running Desktop Analysis from your editor or IDE.

Note

It is highly encouraged that one person (like an admin or team lead) create the coverity.conf
configuration file and check it into your Source Code Management (SCM) repository, usually in the
root directory. This will allow all users to benefit from preconfigured settings.

7

If you are an Eclipse, Visual Studio®, IntelliJ, or Android Studio user, it is recommended that you use the
Coverity Desktop plug-in for use with Desktop Analysis. More information on the plug-ins can be found in
their respective usage guides.

8

cov_checker_ref.pdf
cov_checker_ref.pdf

Desktop Analysis quick start guide

For Eclipse, Wind River, or QNX, see the Coverity 2020.12 for Eclipse, Wind River Workbench, and QNX
Momentics: User Guide .

For Visual Studio, see the Coverity Desktop 2020.12 for Microsoft Visual Studio: User Guide .

For IntelliJ or Android Studio, see the Coverity Desktop 2020.12 for IntelliJ IDEA and Android Studio:
User Guide .

2.4.1. Using Desktop Analysis with Emacs

To run Desktop Analysis from within Emacs, arrange to run cov-run-desktop such that Emacs thinks
it is running a compiler. It will then parse the defect output as compiler syntax errors and navigate to them
accordingly. The Coverity Analysis tools include an example elisp function to do that:

<install_dir_ca>/doc/examples/desktop-scripts/coverity.el

To use this script, first load it. For example, copy it to the .emacs.d subdirectory of your home directory,
then add to your .emacs or .emacs.d/init.el file the following lines:

(if (file-readable-p "~/.emacs.d/coverity.el")
 (load-file "~/.emacs.d/coverity.el"))

Then, restart emacs. Now, navigate to a source file in a directory underneath where coverity.conf is
installed and type "M-x coverity" (Alt-X, "coverity", Enter) or hit M-F9 (Alt F9).

This command will invoke cov-run-desktop, passing the current file's name as an argument, in the
directory where the open file is located. cov-run-desktop will then search upward in the directory tree
for a coverity.conf file, which must exist for this command to work, as it contains required information
such as the server connection parameters. The console output of cov-run-desktop will then be parsed
by Emacs the same way as compiler syntax errors. Use "M-g n" (Alt-G, "n") and "M-g p" to navigate
forward and backward through the "errors", which are in reality defects and events detected by Coverity
Desktop Analysis.

2.4.2. Using Desktop Analysis with Vim

As with Emacs, to use Desktop Analysis with Vim, invoke cov-run-desktop so Vim thinks it is running
a compiler. One minor difference is that cov-run-desktop should be passed the "--text-output-
style oneline" switch, as that produces an output format more suited to the way Vim displays and
navigates syntax errors. An example script that does this is included with the Coverity Analysis tools:

<install_dir_ca>/doc/examples/desktop-scripts/coverity.vimrc

To load this into Vim, copy that file to someplace like the .vim subdirectory of your home directory, and
add the following lines to your .vimrc file:

" load Coverity command
let coverity_vimrc = $HOME . "/.vim/coverity.vimrc"
if filereadable(coverity_vimrc)
 execute "source " . fnameescape(coverity_vimrc)
endif

9

desktop_eclipse_user_guide.html
desktop_eclipse_user_guide.html
desktop_vs_user_guide.pdf
desktop_intellij_user_guide.pdf
desktop_intellij_user_guide.pdf

Desktop Analysis quick start guide

Then start or restart Vim, and the ":Coverity" command will be defined. Invoke it when editing a source
file that is underneath the directory where coverity.conf is installed to analyze that file. Use ":copen"
to see the error list, ":cnext" and ":cprev" to navigate, and ":cclose" to close the error list, among
other commands. Web search for "vim quickfix" for additional commands and documentation.

2.4.3. Desktop Analysis in the IDE

When Desktop Analysis is set up to work in an IDE, the coverity.conf configuration file can be used
to deploy various settings to Desktop Analysis IDE users.

Note: Visual Studio currently supports all of the settings below, while the other IDEs only support setting
up the following settings pages:

• Coverity Connect

• Stream

• SCM

The Visual Studio plugin takes advantage of the ability to specify settings on a per analysis configuration
basis and also allows you to specify specific checker settings or extend_checker settings. This, along with
user specified variables allow users to deploy very complex consistent settings to all users by creating the
coverity.conf configuration file and check it into your Source Code Management (SCM) repository, usually
in the root directory

Below are some coverity.conf examples that can be helpful for Desktop Analysis in the IDE plugin.

Example 1: Configure a default custom tools location, while allowing users to override it by specifying the
cov_install_dir in their user-specific coverity.conf file if they need to:

{
 "type": "Coverity configuration",
 "format_version": 1,
 "format_minor_version": 5,
 "variables": {
 "cov_install_dir": "C:\\Program Files\\Coverity\\cov-analysis-8.7.0"
 },
 "settings": {
 "known_installations": [
 {
 version: "$(version)",
 platform: "$(platform)",
 kind: "cov-analysis",
 directory: "$(var:cov_install_dir)"
 }
]
 }
}

10

Desktop Analysis quick start guide

Example 2: To pre-configure some checkers for two named analysis configurations with specific settings
(this can be expanded to customize settings for different analysis configuration names), use something
like:

{
 "type": "Coverity configuration",
 "format_version": 1,
 "format_minor_version": 5,
 "settings": {
 "server": {
 "host": "<host name>",
 "port": <portnumber>,
 "ssl": true
 },
 "stream": "teststream",
 "scm": {
 "scm": "git"
 },
 "conditional_settings": [
 {
 "when": {
 "configurations": [
 "Default",
 "Alternate AC 1"
]
 },
 "settings": {
 "cov_run_desktop": {
 "reference_snapshot": "latest",
 "checkers": {
 "UNREACHABLE": {
 "enabled": true
 },
 "IDENTICAL_BRANCHES": {
 "enabled": false
 }
 }
 }
 }
 }
]
 }
}

11

Chapter 3. Coverity Connect integration

Table of Contents
3.1. Using an authentication key ... 12
3.2. Disconnected mode ... 12

In order to keep the most current analysis data, Desktop Analysis frequently interacts with the Coverity
Connect server. When you call cov-run-desktop, it receives the latest triage data and analysis
settings from your reference stream and snapshot, respectively.

3.1. Using an authentication key

It is recommended that you create an authentication key to provide your Coverity Connect credentials to
cov-run-desktop. The authentication key allows you to run Desktop Analysis without having to specify
your password each time. To create an authentication key, run the following command:

> cov-run-desktop --create-auth-key

The command above gets the Coverity Connect host information from coverity.conf, prompts for
your Coverity Connect password, and writes the authentication key to a default directory:

• Windows directory: %APPDATA%/Coverity/authkeys

• Unix directory: $HOME/.coverity/authkeys

The "cov-run-desktop --setup" command will create an authentication key if one has not already
been created.

Once it has been created, every cov-run-desktop invocation that needs an authentication key will get
it from that location.

Note

The ability to create an authentication key is not supported on the following platforms:

• AIX, FreeBSD, Linux-ia64, NetBSD

As a workaround, it is possible to create the key on another platform and then copy the
authentication key file to a different machine.

3.2. Disconnected mode

It is possible to use Desktop Analysis when you are offline or otherwise unable to connect to the Coverity
Connect server. This is done by passing the --disconnected option to cov-run-desktop. This
will cause all options related to Coverity Connect (--stream, --reference-snapshot, etc.) to be
ignored.

When in disconnected mode, cov-run-desktop will not be able to download summary or triage data
from Coverity Connect, and instead relies on any cached data from previous local analyses. As a result,

12

Coverity Connect integration

analysis summaries may be out of date or nonexistent, and the results of Desktop Analysis could be less
accurate.

13

Chapter 4. Administering Desktop Analysis

Table of Contents
4.1. Creating coverity.conf for a code base ... 14
4.2. Editing the coverity.conf configuration file with a JSON code editor .. 15
4.3. Add data-coverity to the SCM exclusion list .. 16

4.1. Creating coverity.conf for a code base

In order to set up a code base so that developers can easily run desktop analysis, it is recommended to
create a file called coverity.conf and put it into the root directory of the source code management
(SCM) repository. The file contains configuration information that will be shared by all developers working
on that code base.

At minimum, it must contain:

• The host name and port number of the Coverity Connect server

You can also use a url in place of a host name. For example, https://example.com/coverity or
https://cimpop:8080.

• The name of the Coverity Connect stream that is associated with the code base

It is recommended that it also contain:

• The name of the SCM system in use

• Shell command lines to build (compile) and clean

The configuration file uses JSON syntax. An example file containing all the required and recommended
elements is below:

 {
 "type": "Coverity configuration",
 "format_version": 1,
 "settings": {
 "server": {
 "host": "coverity-server.example.com" // host name
 },
 "stream": "codebase-branch", // stream name
 "scm": {
 "scm": "git" // SCM name
 },
 "cov_run_desktop": {
 "build_cmd": ["make"], // build command
 "clean_cmd": ["make", "clean"], // clean command
 "reference_snapshot": "scm"
 }
 }

14

Administering Desktop Analysis

 }

Whenever cov-run-desktop is invoked, it will search upward from its invocation directory to find a
coverity.conf file. If it finds one, the settings from that file are used unless the user overrides them
with a command line option. The order of precedence for selecting which settings cov-run-desktop
will use is illustrated below:

As shown in the diagram, any settings specified on the command line take precedence over the settings
in any coverity.conf file. From there, the per-user coverity.conf file (generally located in
$HOME/.coverity or %APPDATA%/Coverity) is processed, with any true conditional settings taking
precedence over top-level, "unconditional" settings. The conditional settings are processed in order, such
that earlier conditional settings (whose condition is true) take precedence over later conditional settings.
Next, the per-branch coverity.conf file (located in the code base directory) is processed. Finally,
default values will be assigned to any settings that are not specified on the command line or configured in
a coverity.conf file.

See Section 5.14, “coverity.conf file format” for full details on the structure and meaning of the
configuration file. Note in particular Section 5.14.9, “CompilerConfiguration” if you are using a compiler
other than GNU C/C++ as "gcc" or "g++", Microsoft C/C++/C#, or Oracle Java.

4.2. Editing the coverity.conf configuration file with a JSON code
editor

You can edit the coverity.conf configuration file by setting up a JSON editor with a schema. The
schema enables the editor to correctly display the configuration file, and allows validation and auto-
completion of text. The Visual Studio Code editor from Microsoft is easy to use for this purpose. Visual
Studio 2013 or newer can also be used.

Download the Visual Studio Code editor installer from Microsoft (code.visualstudio.com), and install
the application. It is available for most platforms.

To configure Visual Studio Code:

1. Go to File → Preferences → User Settings.

2. Add a files.associations property to associate coverity.conf files with the JSON editor.

3. Add a json.schemas property to associate the coverity.conf schema with coverity.conf
files.

A minimal settings file is shown below. The server host and port need to be modified to point to the
Coverity Connect server the users are working with.

15

http://code.visualstudio.com

Administering Desktop Analysis

{
 "files.associations": {
 "coverity.conf": "json"
 },

 "json.schemas": [
 {
 "fileMatch": [
 "coverity.conf"
],
 "url": "http://coverity-server-name:8443/schemas/
coverity.conf.schema.json"
 }
]
}

If users are working with Visual Studio 2013 or newer, they may add a $schema property to the
coverity.conf file itself, pointing to the schema location. Note that including this property in the
coverity.conf file will prevent the file from working with releases prior to 2020.12, but this should
not be a problem for users already working with 8.7.0 or newer. The $schema property enables JSON
support in Visual Studio 2013 and Visual Studio Code, even if user settings are not modified as described
above. A minimal coverity.conf file using this feature is shown here:

{
 "$schema": "http://coverity-server-name:8443/schemas/coverity.conf.schema.json",
 "type": "Coverity configuration",
 "format_version": 1,
 "format_minor_version": 5,
 "settings": {
 // ...
 }
}

4.3. Add data-coverity to the SCM exclusion list

By default, local analysis intermediate data is stored in a directory called "data-coverity", a sub-
directory of whichever directory contains the coverity.conf file. Since these files should not be
checked in to the Source Code Management (SCM) system, you should add the name "data-coverity" to
the list of directories excluded by the SCM (often stored in an "ignore" file).

You can change where intermediate data is stored, either by editing coverity.conf or by overriding
its settings on the cov-run-desktop command line. However, you should not put the intermediate
data from different branches of a single code base into the same directory, because the analysis may be
confused by the presence of different versions of the same artifacts. Furthermore, avoid putting this data
someplace that will be removed when the build is cleaned, because then users would have to re-run build
capture after cleaning the build.

16

Chapter 5. Desktop Analysis Reference

Table of Contents
5.1. Concepts ... 17
5.2. The cov-run-desktop command .. 19
5.3. Defining the analysis scope ... 20
5.4. Source code management system integration .. 21
5.5. Analyzing non-primary source files (C/C++) .. 21
5.6. Compiling files on demand .. 22
5.7. Running security checkers with cov-run-desktop ... 23
5.8. Analyzing your whole program with cov-run-desktop ... 23
5.9. Local defect owner assignment ... 24
5.10. Desktop Analysis usage tracking ... 24
5.11. Reasons for results differences .. 25
5.12. Effect of component permissions ... 26
5.13. Desktop Analysis JSON output syntax ... 27
5.14. coverity.conf file format ... 37

5.1. Concepts

This section provides conceptual definitions for Coverity Desktop Analysis. These concepts are integral to
more advanced usage of the Desktop Analysis tools.

Build Capture
Build capture is the process of running a build under monitoring software that records information
about the build. To parse code accurately and consistently with your build settings, build capture
is required to analyze compiled code with cov-run-desktop. Build capture is typically done in a
separate step before analysis but can be done automatically, on demand, if configured for that.

Code Version Date
In contrast to the snapshot date, which is when a snapshot was committed (copied) into Coverity
Connect, the code version date is the date when the code was checked in to the Source Code
Management (SCM) system.

Desktop Analysis
Desktop Analysis is used by developers to locally analyze a small subset of the code base for which
they are responsible. The developer can run Desktop Analysis on a specific file (or set of files) after
making changes. By specifying a smaller number of files (or translation units) to analyze, the Desktop
Analysis user gets analysis results back in a significantly shorter time.

In order to accurately locate the more complex static analysis issues, Desktop Analysis uses
previously reported analysis summary information for any code that isn't included in the analysis run.
Desktop Analysis connects to the Coverity Connect server to download analysis summary data.

Because the Coverity Connect server may contain several streams for organizing different versions
of the code base, Desktop Analysis users must also specify a reference stream from which to retrieve

17

Desktop Analysis Reference

summary information. This ensures that the analysis summaries are the most relevant to the code
being analyzed. See Coverity Platform 2020.12 User and Administrator Guide for more information
on stream configuration.

Primary Source File
For C and C++, the primary source file (PSF) of a translation unit is the file that is directly named on
the compilation command line when compiling that translation unit. Header files, and other files that
are read in the context of a PSF, are called "non-PSF" files. For Java, C#, and filesystem capture
languages, every source file is considered a PSF of its own translation unit, even if it is not explicitly
listed on a compiler command line.

Reference Snapshot
A snapshot is a set of source files and the defects that were detected in those source files. A
reference snapshot additionally contains analysis summaries that are used during desktop analysis to
supplement the information derived from locally compiled code, and analysis options that are used as
the default starting point for local analysis options.

Static analysis
Static analysis is the process by which Coverity Analysis tools scan your source code for bugs
without having to run the code. Static analysis makes use of various "checkers" to scan for hard-to-
find software issues. Some of these checkers are relatively simple, finding issues based on patterns
in local files. Other checkers combine information gleaned from across the code base to find more
complex issues.

This process is generally executed on a periodic basis, analyzing the full code base. The results of
the analysis are then committed to the central Coverity Connect server, where they can be viewed by
the developer responsible.

Stream
Snapshots are organized into streams. All snapshots in a stream should be from the same code base
and branch, be compiled for the same target platform, and analyzed with the same options.

Translation Unit
A translation unit is smallest unit of re-compilation for a compiler. In Java, for example, it is possible
to recompile any single source file in a project, so a translation unit corresponds to a source file. In C/
C++, a translation unit is a primary source file and all the other files it includes. Coverity tools capture
artifacts for analysis as a collection of translation units, including those input files used to generate
object code, as well as other files and information that form the context of the compilation. For
example, in Java, this context includes bytecode files in the classpath. In C/C++, this context includes
platform information about the compiler and defined preprocessor directives. Coverity Desktop build
capture typically only records the primary source file and its corresponding command line, although
there is an option (--record-with-source) to additionally record the supporting files.

Triage
Triage is user-specified metadata associated with a defect, or more precisely, an equivalence class
of defects that all share certain essential characteristics. The equivalence class is named by the
numeric CID, the "Coverity ID". The most important triage attribute is Classification, which includes
the settings of "False Positive" and "Intentional", both of which effectively mean the user wants to
suppress the defect from that point forward.

18

cov_platform_use_and_admin_guide.html#cim_config_for_FD

Desktop Analysis Reference

All defects detected by desktop analysis have a triage record on the Coverity Connect server (unless
using disconnected mode), even if they have not been committed as part of a snapshot.

5.2. The cov-run-desktop command

The cov-run-desktop command is the primary interface for using Desktop Analysis. The following
diagram illustrates the main processes performed by cov-run-desktop, with explanations below:

Figure 5.1. cov-run-desktop

Select translation units to analyze
In general, cov-run-desktop analyzes the files passed explicitly at the end of the command
line (cov-run-desktop --dir <intermediate_directory> file1 file2). However,
it is also possible to use your Source Control Management system (SCM) to decide which files
should be analyzed, using the --analyze-scm-modified option. See Section 5.4, “Source code
management system integration” for more information. Another option is to analyze previously
captured source, by using the --analyze-captured-source option.

Download analysis summaries from Coverity Connect
In order to generate results that are both fast and accurate, Desktop Analysis depends on analysis
summaries from Coverity Connect to provide relevant information about your source code. When you
call cov-run-desktop, use the --stream option to specify a reference stream from which to pull
summary data.

Optionally, you can also use the --reference-snapshot command to specify a particular
snapshot within your reference stream from which to pull analysis summaries. If unspecified, Desktop

19

Desktop Analysis Reference

Analysis uses the default snapshot (the snapshot created closest to the creation date of your
intermediate directory). For more information, see --reference-snapshot .

Analyze selected translation units
With analysis summaries downloaded from Coverity Connect, Desktop Analysis can analyze
individual files and understand their impact on the rest of your source code, without having to analyze
all of the other files therein. Additionally, cov-run-desktop collects summaries of locally analyzed
code. This keeps the analysis summary information as current as possible for subsequent local
analyses on different source files.

Retrieve triage data for analysis results
Aside from analysis summaries, Coverity Connect also provides triage data for any previously known
issues also found by Desktop Analysis. cov-run-desktop retrieves the triage information for these
issues and displays it in the output.

Filter locally found issues
To return only the most relevant analysis results, Desktop Analysis automatically filters out any
issues with Classification of "False Positive" or "Intentional," issues with Action set to "Ignore," those
found in non-primary source files, as well as any issues found in third party code. Third party code is
identified as any that belongs to a component with a file rule that contains "[Tt]hird.*[Pp]arty."

There are additional options that can be used to further specify the list of issues returned, or to
remove the default filters from your results (--no-default-triage-filters).

See output and filtering options for more information.

Output returned analysis data
The cov-run-desktop command has options to specify the desired format and order of the defect
output. By default, the list of defects is printed as text output that mimics compiler syntax errors.
However, there are several options for customizing the defect output. These include changing the
text output style, using JSON output format, and customizing the sort order of your defect list. The
JSON output format is described in detail in Section 5.13, “Desktop Analysis JSON output syntax”.

See output and filtering options for information on other options related to Desktop Analysis output.

Classify locally found issues
Once you have received the results of a local analysis, some of the issues found may not be actual
Bugs - they might be False Positives or Intentional. In order to mark them as such, you can run the
cov-run-desktop command again, using the --mark-fp (False Positive) and/or --mark-int
options accordingly. Each of these options specify a particular CID, and Classify it as either False
Positive or Intentional, with a text comment explaining the classification. See --mark-[fp | int]

 for details.

5.3. Defining the analysis scope

The group of files specified for analysis by cov-run-desktop is known as the analysis scope. This can
be specified explicitly (by passing the files to the cov-run-desktop command line) , determined by
querying your SCM (using the --analyze-scm-modified option), or by using the source captured
from previous builds (using the --analyze-captured-source option).

20

cov_command_ref.pdf#reference-snapshot-id
cov_command_ref.pdf#no-default-triage-filters
cov_command_ref.pdf#fd_filter_output
cov_command_ref.pdf#fd_filter_output
cov_command_ref.pdf#c-r-d-mark-fp
cov_command_ref.pdf#c-r-d-mark-fp

Desktop Analysis Reference

By default, Desktop Analysis does not return any defects found in files outside of the analysis scope. This
means that, unless directly specified, defects in headers and other non-primary source files will not be
found by cov-run-desktop. Additionally, previously detected defects in such files will be suppressed
in the cov-run-desktop output. This behavior can be disabled by setting the cov-run-desktop --
confine-to-scope --confine-to-scope option to "false".

5.4. Source code management system integration

Desktop Analysis can be integrated with your source code management (SCM) system to help determine
which files have been recently modified, and thus require local analysis. Using the cov-run-desktop
option, --analyze-scm-modified, will query your SCM to determine which of your source files have
been modified locally, and then proceed with Desktop Analysis on those files.

You can also use your SCM to decide which reference snapshot to use with Desktop Analysis.
By passing the --reference-snapshot scm option to cov-run-desktop, or setting
"settings.cov_run_desktop.reference_snapshot" to "scm" in coverity.conf, Desktop
Analysis will determine the creation date and time of your current code version, and use that as the date
and time for which to determine the appropriate reference snapshot.

Note

When using --analyze-scm-modified or --reference-snapshot scm, you must also pass
the --scm option, or set "settings.scm.scm" in coverity.conf, in order to specify which
SCM you are using. For more information on these and other SCM-related options, see cov-run-
desktop .

5.5. Analyzing non-primary source files (C/C++)

During the build capture step of Desktop Analysis, the cov-run-desktop --build command records
only primary source files (PSF) and corresponding command lines, ignoring headers and other supporting
files (non-primary source files).

If you would like to run Desktop Analysis on a header file, or other non-PSF, there are two ways to do so:

Analyze the non-PSF along with a PSF that includes it
Since the non-PSFs in your project are not recorded during the build, cov-run-desktop will not
have the necessary context to analyze them when specified. To fix this, you can specify the non-PSF,
along with a PSF which includes it, to the cov-run-desktop command.

For example, if you want to analyze a header file (header.h) which is included by the PSF
file1.c, you would specify both files in the command:

> cov-run-desktop [OPTIONS] file1.c header.h

Recapture the build with --record-with-source
If you plan to analyze non-PSFs frequently, it may be beneficial to repeat the build capture step,
using cov-run-desktop --build --record-with-source. This will record all of the source
files in your project, including non-PSFs. Thus, each non-PSF in your project will be directly available
to cov-run-desktop, as long as it is included by a primary source file.

21

cov_command_ref.pdf#confine-to-scope
cov_command_ref.pdf#TU_filter_options
cov_command_ref.pdf#TU_filter_options

Desktop Analysis Reference

When a header file (or other non-PSF) is specified, cov-run-desktop will search for a PSF that
includes the header. If one is found, it will analyze the header as it was compiled in the context of
the selected PSF (if more than one PSF includes the header, the one with the alphabetically first file
name is selected). If no PSF is found to include the specified header, cov-run-desktop halts with
an error.

Note that the --record-with-source option will slow down the build capture by 10-50%. This
should be used only if you intend to regularly run analysis on non-PSFs.

5.6. Compiling files on demand

To analyze compiled code, cov-run-desktop must have seen a compiler invocation for that code
so that it knows the proper context for parsing and analyzing the code. This is normally accomplished
by capturing builds with cov-run-desktop --setup or --build, but an alternative is to configure
a script for building specific files on demand, using the specific_files_build_cmd option in
coverity.conf.

When cov-run-desktop is asked to analyze source files that are not already part of a captured
compilation and are not captured with filesystem capture, cov-run-desktop will attempt to auto-
compile them with the specific_files_build_cmd, if it is set. If successful, cov-run-desktop
proceeds with analysis as usual, without the need for a specific build step by the user. Some with a
configured specific_files_build_cmd might choose to skip build capture during --setup, with --
skip-build or build_cmd: [] in coverity.conf.

Consider a coverity.conf configuration example for auto-compilation:

cov_run_desktop: {
 "specific_files_build_cmd": ["python", "scripts/compile-specific-files.py", "--
response-file=$(response_file_utf8)"],
 "specific_files_regex": "[.](c|cpp)$"
}

First, like other commands specified in coverity.conf, arguments comprising the build command
are specified as strings in a JSON array. cov-run-desktop will construct a temporary text file listing
the files to compile, one per line, and the path to that file will be substituted for use of special variable
$(response_file_utf8) or $(response_file_platform_default). The script should read the
list from that file, using either UTF-8 or platform default character encoding, depending on the variable
used. Only one use of a response file special variable is allowed in the specific_files_build_cmd.
If no response file special variable is used, files to compile will instead be appended as command
line arguments. This is more convenient for writing scripts, but is not recommended because it risks
exceeding OS limits on command line length when compiling many files on demand, especially on
Windows.

The example runs the system's python command and gives it a relative path to a Python script,
scripts/compile-specific-files.py. This relative path works because cov-run-
desktop always executes the specific_files_build_cmd with the current directory set to
$(code_base_dir). On Unix-like systems, with proper permissions, and so on, it is possible to execute
the .py script directly, but specifying the interpreter for the script is more portable to Windows platforms.

22

Desktop Analysis Reference

Some requirements for specific_files_build_cmd scripts:

• The script must be able to handle relative or absolute paths (in platform-native format, system default
encoding), where relative paths will be relative to $(code_base_dir), the working directory for the
command.

• It must also handle more than one file specified for compilation, perhaps by grouping related files
together for compilation or perhaps by naively building one at a time.

• It must not skip compilation if the object file is already newer than the source file. For builds driven by
make, the script will likely need to touch source files before invoking make, or use the -W option of
make, to force invocation of the compiler.

The specific_files_regex option is highly recommended with specific_files_build_cmd
because it reduces or improves errors when attempting to analyze an uncaptured file that would fail
when passed to the specific_files_build_cmd. In the example above, we know that our script only
handles C and C++ source files, with .c and .cpp extensions in our code base. Thus, the regex ensures
specific_files_build_cmd is only invoked with such files. This option works in concert with other
regex filtering options, such as restrict_modified_file_regex.

Non-primary source files, mostly C and C++ header files, present a challenge for auto-compilation,
but the specific_files_regex can make this work in some cases. For example, suppose foo.c
includes foo.h, nothing has been captured, and cov-run-desktop is using the above configuration.
Although cov-run-desktop foo.h will fail because we do not know how to capture a .h file
automatically, cov-run-desktop foo.c foo.h will succeed because auto-compiling foo.c will
enable cov-run-desktop to analyze foo.h, as a non-primary file included by foo.c.

Note

Advanced note: specific_files_build_cmd can directly invoke cov-translate on
applicable compiler commands instead of actually running those compiler commands. This can be
more efficient by avoiding compiler invocations, but it might be more difficult to set up and to debug.

5.7. Running security checkers with cov-run-desktop

By default, Desktop Analysis enables the same set of checkers as cov-analyze (minus any that do
not support desktop analysis); in particular, it does not enable most security checkers by default. You
can enable them with the --webapp-security and --android-security options to the cov-run-
desktop command.

Not all security checkers support Desktop Analysis. Unsupported checkers will be disabled and have
warnings issued to indicate that the checker requires running in --whole-program mode. See
Section 5.8, “Analyzing your whole program with cov-run-desktop” for more information.

5.8. Analyzing your whole program with cov-run-desktop

If you emit your entire project and analyze it using cov-run-desktop and the --whole-program
option, you can run some checkers that are otherwise not enabled for Desktop Analysis. Furthermore,

23

Desktop Analysis Reference

other checkers, such as some Java/.NET security checkers, are more effective if they can analyze your
whole project at once.

Before you run cov-run-desktop with the --whole-program option, be sure that you have emitted
all the source files in your project. The --whole-program option tells cov-run-desktop that you'd
like to do a deeper (but slower) analysis. It also tells cov-run-desktop that you've emitted your entire
project, so that it is reasonable to enable checkers that need to examine the entire project. (A --whole-
program analysis can yield poor results if it selects only a subset of files from the project.)

Note

If you are using the Coverity Desktop plug-in for Eclipse to perform Desktop Analysis, this behavior
can be configured through the Analysis Configurations dialog. See the Coverity 2020.12 for Eclipse,
Wind River Workbench, and QNX Momentics: User Guide for more information.

If you are using the Coverity Desktop plug-in for Visual Studio to perform Desktop Analysis, this
behavior can be configured through the Analysis Configurations dialog. See the Coverity Desktop
2020.12 for Microsoft Visual Studio: User Guide for more information.

If you are using the Coverity Desktop plug-in for IntelliJ IDEA and Android Studio to perform
Desktop Analysis, this behavior can be configured through the Analysis Configurations dialog.
See the Coverity Desktop 2020.12 for IntelliJ IDEA and Android Studio: User Guide for more
information.

5.9. Local defect owner assignment

Defects found by Desktop Analysis are automatically assigned to the user running cov-run-desktop
(see the --user option). This applies to all newly detected defects (CIDs), which only exist locally and
do not have a previously assigned owner.

This behavior is controlled by the --set-new-defect-owner option. When set to true, as it is by
default, automatic owner assignment will take place for all new defects, as long as there are 100 or fewer
local-only defects found. Because the owner assignment adds to the total runtime of the cov-run-
desktop command, it is limited to 100 new defects by default. This means that if cov-run-desktop
finds more than 100 local-only defects, no owner assignment will take place. However, if you require
owner assignment on a larger number of local defects, the limit can be adjusted with the --set-new-
defect-owner-limit option.

5.10. Desktop Analysis usage tracking

Defects that are first discovered by Desktop Analysis have their "First Detected By" attribute set to
Preview. Defects found through other means will have different values for this attribute (Snapshot or API,
for example). This distinction allows you to specifically track the number of defects discovered by Desktop
Analysis. To do so, complete the following steps:

1. Log in to Coverity Connect.

2. Make sure you have the correct project open, and navigate to an Issues: Project Scope view ("All In
Project" for example).

24

desktop_eclipse_user_guide.pdf#eclipse_analysis_config
desktop_eclipse_user_guide.pdf#eclipse_analysis_config
desktop_vs_user_guide.pdf#vs_analysis_config
desktop_vs_user_guide.pdf#vs_analysis_config
desktop_intellij_user_guide.pdf#intellij_analysis_config
cov_command_ref.pdf#user
cov_command_ref.pdf#set-new-defect-owner
cov_command_ref.pdf#set-new-defect-owner-limit
cov_command_ref.pdf#set-new-defect-owner-limit

Desktop Analysis Reference

3. Click the "gear" icon to edit the view settings, and open the Columns tab.

4. Enable the First Detected By and First Snapshot columns.

5. Open the Filters tab, and click to open the First Detected By filter.

6. Check the box for Preview. This will filter all of the defects in the project to display only those first
found by Desktop Analysis.

Once the view has been filtered, note in particular the First Snapshot column. This displays the snapshot
when this CID was first committed to Coverity Connect. If this column is blank, that means that the defect
was found by cov-run-desktop and not yet committed to Coverity Connect (this could be because
the defect was fixed immediately after being discovered by Desktop Analysis, or simply because it was
discovered very recently and has yet to be committed).

Note

When cov-run-desktop finds a new defect, it assigns it a CID and sets its owner to the current
user. However, defect occurrence information is only communicated to Coverity Connect when
the CID is committed with cov-commit-defects. This means that when you attempt to open a
defect in Coverity Connect that has not yet been committed, you will see an error explaining that
"No further information for this CID exists on Coverity Connect."

5.11. Reasons for results differences

When running Desktop Analysis, you may encounter analysis results that differ somewhat from those
found by your central analysis server. This section is intended to highlight several of the most common
causes for result disparities, and suggest ways to lessen or eliminate those differences. Note that this is
not an exhaustive list of all scenarios in which results differences may be observed.

Missing summary data for adjacent functions
Desktop Analysis relies on summary data from the Coverity Connect server. This is used to provide
information on functions and files within your project that are outside of the analysis scope. If cov-
run-desktop does not have access to the most current summary data, your local analysis results
may differ significantly from those found by central analysis.

The main causes for missing summary data are as follows:

• The central analysis did not capture and/or commit analysis summary data (controlled by the cov-
analyze --export-summaries option).

• cov-run-desktop failed to properly download analysis summaries from the Coverity Connect
server - possibly because the connection timed out.

• If cov-run-desktop is run in disconnected mode (specified with the --disconnected option),
it won't attempt any connection with the server.

Target configuration differences
It is possible that the downloaded summaries were created while analyzing the code when it was
configured for a different target (e.g. "debug" versus "release" builds, separate operating systems,

25

Desktop Analysis Reference

etc). To prevent this issue, make sure that you associate your Desktop Analysis run with a reference
stream that matches, or is sufficiently close to, your local target configuration.

Code version skew
Results differences may be present if the downloaded summary data is for a different version of the
source code than what you have checked out. This can happen if you are not using the most recent
reference snapshot for retrieving analysis summaries.

To prevent this issue, it is recommended that you set the cov-run-desktop --reference-
snapshot option to scm, so that the selected reference snapshot is as close as possible to your
current code version. See --reference-snapshot for more information.

Dependencies outside the analysis scope
In some configurations, changes made locally in one file can affect other code outside the analysis
scope. When these dependencies flow out of, and then back into, the analysis scope, Desktop
Analysis accuracy may suffer.

For example, suppose a project contains three functions, A, B, and C, where A calls B, and B calls
C. If A and C are analyzed locally but B is not, the analysis will have to rely on summary data for
function B. As such, any local changes to C will not be reflected in that summary data, and the
analysis results may be inaccurate or incomplete.

Problem reporting on anonymous types
Certain checkers, including CHECKED_RETURN, occasionally fail to report defects on functions that
involve anonymous types when called by cov-run-desktop. Consequently, if your project contains
any defects in such functions, they may only be found during the full central analysis.

Insufficient information for dynamic language call graph
In dynamic languages supporting interprocedural analysis (currently JavaScript), in order to properly
apply downloaded function summaries, the analysis call graph computation must process some
"extra files" in addition to those selected in the analysis scope. This is handled automatically by cov-
run-desktop based on information in the downloaded summary batch about the relationships
between source files in the Central analysis. If a source file that you are analyzing is new, or is newly
calling into another source file or library, that information might not be found by cov-run-desktop,
and you can improve the accuracy of the analysis by manually including those files that are called
into in the analysis scope.

Whole program checkers
For performance reasons, Desktop Analysis does not enable security checkers or other "whole
program" checkers by default. This may cause discrepancies in your Central and Desktop Analysis
results. See Section 5.7, “Running security checkers with cov-run-desktop” for more information.

5.12. Effect of component permissions

Desktop Analysis does not respect user permissions for components in Coverity Connect. This means
that when a user does not have access to a particular component, Desktop Analysis will still be aware
of any defects associated with that component. This could cause some confusion, as the "present
in reference" attribute, along with all other triage information, is displayed correctly in the output. For

26

cov_command_ref.pdf#reference-snapshot-id

Desktop Analysis Reference

example, if the issue was found centrally, "present in reference" will be set to "true" even if the issue is in
an inaccessible component.

A common cause of this issue may be if an organization wants to suppress all issues from third party
code. In this case, the system administrator could place all third party code into a private component,
so that other Coverity Connect users would not see third party issues. However, in this scenario, those
issues would still be present in the Desktop Analysis output. One way to ensure that this behavior does
not occur is for the Coverity Connect administrator to set the "Action" attribute for all third party issues to
"Ignore". This will cause Desktop Analysis to filter out those defects by default.

5.13. Desktop Analysis JSON output syntax

When specified with the --json-output-v7 option, cov-run-desktop will write its output to a JSON
 file. This section describes the objects and attributes of the JSON output in detail.

Note

--json-output-v1 through --json-output-v6 are supported for backward compatibility.
It is recommended that you use --json-output-v7 in order to see the most complete set of
information.

The structure of the JSON output (v7) is represented below.

27

http://www.json.org/
http://www.json.org/

Desktop Analysis Reference

5.13.1. CoverityIssues

This is the outermost object of the JSON output file, acting as an envelope with type and version
information. It contains the following elements:

type: <string>
A string identifying the type of object contained in the file in order to assist tools in diagnosing cases
where the wrong data or version is provided as input.

28

Desktop Analysis Reference

formatVersion: <int>
An integer identifying the version of the file/object format.

suppressedIssueCount: <int>
The number of issues that were detected but not output because of filters.

issues: <[IssueOccurrence]>
A list of issue occurrences, each of which has several attributes described in the IssueOccurrence
section. The order of this list is determined by the --sort option.

desktopAnalysisSettings: <DesktopAnalysisSettings>
A list of the settings used to perform the desktop analysis. The values are described in the
DesktopAnalysisSettings section.

error?: <Error>
Indicates that we encountered an error; in this case, issues will be empty.

warnings[]: <Error>
Indicates warnings, if any, that were produced by this run. Added in version 6. (The attribute
hadMissingSummaries was subsumed by warnings, and was removed in version 6.)

5.13.2. IssueOccurrence

This object represents a single issue occurrence produced by the analysis. It contains the following
elements for describing the occurrence:

mergeKey: <string>
A 32 character hexadecimal string representing the hash of several issue details.

occurrenceCountForMK: <int>
The number of occurrences in the parent CoverityIssues object that have the same mergeKey value.

occurrenceNumberInMK: <int>
A number between 1 and occurrenceCountForMK, unique for this merge key.

referenceOccurrenceCountForMK: <int>
The number of occurrences in the reference snapshot for containing CoverityIssues objects that have
the same mergeKey value. The number of occurrences in the reference snapshot may be different
than the number of occurrences in the local analysis reported in occurrenceCountForMK. Added
in version 5.

checkerName: <string>
The name of the checker that produced the issue.

subcategory: <string>
The checker-specific subcategory which indicates the kind of issue found in this occurrence.

type: <string>
The kind of issue, corresponding roughly to the checker. Added in version 7.

29

cov_command_ref.pdf#sort

Desktop Analysis Reference

subtype: <string>
A subdivision of type, denoting a sub-type of the issue type. Added in version 7.

code-language: <string>
Represents the programming language of the source file. Added in version 7.

extra: <string>
A checker-specific merging discriminator.

domain: <string>
The analysis "domain," as carried in the defect XML.

language: <string>
The name of the programming language containing the main event of the occurrence. Added in
version 4.

mainEventFilePathname: <string>
The absolute path name of the file containing the main event, reflecting its physical location on the
machine where the build was performed.

strippedMainEventFilePathname: <string>
The mainEventFilePathname after path stripping. Path stripping will not change the value of
mainEventFilePathname.

mainEventLineNumber: <int>
The 1-based line number of the occurrence's main event.

properties: <[string]>
A set of key/value pairs for general properties of the issue.

functionDisplayName: <string>
The display name of the function where the main event occurs. The display name usually follows the
syntax of the programming language to uniquely denote the function. This may be absent if the main
event is not in a function or if the analysis does not know or report the function.

functionMangledName: <string>
A unique string generated to identify the function where the main event occurs. This will be absent
only when functionDisplayName is also absent.

ordered: <boolean>
When true, the sequence of events in events[] and their children is significant. Specifically, the
events are in chronological order along a particular code path that the analysis believes would
misbehave. When false, the event tree is not in a meaningful order.

events: <[Event]>
A list of top-level events in this issue report, each of which has several attributes described in the
Event section. The events are ordered chronologically, relative to their specific event set.

stateOnServer: <StateOnServer>
A list of attribute values for the issue as they exist on the Coverity Connect server. These values are
described in the StateOnServer section. This object is null in disconnected mode.

30

Desktop Analysis Reference

checkerProperties: <[CheckerProperties]>
A list of property values for the checker that discovered the issue. These values are described in the
CheckerProperties section. This information is retrieved from Coverity Connect, so may be absent in
disconnected mode if not previously stored.

localStatus: <string?>
The string localStatus represents the local status with respect to reference status. Used when --
include-missing-locally true is provided. The values are currently:

• "local": the defect is reported by local analysis but is not present in reference snapshot.

• "missing": the defect is found the reference snapshot, but not in local analysis.

• "present": the defect is both in the reference snapshot and local analysis.
When --include-missing-locally is false (default), this field is always null. Added in version 5.

5.13.3. Event

This object represents an atomic piece of evidence in a defect report. The events in a defect occurrence
form a tree with the defect itself as the root.

covLStrEventDescription: <string>
The event description, represented in a format used internally by cov-run-desktop.

eventDescription: <string>
The localized event description. Localization may not be available in disconnected mode, in which
case English is the default language.

eventNumber: <int>
The ordinal number of the event in its parent event object.

eventTreePosition: <string>
A dotted hierarchical number (1.2.3 for instance) that reflects the event's position in the defect event
tree. The last number is the same as eventNumber, the next-to-last number is the same as the
eventNumber for this event's parent, and so on. The first number is the eventNumber of a top-level
event.

eventSet: <int>
A non-negative integer that identifies which set of events this particular event is part of. In most
cases, all events will be in event set 0, the main defect path. Some defects, however, have events in
multiple event sets.

eventTag: <string>
The event tag. For a path event, the tag is path.

filePathname: <string>
The absolute path name of the file containing the event, as it was known on the build machine.

strippedFilePathname: <string>
The filePathname after path stripping.

31

Desktop Analysis Reference

lineNumber: <int>
The 1-based line number where the event occurs in its file.

main: <boolean>
True if this is the main event - the event where the ostensible misbehavior happens. Only one top-
level event will be main, and no lower-level events can be main.

moreInformationId: <string>
An identifier that can be used to find checker documentation. It is absent if the checker does not have
known documentation.

remediation: <boolean>
Indicates that this event represents remediation advice.

This attribute was introduced in json-output-v2.

events: <[Event]>
If present, this is a non-empty sequence of child events that explain why this event was concluded.

5.13.4. StateOnServer

This object represents information about the issue that is only known to the Coverity Connect server. This
object is null in disconnected mode.

cid: <int>
The numeric Coverity ID (CID) of the merged issue. The CID is found in the triage store for the
stream specified in the cov-run-desktop command.

triage: <Triage>
An object containing the current values of the built-in triage attributes for this defect. These values
are described in the Triage section.

customTriage: <CustomTriage>
An object containing the current values of the user-defined triage attributes for this defect.

presentInReferenceSnapshot: <boolean>
True if the issue is present in the reference snapshot specified in the cov-run-desktop command,
false if not.

firstDetectedDateTime: <string>
The date and time when the issue was first detected in the stream. It expresses the date and time
with the granularity of seconds in the time zone where the producing program is invoked, and
includes that time zone expressed as a positive or negative offset from GMT.

For example: 2013-05-04T19:47+07:00

stream: <string>
The name of the stream specified in the cov-run-desktop command.

32

Desktop Analysis Reference

components: <[string]>
A list of components in which the issue occurrences with the same merge key appear.

componentOwners: <[string]>
A pair of strings for the component's componentDefaultOwner and
componentDefaultOwnerLdapServer. The values of the two fields will be null if the component
does not have a default owner.

cached: <boolean>
True if cov-run-desktop was run in disconnected mode and the state was cached from a previous
connected run. If false, cov-run-desktop was able to obtain up-to-date triage data by connecting
to Coverity Connect.

retrievalDateTime: <string>
The date/time when the state was last retrieved. If cached is false, this is the time that cov-run-
desktop was run. Otherwise, it is the invocation time of the last cov-run-desktop process that
successfully retrieved data from Coverity Connect.

ownerLdapServerName: <string>
The LDAP server of the defect owner. An empty string indicates that the ownerLdapServerName is
null. Added in version 3.

5.13.5. CheckerProperties

This object contains information that puts this defect into broad classes of related defects according to
various classification schemes, some that are industry standard, and some that are created by Coverity.
(The term "checker properties" is legacy nomenclature.)

category: <string>
The English name of the Coverity-defined broad category into which this defect falls. It is refined by
subcategoryShortDescription.

categoryDescription: <string>
This legacy attribute is the same as "category".

cweCategory: <string>
CWE classification. It is either a CWE ID as a decimal integer, or the string "none".

issueKinds: <[string]>
Alphabetically sorted list of strings indicating the "kind" of issue. The valid strings are:

• QUALITY

The defect is likely to affect the perceived quality of the product that contains it.

• SECURITY

The defect may be a security vulnerability.

33

http://cwe.mitre.org/

Desktop Analysis Reference

• TEST

This is a test policy violation, meaning the tests do not adequately exercise the associated code.
Added in version 3.

eventSetCaptions: <[string]>
A list of descriptions for each of the event sets appearing in the top-level issue occurrence.

impact: <string>
Level of the potential impact of the issue. Values are High, Medium, Low, or Audit.

impactDescription: <string>
This legacy attribute is the same as "impact".

subcategoryLocalEffect: <string>
The local effect of the given subcategory.

subcategoryLongDescription: <string>
Long description of the nature of the subcategory.

This attribute is a subset of HTML. Specifically, it may contain the elements "a", "br", "code", "em",
and "i". The "a" element may contain the "target" and "href" attributes. All attributes are delimited
by double-quote characters. There may be numeric entity references, both decimal and hexadecimal,
as well as "lt", "gt", and "amp" named entities.

subcategoryShortDescription: <string>
This is a refinement of the "category" attribute. It corresponds to the "Type" column in Coverity
Connect.

MISRACategory: <string>
Category for MISRA defects, one of Advisory, Required, or Mandatory. This field is optional.
When not present, the whole field is absent, null is not used. (Always absent before version 7.)

5.13.6. Triage

This object carries the current values of built-in triage attributes for the defect.

classification: <string>
The current issue Classification.

action: <string>
The current Action to be taken on the issue.

fixTarget: <string>
The current Fix Target for the issue.

severity: <string>
The current Severity of the issue.

34

Desktop Analysis Reference

legacy: <string>
The current Legacy value of the issue.

owner: <string>
The username of the currently assigned owner of the issue, or an empty string if there is no assigned
owner.

externalReference: <string>
The "external reference" string for the issue.

5.13.7. CustomTriage

The CustomTriage object holds a set of key/value pairs for any user-defined triage attributes.

5.13.8. DesktopAnalysisSettings

This object captures the main inputs to cov-run-desktop.

analysisDateTime: <string>
The date/time of the cov-run-desktop invocation that produced the present JSON output file.

covRunDesktopArgs: <[string]>
The command line arguments to cov-run-desktop that produced the present output file, with any
--password argument removed.

effectiveStripPaths: <[string]>
The set of effective strip paths.

analysisScopePathnames: <[string]>
The set of source file pathnames defining the analysis scope. These paths are not stripped.

strippedAnalysisScopePathnames: <[string]>
The stripped version of analysisScopePathnames.

auxiliaryScopePathnames: <[string]>
The set of primary source file pathnames of translation units that were analyzed in addition to
analysisScopePathnames for the purpose of enabling analysis of something in that set. Defects in
the auxiliary scope are not reported.

strippedAuxiliaryScopePathnames: <[string]>
The stripped version of auxiliaryScopePathnames.

referenceSnapshot: <ReferenceSnapshotDetails>
If a reference snapshot is specified or inferred, this object contains details about the snapshot. This
object is described in the ReferenceSnapshotDetails section.

effectiveAnalysisSettings: <PortableAnalysisSettings>
The core analysis settings used for this invocation of cov-run-desktop. These are the effective
combination of the settings retrieved from Coverity Connect (if any) and the settings specified on the
cov-run-desktop command line (if any). See PortableAnalysisSettings.

35

Desktop Analysis Reference

relativeTo: <string>
If present, this corresponds to --relative-paths --relative-to <relativeTo> . If absent,
this corresponds to --relative-to false.

intermediateDir: <string>
The intermediate directory used by cov-run-desktop. Added in version 3.

5.13.9. ReferenceSnapshotDetails

This object contains information about the reference snapshot stored on the Coverity Connect server.

snapshotId: <int>
The numeric snapshot ID.

codeVersionDateTime: <string>
The SCM date/time associated with the version of the code that was analyzed.

description: <string>
The snapshot description attribute.

version: <string>
The snapshot version attribute.

analysisVersion: <string>
The snapshot's analysisVersion. Added in version 3.

analysisVersionOverride: <string>
The analysisVersionOverride associated with the reference stream. Added in version 3.

target: <string>
The user-provided target attribute.

5.13.10. PortableAnalysisSettings

This object contains the "portable" analysis settings for the current invocation of cov-run-desktop.

coding_standard_configs: <string>
The contents of the file passed to --coding_standard_configs, if any.

covAnalyzeArgs: <[string]>
A sequence of cov-analyze command line arguments.

fileCheckerOptions: <FileCheckerOption>
The contents of the argument file to checker options that specify files.

fbExcludeConfigurations: <string>
A sequence of the contents of files passed to --fb-exclude, if any.

fbIncludeConfigurations: <string>
The contents of the file passed to --fb-include, if any.

36

Desktop Analysis Reference

5.13.11. FileCheckerOption

This object contains the contents of the file that was passed as an argument to a checker option.

checkerName: <string>
Name of the checker to which the option was passed (e.g. WRAPPER_ESCAPE).

optionName: <string>
Name of the option (e.g. config_file).

fileContents: <string>
The contents of the file passed as an option.

5.13.12. Error

If cov-run-desktop is unable to perform the requested action, the output will include the Error object.

errorType: <string>
The type of the error that caused cov-run-desktop to fail.

errorSubType: <string>
The subtype of the error.

errorMessage: <string>
A message describing the nature of the error.

Note

The Error object may contain additional attributes, specific to its errorType. Any program that
reads this format must ignore any unrecognized error attributes.

5.14. coverity.conf file format

The coverity.conf file format is based on JSON , but with comments allowed. Comments may
begin with "//" and go to the end of the line.

The overall structure of coverity.conf is depicted in the following diagram (note that optional fields
are marked with a "?"). For a working coverity.conf example, see Section 5.14.19, “Example
coverity.conf file”.

37

http://www.json.org/

Desktop Analysis Reference

The following sub-sections describe each of the constituent elements. Several conventions and notations
are used:

38

Desktop Analysis Reference

• Attributes (also known as fields or properties) are named beginning with a lowercase letter and consist
of lowercase letters and underscores.

• Classes are named beginning with an uppercase letter and consist of mixed case names. Class names
do not actually appear anywhere in the configuration file because JSON does not have a notion of a
class.

• Required attribute declarations are written in the following format:

"<attribute_name>": <type>

This format means that there must be an attribute called "<attribute_name>" and its value must be
consistent with <type>.

• A type is one of the following:

• The scalars bool, int, or string

• regex or path (these are like string but have special meaning)

• A class name (meaning the value must be an object that conforms to the structure defined for that
class)

• One of the above followed by "[]" (meaning the value must be an array of the indicated type)

• Optional attribute declarations are written in the following format:

"<attribute_name>"?: <type>

Notice the "?" before the ":".

This format means that the attribute can be omitted. The majority of attributes in this format are optional
because the configuration can be created by combining multiple configuration sources.

5.14.1. coverity.conf

The root of the JSON object tree is called coverity.conf because that is the name of the file, and the
file consists of exactly one such object. It has the following attributes:

type: "Coverity configuration"
The type must be exactly "Coverity configuration" to label the file's contents.

format_version: 1
The version must be the number 1. Future releases of the Coverity tools may introduce additional
permitted version numbers.

format_minor_version: 7
The minor version is currently at 7. Future releases of the Coverity tools may introduce additional
permitted minor version numbers.

39

Desktop Analysis Reference

variables?: UserDefinedVariables
Defines a variable that can be used within the coverity.conf file itself using a variables property.
Each variable is defined by a name and a corresponding value.

settings?: Settings
Defines the unconditional settings stored in this file.

conditional_settings?: ConditionalSettings[]
Defines the conditional settings in this file. Each object has some conditions that must be true for
the object to take effect. Conditional settings override unconditional settings, and earlier conditional
settings take precedence over later conditional settings (if both are active).

5.14.2. UserDefinedVariables

UserDefinedVariables contains user defined variable names that can be defined to specific values.
These defined variable names are expanded in strings (See Table 5.1, “Simple variables” for details).

The variables property is a top-level property in the configuration file, and is unconditionally evaluated.
Variables may be referenced in the expression associated with a regex_matches_string condition
for a conditional settings block.

If a variable is defined in both a project-specific coverity.conf file as well as the coverity.conf file
in the user's home directory, the value in the user-specific file takes precedence. In addition, this process
is applied on a per-variable basis, so a user only needs to define values in the user-specific file which
they intend to override.

5.14.3. ConditionalSettings

ConditionalSettings combines Settings with conditions under which they apply. If the conditions
are true in the environment where the file is being read, then the corresponding settings are active (and
may override settings from elsewhere).

The attributes of this class are:

when: Condition
The condition(s) that must be true for the settings to be active.

settings: Settings
When the conditions specified in the other attributes are satisfied, these settings become active,
overriding same-named attributes from unconditional settings.

5.14.4. Condition

A Condition contains one or more simple predicates (attributes) that must be true for the condition to
be met. The attributes are:

platforms?: string[]
If present, then the current host platform must be among those in the sequence for the condition to
be satisfied. The possible platforms are:

40

Desktop Analysis Reference

• aix

• freebsd

• freebsd64

• linux

• linux-ia64

• linux64

• macosx

• netbsd

• netbsd64

• solaris-sparc

• solaris-x86

• win32

• win64

hostname_regex?: regex
If present, the fully qualified hostname of the host machine must match (as a substring, unless
anchors are specified) the specified perl-syntax regular expression. Note that regular expression
matching for hostname_regex is case-insensitive.

username_regex?: regex
If present, the OS username of the user invoking the tool reading the configuration file must match
the specified regular expression.

regex_matches_string?: string[]
If present, this array must contain an even number of strings, such that they form a sequence of
(regex,string) pairs. Each regex is matched against each corresponding string; all must match for the
condition to be met.

For example:

 "regex_matches_string": [
 "^user1$", "$(env:USER)", // user = user1, AND
 "^win", "$(platform)" // OS is Windows
]

file_exists?: path
If present, this condition is true if there is any named file system entity (file, directory, named pipe,
etc.) at the given location.

41

Desktop Analysis Reference

configurations?:string[]
If present, this condition is true if the current analysis configuration name exactly matches any of the
listed strings.

Configuration names are specified using the —configuration-name <name> on the command
line or matching an Analysis Configuration name in the Coverity Desktop Analysis plugins. If no
configuration name is specified, the current configuration is Default.

5.14.5. Settings

The Settings class contains the configuration parameters that directly influence the operation of tools.
It contains the following attributes:

add_compiler_configurations?: CompilerConfiguration[]
A supplementary set of compiler configurations. These do not override anything; instead, all
active configuration sources' add_compiler_configurations attributes contribute additional
configurations to the total set that will be active.

codexm_files?: CodeXMFiles
This property contains CodeXMFiles objects that define individual CodeXM checkers which are
provided for analysis. CodeXM checkers are enabled once they are specified in the codexm_files
property.

compiler_config_file?: path
The name of the coverity_config.xml file where the compiler configuration information shall be
stored. It corresponds to the --config command line option.

The default value is "$(code_base_dir)/data-coverity/v$(version)/config/
coverity_config.xml".

compiler_configurations?: CompilerConfiguration[]
This array contains specifications for how to configure compilers. Each element corresponds to
one invocation of cov-configure to run when setting up desktop analysis on the developer's
workstation.

The default value is:

 "compiler_configurations": [
 {
 "cov_configure_args": [
 "--javascript",
 "--if-supported-platform"
]
 },
 {
 "cov_configure_args": [
 "--php",
 "--if-supported-platform"
]
 },

42

Desktop Analysis Reference

 {
 "cov_configure_args": [
 "--python",
 "--if-supported-platform"
]
 },
 {
 "cov_configure_args": [
 "--ruby",
 "--if-supported-platform"
]
 },
 {
 "cov_configure_args": [
 "--gcc"
]
 },
 {
 "cov_configure_args": [
 "--java"
]
 },

 {
 "cov_configure_args": [
 "--scala"
]
 },
 {
 "cov_configure_args": [
 "--swift"
]
 },
 {
 "cov_configure_args": [
 "--msvc"
]
 },
 {
 "cov_configure_args": [
 "--cs"
]
 },
 {
 "cov_configure_args": [
 "--clang"
]
 }
]

That means that you only need to set this value if using a compiler other than GNU C/C++ under the
name gcc or g++, Microsoft C/C++/C#, Oracle Java, or Clang. All interpreted languages (filesystem
capture) supported for Coverity analysis on the current platform are part of this default configuration.

43

Desktop Analysis Reference

Otherwise, you need to create one CompilerConfiguration element for each compiler
used during the build. For example, if you are using ccache with GCC, then you should set
compiler_configurations to:

 [
 {
 // cov-configure --gcc
 "cov_configure_args": ["--gcc"]
 },
 {
 // cov-configure --compiler ccache --comptype prefix
 "cov_configure_args": ["--compiler", "ccache", "--comptype", "prefix"]
 }
]

See Configuring compilers for Coverity Analysis for more information on how to use cov-
configure. Once you have a set of cov-configure command lines that configure your compilers,
put them in compiler_configurations or add_compiler_configurations.

If an overriding configuration specification (from another file, or from a conditional configuration)
specifies this attribute, then the entire set of configurations is replaced with the overriding set.

cov_run_desktop?: CovRunDesktopSettings
Settings specific to the operation of cov-run-desktop .

extend_directories?: ExtendDirectories
ExtendDirectory objects which define the individual custom checkers provided for analysis.
The extend checker names defined here are used in the extend_checkers property of
CovRunDesktopSettings.

intermediate_dir?: path
Specifies the location of the intermediate directory, which is one piece of the local state maintained
by desktop analysis. It corresponds to the --dir command line option.

The default value is "$(code_base_dir)/data-coverity/v$(version)/idir".

Note

Note that Desktop Analysis can only be run on an intermediate directory created on the same
machine, and in the same source code directory, as the analysis will take place (i.e. the
build and analysis processes must take place on the same machine and directory, and the
intermediate directory must not be moved).

known_installations?: KnownInstallation[]
Sequence of known installations of Coverity tools.

license_file_dir?: path
Directory where automatically downloaded license files are stored.

The default value is "$(code_base_dir)/data-coverity/v$(version)/lic".

44

https://ccache.samba.org/
cov_analysis_administration_guide.pdf#compiler
cov_command_ref.pdf#cov-run-desktop

Desktop Analysis Reference

server?: Server
Settings that specify how to access the Coverity Connect server.

stream?: string
The name of the Coverity Connect stream from which to get analysis summaries. The stream should
contain snapshots obtained by analyzing the same code base and branch as will be analyzed on the
desktop.

There is no default for this setting, so it must be set in a coverity.conf file or on the command
line.

scm?: SCMSettings
Settings for interacting with the SCM.

tmpdir?: path
Directory in which to store temporary data (data that, under normal circumstances, is removed by the
same process that created it). The default value is determined based on operating system.

5.14.6. Server

The Server class contains Coverity Connect server configuration attributes:

host?: string
The host name or numeric (IPv4 or IPv6) address of the Coverity Connect server. No dependent
variables may appear in this string.

There is no default for this setting, so it must be set in a coverity.conf file or on the command
line.

port?: int
The port number of the HTTP or HTTPS service of the Coverity Connect server.

The default is 8080 if ssl is false and 8443 if it is true.

ssl?: bool
if true, then the communication with Coverity Connect will be protected with the SSL/TLS protocol. If
false, communication will be conducted in cleartext.

The default is false.

username?: string
The Coverity Connect username to use when authenticating.

The default value is "$(env:COV_USER:USER:USERNAME)".

That means that if the COV_USER environment variable is set, its value is used. Otherwise, if USER
is set then it is used; finally, USERNAME is tried.

password?: string
The password corresponding to the user. If it is empty, no password is specified.

The default value is "".

45

Desktop Analysis Reference

For security reasons, it is not recommended to put a password into coverity.conf, but there may
be cases where it is expedient to do so anyway.

auth_key_file?: path
Name of a file to use as an authentication key .

The default value is "$(cov_user_dir)/authkeys/ak-$(server_host_as_fname)-$(server_port)".

That means that, by default, authentication keys are stored in a directory associated with the invoking
user. Consequently, a single key can be used with many code bases and branches.

certs?: path
Use the CA certificates in the given file path. Requires ssl.

on_new_cert?: string
Indicates whether to trust (with trust-first-time) self-signed certificates, presented by the server, that
haven't been seen before. The accepted string values are trust and distrust. Requires ssl.

5.14.7. CovRunDesktopSettings

The CovRunDesktopSettings class carries settings specific to the cov-run-desktop program. It
has the following attributes:

allow_suffix_match?: bool
When true, cov-run-desktop behaves as if --allow-suffix-match were passed on the
command line. This option is only recommended for enhanced backward compatibility.

analysis_args?: string[]
Arguments that cov-run-desktop should treat as if they appeared on its command line with the
purpose of altering the behavior of the underlying analysis. This can be used to cause desktop
analysis to use different options from the full, central analysis, although that is not the recommended
usage.

If relative file names appear in these arguments, they will be interpreted as relative to the
code_base_dir.

build_cmd?: string[]
A command line, as a sequence of shell words, that will invoke a build. This is run by "cov-run-
desktop --build".

build_encoding?: string
A string to use as the argument to cov-build --encoding during build capture. The
source_encoding option is preferred if all source code uses the same character encoding, but this
option takes precedence for build capture when both are specified.

build_record_with_source?: bool
When true, --record-with-source is passed to cov-build. The default is false.

build_options?: string[]
A sequence of additional option words to pass to cov-build. The sequence of words must form a
valid option and argument sequence for cov-build.

46

cov_command_ref.pdf#auth_key_mode_im

Desktop Analysis Reference

For example:

 "build_options": [
 "--encoding", "UTF-8",
 "--append-log",
 "--capture-ignore", "NTVDM.EXE"
]

checkers?: <Checkers>
Checkers then defines CheckerSettings specific to the operation of cov-run-desktop.

An example of the checkers and extend_checkers class is:

{
 // other cov-run-desktop settings...
 "checkers": {
 "ARRAY_VS_SINGLETON": {
 // inherit enabled value from tools or stream by not specifying the "enabled"
 property
 "options": {
 "stat_cutoff": 7
 }
 },
 "BAD_FREE": {
 "enabled": false
 }
 },
 "extend_checkers": {
 "MY_CUSTOM_CHECKER": {
 "enabled": true,
 "options": {
 "O": 3
 }
 }
 }
}

clean_cmd?: string[]
A command line (word sequence) that will clean the build. This is used by "cov-run-desktop --
clean".

coding_standard_configs?: string[]
This accepts a list of strings, since this option can be specified multiple times on the command line.
Provides the path(s) to configuration file(s) for a coding standard to run as part of the analysis. This
option is required to enable C/C++ MISRA analysis. It can also be used for enabling other standards,
such as CERT-C and AUTOSAR, see the description of the --coding-standard-config option
to the cov-analyze command for more information.

extend_checkers?: <Checkers>
Checkers then defines CheckerSettings specific to the operation of cov-run-desktop.

47

Desktop Analysis Reference

fs_capture_build_options?: string[]
Like build_options but used when cov-run-desktop invokes cov-build to automatically
capture files with filesystem capture.

ignore_modified_file_regex?: regex
A regex to be treated like the argument to cov-run-desktop --ignore-modified-file-
regex. This is meant for use with the --analyze-scm-modified switch in order to avoid trying to
analyze things that are not actually source code files.

ignore_uncapturable_inputs?: bool
Corresponds to the --ignore-uncapturable-inputs option to cov-run-desktop. This option
is not recommended for general use because it can hide errors that would be revealed in the process
of more thoughtful configuration.

restrict_modified_file_regex?: regex
A regex to be treated like the argument to cov-run-desktop --restrict-modified-file-
regex. This is meant for use with the --analyze-scm-modified switch in order to avoid trying to
analyze things that are not actually source code files.

reference_snapshot?: string
Corresponds to the cov-run-desktop --reference-snapshot option.

The default value is "idir-date".

source_encoding?: string
A string to use as the argument to cov-build --encoding, both during build capture and
filesystem capture.

specific_files_build_cmd?: string[]
Specifies a command, typically a custom script, that can compile uncaptured files on demand. The
command will be executed with $(code_base_dir) as the current directory and source files added
to the end of the command, as paths relative to that directory or as absolute paths. See "Compiling
files on demand" for details.

specific_files_build_options?: string[]
Like build_options but used when cov-run-desktop invokes cov-build with the
specific_files_build_cmd. When unspecified, any settings in build_options are used.

specific_files_regex?: regex
When specified, specifies a pattern that files must match in order to attempt auto-compilation
with specific_files_build_cmd. For example, if the command can only compile C and
C++, the regex might be \\.(c|cpp)$ to avoid attempting to compile header files or source
code from other languages. When this option is unspecified, all specified files for analysis not
previously captured with build capture and not captured with filesystem capture will be passed to
specific_files_build_cmd. See "Compiling files on demand" for details.

5.14.8. SCMSettings

The SCMSettings class provides values that correspond to the --scm* arguments to cov-run-
desktop. It has the following attributes:

48

Desktop Analysis Reference

scm?: string
Corresponds to cov-run-desktop --scm.

tool?: string
Corresponds to cov-run-desktop --scm-tool.

project_root?: path
Corresponds to cov-run-desktop --scm-project-root.

tool_args?: string[]
Corresponds to cov-run-desktop --scm-tool-arg. This accepts a list of strings, since this
option can be specified multiple times on the command line.

command_args?: string[]
Corresponds to cov-run-desktop --scm-command-arg. This accepts a list of strings, since this
option can be specified multiple times on the command line.

5.14.9. CompilerConfiguration

A CompilerConfiguration describes how to invoke cov-configure one time to configure one
compiler, or a family of compilers that can all be configured by a single invocation. It has the following
attribute:

cov_configure_args: string[]
A command line word sequence to pass to cov-configure.

5.14.10. KnownInstallation

A single KnownInstallation object records the existence of an installation of the Coverity Analysis
tools. It has the following attributes:

version: string
The version number of the Coverity Analysis tools.

platform: string
The platform that this installation is intended to run on, as a Coverity platform identifier like
"linux64". See Condition.platform for a complete list.

kind: string
The kind of tool installed at this location. Currently, the only possible value is "cov-analysis".

directory: path
An installation directory for the tools identified by version and kind.

5.14.11. ExtendDirectories

The ExtendDirectories class allows users to run Extend SDK checkers during the cov-run-
desktop analysis. It has the following attributes:

version?: string
A version number which the custom checker works with; this value matches the version specified in
the KnownInstallation object. During evaluation, custom checkers defined for a version other

49

Desktop Analysis Reference

than the effective value of the $(version) variable are ignored. If this value is omitted, the checker is
assumed to be compatible with the current version of the tools.

platform?: string
The platform which the custom checker works with; this value matches the platform specified in a
KnownInstallation object. During evaluation, custom checkers defined for a platform other than
the effective value of the $(platform) variable are ignored. If this value is omitted, the checker is
assumed to be compatible with the current platform.

directory?: path
A directory containing the custom checker executables.

checkers?: string[]
The names of custom checkers. These names will be equivalent to the executable names, but
without the executable file extension.

An example of using extend_directories is:

{
 // other settings...
 "extend_directories": [
 {
 "version": "$(version)",
 "platform": "$(platform)",
 "directory": "$(install_dir)/bin/sdk",
 "checkers": [
 "CUSTOM_CHECKER_A",
 "CUSTOM_CHECKER_B"
]
 }
]
}

5.14.12. Checkers

The Checkers class declares a relationship between a specific checker and a CheckerSettings
object that holds settings to configure that checker.

<name_of_checker>?: CheckerSettings
The name of the checker that is configured by the CheckerSettings object.

5.14.13. CheckerSettings

The CheckerSettings class allows users to configure specific checker settings during the cov-run-
desktop analysis.

When merging two Settings objects, the checkers and extend_checkers objects are merged.

• The enabled property of the higher-priority CheckerConfiguration is applied

50

Desktop Analysis Reference

• The CheckerOptions objects are merged on a per-property basis, with values assigned to individual
properties of the higher-priority Settings object replacing the corresponding values of the lower-priority
Settings object (including string[] properties)

The CheckerSettings class has the following attributes:

enabled?: bool
If true, then enable the checker. If false, then disable the checker. If unspecified, the checker is
enabled according to the settings in the reference snapshot.

options?: CheckerOptions
CheckerOptions objects which define the specific options to configure the checker.

5.14.14. CheckerOptions

The optional CheckerOptions class contains option names and the option values in the following
format:

<optionName>?: <optionValue>
Each option value may be one of the following:

• A number

• The Boolean value true or false

• A string

• An array of strings. Whereas the previous cases all correspond to passing a single --checker-
option option on the cov-analyze or cov-run-desktop command line, an array value here
means the same thing as passing multiple --checker-option options.

5.14.15. string

A string is an ordinary JSON string, except that it may contain variable substitution placeholders that are
substituted during evaluation to yield the effective configuration value.

Variable substitutions are denoted by "$(", then a name, then ")". For example, "$(server_port)" is
substituted for the value of settings.server.port.

The defined variables are listed in the tables below:

Table 5.1. Simple variables

Simple Variable Substitution

env:VAR1:VAR2:...:VARn
[=<default_value>]

Environment variable lookup. First, VAR1 is looked up, and if that is defined and
not empty then it is the substituted value. Otherwise, VAR2 is looked up, and
so on. If none of the variables is defined as non-empty, then an empty string is
substituted.

Optionally, you can append =, which is a string that will be substituted if none of
the environment variables are set.

51

Desktop Analysis Reference

Simple Variable Substitution

var:VAR1:VAR2:...:VARn
[=<default_value>]

Variable lookup. First, VAR1 is looked up, and if that is defined and not empty
then it is the substituted value. Otherwise, VAR2 is looked up, and so on. If none
of the variables is defined as non-empty, then an empty string is substituted.

Optionally, you can append =, which is a string that will be substituted if none of
the variables are set.

dollar The character "$".

lparen The character "(".

rparen The character ")".

platform The Coverity platform identifier string. This is one of the allowable values for
Condition.platforms.

version The Coverity tools version, for example "7.5.0" or "7.5.0.3".

install_dir Directory where the invoked tool is installed. It has a bin subdirectory, among
others.

num_cores The number of detected CPU cores on the local host machine, or "1" if that can
not be determined.

Table 5.2. Dependent variables

Dependent Variable Substitution

cov_user_dir A directory where user-specific and application-specific settings
are stored. On operating systems other than Windows, this is
"$(env:HOME)/.coverity". On Windows it is "$(env:APPDATA)/
Coverity".

code_base_dir The directory containing coverity.conf for the code base, if one is
found; otherwise, it is the working directory where the tool was invoked.

server_host_as_fname The effective value of settings.server.host, except mapped to a
string that is safe to use as a file name.

server_port The effective value of settings.server.port.

Table 5.3. Special variables

Special Variable Substitution

response_file_utf8 In specific_files_build_cmd, this expands to the path of a
temporary text file listing files to compile, one per line with UTF-8
character encoding.

response_file_platform_defaultIn specific_files_build_cmd, this expands to the path of a
temporary text file listing files to compile, one per line with platform
default character encoding.

Note

Special variables are only allowed in certain contexts.

52

Desktop Analysis Reference

5.14.16. regex

A regular expression ("regex") denotes a potentially infinite set of strings. Another string is said to "match"
the regex if it is a member of its denoted set. In this file format, regexes use the Perl syntax , except
they must be written as JSON strings, which means doubling backslashes and putting a backslash before
certain other characters like double-quote.

5.14.17. path

A path is the name of either a file or directory on the file system. This must be an absolute path (that is, it
must begin with "/" or "\" or a drive letter and colon and then a slash character).

If the path names a file or directory to be created, any necessary parent directories will be automatically
created.

5.14.18. CodeXMFiles

The CodeXMFiles class allows users to run CodeXM checkers during the cov-run-desktop analysis. It
has the following attributes:

directory?: path
A directory containing the custom CodeXM checker definitions.

files?: string
The names of files that define CodeXM checkers.

Here is an example that shows how to use the codexm_files property:

{
 // other settings...
 "codexm_files": [
 {
 "directory": "$(install_dir)/codexm",
 "files": [
 "CODEXM_CHECKER_A.cxm",
 "CODEXM_CHECKER_B.cxm"
]
 }
]
}

5.14.19. Example coverity.conf file

{
 "type": "Coverity configuration",
 "format_version": 1,
 "format_minor_version": 5,
 "settings": {
 "server": {
 "host": "d-linux64-03.sf.coverity.com",
 // REQUIRED
 "port": 5122,

53

http://perldoc.perl.org/perlre.html

Desktop Analysis Reference

 "ssl": false,
 // default
 "username": "$(env:COV_USER:USER:USERNAME)",
 // default
 "auth_key_file": "$(cov_user_dir)/authkeys/ak-$(server_host_as_fname)-
$(server_port)" // default
 },
 "stream": "prevent-harmony",
 // REQUIRED
 "compiler_config_file": "$(code_base_dir)/data-coverity/v$(version)/config/
coverity_config.xml", // default
 "compiler_configurations": [
 {
 "cov_configure_args": ["--gcc"]
 },
 {
 "cov_configure_args": ["--java"]
 }
],
 "intermediate_dir": "$(code_base_dir)/data-coverity/v$(version)/idir",
 // default
 "license_file_dir": "$(code_base_dir)/data-coverity/v$(version)/lic",
 // default
 "scm": {
 "scm": "git"
 },
 "cov_run_desktop": {
 "build_cmd": ["make", "-j$(num_cores)"],
 "build_options": [
 "--encoding", "UTF-8",
 "--cygwin",
 "--delete-stale-tus"
],
 "clean_cmd": ["make", "clean"],
 "restrict_modified_file_regex": "^(?!.*/(cmd-)?(j|cs)?test.*).*\\.(java|c|cpp|
cc)$",
 "analysis_args": [
 "--enable-fb"
],
 "reference_snapshot": "scm"
 },
 "known_installations": [
 {
 "version": "7.5.0",
 "platform": "linux64",
 "kind": "cov-analysis",
 "directory": "/home/user1/opt/cov-analysis-linux64-7.5.0"
 },
 {
 "version": "7.5.1",
 "platform": "linux64",
 "kind": "cov-analysis",
 "directory": "/home/user1/opt/cov-analysis-linux64-7.5.1"

54

Desktop Analysis Reference

 }
],
 “ide” {
 “path_mapping”: {
 “strip_paths”: [
 “path1”,
 “path2”
],
 “search_paths”: [
 “path3”,
 “path4”
]
 },
 “build_strategy”: “CUSTOM”
 },
 "conditional_settings": [
 {
 "when": {
 "platforms": ["win64", "win32"]
 },
 "settings": {
 "compiler_configurations": [// These
 settings are the default,
 { // except
 that by default they apply
 "cov_configure_args": ["--gcc"] // to all
 platforms.
 },
 {
 "cov_configure_args": ["--java"]
 },
 {
 "cov_configure_args": ["--msvc"]
 },
 {
 "cov_configure_args": ["--cs"]
 }
],
 "cov_run_desktop": {
 // adds "cs" extension on Windows
 "restrict_modified_file_regex": "^(?!.*/(cmd-)?(j|cs)?test.*).*\\.(java|c|
cpp|cc|cs)$"
 }
 }
 },
 {
 // On linux64, configure ccache checked in to platform-packages.
 "when": {
 "platforms": ["linux64"]
 },
 "settings": {
 "add_compiler_configurations": [
 {

55

Desktop Analysis Reference

 "cov_configure_args": [
 "--compiler",
 "$(code_base_dir)/linux64-packages/bin/ccache",
 "--comptype",
 "prefix"]
 }
]
 }
 }
]
}

5.14.20. IDESettings

IDESettings are used by the Coverity Desktop Analysis plugins and contain a few optional field
settings that the user can configure. The following Desktop Analysis IDE settings exist:

build_strategy?: string
When set to CUSTOM, the plugin will use the default custom build settings specified in build_cmd.
If a build setting isn't specified while using the Desktop Analysis IDE, the plugin will use the IDE
specified build commands.

There is no default for this setting, so it must be set in a coverity.conf file or should be declared
via command line.

path_mapping?: PathMapping
This setting allows you to specify strip and search paths for remote issues so that you can map them
to local files.

For more information about where these settings exist in the IDE, see Coverity 2020.12 for Eclipse, Wind
River Workbench, and QNX Momentics: User Guide

5.14.21. PathMapping

The PathMapping settings are used by the Coverity Desktop Analysis plugins to map any code defects
(retrieved from Coverity Connect) to local files. The following PathMapping settings can be configured:

strip_paths?: string
Paths that are listed under this setting are stripped from the front of a defect's file path. This setting
tries to resolve the path to a local file location.

search_paths?: string
Paths that are listed under this setting are added to the search locations of local files that contain
remote issues.

5.14.22. Backwards compatibility

For newly added features in coverity.conf that need to be used with older versions of cov-run-desktop,
the ext4 form may be used for compatibility with older releases:

• The string or is equivalent to : (colon).

56

desktop_eclipse_user_guide.pdf#eclipse_ac_advanced
desktop_eclipse_user_guide.pdf#eclipse_ac_advanced

Desktop Analysis Reference

• The string else is equivalent to = (equals).

• The syntax $(ext4_var_or_NAME) is equivalent to $(var:NAME).

• The variables property may be placed within an ext4 property.

• Any other new attribute, property or condition, may be placed in an ext4 element or property. This will
include things like:

• The configurations condition

• The checkers and extend_checkers properties in the CovRunDesktopSettings object.

57

Chapter 6. Troubleshooting Desktop Analysis
This troubleshooting section provides instructions for fixing the following common issues with Desktop
Analysis:

1. There is no captured compilation that contains the file

2. PARSE_ERROR reported in file to analyze

3. WARNING: compiler output does not exist

4. [ERROR] No snapshot in stream "<X>" has analysis summaries...

5. Issues with HTTP client proxies

6. Differences between Central and Desktop Analysis results

7. cov-run-desktop --clean or --build: "The system cannot find the file specified."

Files not yet captured and not captured automatically
There are essentially three ways cov-run-desktop can capture a file for analysis, and this error
indicates that none of them currently apply to the listed files. cov-run-desktop cannot be sure
which was intended to apply, so the user has to determine that. The three capture methods are
these:

• (a) Compiled under cov-run-desktop --setup or --build. This is the typical way of
preparing cov-run-desktop to handle compiled source files.

• (b) Automatically captured using the filesystem capture configuration. Files for analysis that have
not already been captured will be checked against filename patterns established in the filesystem
capture configuration (part of the compiler configuration), such as glob *.js. When there is a
match, such as foo.js, those files will be captured according the the relevant configuration.

• (c) Automatically compiled and captured with a specific files build script. (See Section 5.6,
“Compiling files on demand” for details.) If specific_files_build_cmd is specified in
coverity.conf, files for analysis that have not already been captured, do not match any
filesystem capture configuration, and match the specific_files_regex if specified, will be
passed to that build script. If the script returns a failure code (non-zero), that will be reported to the
cov-run-desktop user as a specific error.

Therefore, the resolution to this error (not yet captured and not captured
automatically) depends on which of these methods you expected to apply. Method (b) below is
the only choice for interpreted code (filesystem capture code), including JavaScript, PHP, Python,
and Ruby. Methods (a) and (c) are for compiled code, including C, C++, Objective-C, C#, Java, and
Scala. Method (a) is the simpler and more typical of the two. If none of these apply, because a file
is not source code or not supported for Coverity desktop analysis, consider one of the (n) solutions
listed toward the end, below.

Troubleshooting method (a), compiling code under cov-run-desktop --setup or --build:
If you are expecting a file to have been captured already, the cov-manage-emit command can
be used to help diagnose the cause. As a first step, run the following command to see a list of all
the primary source files (PSFs) that were captured:

58

Troubleshooting Desktop Analysis

cov-manage-emit --dir <idir> list

A PSF is the "main" file of a translation unit (TU, also called a compilation unit), the file whose
name is specified on the compiler command line. Other files that are implicitly read in order to
compile the PSF, such as header files in C/C++ and other source and bytecode files in Java and
C#, are "non-primary" source files.

If you are trying to analyze a PSF, but it is not in the output of the list command, it means a
compilation of that file was not captured.

Solution (a1): Re-capture the build
If the file to analyze was added since the last time you ran cov-run-desktop --build, it
is necessary to re-run that command to capture a compilation of the new file. It is simplest to
re-capture a full build, although it is also possible to just capture a compilation of that one file.

Solution (a2): Configure another compiler
Another reason a PSF might be missing is that its compilation was seen by cov-build but
not recognized as a compilation at the time. The cov-configure command tells cov-
build what commands to consider as compilers. Every compiler used in your build should
be configured with cov-configure.

Compiler configuration can be a complex process. The <idir>/build-log.txt file
contains information about what commands were seen and which were treated as a
compilation. If examining that file is not sufficient to discover the cause of an uncaptured
compilation command, contact Coverity Support for assistance.

Solution (a3): Non-primary source files and record with source
If the file you want to analyze is a non-PSF, such as a header file, then it is typically
necessary to add --record-with-source to the cov-run-desktop --build
command line. This causes the build to preprocess every translation unit and record all of
the source files that are read, rather than just record the command line. Consequently, cov-
run-desktop will be able to find a translation unit that includes a given header file, if one
exists.

The list of both primary and non-primary source files can be printed with the command:

cov-manage-emit --dir <idir> --tu-pattern 'file(".")' print-source-files

Here, the --tu-pattern is just a dummy pattern that matches all TUs, provided because
print-source-files requires a pattern.

Solution (a4): Specify a primary source file as well as a header
Another tactic to analyze header files is to specify to cov-run-desktop both the header
file to analyze and some PSF that includes that header file. cov-run-desktop will
recognize the PSF, compile it, then notice that it includes the header. This is different from
just analyzing the PSF, because cov-run-desktop only reports defects in files that are
specified on the command line.

Finally, detailed debugging of build capture with cov-run-desktop is possible by consulting
the build-log.txt file and the output/cov-run-desktop-log.txt file in the intermediate
directory, usually data-coverity/vN.N.N/idir.

59

Troubleshooting Desktop Analysis

Troubleshooting method (b), automatic filesystem capture:

Solution (b1): Configure filesystem capture
Although the default compiler configuration used by cov-run-desktop includes
standard configurations for all supported interpreted languages, if you have specified
compiler_configurations in coverity.conf or a compiler configuration file with --
config, these might not include filesystem capture. For example, to configure filesystem
capture for Python *.py and PHP *.php, use this in coverity.conf (see Section 5.14.5,
“Settings”):

"compiler_configurations": [
 {
 "cov_configure_args": ["--python"]
 },
 {
 "cov_configure_args": ["--php"]
 }
],

Note: Although the naming can be misleading, for historical reasons, the configuration for
filesystem capture is part of the "compiler configuration".

Solution (b2): Expand file patterns for filesystem capture
Suppose your project uses the convention of a .j extension for JavaScript files. The default
configuration for JavaScript capture provided by cov-run-desktop looks for files matching
*.js (and *.html and others). The following adds configuration for capturing *.j files as
JavaScript:

"add_compiler_configurations": [
 {
 "cov_configure_args": ["--comptype", "javascript", "--file-glob", "*.j"]
 }
],

Note: add_compiler_configurations extends the default configuration for cov-run-
desktop. Use compiler_configurations to replace it.

Also refer to the cov-configure documentation in the Coverity 2020.12 Command
Reference for more details.

Solution (b3): Use a supported platform for the source language
Coverity analysis of interpreted languages is not supported on some platforms. If you
are using the default compiler configuration, this could explain why source files for some
languages are not being captured. Providing an explicit configuration as in solution (b1)
would cause cov-configure to report an error if a given filesystem capture language is not
supported. You can also consult the "Supported platforms" section in the Coverity 2020.12
Installation and Deployment Guide for more information.

Also refer to the cov-configure documentation in the Coverity 2020.12 Command Reference
 for more details.

60

cov_command_ref.pdf
cov_command_ref.pdf
cov_deploy_install_guide.pdf
cov_deploy_install_guide.pdf
cov_command_ref.pdf
cov_command_ref.pdf

Troubleshooting Desktop Analysis

Finally, detailed debugging of filesystem capture with cov-run-desktop is possible by
consulting the autocapture-log.txt file and the output/cov-run-desktop-log.txt file
in the intermediate directory, usually data-coverity/vN.N.N/idir.

Troubleshooting method (c), automatic compilation of specific files
If you do not see this line on the console before receiving the not yet captured and not
captured automatically error:

[STATUS] Attempting to compile files not known to the emit...

then cov-run-desktop did not invoke the build script, either because none is configured or
because no files were considered applicable.

Solution (c1): Configure a specific_files_build_cmd
See Section 5.6, “Compiling files on demand” for details on configuring a custom build script.

Solution (c2): Adjust specific_files_regex to match the file name
If a file should be compiled by the build script and using specific_files_regex
(recommended), make sure the regex matches that file name.

If you do see this line on the console before receiving the not yet captured and not
captured automatically error:

[STATUS] Attempting to compile files not known to the emit...

then cov-run-desktop did invoke the build script, and it reported success.

Solution (c3): Specify a primary source file as well as a header
Auto-compilation cannot typically handle an uncaptured header file when no primary file that
includes it is part of the files for analysis. Consider including one, as in solution (a4) above.

Solution (c4): Adjust specific_files_regex to match the file name (again)
It is possible that some files were properly passed to the build script and some were not due
to this.

Solution (c5): Ensure that the build script always invokes the compiler
If the build script is base on make, measures must be taken to ensure the compiler is always
invoked, even if object files are newer than source files. One way to fix this is to have the
script touch the source files before running make.

Solution (c6): Configure the compiler
Compilers used by the build script must be part of the compiler configuration. See solution
(a2) above.

Finally, detailed debugging of automatic compilation with cov-run-desktop is possible by
consulting the autocompile-log.txt file and the output/cov-run-desktop-log.txt file
in the intermediate directory, usually data-coverity/vN.N.N/idir.

Possible solutions when none of method (a) through method (c) apply:

• Solution (n1): Remove the file(s) from consideration, command line

If a list of files was specified on the command line, remove the ones not to be analyzed.

61

Troubleshooting Desktop Analysis

• Solution (n2): Remove the file(s) from consideration, SCM modified

If using --analyze-scm-modified, use options --ignore-modified-file-regex and/
or --restrict-modified-file-regex, or their coverity.conf equivalents, to exclude
unanalyzable files by name or extension. Example coverity.conf addition:

{
 // ... other settings ...
 "settings": {
 "cov_run_desktop": {
 // ADD the following:
 "restrict_modified_file_regex": "\\.(c|cpp|cc|java|cs)$"
 }
 }
}

• Solution (n3): Ignore uncapturable inputs (not recommended)

If other solutions are impractical for eliminating uncapturable, unanalyzable files, or if you want
a quick, temporary solution, you can specify --ignore-uncapturable-inputs true on
the command line, or use the ignore_uncapturable_inputs coverity.conf setting.

Files not found
This generally indicates the user specified a path on the command line for a file to analyze, but the
file was not found, either as an absolute path or relative to the current working directory.

• Solution 1: Name a file that actually exists. Did you mistype the path?

• Solution 2: Change to or specify the right directory

If you want to analyze foo.c, but that is not in the current working directory, please change to that
directory or include it in the specified path to foo.c.

• Solution 3: Enable suffix matching (not recommended).

Earlier versions of cov-run-desktop permitted specifying any path suffix of a file captured in
the intermediate directory, regardless of the current working directory. To restore this functionality
for backward compatibility, use --allow-suffix-match or allow_suffix_match in
coverity.conf.

Unable to find or capture specified files
This message is only generated when using --allow-suffix-match, and indicates you either have a
"file(s) not found" problem or a "file(s) not yet captured and not captured automatically" problem,
but the nature of --allow-suffix-match doesn't allow the tool to distinguish the two. Refer to the
troubleshooting guidance for those errors.

PARSE_ERROR reported in file to analyze
A PARSE_ERROR pseudo-defect is reported when the Coverity compiler is unable to compile a source
file. It may be that the file contains an ordinary syntax error; generally, you should compile the file
with your usual compiler to check for syntax errors before running Desktop Analysis.

62

Troubleshooting Desktop Analysis

If there are no syntax errors detected by the usual compiler, a possible reason for a problem is that
the compiler options for your build have changed — for instance, changing -I or -D flags for C/C++,
or adding a classpath entry for java. In these cases, the solution is to re-capture a full build using
cov-run-desktop --build.

Another possibility is that you have encountered an incompatibility between that compiler and the
Coverity compiler. In that case, the typical solution is to adjust the compiler configuration as defined
with cov-configure to work around the problem. For more information, see "Configuring compilers
for Coverity Analysis" in the Coverity Analysis 2020.12 User and Administrator Guide. In some cases,
it may be necessary to contact Coverity Support for assistance.

WARNING: compiler output does not exist
This warning is caused, when analyzing Java code, by the absence of a .class file corresponding
to some .java file that was selected for analysis. These .class files are used as input to the
SpotBugs component (which is responsible for reporting the FB.* class of defects). To fix this,
ensure that your usual compiler has run on the code first so it will generate the .class files, then run
cov-run-desktop.

[ERROR] No snapshot in stream "<X>" has analysis summaries...
This error is caused by one of the following scenarios:

• The reference stream (specified by the --stream option) does not contain any snapshots with
analysis summaries.

• The reference stream does contain one or more snapshots with analysis summaries, but their
Code Version Date is more recent than the date specified to, or inferred by, the cov-run-
desktop command (see --reference-snapshot for information on how this is determined).

To fix this, log in to Coverity Connect to identify a candidate reference snapshot, if one exists. It may
be necessary to enable Desktop Analysis in stream configuration, and then commit a new snapshot.

To find a candidate reference snapshot:

1. In Coverity Connect, open a Snapshots view for your project (All In Project for example).

2. Click the "gear" icon to edit the view settings, and open the Columns tab.

3. Enable the Has Analysis Summaries and Code Version Date columns.

4. Return to the Snapshots view. Any snapshot that has "True" in the Has Analysis Summaries
column contains analysis summaries. Verify that your reference stream contains a snapshot with
analysis summaries, and ensure that its Code Version Date is not more recent than the date
specified by the --reference-snapshot option.

For more information about Code Version Date, see the cov-analyze option, --code-
version-date .

If no candidate reference snapshot exists:

1. Navigate to Configuration → Projects & Streams.

63

cov_command_ref.pdf#reference-snapshot-id
cov_command_ref.pdf#reference-snapshot-id
cov_command_ref.pdf#code-version-date
cov_command_ref.pdf#code-version-date

Troubleshooting Desktop Analysis

2. Select the relevant stream, and click on the Desktop Analysis tab.

3. Ensure that the Enable Desktop Analysis option is selected.

4. Commit a new analysis to this stream. This will contain analysis summaries as long as the cov-
analyze --export-summaries option is not explicitly set to false.

If --reference-snapshot scm option is used:

This issue may be caused if your codebase's last update date is before the reference snapshot was
committed to the stream. To fix this:

1. Update your codebase and push the changes (this will cause your SCM repository to be updated
more recently than the reference snapshot).

2. Re-run Desktop Analysis with --reference-snapshot scm.

Issues with HTTP client proxies
Desktop Analysis may fail or return inaccurate results when run on networks using HTTP client
proxies. Specifically, issues are known to arise when the http_proxy environment variable is a
machine name rather than an IP address, or when there are wildcards in the no_proxy environment
variable.

Differences between Central and Desktop Analysis results
You may notice analysis results that differ slightly from your Central Analysis results. There are
several reasons that this may occur; see Reasons for results differences.

cov-run-desktop --clean or --build: "The system cannot find the file specified."
On Windows platforms, you may find that a command that works in the cmd.exe shell does not work
in settings.cov_run_desktop.build_cmd or clean_cmd in coverity.conf (or on the cov-
run-desktop --build command line), as it fails with the error message, "The system cannot find
the file specified."

One possible reason is, unlike cmd.exe, cov-run-desktop does not automatically try file
extensions other than ".exe". In particular, programs with extensions ".com", ".bat", and ".cmd"
must be specified explicitly for cov-run-desktop to invoke them.

64

	Coverity Desktop Analysis 2020.12: User Guide
	Table of Contents
	Chapter 1. Desktop Analysis overview
	1.1. Choosing a user interface
	1.2. Requirements

	Chapter 2. Desktop Analysis quick start guide
	2.1. What you will need
	2.2. Installing Coverity Analysis tools
	2.3. Desktop Analysis on the command line
	2.3.1. Creating coverity.conf
	2.3.2. Adding the "bin" to your PATH
	2.3.3. Run cov-run-desktop --setup
	2.3.4. Analyzing a source file
	2.3.5. Reviewing defects

	2.4. Running Desktop Analysis from an editor or IDE
	2.4.1. Using Desktop Analysis with Emacs
	2.4.2. Using Desktop Analysis with Vim
	2.4.3. Desktop Analysis in the IDE

	Chapter 3. Coverity Connect integration
	3.1. Using an authentication key
	3.2. Disconnected mode

	Chapter 4. Administering Desktop Analysis
	4.1. Creating coverity.conf for a code base
	4.2. Editing the coverity.conf configuration file with a JSON code editor
	4.3. Add data-coverity to the SCM exclusion list

	Chapter 5. Desktop Analysis Reference
	5.1. Concepts
	5.2. The cov-run-desktop command
	5.3. Defining the analysis scope
	5.4. Source code management system integration
	5.5. Analyzing non-primary source files (C/C++)
	5.6. Compiling files on demand
	5.7. Running security checkers with cov-run-desktop
	5.8. Analyzing your whole program with cov-run-desktop
	5.9. Local defect owner assignment
	5.10. Desktop Analysis usage tracking
	5.11. Reasons for results differences
	5.12. Effect of component permissions
	5.13. Desktop Analysis JSON output syntax
	5.13.1. CoverityIssues
	5.13.2. IssueOccurrence
	5.13.3. Event
	5.13.4. StateOnServer
	5.13.5. CheckerProperties
	5.13.6. Triage
	5.13.7. CustomTriage
	5.13.8. DesktopAnalysisSettings
	5.13.9. ReferenceSnapshotDetails
	5.13.10. PortableAnalysisSettings
	5.13.11. FileCheckerOption
	5.13.12. Error

	5.14. coverity.conf file format
	5.14.1. coverity.conf
	5.14.2. UserDefinedVariables
	5.14.3. ConditionalSettings
	5.14.4. Condition
	5.14.5. Settings
	5.14.6. Server
	5.14.7. CovRunDesktopSettings
	5.14.8. SCMSettings
	5.14.9. CompilerConfiguration
	5.14.10. KnownInstallation
	5.14.11. ExtendDirectories
	5.14.12. Checkers
	5.14.13. CheckerSettings
	5.14.14. CheckerOptions
	5.14.15. string
	5.14.16. regex
	5.14.17. path
	5.14.18. CodeXMFiles
	5.14.19. Example coverity.conf file
	5.14.20. IDESettings
	5.14.21. PathMapping
	5.14.22. Backwards compatibility

	Chapter 6. Troubleshooting Desktop Analysis

